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LOCAL ASYMPTOTIC NORMALITY OF TRUNCATED
EMPIRICAL PROCESSES

BY MICHAEL FALK

Katholische Universitat Eichstatt¨ ¨
Given n iid copies X , . . . , X of a random element X in some1 n

arbitrary measurable space S, we are only interested in those observa-
tions that fall into some subset D having but a small probability of
occurrence. It is assumed that the distribution P of X belongs on D to aX

Ž . dparametric family P �� D � P , � � � � � . Nonlinear regressionX �

Ž .analysis and the peaks-over-threshold POT approach in extreme value
analysis are prominent examples. For the POT approach on S � � and P�

being a generalized Pareto distribution, it is known that the complete
information about the underlying parameter � is asymptotically con-0

Ž .tained in the number � n of observations in D among X , . . . , X , but not1 n
in their actual values. This result is formulated in terms of local asymp-
totic normality of the log-likelihood ratio of the point process of ex-

Ž .ceedances with � n being the central sequence.
In this paper we establish a necessary and sufficient condition such

Ž .that � n has this property for a general truncated empirical process in an
arbitrary sample space and for an arbitrary parametric family. The known
results are then consequences of this result. We can, moreover, character-
ize the influence of the actual observations in D on the central sequence,
if this condition is violated.

Immediate applications are asymptotically optimal tests for testing �0
ˆand, if � � �, asymptotic efficiency of the ML-estimator � satisfyingn

Ž . Ž . Ž .P D � � n �n, where these statistics are based on � n only.�̂n

0. Introduction. Let X , . . . , X be independent copies of a random1 n
Ž . Ž .element re X with values in some measurable space S, DD , whose distribu-

tion P belongs locally to some parametric family. Precisely, there existsX
D � DD such that

M P �� D � P �� D ,Ž . Ž . Ž .X �

� 4where P : � � � is a family of distributions, parametrized by � from some�

parameter space � � � d. Typical examples are regression analysis or density
estimation, in which case the set D is located in the center of the distribution
of X, or in extreme value theory, where D � D is located at the border andn
usually shrinks with increasing sample size n; see Section 1.3 in Falk, Husler¨

Ž .and Reiss 1994 for details.
A statistical analysis concerning the underlying parameter � , such as the

estimation of conditional distributions in regression analysis or of extreme
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quantiles in extreme value theory, has obviously to be based on these
observations Y among X , . . . , X that fall into the set D. A mathematicallyj 1 n
convenient way to describe these observations Y is by means of truncatedj
empirical point processes. First, we identify any point x � S with the per-

Ž .taining Dirac measure � B � 1 if x � B � DD and 0 otherwise. We thusx
identify a re X with the random Dirac measure � . A mathematicallyi X i

precise representation of those observations Y among X , . . . , X that fallj 1 n
into D is then the truncated empirical point process

n
DN B � � B � DŽ . Ž . Ž .Ýn X Xj j

j�1

Ž .� nn

� � B � D � � B , B � DD,Ž . Ž .Ý ÝX Yj j
j�1 j�1

Ž . DŽ .where the number � n � N D of observations in D is binomialn
Ž Ž .. D � nB n, P D -distributed. The process N is a re in the set � � � � Ý � :X n j�1 x j

4 Ž .x , . . . , x � S, n � 0, 1, 2, . . . of finite point measures on S, DD , equipped1 n
with the smallest �-field MM such that for any B � DD the projection

� 4	 : � � 0, 1, 2, . . . , 	 � � � BŽ . Ž .B B

is measurable. As such, N D is called a point process. For technical details wen
Ž .refer to Section 1.1 of Reiss 1993 .

D �The following crucial representation result for N is well known see, e.g.,n
Ž .�Theorem 1.4.1 in Reiss 1993 . We state it here explicitly for easier reference.

Ž .By LL Z we denote the distribution of a re Z.

Ž .LEMMA 0.1. Suppose that 0 � P D � 1. Then we haveX

Ž . Ž .� n K n
DLL N � LL � � LL � ,Ž . Ý Ýn Y Wj jž / ž /j�1 j�1

Ž . Ž Ž ..where K n is B n, P D -distributed, W , W , . . . , W are iid re’s with com-X 1 2 n
mon distribution

P B � P B � D �P DŽ . Ž . Ž .W X X

Ž . Ž .and K n and the vector W , . . . , W are independent.1 n

By the preceding lemma we can handle those observations Y , . . . , Y1 � Žn.
among X , . . . , X that fall into D, as a set of iid re’s, whose common1 n
distribution is the conditional distribution of X, given X � D; these are

Ž . Ž Ž ..independent of their number � n , which is B n, P D -distributed.X
Ž . Ž . � �If S, DD � �, � , where � is the Borel �-field on �, and D � D � t , 
n n

Ž . Ž . Dsatisfies P D � 0, nP D � 
 as n � 
, then N describes the ex-X X n
ceedances among X , . . . , X � � over some high threshold t � �, with the1 n n

Ž .expected number nP D of observations above t tending to infinity as theX n
sample size n increases. Lemma 0.1 formalizes in this case the peaks-over-
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Ž .threshold method POT , which has become a quite popular alternative in
recent years to the order statistics approach in extreme value statistics for
the analysis of tails of a distribution. Different from the order statistics
approach, the POT approach is universally applicable and not restricted to �1

with its natural ordering; see, for example, Section 2.3 in Falk, Husler and¨
Ž .Reiss 1994 and the literature cited therein.

Ž .Suppose now that we want to test the hypothesis � � 0 in model M0
against some alternative � � 0, where we assume that � � � d contains 0 asn
an inner point. If we suppose that P is dominated on D by P , then� 0n

Ž D. Ž D. � Ž .�LL N is dominated by LL N see, e.g., Theorem 3.1.2 in Reiss 1993 and� n 0 nn

thus, the Neyman�Pearson lemma implies that with u � �,

� N D � 1 log d LL N D �d LL N D N D� 4Ž . Ž . Ž . Ž .ž /n Žu , 
. � n 0 n nn

Ž Ž D..is the most powerful test for � � 0 against � of level E � N , based onn 0 n
N D. We index expectations, distributions and so on by the underlying param-n

Ž . Ž .eter. By 1 we denote the indicator function of a set A, that is, 1 x � � A .A A x
If � now converges to 0 as the sample size n increases, such that for somen

� � � the log-likelihood ratio satisfies the expansion

L � log d LL N D �d LL N D N D� 4Ž . Ž . Ž .n � n 0 n nn

� � Z � � 2�2 	 o 1 ,Ž .Žn. P0

LŽ .

where for n � 


Z � N 0, 1 ,Ž .Žn. DD0

Ž .then L is called local asymptotic normal LAN with central sequence Z ,n Žn.
n � �. By � we denote weak convergence with underlying parameter � .DD�

This asymptotic expansion enables us to apply the powerful general LAN
� Ž .theory to the above particular testing problem cf. LeCam 1986 , Strasser

Ž . Ž .1985 , LeCam and Yang 1990 for the general theory; for applications in
estimation problems we refer to the books by Ibragimov and Hasminskii
Ž . Ž .1981 and Pfanzagl 1994 . A very readable introduction to both estimation

Ž .�and testing is in Chapter 8 of Anderson, Borgan, Gill and Keiding 1992 . We
give in the following a brief introduction to basic concepts of the theory,
leading to asymptotically optimal tests and efficient estimators.

Ž . �1Ž . Ž .Denote for 
 � 0, 1 by u � � 1 � 
 the 1 � 
 quantile of the


Ž . Ž .standard normal distribution function df �. The LAN expansion L then
implies that

� N D � 1 sign � ZŽ .Ž . Ž .n , opt n Žu , 
. Žn.


is an asymptotically optimal level 
-test for testing � � 0 against � . Byn
� Ž . Ž .LeCam’s first lemma LeCam 1965 , named by Hajek 1962 ; see, e.g.,´

Ž .� Ž .Theorem 1 in Chapter 3 of LeCam and Yang 1990 , expansion L implies
Ž D.moreover that the alternatives LL N are contiguous with respect to� nn

Ž D. Ž .LL N , yielding that L is also valid under the alternative �0 n n

L � � Z � � 2�2 	 o 1 ,Ž .n Žn. P�n
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where the central sequence now satisfies

Z � N � , 1 .Ž .Žn. DD�n

Ž D.This result in turn provides immediately the asymptotic power of � Nn, opt n

D � �lim E � N � 1 � � u � � .Ž .Ž .Ž .� n , opt n 
nn�


Ž D.Note that � N is obviously asymptotically optimal uniformly for � � 0n, opt n
Ž .and for � � 0. Expansion L is also crucial for the estimation problem as we

will explicate in the following. Suppose for simplicity that � � � and assume
Ž . Ž .that L is true with the parameter 0 replaced by � and � � � � � � 	0 n n 0

Ž .�� , where � � 0. Then L readsn n n�


2�1 �2L � L � � � � � � Z � � � � � �2 	 o 1 .Ž . Ž . Ž . Ž .n n n n n 0 Žn. n n 0 P� 0

ˆ Ž .We denote now by � the ML-estimator of � maximizing L � L � andn 0 n n
assume its consistency. By neglecting the remainder term, the maximization

ˆL � � max L �Ž .Ž .n n n
�

is then roughly equivalent to maximizing the leading terms on the right-hand
side of the above expansion

2�1 �2ˆ ˆ� � � � Z � � � � � �2Ž . Ž .n n 0 Žn. n n 0

2�1 �2� max � � � � Z � � � � � �2Ž . Ž .ž /n 0 Žn. n 0
�

�1 ˆ� � � � � � Z .Ž .n n 0 Žn.

We thus have, by LAN and the implications of LeCam’s first lemma,
�1 ˆ �1 ˆ� � � � � N 0, 1 , � � � � � N 0, 1 .Ž . Ž .Ž . Ž .n n 0 DD n n n DD� �o n

ˆThe estimator � is therefore asymptotically unbiased under � as well asn 0
ˆunder � . Let T be another asymptotically unbiased estimator of � , pre-n n 0

cisely,
�1 ˆ �1 ˆ� T � � � Q , � T � � � Q ,Ž . Ž .n n 0 DD � n n n DD �� 0 � 00 n

Ž .where Q is some probability measure on �, � , independent of � . In this�0ˆ � Ž .�case T is called regular. Then Hajek’s convolution theorem Hajek 1970´ ´n
Ž .implies that Q is the convolution of N 0, 1 with a further probability�0

measure and thus, the variance of the limiting distribution of T exceeds thatn
ˆ ˆ Žof � , which is one. Due to this minimal property, � is called asymptoti-n n
.cally efficient within the class of regular estimators.

The preceding considerations indicate that a powerful statistical machin-
ery starts, as soon as LAN has been established, and that the central
sequence plays a key role in testing as well as in estimation problems. In

Ž .Falk 1995a this expansion could be verified for the POT method mentioned
above, with the aim of testing the extreme value index in certain neighbor-
hoods of generalized Pareto distributions. In this case we assume that
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Ž .X , X , . . . are independent copies of a random variable rv X on �, whose df1 2
Ž .F has a generalized Pareto upper tail. Precisely, there exists an unknown

Ž .point x with F x � 1 such that0 0

F x � G x , x 
 x ,Ž . Ž .� 0

Ž .where G is a generalized Pareto distribution GPD , that is,�

� ��1 � x , x 
 1, if � � 0,
���G x � � �Ž . 1 � x , �1 
 x 
 0, if � � 0,� �1 � exp �x , x 
 0, � � 0.Ž .

The assumption that the upper tail of F coincides with that of a GPD is
Ž . Ž .supported by results from Balkema and de Haan 1974 , Pickands 1975 and

Ž .Rychlik 1992 , which roughly imply that the exceedances in the sample
X , . . . , X over a high threshold t have a nondegenerate weak limit distri-1 n n
bution iff the upper tail of F is close to that of a GPD. This leads to the
definition of �-neighborhoods of GPDs, which have been extensively studied

� Ž .in recent years cf. Chapter 2 in Falk, Husler and Reiss 1994 and the¨
�literature cited therein .

Ž .It was observed in Falk 1995a that in this particular model the number
Ž .� n of exceedances alone provides the central sequence, not only in a pure

shape parameter problem but also if a scale parameter is added. In view of
Ž .L and the pertaining considerations, this means that the complete informa-
tion in the testing and estimation problem is contained only in the number of
exceedances but not in their actual values, as one would expect. Best unbi-
ased estimators for the parameter of a Pareto distribution with unknown
shape and scale parameters for a fixed sample size are given, for example, in

Ž .Saksena and Johnson 1984 . On the other hand it was observed in Falk
Ž . Ž .1995b , using the order statistics approach, or in Marohn 1995 , that the
exceedances enter the central sequence if a location parameter is added.

These observations were the motivation for the present paper, in which we
Ž .will clarify the contribution of the number � n and the observations Y in Dj

to the central sequence for general truncated empirical processes N D. We cann
establish in Theorem 1.1 a necessary and sufficient condition for the family
� 4P : � � � , satisfied, for example, for a normal location and scale family,�

Ž .such that � n alone provides the central sequence, and we can characterize
the influence of the observations Y on the central sequence. The results inj

Ž .Falk 1995a, b are then consequences of Theorem 1.1. In Section 3 we apply
the LAN theory to establish asymptotically optimal estimators of the underly-

Ž .ing parameter which are based on � n .
The LAN of certain Poisson point process models is, for example, estab-

Ž .lished in Proposition 3.25 of Karr 1991 and of marked point processes in
Ž . Ž . Ž .Nishiyama 1995 . Hopfner and Jacod 1994 and Marohn 1995 established¨

LAN of two-parameter point processes of exceedances. For LAN of closely
related counting process models and for excellent bibliographic remarks, we

Ž .refer to Chapter 8 of Andersen, Burgan, Bill and Keiding 1992 . The LAN of
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extreme order statistics in certain order statistics models were established by
Ž . Ž . Ž .Falk 1995b , Marohn 1995 and Wei 1995 . A characterization of LAN

within iid models of real valued random variables, in terms of the informa-
tion contained asymptotically in an arbitrary fixed number of extreme order

Ž .statistics was proved by Janssen and Marohn 1994 .

Ž . d1. Main result. Suppose that the model M is satisfied with � � �

and 0 being an inner point of �. Suppose further that the distributions P ,�

� � �, are dominated on D � D by some �-finite measure � such that then
densities f � dP �d� satisfy for � near 0 the expansion� �

² : � � 21 f � f 1 	 � , g 	 � hŽ . Ž .� 0 �

Ž . � � 2 ² :on D, where the function g � g , . . . , g satisfies H g dP � 
. By � , �1 d D 0
d � � ² :1�2we denote the usual inner product of � and by � � � , � the usual

Ž .norm. Note that each of the functions f , g, h in expansion 1 is defined on� �

D � D and thus, they actually depend on the sample size n as well, that is,n

f � f , g � g , h � h ,� n , � n � n , �

so that only the parameter space � is kept fixed. But for the sake of a clear
presentation we omit in the following the dependence of these quantities on
the sample size n.

Define the alternatives

d
� � � � , . . . , � � �Ž . Ž .n n 1 n ni i�1

d1�2� P DŽ .i 0
� 1�2ž /n H g dPD i 0 i�1

2Ž .

where � , . . . , � � � are fixed. We suppose � � 0 as n � 
 and1 d n
� � 2 4sup H g dP � 
 as well as sup H h dP � 
. The proof of Theorem 1.1n D 0 n D � 0n

shows that the alternatives � can be replaced by any sequence � � suchni ni
that

3 � � �� � 1 as n � 
, 1 
 i 
 d ,Ž . ni ni

provided h � satisfies the above integrability conditions. We suppose�n

P D � 0, nP D � 
 as n � 
Ž . Ž .0 0

and the crucial condition

P D H g 2 dPŽ .0 D i 0
4 � 1 	 c as n � 
, 1 
 i 
 d ,Ž . i2H g dPŽ .D i 0
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where c 
 0, 1 
 i 
 d, are finite constants. We assume furtheri

1 P D g P D gŽ . Ž .0 j 0 k� 1 � 1 dP � 0H 0ž /ž /P D H g dP H g dP5 Ž .Ž . D0 D j 0 D k 0

as n � 
, i 
 j � k 
 d ,

Ž .which is, by the Cauchy�Schwarz inequality, automatically satisfied, if 4
holds with c or c equal to 0. Recall that an observation Y among thosej k
random elements X , which actually fall into D, has by Lemma 0.1 under thei

Ž . Ž . Ž .parameter � � 0 the distribution P �� D �P D . Condition 4 then reads0 0

P D H g 2 dP E Y 2 Var YŽ . Ž . Ž .0 D i � 1 � � 1 � � c as n � 
i2 2 2H g dP E Y E YŽ . Ž . Ž .D i 0

Ž .and 5 becomes, for j � k,

1 P D g P D gŽ . Ž .0 j 0 k� 1 � 1 dPH 0ž /ž /P D H g dP H g dPŽ . D0 D j 0 D k 0

g Y g YŽ . Ž .j k� Cov , � 0 as n � 
.ž /E g Y E g YŽ . Ž .Ž . Ž .j j

Ž .For those indices i such that c � 0 in 4 we require in addition,i

P 2 D H g 4 dPŽ .0 D i 0
6 � 0 as n � 
,Ž . 4n H g dPŽ .D i 0

which is the condition

1 E g 4 YŽ .Ž .i � 0 as n � 
.4nP DŽ . E g YŽ .0 Ž .i

Finally we assume that

1�2 � � 47 nP D � � 0 as n � 
.Ž . Ž .0 n

Ž .If the remainder term h in expansion 1 is uniformly bounded for � near 0�

and x � D, then it is sufficient to require

� � � 47 nP D � � 0 as n � 
.Ž . Ž .0 n

Ž .The preceding conditions are discussed in the sequel. Condition 4 and its
connection to the Fisher information is particularly discussed in Section 3.
Now we are ready to state our main result.
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THEOREM 1.1. Assume the above conditions. Then we have under � � 0
Ž . dfor any � , . . . , � � � ,1 d

d LL N DŽ .� nn Dlog NŽ .nD½ 5d LL NŽ .0 n

2d d� n � nP D 1Ž . Ž .0� � � �Ý Ýi i1�2ž / ž /2nP DŽ .Ž .i�1 i�10

Ž .� n P DŽ .0�1�2	 nP D � g Y � 1Ž .Ž . Ž .Ý Ý0 i i jž /H g dPD i 0j�1 i : c �0i

d1
2� � c 	 o 1Ž .Ý i i P02 i�1

2 2d d d d1
2 2� N � � 	 � c , � 	 � c ,Ý Ý Ý ÝDD i i i i i iž / ž /ž /2ž /i�1 i�1 i�1 i�1

where Y , . . . , Y are those rvs in the original sample that fall into the set D,1 � Žn.
Ž .and they are independent of the number � n .

Ž .The preceding result shows that the deviations c from 0 in 4 determinei
the central sequence in Theorem 1.1, and the term

Ž .� n
�1�2 2nP D � P D g dP g Y � 1 � � c �2Ž . Ž .Ž . Ž .Ý H0 i 0 i 0 i j i iž /ž /Dj�1

Ž .contributes to the central sequence iff c � 0. The number � n constitutesi
therefore the central sequence alone iff c � 0 for 1 
 i 
 d. The examples ini
Section 2 show that each case can occur.

Ž .REMARK 1.2. As mentioned before, 4 is actually a condition on the
Ž .asymptotic variance of the conditional distribution of g X , given X � D,i

since
P D H g 2 dP Var g YŽ . Ž .Ž .0 D i 0 0 i j� 1 � 
 0.2 2H g dPŽ . E g YŽ .D i 0 Ž .0 i j

Ž . Ž .A possible limit c in 4 is therefore necessarily nonnegative. Conditions 4i
Ž .with c � 0 and 7 are automatically satisfied under appropriate local regu-i

Ž .larity conditions on g and h in expansion 1 , if D � D is located in the� n
center of the distribution P . Suppose for simplicity that P , � � � � � d, are0 �

Ž .distributions on �. Fix x � � and assume that expansion 1 holds for x0
Ž .near x and � close to 0, where f is continuous at x with f x � 0. Put0 0 0 0 0

for n � �,
1 1

D � D � x � , x 	 ,n 0 02na f x 2na f xŽ . Ž .n 0 0 n 0 0
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where 0 � a � 0, na � 
. Then we haven n�
 n n�


1
P D � 1 	 o 1Ž . Ž .Ž .0 nan

and

g xŽ .i 0
g P dx � 1 	 o 1 , 1 
 i 
 d ,Ž . Ž .Ž .H i 0 naD n

Ž . Ž .provided the function g in expansion 1 is continuous at x with g x � 0i 0 i 0
Ž .for 1 
 i 
 d. In this case, condition 4 is obviously satisfied with c � 0. Wei

can choose, moreover,

� � � a1�2�g x , 1 
 i 
 d.Ž .ni i n i 0

Ž . Ž .If we assume in addition that the remainder term h x in expansion 1 is�

uniformly bounded for � near 0 and x near x , then0

nP D � 4 � O a ,Ž . Ž .0 ni n

Ž .that is, condition 7� is automatically satisfied. The assertion of Theorem 1.1
now follows.

Ž .PROOF OF THEOREM 1.1. From Example 3.1.2 in Reiss 1993 we obtain
Ž D. Ž D.that for � near zero, LL N has the LL N density� n 0 n

Ž . Ž .� D n�� DŽ .D � Dd LL N f x P D P D 1 � P DŽ . Ž . Ž . Ž .Ž .� n � i 0 � �
� �Ž . ŁD ž / ž /ž /f x P D P D 1 � P Dd LL N Ž . Ž . Ž . Ž .Ž . i�1 0 i � 0 00 n

�ŽD . Ž .if � � Ý � and 0 
 � D 
 n. Consequently,i�1 x i

d LL N DŽ .� n Dlog NŽ .nD½ 5d LL NŽ .0 n

f x P DŽ . Ž .� 0 D� log N dxŽ .H nf x P DŽ . Ž .0 �

8Ž .

P D 1 � P DŽ . Ž .� �	 � n log 	 n � � n log .Ž . Ž .Ž .ž / ž /P D 1 � P DŽ . Ž .0 0

A suitable version of the central limit theorem implies the following.
Fact 1.

1�2
� n � nP D � nP D � N 0, 1 .Ž . Ž . Ž . Ž .Ž . Ž .0 0 DD0

Ž .From expansion 1 we obtain the following.
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Fact 2.

P D � P D � f � f d�Ž . Ž . H� 0 � 0n n
D

² : � � 2� � , g 	 � h dPH n n � 0n
D

d
2�1�2 1�2 � �� n P D � 	 � h dPŽ . Ý H0 i n � 0n

Di�1

d
2�1�2 1�2 3�4� �� n P D � 	 O � P DŽ . Ž .Ž .Ý0 i n 0

i�1

d
�1�2 1�2� n P D � 	 o 1Ž . Ž .Ý0 iž /

i�1

Ž .by the Cauchy-Schwarz inequality and condition 7 .
Fact 3.

dP D � P DŽ . Ž .� 0 �1�2n � nP D � 	 o 1 � o 1Ž . Ž . Ž .Ž . Ý0 iž /P DŽ .0 i�1

Ž .by Fact 2 and the condition nP D � 
 as n � 
. By making use of Facts0
1�3 we will next show that

P D 1 � P DŽ . Ž .� �n n� n log 	 n � � n logŽ . Ž .Ž .ž / ž /P D 1 � P DŽ . Ž .0 0

d
�1�2� � nP D � n � nP DŽ . Ž . Ž .Ž . Ž .Ý i 0 0ž /

i�1
9Ž .

2d1
� � 	 o 1 .Ž .Ý i P0ž /2 i�1

Ž . 2 Ž 3.The Taylor expansion log 1 	 � � � � � �2 	 O � for � � 0 implies

P D 1 � P DŽ . Ž .� �n n� n log 	 n � � n logŽ . Ž .Ž .ž / ž /P D 1 � P DŽ . Ž .0 0

2P D � P D P D � P D1Ž . Ž . Ž . Ž .� 0 � 0n n� � n �Ž . ž /P D 2 P Dž Ž . Ž .0 0

3P D � P DŽ . Ž .� 0n	O ž /P D /Ž .0

P D � P DŽ . Ž .0 � 2n � �	 n � � n 	 O P D � P DŽ . Ž . Ž .Ž . ž /0 �nž /1 � P DŽ .0
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P D � P D P D � P DŽ . Ž . Ž . Ž .� 0 0 �n n� � n 	 n � � nŽ . Ž .Ž .
P D 1 � P DŽ . Ž .0 0

2d� n Ý � 	 o 1Ž . Ž .Ž .i�1 i� 	 o 1Ž .P02 nP DŽ .0

2d� n n � � n Ý �Ž . Ž . Ž .i�1 i� P D � P D � � 	 o 1Ž . Ž . Ž .Ž .� 0 Pn 0ž /P D 1 � P D 2Ž . Ž .0 0

2dP D � P D Ý �Ž . Ž . Ž .� 0 i�1 in� � n � nP D � 	 o 1Ž . Ž . Ž .Ž .0 P0P D 1 � P D 2Ž . Ž .Ž .0 0

d
�1�2� nP D � 	 o 1 � n � nP DŽ . Ž . Ž . Ž .Ž . Ž .Ý0 i 0ž /

i�1

2d1
� � 	 o 1Ž .Ý i P0ž /2 i�1

Ž .by utilizing Facts 1�3. This proves representation 9 . In order to establish
Theorem 1.1, it remains to prove

f x P DŽ . Ž .� 0n Dlog N dxŽ .H n½ 5f x P DŽ . Ž .0 �n

Ž .� n P DŽ .0�1�2� nP D � g Y � 1Ž .Ž . Ž .Ý Ý0 i i jž /H g dPD i 0j�1 i : c �0i

10Ž .

d
2� � c �2 	 o 1 .Ž .Ý i i P0

i�1

� 4For n large enough, we have the following expansion on D � f � 0 .0
Fact 4.

f P DŽ .� 0n � 1
f P DŽ .0 �n

² : � � 21 	 � , g 	 � h P D � P DŽ . Ž .ž /n n � 0 �n n�
P DŽ .�n

H h dPP D H g dPŽ . D � 00 D 0 2 n� �� � , g � 	 � h �n n �¦ ; nž /ž /P D P D P DŽ . Ž . Ž .� 0 0n

d H h dPP D H g dPŽ . D � 00 D i 0 2 n� �� � g � 	 � h � .Ý ni i n �nž / ž /ž /P D P D P DŽ . Ž . Ž .� 0 0i�1n
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Ž .In the next step we will show that we can assume, for 1 
 j 
 � n ,

d H h dPH g dP D � 0D i 0 2 n� �11 � g Y � 	 � h Y � 
 �Ž . Ž . Ž .Ý ni i j n � j nnž /P D P DŽ . Ž .0 0i�1

for some sequence 0 � � � 0 as n � 
.n
Fact 5.

H h dPD � 02 n� �P � h Y � 
 � for some 1 
 j 
 � nŽ .Ž .0 n � j nn½ 5P DŽ .0

n H h dPD � 02 n� �� P � h Y � 
 � for some 1 
 j 
 kŽ .Ý 0 n � j nn½ 5P DŽ .0k�1

�P � n � k� 4Ž .0

nH h dPD � 02 n� �
 P � h Y � 
 � kP � n � k� 4Ž . Ž .Ý0 n � 1 n 0n½ 5P DŽ .0 k�1

�2 � � 4 2
 � � E h Y E � nŽ . Ž .Ž .Ž .n n 0 � 1 0n

�2 � � 4 2� � n � h dPHn n � 0n
D

1�2
4�2 1�2 4� �
 � nP D � h dP � 0 as n � 
Ž . Hn 0 n � 0nž /D

Ž .by the independence of � n , Y , Y , . . . , the Chebyshev and the Cauchy1 2
Ž .inequalities and condition 7 , if � � 0 converges slowly enough to zero. Byn

repeating the above arguments, we have Fact 6 for those indices i such that
Ž .condition 4 is satisfied with c � 0.i

Fact 6.

H g dPD 0
P � g Y � 
 � for some 1 
 j 
 � nŽ .Ž .0 ni i j n½ 5ž /P DŽ .0

2H g dPD i 0�2 2
 � n� g � dPHn ni i 0ž /P DŽ .D 0

P D g 2 dPŽ .H0 i 0
D�2� O � � 1 � 0 as n � 
n 2H g dPŽ .� 0D i 0� 0

if 0 
 � � 0 as n � 
 slowly enough. Equally, we have Fact 7 for thosen
Ž .indices i such that condition 4 is satisfied with c � 0.i



M. FALK704

Fact 7.

H g dPD i 0
P � g Y � 
 � for some 1 
 j 
 � nŽ .Ž .0 ni i j n½ 5ž /P DŽ .0

4H g dPD i 0�4 4
 � nP D � E g Y �Ž . Ž .n 0 ni 0 i 1ž /ž /P DŽ .0

P 2 D H g 4 dPŽ .0 D i 0� O � 0 as n � 
4 4ž /� n H g dPŽ .n D i 0

Ž .if 0 � � � 0 as n � 
 slowly enough. This follows from condition 6 .n
Ž .Facts 5�7 imply that 11 holds on a set, whose probability converges to 1,

Ž .that is, we will assume in the following that 11 holds. Put now for j �
1, 2, . . . ,

d H g dPD i 0
R � � g Y �Ž .Ýn j ni i jž /P DŽ .0i�1

and
H h dPD � 02 n� �S � � h Y � .Ž .n j n � inž /P DŽ .0

Then we have by Fact 4 if n is large,
Ž .� nf x P D P DŽ . Ž . Ž .� 0 0n D12 log N dx � log 1 	 R 	 S ,Ž . Ž . Ž .ÝH n n j n j½ 5½ 5f x P D P DŽ . Ž . Ž .0 � �j�1n n

Ž . Ž Ž . Ž .. � �where we can assume by Fact 2 and 11 that P D �P D R 	 S 
 �0 � n j n j nn

Ž .for 1 
 j 
 � n with 0 � � � 0 as n � 
. Taylor’s formula implies then
Ž . ŽŽ .2 .Ž Ž .. � �expansion log 1 	 x� � x� � x� �2 1 	 o 1 uniformly for x 
 1 andn n n

thus,
Ž .� n P DŽ .0

log 1 	 R 	 SŽ .Ý n j n j½ 5P DŽ .�j�1 n

Ž .� nP DŽ .0� R 	 SŽ .Ý n j n jP DŽ .� j�1n

13Ž .

2 Ž .� n1 P DŽ .0 2� R 	 S 1 	 o 1 .Ž .Ž .Ž .Ý n j n jž /2 P DŽ .� j�1n

A suitable version of the central limit theorem implies the following.
Fact 8.

Ž .� n d d1 P DŽ .0 2� g Y � 1 � N 0, � cŽ .Ý Ý Ýi i j DD i i1�2 0 ž /ž /H g dPnP DŽ . D i 0Ž . j�1 i�1 i�10

Ž . Ž .by conditions 4 and 5 .
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Ž .Fact 8 yields
Ž .� nP DŽ .0

RÝ n jP DŽ .� j�1n

Ž .� n d H g dPD i 0� 1 	 o 1 � g Y �Ž .Ž . Ž .Ý Ý ni i jž /P DŽ .0j�1 i�1

Ž .� n d1 P DŽ .0� 1 	 o 1 � g Y � 1Ž .Ž . Ž .Ý Ý i i j1�2 ž /H g dPnP DŽ . D i 0Ž . j�1 i�10

14Ž .

Ž .� n d1 P DŽ .0� � g Y � 1 	 o 1 .Ž .Ž .Ý Ý i i j P1�2 0ž /H g dPnP DŽ . D i 0Ž . j�1 i�10

Ž . Ž .Conditions 4 and 6 imply that in P probability we have the following.0
Fact 9.

2Ž .� n d d1 P DŽ .0 2� g Y � 1 � � c as n � 
.Ž .Ý Ý Ýi i j i iž /ž /nP D H g dPŽ .0 D i 0j�1 i�1 i�1

From Fact 9 we obtain
Ž .� n dP DŽ .0 2 215 R � � c 	 o 1 .Ž . Ž .Ý Ýn j i i P0P DŽ .� j�1 i�1n

Fact 10.
2Ž .� n

42 1�2 � �E S � E S E � n � O nP D � � o 1Ž . Ž . Ž .Ž .Ž . Ž .Ý0 n j 0 n1 0 0 nž /ž /j�1

Ž . Ž .by condition 7 . Fact 10 implies
Ž .� n

16 S � o 1Ž . Ž .Ý n j P0
j�1

and
Ž .� n

217 S � o 1 .Ž . Ž .Ý n j P
j�1

Ž . Ž .From 12 � 17 we obtain now

f x P DŽ . Ž .� 0n Dlog N dxŽ .H n½ 5f x P DŽ . Ž .0 �n

2Ž . Ž .� n � nP D 1 P DŽ . Ž .0 0 2� R 	 S � RŽ .Ý Ýn j n j n jž /P D 2 P DŽ . Ž .� �j�1 j�1n n

Ž .� n1
2� 2 R S 	 S 1 	 o 1Ž .Ž .Ž .Ý n j n j n j2 j�1
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Ž .� n d d1 P D 1Ž .0 2� � g Y � 1 � � c 	 o 1Ž .Ž .Ý Ý Ýi i j i i P1�2 ž /H g dP 2nP DŽ . D i 0Ž . j�1 i : c �0 i�10 i

Ž .by using the Cauchy�Schwarz inequality. This proves 10 and completes
therefore the proof of Theorem 1.1. �

2. Examples. In this section we provide various examples, where condi-
Ž . Ž .tions 4 � 7 are satisfied, as well as an example from regression analysis,

Ž .where condition 4 is violated.

Ž . � 4EXAMPLE 2.1 GPD with shape parameter . Let G : � � � be again the�

class of generalized Pareto distributions as defined in the introduction. Fix
� � � and put P � G , � � �.0 � � 	�0

Ž .i The case � � 0. In this case we have for � near 0 on the support of0
G ,�0

f � f 1 	 � g 	 � 2h ,Ž .� 0 �

where

1
� �g x � � log xŽ . Ž .

�0

and
2 � � � � �� �h x � O log x x 	 1 .Ž . Ž .Ž .�

�1Ž Ž .�1 . � Ž .�If we put now t � G 1 � na and D � D � t , � G , where 0 �n � n n n �0 0
Ž . Ž .a � 0 as n � 
, na � 
 as n � 
, then P D � 1� na ,n n 0 n

1 log naŽ .n
g dP � �H 0 � naD 0 n

and thus,

P1�2 D a1�2Ž .0 n
� � � � �� � .n 01�2 log nan H g dP Ž .nD 0

Ž .Condition 4 is satisfied here with c � 0,

H g 2 dP 1D 0
P D � 1 	 OŽ .0 2 ž /log naŽ .H g dPŽ . nD 0

and thus Theorem 1.1 implies that under P ,0

log d LL N D �d LL N D N D� 4Ž . Ž . Ž .� n 0 n nn18Ž .
� � a�1�2 � n � a�1 � � 2�2 	 o 1 � N �� 2�2, � 2 ,Ž . Ž . Ž .Ž .n n P DD0 0

Ž .which is Theorem 1.3 in Falk 1995a .
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Ž . � 4ii The case � � 0. In this case we reparametrize the class G : � � �0 �

and put for � � 0,
�1�� �1��H x � 1 � 1 	 � x , 0 � 1 	 � x 
 1,Ž . Ž . Ž .�

which is the von Mises parametrization of the family of GPDs. Interpret
Ž . Ž . Ž . Ž .H x � lim H x � 1 � exp �x � G x , x 
 0. Note that H has0 � � 0 � 0 �

Ž . Ž .support 0, �1�� if � � 0 and 0, 
 if � � 0. Furthermore, H can be�

obtained from G by the identity1� �

G 1 	 � x , if � � 0,Ž .1� �
H x �Ž .� ½ G � 1 	 � x , if � � 0.Ž .Ž .1� �

Denote by f the density of H , that is,� �

x 
 0, if � 
 0,Ž .� 1�� �1f x � 1 	 � x forŽ . Ž .� ½ 0 
 x 
 �1�� , if � � 0.

Then we have for x in the support of H by using iterated Taylor expansions,�

f x � f x � g x 	 � 2h x ,Ž . Ž . Ž . Ž .Ž .� 0 �

where
x 2

g x � � x , x 
 0.Ž .
2

Ž . � �1�4.If we put now t � log na and D � t , t a , where again 0 � a � 0,n n n n n n
Ž . Ž .�1Ž Ž ..na � 
, then P D � na 1 	 o 1 ,n 0 n

log2 naŽ .n
g dP � 1 	 o 1Ž .Ž .H 0 2naD n

and thus we can choose
a1�2

n
� � 2� .n 2log naŽ .n

Ž .Note that the functions h x are uniformly bounded for n � � and x � D,�n

and that the probability that an observation among X , . . . , X exceeds1 n
t a�1�4 converges to zero under � � 0 as well as under � � � if n increases.n n n

Ž .The crucial condition 4 is satisfied here with c � 0 and thus Theorem 1.1
Ž . Ž .implies essentially Theorem 1.1 in Falk 1995a with � n yielding the central

sequence.

Ž . Ž .EXAMPLE 2.2 The normal case . Let P with � � �, � be the normal�

Ž .�2 Ždistribution on � with mean � and variance 1 	 � , that is, P � N �,�

Ž .�2 . Ž . � �1Ž Ž .. .1 	 � , � � � � � � �1, 
 . Put D � D � � 1 � 1� na , 
 ,n n
where � denotes the standard normal df and a � 0 satisfies a � 0,n n
na � 
 as n � 
. A Taylor expansion of exp at zero implies, for x � � andn
� near 0,

f xŽ .� 2² : � �� 1 	 � , g x 	 � h x ,Ž . Ž .�f xŽ .0
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where

g x � x , g x � 1 � x 2Ž . Ž .1 2

and

� � 2 4h x � O exp � x x 	 1 .Ž . Ž .Ž .Ž .�

Ž . Ž . Ž . �Ž .Expansion 1 is therefore satisfied. Denote by � x � f x � � x �0
Ž .�1�2 Ž 2 .2	 exp �x �2 , x � �, the standard normal density and put t �n

�1Ž Ž ..� 1 � 1� na . Integration by parts yieldsn

g dN 0, 1 � � t , g 2 dN 0, 1 � t � t 	 1� naŽ . Ž . Ž . Ž . Ž .H H1 n 1 n n n
D D

and

g dN 0, 1 � t � t ,Ž . Ž .H 2 n n
D

g 2 dN 0, 1 � t 3 	 9t � t 	 10� na .Ž . Ž . Ž .Ž .H 2 n n n n
D

Ž . Ž Ž ..From the asymptotic equivalence � x 	 x 1 � � x as x � 
, we obtain
therefore

H g 2 dN 0, 1Ž .D i
N 0, 1 D � 1 as n � 
, i � 1, 2.Ž . Ž . 2H g dN 0, 1Ž .Ž .D i

Ž .Condition 4 is therefore also satisfied with c � c � 0 and hence, the1 2
� 4 � Ž Žassertion of Theorem 1.1 is valid for the family P : � � � � N �, 1 	�

.�2 . Ž . Ž .4� : �, � � � � �1, 
 , where we can choose the alternatives � �n
Ž Ž ..2� � asni i i�1

a1�2 a1�2
n n

� � � � , � � � � .Ž . Ž .n1 1 1 n2 2 2 2t tn n

Note that the normal distributions do not belong to any �-neighborhood of a
GPD and thus the preceding example is a counterexample, showing that the

Ž .assertion of Theorem 1.1 with D vanishing in the tail and � n yielding the
central sequence, is not only valid for distributions from a � neighborhood of

Ž .a GPD as was conjectured in Falk 1995a . For the definition of these classes
of distributions and a discussion of their significance in extreme value theory,

Ž .we refer to Sections 2.2 and 2.4 in Falk, Husler and Reiss 1994 .¨

Ž .EXAMPLE 2.3 Pareto with shape, scale and location parameter . Fix � � 00
Ž . Ž . Ž .and denote by P with � � �, � , � � �� , 
 � �1, 
 � � the Pareto� 0

distribution with shape, scale and location parameter � 	 �, 1 	 � and �,0
that is, P has the Lebesgue density�

Ž .� 	� � � 	� �10 0f x � � 	 � 1 	 � x � � if x � � 
 1 	 �Ž . Ž . Ž . Ž .� 0
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and zero elsewhere. Then we have for � near 0 and x 
 x � 1,0

f xŽ .� 2� �� 1 	 � g x 	 � g x 	 �g x 	 � h x ,Ž . Ž . Ž . Ž .1 2 3 �f xŽ .0

where

1 � 	 10
g x � � log x , g x � � , g x �Ž . Ž . Ž . Ž .1 2 0 3� x0

and
h x � O log2 x x �� � 	 1 .Ž . Ž .Ž .�

Ž .1� � 0 � .Put t � na and D � D � t , 
 , where again 0 � a � 0 and nan n n n n n
Ž . Ž .� 
 as n � 
. Then we have, for n large enough, P D � 1� na and0 n

log na � �Ž .n 0 0
g dP � � , g dP � , g dP �H H H1 0 2 0 3 0 1	1�� 0� na naD D D naŽ .0 n n n

Ž .and condition 4 is satisfied with

0, if i � 1,�
0, if i � 2,�c � 1i

, if i � 3.�� � 	 2Ž .0 0

Thus, we can choose
1��1�2 1�2 1�20a a na aŽ .n n n n

� � �� � , � � � , � � �n1 1 0 n2 2 n3 3log na � �Ž .n 0 0

1�2Ž .� � 4 Ž .1�2 � � 4and obtain from Theorem 1.1 under P , if nP D � � n�a � �0 0 n n n
Ž .o 1 ,

log d LL N D �d LL N D N D� 4Ž . Ž . Ž .� n 0 n nn

21�2 �1� � 	 � 	 � a � n � a � � 	 � 	 � �2Ž . Ž . Ž .Ž .1 2 3 n n 1 2 3

1�� 20Ž .� n � 	 1 na �Ž .0 n 31�2	 a � � 1 � 	 o 1Ž .Ýn 3 P0ž /� Y 2� � 	 2Ž .0 j 0 0j�1

2 2� 	 � 	 � �Ž .1 2 3 3� N � � ,DD0 ž 2 2� � 	 2Ž .0 0

� 2
32

� 	 � 	 � 	 .Ž .1 2 2 /� � 	 2Ž .0 0

Ž .This result is essentially Theorem 2.3 in Falk 1995b , which is formulated
for a random threshold t being the kth largest order statistic in the sample;n
see also Section 3.
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The central sequence in this example is therefore the sum of two condition-
Ž .ally independent terms based on the number � n and the rvs Y in D, withj

Ž .the Y carrying information only about the location parameter �, and � nj

containing all the information about the underlying shape and scale parame-
ters � and � and a part of that about �.

Ž .We conclude Section 2 by adding a counterexample, in which condition 4
is violated and Theorem 1.1 cannot be applied.

Ž .EXAMPLE 2.4 Counterexample; regression analysis . Fix y , a , b � �0 0 0
Ž . 2and suppose that X � Y, Z � � , where Y has a continuous density f near

Ž . Ž . 2y with f y � 0. Assume that under � � � , � � � and for y near y ,0 0 1 2 0
Ž Ž .Žthe conditional distribution of Z, given Y � y, is N a 	 � 	 b 	 � y �0 1 0 2

. . Ž � . Ž .Žy , 1 , that is, the regression function E Z Y�y �a 	� 	 b 	� y�0 � 0 1 0 2

.y is linear in y. Precisely, P has the Lebesgue density0 �

�p y , z � f y q z yŽ . Ž . Ž .� �

for y near y and z � �, where0

1 1 2
�q z y � exp � z � a 	 � 	 b 	 � y � y .Ž . Ž .Ž . Ž .Ž .� 0 1 0 2 01�2 ž /22	Ž .

� �In this case we have on D � D � y � a , y 	 a � �, where 0 � a � 0n 0 n 0 n n
as n � 
, if n is large,

�p y , z q z yŽ . Ž .� ��
�p y , z q z yŽ . Ž .0 0

� � 2� 1 	 � g y , z 	 � g y , z 	 � h y , z ,Ž . Ž . Ž .1 1 2 2 �

where

g y , z � z � a 	 b y � y ,Ž . Ž .Ž .1 0 0 0

g y , z � y � y z � a 	 b y � yŽ . Ž . Ž .Ž .Ž .2 0 0 0 0

Ž . Ž .and h satisfies the condition of Theorem 1.1 But now P D 	 2 f y a and� 0 0 n

y 	a0 n2g dP � 0, g dP � f y dy 	 2 f y a ,Ž . Ž .H H H1 0 1 0 0 n
D D y �a0 n

y 	a0 n 2 22 3g dP � 0, g dP � f y y � y dy 	 f y a ,Ž . Ž . Ž .H H H2 0 2 0 0 0 n3
D D y �a0 n

Ž .that is, condition 4 is violated and hence, Theorem 1.1 cannot be applied to
this regression model. But this counterexample is in accordance with the

Ž .results in Falk and Marohn 1993 , where LAN expansions of loglikelihood
ratios of truncated empirical processes in regression models were computed.
In this case, the observations in D contribute roughly to the central se-

Ž .quence, but not their number; see Corollary 1.4 in Falk and Marohn 1993
for details.



LAN OF TRUNCATED EMPIRICAL PROCESSES 711

( )3. Efficient estimators based on � n . Suppose for notational simplic-
1 Ž .ity that � � � and that expansion 1 holds with 0 replaced by � , that is,0

2f � f 1 	 � � � g 	 � � � h .Ž . Ž .ž /� � 0 � 0 � , �0 0 0

Under appropriate regularity conditions on the family of functions h we� , �0

have for � � � on D,0

f � f� �0 � f g 	 � � � f h � f g as � � �Ž .� � 0 � � , � � � 00 0 0 0 0 0� � �0

and thus

� 1 � 1
log p x � p x � g x � g dPŽ . Ž . Ž .Ž . H� � � � 00 0 0 0�� p x �� P DŽ . Ž . D� �0 0

Ž .for x � D such that f x � 0, where�0

p x � f x �P D , x � D ,Ž . Ž . Ž .� � �0 0 0

and 0 elsewhere, is a �-density of Y . The Fisher information of the family pj �

is therefore

21 �
I � � log p dPŽ . Ž .H0 � �0 0ž /P D ��Ž . D�0

21 1
2� g dP � g dPH H� � � �20 0 0 0ž /P D P DŽ . Ž .D D� �0 0

2 2P D H g dP1 Ž .� D � 00 0� g dP � 1H � �2 20 0ž /P D ž /Ž . D H g dP� Ž .0 D � 00

21

 g dP c ;H � � n2 0 0ž /P DŽ . D�0

recall that D � D depends on n. The Cramer�Rao inequality together with´n
Ž .the fact that � n , Y , Y , . . . , are independent rvs, suggest that the variance1 2

Ž .of any unbiased estimator T Y , . . . , Y of � , based on Y , . . . , Y , satis-1 � Žn. 0 1 � Žn.
fies

1 12
E T Y , . . . , Y � � 
 �Ž .Ž .� 1 � Žn. 0 /0 E � n I � nP D I �Ž . Ž . Ž . Ž .Ž .� 0 � 00 0

P D 21 �Ž .� n0� 
 ,2 c cn H g dP n nŽ .D � �0 0

1�2Ž . Ž 1�2 .where � � P D � n H g dP is the rate at which the alternative �n � D � � n0 0 0
Ž .in 2 converges to 0.
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Ž .If condition 4 is therefore satisfied with c � 0, that is, c � 0 as n � 
,n
then, roughly there exists no unbiased estimator of � based on Y , . . . , Y ,0 1 � Žn.
whose standard deviation attains the rate � , at which, in the testingn

Ž .problem, the number � n can still separate between the null hypothesis �0
and the alternative � � � . On the other hand, we will show in the followingn 0

Ž .that there actually exist estimators of � which are based on � n and attain0
under appropriate regularity conditions the rate � of convergence. This cann
also be confirmed by the Cramer�Rao inequality as above.´

Ž . Ž Ž ..Recall that � n is under � binomial B n, P D -distributed, where we0 �0
Ž . Žassume that P D is small. In this case, the binomial distribution B n,�0

Ž ..P D can reasonably be approximated by the Poisson distribution with�0
Ž .parameter nP D and, for the sake of simplicity, we assume for the moment�0

Ž . Ž .that � n actually follows a Poisson distribution. In this case, q k ��

Ž Ž ..Ž Ž ..k Ž .exp �nP D nP D �k!, k � 0, 1, 2 . . . is under � the density of � n with� �

� 4respect to the counting measure on 0, 1, 2, . . . . Under appropriate regularity
conditions we then have

H g dP� D �0log q k � k � nP D .Ž . Ž .Ž . Ž .� �0 0�� P DŽ .�0

The corresponding Fisher information is now

2�
Ĩ � � E log q � nŽ . Ž .Ž .Ž .0 � �0 0ž /ž /��

2H g dP 2D �0 �2� E � n � nP D � � .Ž . Ž .Ž .� � nž /0 0ž /P DŽ .�0

˜Ž Ž .. Ž .For T � n , being an unbiased estimator of � which is based on � n , the0
Cramer�Rao inequality implies therefore´

12 2˜E T � n � � 
 � � .Ž .Ž .Ž .� 0 nž /0 Ĩ �Ž .0

This inequality indicates that in the case c � 0 there actually exists an
Ž .estimator of � based on � n , which has smaller rate of convergence than0

Ž .any other unbiased estimator that is based on Y , . . . , Y , that is, �1 � Žn. n
compared to � �c1�2.n n

ˆSuppose that � is a solution of the equationn

19 P D � � n �n.Ž . Ž . Ž .�̂n

ˆŽ . Ž Ž ..Recall that � n is under � binomial B n, P D -distributed, and thus, �0 � n0
� Ž Ž .. 4is the maximum likelihood estimator of � for the family LL � n : � � � . It0 �

ˆturns out that � is under appropriate conditions an asymptotically optimaln
estimator of the underlying parameter � . This will be a consequence of the0
following result.
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Ž .LEMMA 3.1. Suppose that � is an open subset of � and that expansion 1
holds for every � � �. Precisely, we assume that for every � � � and � near0 0
� ,0

2f � f 1 	 � � � g 	 � � � hŽ . Ž .ž /� � 0 � 0 � , �0 0 0

on D, where H g 2 dP � 
 and sup H h4 dP � 
 for some 0 � � �D � � ���� � � � D � �0 0 0 0

ˆ 1�2 ˆ 4Ž . Ž . Ž .Ž .� � . If � satisfies condition 7 in probability, that is, nP D � � �0 n � n 00
Ž . Ž . Ž .� o 1 , P D � 0 and nP D � 
 as n � 
, thenP � �� 0 00

� n � nP DŽ . Ž .�0�1 ˆ� � � � � 	 o 1 � N 0, 1 .Ž . Ž .Ž .n n 0 P DD1�2 � �0 0nP DŽ .Ž .�0

ˆPROOF. We can write, for � near � ,n 0

� nŽ . 2ˆ ˆ� P D � 1 	 � � � g 	 � � � h dP ,Ž . Ž . Ž .ˆ ˆH� n 0 � n 0 � ,� �n 0 n 0 0n D

which implies

� n � nP DŽ . Ž .�0

1�2 1�2n P DŽ .�0

n1�2 n1�2
2ˆ ˆ� � � � g dP 	 � � � h dP .Ž . Ž . ˆH Hn 0 � � n 0 � , � �1�2 1�20 0 m 0 0P D P DŽ . Ž .D D� �0 0

Since by the Cauchy�Schwarz inequality

1�4
3�4 4h dP 
 P D h dP ,Ž .ˆ ˆH H� , � � � � , � �n 0 0 0 n 0 0ž /D D

Ž .the assertion of Lemma 1.2 follows from condition 7 . �

ˆThe estimator � converges therefore at the same rate � at which then n
Ž . Ž . Ž .alternative � � � � in 7 converges to � . If c � 0 in condition 4 , thenn n 0

�1 ˆŽ .� � � � coincides asymptotically with the central sequence and thus, wen n 0
have, by LeCam’s first lemma and Theorem 1.1, that the expansion in Lemma
3.1 also holds under the alternative, yielding

�1 ˆ� � � � � N 0, 1 .Ž .Ž .n n n DD�n

ˆŽ .Defined in 19 � is therefore an asymptotically efficient estimator, whichn
attains the lower bound 1 for the limiting variance within the class of regular
estimators of � that are based on N D.0 n

Ž .EXAMPLE 3.2 Pareto tail . Suppose that P , � � 0, is a probability mea-�

sure on � with a standard Pareto upper tail, that is, P has distribution�

Ž . ��function F x � 1 � x , x 
 x 
 1, where x is unknown. Choose � � 0� 0 0 0



M. FALK714

� �and put D � t, 
 , where t � t is sufficiently large. Then P satisfiesn �0
Ž . Ž . �1 Ž . Žexpansion 1 with g x � � � log x , x � D see also Examples 2.1 and� 00

.2.3 . In this case we have

� n log � n �nŽ . Ž .Ž .ˆP D � � � � �Ž .�̂ nn n log tŽ .
and

P1�2 D �0 �2t 1Ž .�0� � � � � � .n 1�2 1�2 1�2n H g dP n log tŽ .D � � nP D log tŽ . Ž .Ž .0 0 �0

Ž . Ž 2 .From the expansion log 1 	 � � � 	 O � , � � 0, we obtain therefore

log � n �nŽ .Ž .1�2�1 ˆ� � � � � nP D log t 	 �Ž . Ž .Ž .Ž .n n 0 � 00 ž /log tŽ .

� n t�0Ž .1�2� nP D logŽ .Ž .�0 ž /n

� n � nP DŽ . Ž .1�2 �0� nP D log 1 	Ž .Ž .�0 ž /nP DŽ .�0

� n � nP DŽ . Ž .1�2 �0� nP DŽ .Ž .�0 nP DŽ .ž �0

2
� n � nP DŽ . Ž .�0	OP� 0 ž /ž /nP DŽ . /�0

� n � nP DŽ . Ž .�0� 	 o 1 � N 0, 1Ž . Ž .P DD1�2 � P0 � 0nP DŽ .Ž .�0

Ž . �� 0provided t � t � 
 and nP D � nt � 
 as n � 
. The conditionn � n01�2 ˆ 4 1�2 4Ž .Ž . Ž . Ž .nP D � � � � o 1 , is then automatically satisfied if nP D � �� n 0 P � n0 � 00
0 as n � 
.

ˆ Ž Ž . . Ž .The estimator � � �log � n �n �log t is by the preceding remarks ann
asymptotically efficient estimator of the underlying shape parameter �0
within the class of regular estimators that are based on N D � Ý� Žn.� . Noten i�1 Yiˆ Ž .that � depends only on the number � n of the exceedances Y over then i
threshold t � t but not on their actual values.n

Using the order statistics approach, which is on the real line � a natural
competitor to the POT approach for a statistical analysis of the tails of a

Ž .distribution, Falk 1995b observed an analogous phenomenon. There it was
noted that

�̃ � log n�k �log XŽ . Ž .n n�k	1 : n
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Ž .outperforms the Hill 1975 estimator

�1k�1
�1

�̂ � k � 1 log X � log XŽ . Ž . Ž .Ýn , Hill n�i	1 : n n�k	1 : nž /
i�1

of the underlying shape parameter � in the above Pareto model. By X 
0 1 : n
��� 
 X , we denote the ordered values pertaining to the original samplen : n
X , . . . , X . Precisely, we have1 n

k1�2

�̂ � � � N 0, 1 ,Ž .Ž .n , Hill 0 DD� 0�0

˜whereas the estimator � , which is based only on the kth largest ordern
statistic X , satisfiesn�k	1 : n

k1�2 log n�kŽ .
�̃ � � � N 0, 1Ž .Ž .n 0 DD�0�0

Ž .with k � k n � 
, k�n � 0 as n � 
. Note that by considering Xn�k	1 : n
Ž .as a random threshold t , we obtain � n � k andn

˜ ˆ� � �log � n �n �log t � � ,Ž . Ž .Ž .n n n

which shows the close correspondence between the POT and the order
statistics approach in this case.

Adding a scale parameter � to the Pareto model P and reparameterizing�

Ž .P via least favorable alternatives, Marohn 1995 established LAN of� , � Ž� .
log-likelihood ratios in the order statistics as well as in the POT approach,
with the Hill estimator now being part of the central sequence which corre-
sponds to the shape parameter � . Analogous phenomena were observed in

Ž .particular for certain stable processes by Hopfner and Jacod 1994 and¨
Ž .Hopfner 1994, 1997 .¨

If the parameter space � in Lemma 1.2 is an open subset of � d, d � 1,
then there is usually not a unique solution of the equation

P D � � n �n.Ž . Ž .�̂ nn

ˆIn this case one can define � as an solution of the system of equationsn

P D n � � n �n, 1 
 i 
 d ,Ž . Ž .Ž .�̂ i in

Ž . Ž .where n � n n 
 ��� 
 n � n n 
 n are sample sizes smaller than1 1 d d
Ž .n with corresponding subsets D n , 1 
 i 
 d. Suppose again that con-i

Ž . � � 2dition 1 is satisfied for every � � � with H g dP � 
 and0 � �0 04 ˆŽ .sup Hh dP � 
 for some 0 � � � � � . If � satisfies now condi-���� � � � � , � � 0 n0 0 0
1�2 ˆ 4Ž . Ž Ž ..� � Ž . Ž Ž ..tion 7 in probability, that is, n P D n � � � � o 1 , P D ni � i n 0 P� � i0 0 0

Ž Ž ..� 0 and n P D n � 
 as n � 
, 1 
 i 
 d, then we obtain from thei � i0
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arguments in the proof of Lemma 3.1 the representation

� n � n P D n1 Ž . Ž .Ž .i i � i0ˆ, � � � � 	 o 1 � N 0, 1 ,Ž . Ž .n 0 P� DD1�2¦ ; 0 � 0� nŽ .i n P DŽ .Ž .i �0

1 
 i 
 d ,
Ž 1 d .where with g � g , . . . , g� � �0 0 0

P1�2 D n 1Ž .Ž .� i0� n � , 1 
 i 
 d ,Ž .i 1�2 H g dPn DŽn . � �i i 0 0

and the operation 1�x for x � � d is meant componentwise. If the n are nowi
all of the same order n, then the preceding considerations indicate that
ˆ � Ž .�� � � is again of the precise order � n .n 0

As an example, we consider again a class of distributions on the real line
with upper Pareto tail, where we add now a scale parameter. Suppose

Ž . Ž .2therefore that with � � � , � � � � 0, 
 , the distribution P has df1 2 �

Ž . Ž .�� 1 Ž . � �F x � 1 � x�� for x 
 x � x � 
 � . Put D � t , 
 . The equa-� 2 0 0 2 2 n n
tions

P D n � � n �n , i � 1, 2Ž . Ž .Ž .�̂ i i in

lead to the system

ˆ Ž1. ˆ Ž2.� log t � log � � �log � n �n , i � 1, 2,Ž .Ž .Ž . Ž .ž /n n n i ii

with the solutions

log � n �n � log � n �nŽ . Ž .Ž . Ž .2 2 1 1Ž1.�̂ � .n log t � log tŽ . Ž .n n1 2

and

log t log � n �n � log t log � n �nŽ . Ž .Ž . Ž .Ž . Ž .n 2 2 n 1 11 2Ž2.�̂ � exp .n ž /log � n �n � log � n �nŽ . Ž .Ž . Ž .2 2 1 1

ˆ Ž1. Ž .The estimator � is close to the Pickands 1975 estimator of � in the ordern 1
statistics approach, if we replace the fixed threshold t by the randomni

Ž . Ž .threshold X and � n �n by k �n, i � 1, 2. Replacing � n �n by itsn�k 	1 : n i i i i ii

Ž Ž .. Ž .�� 1expectation P D n � t �� , we obtain� i n 20 i

�� ��1 1log t �� � log t ��Ž . Ž .ž / ž /n 2 n 22 1Ž1.�̂ 	 � �n 1log t � log tŽ . Ž .n n1 2

and

�� ��1 1log t log t �� � log t log t ��Ž . Ž . Ž . Ž .ž / ž /n n 2 n n 21 2 2 1Ž2.�̂ 	 exp � � .n 2�� ��1 1� 0log t �� � log t ��Ž . Ž .ž / ž /n 2 n 22 1
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It is therefore easy to see that under appropriate conditions on n and t ,i n i

ˆ ˆ Ž1. ˆ Ž2. ˆŽ .i � 1, 2, the estimator � � � , � is asymptotically consistent and � � �n n n n 0
is asymptotically normal.
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