
The Annals of Statistics
1998, Vol. 26, No. 2, 573�595

QUADRATIC AND INVERSE REGRESSIONS
FOR WISHART DISTRIBUTIONS1

BY GERARD LETAC AND HELENE MASSAM´ ´ `
Universite Paul Sabatier and York University´

If U and V are independent random variables which are gamma
distributed with the same scale parameter, then there exist a and b in �

such that
� U � U � V � a U � VŽ . Ž .

and
22� U � U � V � b U � V .Ž . Ž .

This, in fact, is characteristic of gamma distributions. Our paper extends
this property to the Wishart distributions in a suitable way, by replacing
the real number U 2 by a pair of quadratic functions of the symmetric
matrix U. This leads to a new characterization of the Wishart distribu-
tions, and to a shorter proof of the 1962 characterization given by Olkin

Ž �1 .and Rubin. Similarly, if � U exists, there exists c in � such that
�1�1� U � U � V � c U � V .Ž . Ž .

Wesołowski has proved that this also is characteristic of gamma distribu-
tions. We extend it to the Wishart distributions. Finally, things are
explained in the modern framework of symmetric cones and simple
Euclidean Jordan algebras.

1. Introduction. Let p and � be two positive numbers. We denote by
�1�1 �p p�11.1 � du � exp �� u � u 1 u � p duŽ . Ž . Ž . Ž . Ž .Ž .p , � Ž0 , ��.

Ž .the gamma distribution on 0, �� with scale parameter � and shape param-
eter p. Let U and V be two independent, positive, non-Dirac random
variables, and consider the following five properties:

Ž .1. U� U � V and U � V are independent.
2. There exist two real numbers a and b such that

1.2 � U � U � V � a U � V ,Ž . Ž . Ž .
221.3 � U � U � V � b U � V .Ž . Ž . Ž .

2�. There exist two real numbers a and c such that

� U � U � V � a U � V ,Ž . Ž .
1.4Ž . �1�1� U � U � V � c U � V .Ž . Ž .
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3. There exist p, q and � such that the distributions of U and V are,
respectively � and � .p, � q, �

Ž .3�. Same as 3 , plus p � 1.

Ž . Ž . Ž . Ž . Ž .It is known that 1 , 2 and 3 are equivalent, and that 2� and 3� are
equivalent, too.

Ž .Let us first concentrate on the first group of equivalences; if either 2 or
Ž .3 holds, the following formulas are true:

p p � 1 pŽ .
1.5 a � , b � .Ž .

p � q p � q � 1 p � qŽ . Ž .
Ž . Ž .The implication 3 � 1 is the easiest to prove, since if �p � t � q and if

� � ��1, one has

� p � t � q � tŽ . Ž .t �p�q�11.6 � UV exp �� U � V � 1 � �� .Ž . Ž . Ž . Ž .Ž .ž /
� p � qŽ . Ž .

Ž . Ž . Ž .The proof of 1 � 3 has been given by Lukacs 1955 . However, it has
� Ž .� Ž . Ž .been noted by several authors e.g., Wang 1981 that 1 � 2 is quite

Ž . Ž .simple and that, this together with 2 � 3 , is a little bit easier than the
Ž . Ž .direct proof of 1 � 3 . At the beginning of Section 4, we will give a proof

Ž . Ž .of 2 � 3 using the variance function of the natural exponential family
� 4� ; � � 0 .p, �

Ž .The most natural generalization of 1.1 is the Wishart distribution on the
Ž .space E of r, r symmetric matrices. Throughout this paper, we will use

Ž .the same notation as Casalis and Letac 1996 . We denote by E and E the� �
cones of positive and positive definite matrices, respectively, and we write

1.7 � � 1�2, 1, 3�2, . . . , r � 1 �2 � r � 1 �2, �� .� 4Ž . Ž . Ž .Ž .
For p in �, there exists a positive measure 	 on E such that, if � belongsp �
to E , then the measure on E :� �

�p�11.8 � du � exp �trace � u det � 	 duŽ . Ž . Ž . Ž . Ž .Ž .p , � p

Ž �1 .�1 Ž .is a probability distribution. Clearly, if we replace � by � � � in 1.8 ,
Ž �1 .we get that, for � � � in E ,�

�p
1.9 exp �trace � u � du � det I � �� .Ž . Ž . Ž . Ž .Ž .H p , � r

We call � the Wishart distribution with scale parameter p and shapep, �

parameter � . It should be pointed out that, in order to avoid tedious con-
Ž .stants, we differ slightly from the traditional notation W m, 
 for Wishartr

Ž .distributions, as found, for instance, in Muirhead 1982 . The correspondence
Ž .between the two notations is simply given by � � W m, 
 .m �2, 2 
 r

A natural question is now the following. Does there exist a generalization,
Ž . Ž . Ž .to the Wishart distributions, of the equivalence between 1 , 2 and 3 ? For

Ž . Ž .the equivalence between 1 and 3 , the answer is yes and has been provided
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Ž .by Olkin and Rubin 1962 . This paper is difficult to read; Casalis and Letac
Ž .1996 , using many of Olkin and Rubin’s ideas, provides a simpler and clearer

Ž . Ž . �proof of 1 � 3 or, more accurately, of the corresponding statements for
Ž . �the general Wishart distribution given by 1.8 ; see Section 5 . The statement

Ž . Ž . Ž .3 � 1 for the general Wishart distribution is not as easy as 1.6 and is
Ž .also proved in Casalis and Letac 1996 .

The first problem considered in the present paper is the equivalence
Ž . Ž . Ž .between 2 and 3 for the Wishart distributions 1.7 . Surprisingly enough,

Ž . Ž . Ž . Ž .as in the one-dimensional case, 2 � 3 will be much simpler than 1 � 3 .
Ž . Ž .Since, as we will see in Proposition 5.1, the implication 1 � 2 is also easy

to prove, we shall end up with a new and shorter proof of Olkin and Rubin’s
theorem in Section 5.

Ž .Now, finding the correct generalization of 1 to the Wishart distribution
Ž .was one of the numerous bright ideas of Olkin and Rubin. For 2 , the

Ž .generalization of 1.2 is clear, and we just have to write a trivial extension of
Ž . Ž .a result by Rao 1948 to obtain it. However, the proper generalization of 1.3

Ž . Ž .is not that obvious, but can be found in the toolbox of the proof of 1 � 3
Ž . 2given in Casalis and Letac 1996 . Replacing the real number U by the

�square of the symmetric matrix U is not the right idea see the remarks
Ž 2 .�following Corollary 2.3 for the explicit expression of � U � U � V . What we

Ž .use is a pair of quadratic functions of U valued in the linear space L E ofs
Ž .symmetric endomorphisms of the Euclidean space E of symmetric real r, r

matrices. The Euclidean structure on E is given by the scalar product
² : Ž . Ž . ŽA, B � trace AB. Thus dim E � r r � 1 �2 and dim L E � r r �s
.Ž 2 .1 r � r � 2 �8. These two quadratic functions are: U 	 U, defined by

1.10 E � E, H � U 	 U H � U trace UH ,Ž . Ž . Ž . Ž .

Ž .and � U , defined by

1.11 E � E, H � � U H � UHU.Ž . Ž . Ž .

For example, if r � 2, and if we take

a � b cU � ,
c a � b

Ž 2 2 .1�2then U belongs to E if and only if a � b � c . In this case, as an�
orthogonal basis of E we can take the three matrices:

1 0 1 0 0 1I � , J � , K � .
0 1 0 �1 1 0

Ž .Ž . Ž .Thus, if H � xI � yJ � zK, we have U 	 U H � 2 ax � by � cz U and

� U HŽ .Ž .
2 2 2 2 2a � b x � y � c x � y � 2 a � b cz 2 acx � 2bcy � a � b � c zŽ . Ž . Ž . Ž . Ž .

� ;
22 2 2 22 acx � 2bcy � a � b � c z a � b x � y � c x � y � 2 a � b czŽ . Ž . Ž . Ž . Ž .
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Ž . � 4that is, the matrices representative of U 	 U and � U in the basis I, J, K
are, respectively,

2a ab ac
22 ba b bc

2ca cb c

and

2 2 2a � b � c 2 ab 2 ac
2 2 2 .2 ab a � b � c 2bc

2 2 22 ac 2bc a � b � c

Ž . Ž .Let us show that it is natural to replace 1.3 for real symmetric r, r
Ž . Ž .matrices by the following: There exists a 2, 2 real matrix b � bi j i, j�1, 2

such that

� U 	 U � U � V � b U � V 	 U � V � b � U � V ,Ž . Ž . Ž . Ž .12 12

� � U � U � V � b U � V 	 U � V � b � U � V .Ž . Ž . Ž . Ž .Ž . 21 22

1.12Ž .

Ž . Ž .The main idea leading to the consideration of the pair 1.10 � 1.11 can be
Ž . Ž .found in Casalis and Letac 1996 , where quadratic maps Q: E � L E withs

a certain invariance property were considered. This property can be pre-
Ž .sented here as follows: For any A in the linear group GL r, � of invertible

Ž . Ž . 2real r, r matrices, and for any U, H in E , one has

ttt1.13 Q AU A H � AQ U AHA AŽ . Ž . Ž . Ž . Ž .

� Ž . Ž . �a reformulation of 6.1 in Casalis and Letac 1996 for symmetric matrices .
Ž . Ž .It is easily seen that the functions Q defined by 1.10 or 1.11 fulfill

Ž .condition 1.13 ; we shall see in Proposition 2.1 that the linear space of
Ž . Ž .possible Q has dimension 2, and that 1.10 � 1.11 form a basis of this space.

Therefore it is natural to consider this pair of quadratic functions of U.
Ž .Of course, to justify 1.12 , we also have to prove that these two identities

are satisfied when U and V are two independent and Wishart-distributed
random variables with the same scale parameter � ; that is, we have to prove

Ž . Ž .the implication 3 � 2 . In other words, we have to find the values of a, b ,11
Ž .b , b and b corresponding to a and b in 1.4 . We shall actually prove in12 21 22

Section 3 that if p and q are the shape parameters of U and V, and if

2p p
1.14 A p � ,Ž . Ž . 2p�2 p�2 � p

Ž . Ž .Ž Ž ..�1then the matrix b in 1.12 is A p A p � q . Such a formula for Wishart
Ž .distributions has an ancestor in Casalis 1992 , Theorem 1. The result in

Ž .1.12 can be presented differently if we diagonalize the matrix b. One
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obtains a pair of identities. Let p � 1�2 be an element of �, let

1
X p � U 	 U � � U ,Ž . Ž .Ž .

p p � 1�2Ž .
1 1

Y p � U 	 U � � UŽ . Ž .ž /p p � 1 2Ž .
Ž . Ž .and let X p � q and Y p � q be defined in an analogous way by replacing

Ž . Ž .U, p by U � V, p � q . The identities have a martingale flavor and read

� X p � U � V � X p � q ,Ž . Ž .Ž .
� Y p � U � V � Y p � q .Ž . Ž .Ž .

Note that, for p � 1�2, U is concentrated on the cone of matrices of rank 1
and thus

U 	 U � � U .Ž .
Ž . Ž .Let us now consider 2� and 3� . Their equivalence has been observed

Ž .rather recently in Wesołowski 1990 , where

p � q � 1
1.15 c � .Ž .

p � 1

Our second aim in the present paper is to generalize the equivalence between
Ž . Ž .2� and 3� to the Wishart distributions. Here, things are a little bit simpler

Ž . �1than in the quadratic case 2 , and the real number U can safely be
�1 Ž .replaced by the inverse matrix U . However, the analogue of 2� has to be

supplemented by the consideration of U�1 	 U, the element of the linear
Ž .space L E of endomorphisms of the Euclidean space E of symmetric real

Ž .r, r matrices defined by

E � E, H � U�1 	 U H � U�1 trace UH ,Ž . Ž . Ž .
which necessarily occurs when one considers the differential of � �
Ž �1 ² :.� U exp � , U . For example, if r � 2 and if

a � b cU � ,
c a � b

�1 � 4as above, then the representative matrix of U 	 U in the basis I, J, K
will be

2a ab ac2
2 .�ba �b bc2 2 2a � b � c 2�ca �cb �c

Ž . Ž .Thus, for symmetric real r, r matrix, 1.4 will be replaced by the following:
There exist three real numbers c, c and c such that1 2

�1�11.16 � U � U � V � c U � V ,Ž . Ž . Ž .
�1�11.17 � U 	 U � U � V � c id � c U � V 	 U � V .Ž . Ž . Ž . Ž .1 E 2
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Ž .Statement 3� is, of course, replaced by a statement with Wishart distribu-
Ž .tions and p � r � 1 �2.

Ž . Ž .To justify 1.16 and 1.17 , we have to prove that these identities are
actually satisfied for some c, c , c , when U and V are independent and have1 2

�Wishart distributions with the same scale parameter � i.e., we have to find
Ž .�the analogue of 1.15 . We shall prove in Section 6 that if p and q are the

Ž . Ž .shape parameters of U and V, then the constants in 1.16 and 1.17 are

p � q � r � 1 �2 �qŽ .
c � , c � ,1p � r � 1 �2 p � r � 1 �2 p � qŽ . Ž . Ž .Ž .

p p � q � r � 1 �2Ž .Ž .
c � .2 p � r � 1 �2 p � qŽ . Ž .Ž .

This leads to the rather unexpected consequence, that if U and V are Wishart
distributed with the same scale parameter � , and with shape parameters

Ž . Ž .p � r � 1 �2 and q in � as defined in 1.7 , then the conditional covariance
of U�1 and U, given U � V, is

�q
idEp � r � 1 �2 p � qŽ . Ž .Ž .

Ž .see Corollary 2.6 .
Let us now list the contents of the paper. In Section 2, we state the results

which were roughly sketched above. We think that no new results on Wishart
distributions should nowadays be presented outside the framework of the
Wishart distributions on symmetric cones and simple Euclidean Jordan
algebras. Following this policy, as was done, for instance, in Casalis and

Ž . Ž .Letac 1996 or in Massam 1994 , we give our results on symmetric cones. It
still remains, of course, that our results are new for the classical Wishart
distributions. The rank and the Peirce constant of the simple Euclidean
Jordan algebra are denoted, respectively, by r and d. The reader who is
interested only in symmetric real matrices of order r should set d � 1 in the

Ž .formulas and follow the instructions given in Casalis and Letac 1996 ,
Section 3. Section 2 also contains a proof of the extension of Rao’s paper, as

Ž .well as a proof of the fact that quadratic maps E � L E with the invari-s
Ž .ance property 1.13 form a linear space with dimension 2. Section 3 is

Ž . Ž .computational; we essentially prove the implication 3 � 2 . In Section 4,
Ž . Ž . Ž .we give the proof of 2 � 3 and, as in Casalis and Letac 1996 , the main

tool is the variance function of the natural exponential family of the Wishart
distributions with shape parameter p. In Section 5, we prove the implication
Ž . Ž .1 � 2 for Wishart distributions. Section 6 is parallel to Section 3; it is

Ž . Ž .computational and we essentially prove 3� � 2� . In Section 7, we prove
Ž . Ž .2� � 3� ; the basic tool in that proof is the derivation of Schwartz’s distribu-
tions. In Section 8, we comment on an unsolved problem raised by a referee.
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2. The characterization of Wishart distributions by quadratic and
inverse regressions. As explained before, we keep the notation of Casalis

Ž .and Letac 1996 . Let E be a simple Euclidean Jordan algebra, with product
Ž . ² : Ž .E � E � E a, b � a � b, and scalar product a, b � trace a � b . We denote

Ž . Ž .by L E and L E , respectively, the spaces of endomorphisms and symmet-s
ric endomorphisms of the Euclidean space E. The identity element of E is e.

� 4The closed cone of squares a � a; a 
 E is denoted by E , and E is its� �
Ž .interior; r is the rank of E, d is its Peirce constant and n � r � dr r � 1 �2

is the dimension of E. To avoid trivialities, we always assume r � 1. We
denote by G the connected component, containing the identity, of the group of
linear automorphisms of the linear space E which preserve E ; we write K�
for the intersection of G with the orthogonal group of E. The determinant in
E is written det: E � �. We write

2.1 � � d�2, d , 3d�2, . . . , r � 1 d�2 � r � 1 d�2, �� .� 4Ž . Ž . Ž .Ž .

� Ž . �It is known Casalis and Letac 1996 , Section 3 that if p belongs to �, then
there exists a positive measure 	 on E such that for all � in E one hasp � �

�p² :2.2 exp � � , u 	 du � det � .Ž . Ž . Ž . Ž .H p

Ž .For � in E and p in �, � , as defined in 1.8 , is called the Wishart� p, �

distribution with shape parameter p and scale parameter � . Definitions for
Ž .objects in Jordan algebras are taken from Faraut and Koranyi 1994 , with

the exception of the very definition of the Wishart distribution. What they call
Wishart distributions are particular cases of our � distributions and arep, �

obtained as images of Gaussian distributions on a Euclidean space F by
representations of F into E. Thus they choose to generalize � 2 distributions
only, not gamma distributions as we do. For instance, this implies that, in
their restricted sense, there exists no Wishart distribution on the exceptional
Jordan algebra of dimension 27 corresponding to r � 3 and d � 8, while they
do exist in our sense.

Ž .We now introduce two quadratic maps from E to the linear space L E ofs
symmetric endomorphisms of E defined as follows:

Ž .1. For x in E, x 	 x in L E is defined bys

² :h � x 	 x h � x x , h , E � E.Ž . Ž .

Ž . Ž .2. For x in E, � x in L E is defined bys

2.3 h � � x h � 2 x � x � h � x � x � h , E � E.Ž . Ž . Ž . Ž . Ž .

Ž . Ž .The map x � � x , E � L E is called the quadratic representation. It iss
� Ž .�known see Casalis and Letac 1996 that if p belongs to �, then F �p

� 4� ; � 
 E is the natural exponential family of Wishart distributions withp, � �
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scale parameter p and variance function

1
2.4 V m � � m ,Ž . Ž . Ž .F p

when m varies in the domain of the means M � E .F �p
Ž .To measure the importance for quadratic regression of the pair 2.3 , let us

Žprove the following statement which will be needed later in the proofs of
.Proposition 3.1 for the first part and Theorem 2.4 for the second .

Ž .PROPOSITION 2.1. Let QQ be the linear space of functions Q: E � L E�
which are G-invariant, that is, such that for all g in G one has

2.5 Q g x � gQ x g*Ž . Ž . Ž .Ž .
Ž . Ž .and such that Q e is in L E . Then QQ has dimension 2, and the pairs

x � x 	 x and � defines a basis of QQ. Furthermore, if x 
 E is such that there
Ž .exists a in � with � x � ax 	 x, then either x � 0 or a � 1 and x is the

multiple of some primitive idempotent.

Ž . Ž .PROOF. It has been observed in Casalis and Letac 1996 after 6.1 that
Ž .these two polynomials x � x 	 x and � x belong to QQ. To see that they are

Ž .Ž . ² :linearly independent, we apply them to e and get x � x 	 x e � x x, e
Ž .Ž .and � x e � x � x. The results are clearly independent. To see that QQ has

dimension 2, consider the linear map

 : QQ � L E , Q �  Q � Q e .Ž . Ž . Ž .s

Ž .Then Q e is K-invariant, since

Q e � Q k e � kQ e k*.Ž . Ž . Ž .Ž .
Ž .This comes from 2.5 and the definition of K. Thus, from Proposition 6.1 of
Ž . Ž . Ž .Casalis and Letac 1996 or from Olkin and Rubin 1962 , Lemma 1 6 , there

Ž . 2exists �, 	 in � such that

Q e � �id � 	e 	 e.Ž . E

�This implies that the dimension of the image of  is �2 since it is included
Ž . �in the plane of L E generated by id and e 	 e . Finally,  is one-to-one:s E

Let us take Q in the kernel of . Since G acts transitively on E , let x be an�
Ž .arbitrary point of E and g in G such that g e � x. Thus we have�

Q x � Q ge � gQ e g* � g0 g* � 0,Ž . Ž . Ž .
that is, Q is 0 on E and  is one-to-one. Thus Q and the image of  have�
the same dimension 2.

Ž .To prove the second part of the proposition, assume that � x � ax 	 x
and that x is not 0. Then there exists a sequence of orthogonal primitive

Ž .idempotents c , . . . , c such that1 v

x � � c � ��� �� c ,1 1 v v
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� 4with � in � � 0 for i � 1, . . . , v. Since for all h in E one hasi

² :� x h � ax h , x ,Ž . Ž .
let us take h � c . Thus we get1

�2c � � x c � a � c � ��� �� c � ,Ž . Ž . Ž .1 1 1 1 1 v v 1

which implies that v � 1 and that a � 1. The proposition is proved. �

Ž .REMARK. Note that, in the previous proposition, imposing that Q e be
Ž .symmetric implies that Q x is also symmetric for all x in E . Relaxing this�

condition leads to a surprise: The dimension of QQ is still 2 except in the case
Ž . Ž . Ž .r, d � 2, 1 , that is, in the case of 2, 2 real matrices, for which the

� Ž .dimension of QQ is 3 see Letac and Massam 1997 , where the above result is
�proved by Neher in an appendix .

ŽWe now state the main results of the paper, Theorem 2.2 the quadratic
. Žregression property , Theorem 2.4 the characterization by quadratic regres-

. Ž . Žsion , Theorem 2.5 the inverse regression property and Theorem 2.7 the
.characterization by inverse regression :

THEOREM 2.2. With the above notation, let � be in E , let p and q be in ��
and let U and V be independent random variables with Wishart distributions
� and � , respectively. Then ifp, � q, �

2p p
2.6 A p �Ž . Ž . 2pd�2 p 1 � d�2 � pŽ .

and
b b11 12 �12.7 b � � A p A p � q ,Ž . Ž . Ž .Ž .b b21 22

one has
� U 	 U � U � V � b U � V 	 U � V � b � U � V ,Ž . Ž . Ž . Ž .11 12

� � U � U � V � b U � V 	 U � V � b � U � V .Ž . Ž . Ž . Ž .Ž . 21 22

2.8Ž .

COROLLARY 2.3. Under the hypothesis of Theorem 2.2, define X and Y in QQ

by
X u � u 	 u � � uŽ . Ž .

and
d

Y u � u 	 u � � u .Ž . Ž .
2

Then
p p � d�2Ž .

� X U � U � V � X U � V ,Ž . Ž .Ž .
p � q p � q � d�2Ž . Ž .

p p � 1Ž .
� Y U � U � V � Y U � V .Ž . Ž .Ž .

p � q p � q � 1Ž . Ž .
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PROOF. It is easily seen that the eigenvalues and the line eigenvectors of
the matrix b are given by

p p � d�2Ž .
1, �1 b � 1, �1 ,Ž . Ž .

p � q p � q � d�2Ž . Ž .
p p � 1Ž .

d�2, 1 b � d�2, 1 .Ž . Ž .
p � q p � q � 1Ž . Ž .

Ž .To obtain the two identities in the corollary, we multiply 2.8 , written in
matrix form as

U � V 	 U � VŽ . Ž .U 	 U
� U � V � b

� UŽ . � U � VŽ .
by the two eigenvectors. �

Ž .REMARKS. X u � 0 if and only if u is proportional to a primitive idempo-
tent, as we have seen in Proposition 2.1. Note that if p � d�2 and if U is
� distributed, then U is almost surely proportional to some primitived �2, �

� Ž .� Ž .idempotent see Casalis 1990 , and X U � 0 almost surely. Note also that
under the hypothesis of Theorem 2.2, one has

2
� U trace U � U � V � b U � V trace U � V � b U � V ,Ž . Ž . Ž . Ž .11 12

22� U � U � V � b U � V trace U � V � b U � VŽ . Ž . Ž . Ž .21 22

� Ž .Ž . 2 Ž . �use � u e � u and apply 2.8 to e .

The next theorem is the converse of Theorem 2.2; its hypothesis is the
Ž .generalization to Wishart distributions of statement 2 in Section 1.

THEOREM 2.4. Let U and V be two independent non-Dirac random vari-
ables taking their values in E . Assume that U � V is not concentrated on a�
half line. Assume also that there exists a 
 � such that
2.9 � U � U � V � a U � VŽ . Ž . Ž .

Ž . Ž .and that there exists a 2, 2 matrix b such that the two equalities 2.8
Ž . 2holds. Then there exist p, q in � and � in E such that U and V�

Ž .have distributions � and � . Furthermore, a � p� p � q and b �p, � q, �

Ž .Ž Ž ..�1 Ž .A p A p � q as in 2.7 .

THEOREM 2.5. With the above notation, let � be in E , let p � n�r and q�
be in � and let U and V be independent random variables with Wishart
distributions � and � , respectively. Then forp, � q, �

p � q � n�r �q
c � , c � ,1p � n�r p � n�r p � qŽ . Ž .

p p � q � n�rŽ .
c � ,2 p � n�r p � qŽ . Ž .

2.10Ž .
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one has
�1�1� U � U � V � c U � V ,Ž . Ž .

2.11Ž .
�1�1� U 	 U � U � V � c id � c U � V 	 U � V .Ž . Ž . Ž .1 E 2

COROLLARY 2.6. Under the hypothesis of Theorem 2.5 one has
�q

�1Cov U , U � U � V � id .Ž .Ž . Ep � n�r p � qŽ . Ž .

PROOF. By Huyghens’ formula, for any random variables X and Y taking
their values in a Euclidean space, we have

Cov X , Y � � X 	 Y � � X 	 � Y .Ž . Ž . Ž . Ž .
Ž . Ž �1 .Applying this formula for the conditional covariance of X, Y � U , U

Ž . Ž .given U � V, using 2.10 , 2.11 and
p

� U � U � V � U � V ,Ž . Ž .
p � q

we obtain the desired result. �

The last theorem is the converse of Theorem 2.5; its hypothesis is the
Ž .generalization to Wishart distributions of statement 2� of Section 1.

THEOREM 2.7. Let U and V be two independent non-Dirac random vari-
ables taking their values in E . Assume that U � V is not concentrated on a�

Ž �1 .half line and that � U exists. Assume also that there exist a, c, c and c1 2
Ž . Ž .such that 2.9 and the two equalities 2.11 hold. Then there exist p � n�r, q

in � and � in E such that U and V have � and � distributions.� p, � q, �

Ž . Ž .Furthermore, a � p� p � q and c, c and c are as in 2.10 .1 2

Ž .To complete this section, we make a small digression about 2.9 , generaliz-
Ž .ing Rao’s result 1948 as follows:

PROPOSITION 2.8. Let E be a Euclidean space and let U and V be two
independent non-Dirac random variables taking their values in E. Assume

Ž .that the two sets � U , defined as the interior of

² :� ; L � � � exp � , U � � ,� 4Ž . Ž .U

Ž .and � V , defined similarly, have a nonempty intersection. Assume also that
there exists a 
 � such that

� U � U � V � a U � V .Ž . Ž .
Ž . Ž .Then 0 � a � 1, � U � � V and

Ž .a� 1�a2.12 L � � L � .Ž . Ž . Ž .Ž .U V
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Ž . Ž .PROOF. For � in � U  � V , we have
� ² :L � L � � � U exp � , U � VŽ . Ž . Ž .U V

² : �� a� U � V exp � , U � V � aL � .Ž . Ž .Ž . U�V

Thus
L� � L� �Ž . Ž .U v

2.13 1 � a � a .Ž . Ž .
L � L �Ž . Ž .U V

� Ž .� Ž .The principle of maximal analyticity Kawata 1972 shows that � U �
Ž . Ž . Ž .� V from 2.13 . Now, if a were equal to 0 or 1, 2.13 would imply that U or

� Ž . Ž .V are Dirac. Finally, since the differential of � � L � �L � must beU U
positive, then 1 � a and a have the same sign and therefore 0 � a � 1. And
Ž . Ž .2.12 follows immediately from 2.13 . �

3. Proof of Theorem 2.2. The proof of Theorem 2.2 relies on the follow-
ing two propositions, which are of interest in their own right.

Ž . Ž .PROPOSITION 3.1. Let �: L E � L E be the linear map defined bys s

3.1 � x 	 x � � xŽ . Ž . Ž .
for all x in E. Then

d d
3.2 � � x � x 	 x � 1 � � x .Ž . Ž . Ž .Ž . ž /2 2

PROPOSITION 3.2. Let U be a random variable taking its values in E with
� Ž ..Wishart distribution � , as defined in Section 2 or as given in 1.8 . Thenp, �

� U 	 U � p2� 	 � � p� � ,Ž . Ž .
pd pd

2� � U � � 	 � � p � � p � � .Ž . Ž .Ž . ž /2 2

3.3Ž .

PROOF OF PROPOSITION 3.1. The existence and uniqueness of � were
Ž .proved in Lemma 6.3 of Casalis and Letac 1996 ; the notation that we adopt

here replaces � by �. We observe that the map�

x � Q x � � � x , E � L EŽ . Ž . Ž .Ž . � s

Ž .is G-invariant in the sense of 2.5 . To see this, we take g in G and write

3.4 g� x g* � � g x � � g x 	 g x � � g x 	 x g* .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .
Ž .The first equality in 3.4 is a standard property of �, the second is by

� 4definition of � and the third is obvious. Now, since the set x 	 x; x 
 E
Ž . Ž .generates the linear space L E , we obtain, from 3.4 by linearity, thats

3.5 g� f g* � � gfg* .Ž . Ž . Ž .
Ž . Ž .From 3.5 now applied to f � � x , we get

g� � x g* � � g� x g* � � � g x .Ž . Ž . Ž .Ž . Ž . Ž .Ž .



WISHART DISTRIBUTIONS 585

Thus we have proved that

x � � � x , E � L EŽ . Ž .Ž . � s

Ž .is G-invariant in the sense of 2.5 . Proposition 2.1 implies that there exist �
and 	 in � such that, for all x in E ,�

3.6 � � x � �� x � 	 x 	 x .Ž . Ž . Ž .Ž .
Ž . Ž .Since both members of 3.6 are quadratic polynomials, this equality 3.6 is

Ž .also true for all x in E. To compute � and 	, we use 6.12 in Casalis and
Ž . Ž . Ž .Letac 1996 by taking x � e in 3.6 and we get 3.2 . �

Ž . Ž Ž ..PROOF OF PROPOSITION 3.2. Writing A � � U 	 U and B � � � U and
Ž . Ž . Ž .using A p as defined in 2.6 , identities 3.3 , to be proved, can be written as

� 	 �A � A p .Ž .
� �Ž .B

Ž . Ž . Ž Ž ..�pFrom 2.2 , we have that, for �� in E , L � � det �� and k �� 	 	p p

log L . For any quadratic polynomial Q defined on E, it is a general property	p

of Laplace transforms that

d
�² :3.7 Q u exp � , u 	 du � Q k � � Q k � L � .Ž . Ž . Ž . Ž . Ž . Ž .H Ž .p 	 	 	p p pž /ž /d�E�

Ž . Ž . Ž .We apply 3.7 to Q u � u 	 u and note that, in this case, Q d�d� j � j� for
2 � Ž . Ž .�1any C -function j defined on an open set of E, and that k � � p ��	p

� Ž . ŽŽ .�1 . Ž .and k � � p� �� ; we obtain the first identity in 3.3 , for A, by taking	p

Ž .�1� � �� .
Ž .The second identity in 3.3 for B is more delicate and will use Proposition

Ž . Ž .3.1. Let us apply 3.7 to Q � �. To simplify the notation, we write k � �
Ž .�log det �� for �� 
 E . We get�

² :� u exp � , u 	 duŽ . Ž .H p
E�

d �p�12� p� k � � p � �� det �� .Ž . Ž . Ž . Ž .Ž .Ž .ž /ž /d�

3.8Ž .

Ž .Ž . Ž . Ž .To compute � d�d� k in 3.8 , we now use 6.11 in Casalis and
Ž .Letac 1996 , which says that � as defined in Proposition 3.1 satisfies

Ž .Ž . Ž . Ž . ŽŽ .�1 .� d�d� j � � j� . Since k� � � � �� , Proposition 3.1 can be applied
Ž . Ž .�1 Ž .and, with the help of 3.8 with � � �� , yields the second formula of 3.3 .

�

COMMENTS. Recalling the definition of the variance function as given in
Ž . Ž .2.4 , the first formula in 3.3 is nothing but a multivariate version of
Huyghens’ formula linking the second moment and the variance. The second

Ž . Ž .formula of 3.3 could also be deduced from Theorem 1 of Casalis 1992 ,
whose proof is not really shorter.
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We now prove Theorem 2.2. First, we note that, in order to prove

� Q U � U � V � Q U � VŽ . Ž .Ž . 1

for given functions Q and Q , it is enough to show that, for � in some1
nonempty open set,

² : ² :3.9 � Q U exp � , U � V � � Q U � V exp � , U � V .Ž . Ž . Ž .Ž . Ž .1

We apply this principle to the pair

u 	 u
Q u � ,Ž .

� uŽ .
u 	 u�1Q u � A p A p � q .Ž . Ž . Ž .Ž .1 � uŽ .

3.10Ž .

Take �� in E and, for simplicity, denote�
�1�13.11 � � � � � .Ž . Ž .�

Ž . Ž .Using 3.10 , 3.3 can be rewritten as

� 	 �
3.12 � Q U � A p ,Ž . Ž . Ž .Ž .

� �Ž .
Ž .changing � into � in 3.12 gives�

� 	 �� �² :� Q U exp � , U � A p L � ,Ž . Ž . Ž .Ž . U� �Ž .�

� 	 �� �² :� Q U � V exp � , U � V � A p L � .Ž . Ž . Ž .Ž .1 U�V� �Ž .�

Ž .Formula 3.9 follows immediately and Theorem 2.2 is proved.

Ž . Ž .4. Proof of Theorem 2.4. We first show the implication 2 � 3 , as
given in Section 1. The proof of Theorem 2.4 will be an extension of this
simple case.

Ž . Ž �U . � Ž .As usual, we write L � � � e and k � log L ; k exists on ��, 0 ,U U U U
since U � 0. We write � � k . The generalization of Rao’s theorem, givenU�V

Ž .in Proposition 2.8, and 1.2 imply that

4.1 k � a� .Ž . U

Ž .Thus, from 1.3 , we derive that, for � � 0,

a� � � � a2� �2 � L � � L� � L �Ž . Ž . Ž . Ž . Ž .Ž . U� V U V

� � U 2 exp � U � VŽ .Ž .Ž .
2� b� U � V exp � U � VŽ . Ž .Ž .Ž .

� b� � � � b� �2 � L � .Ž . Ž . Ž .Ž . U� V

Ž . Ž 2 . 2 Ž .This gives a � b � � � b � a � � . Since 0 � a � 1 see Proposition 2.5 ,
a � b � b � a2 � 0 is impossible. Since U � V is non-Dirac, a � b � 0 is
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Ž 2 . Ž .impossible. Thus, if � � b � a � a � b , one has

24.2 � � � � � � � ��.Ž . Ž . Ž .Ž .

Ž . Ž . Ž .The equality 4.2 is identical to 2.11 in Casalis and Letac 1996 . It says
Ž .that the variance function of the natural exponential family NEF generated

Ž . 2by the distribution of U � V is V m � m �� on its domain of the means.
Thus U � V, U and V follow the gamma distributions with shape parameters

Ž .�, a� � p and 1 � a � � q, respectively; the scale parameter � is the same
for all variables.

Let us now give the proof of Theorem 2.4. We write � � k . The proofU�V
Ž . Ž .imitates the patterns of the proof of 2 � 3 and aims to show that there

Ž .exists some � in � defined by 2.1 such that, on some open subset of E,

4.3 � � � � � � � � ��,Ž . Ž . Ž .Ž .

thus showing that the variance function of the NEF generated by the law of
Ž . Ž .U � V is V m � � m �� on its domain of the means; that is, U � V is

ŽWishart distributed with shape parameter � since the domain of existence
�E of the Laplace transform of the law of U � V is open, any probability�

.generating the NEF must belong to the NEF .
Ž . Ž .Rao’s theorem Proposition 2.8 and 2.9 imply that, for �� in E , one has�

4.4 k � a�Ž . U

� Ž . �note that U concentrated on E implies that � U � �E .� �
Ž . Ž .Now, from 2.8 and 4.4 , we obtain

a� � � a2� � 	 � � LŽ . U� V

² :� � U 	 U exp � , U � VŽ .
4.5Ž .

d
� b � � � � � 	 � � � b � � � � � � L .Ž . Ž .11 12 U�Vž /ž /d�

Similarly,

d
2a� � � a � � � LŽ . U� Vž /ž /d�

² :� � � U exp � , U � VŽ .Ž .4.6Ž .
d

� b � � � � � 	 � � � b � � � � � � L .Ž . Ž .21 22 U�Vž /ž /d�

Ž . Ž . Ž .If we eliminate � d�d� � between 4.5 and 4.6 , we get

a2 � a trace b � det b � �Ž .
4.7Ž . 3 2� b a 1 � a � � � � �a � a b � ab � det b � � 	 � �.Ž . Ž . Ž .12 22 11
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Ž .We note that the coefficient of � � in 4.7 is the characteristic polynomial
of the matrix b evaluated at a. Let us show that b is not 0 and that a is not12

Ž .an eigenvalue of b. If b � 0, then 4.5 implies12

4.8 a � b � � � b � a2 � � 	 � �.Ž . Ž . Ž .11 11

Ž . Ž .But since 0 � a � 1 see Proposition 2.8 , a � b � 0 would imply � � 	11
Ž .� � � 0 and U � V would be Dirac: this is impossible. Hence 4.8 would imply

Ž 2 . Ž .� � � 	� � 	 � �, with 	 � b � a � a � b . This, in turn, would imply11 11
that � � has rank 1 everywhere and therefore that U � V is concentrated on
a line; this contradicts the hypothesis of Theorem 2.4. Therefore b is not 0.12

Ž .Assume now that a is an eigenvalue of b. From 4.7 , since b � 0, we get12
that there exists a constant 	 such that

4.9 � � � � � 	� � � 	 � � � .Ž . Ž . Ž . Ž .Ž .
Ž . Ž .From the second part of Proposition 2.1 and from 4.9 , we see that � � � is a

Ž .multiple of some primitive idempotent c � . Now, primitive idempotents are
Ž .on the extremal lines of the convex cone E . Since � � � is the expectation of�

some element of the NEF generated by the distribution of U � V, this implies
that U � V is concentrated on an extremal line of E , and this contradicts�
the hypothesis of Theorem 2.4. Therefore a cannot be an eigenvalue of b.

Ž . Ž .We have just proved that the coefficients of � � and � � � in 4.7 cannot be
Ž . � 40. Therefore from 4.7 it follows that there exist � in � � 0 and � in � such

that, for �� in E ,�

4.10 � � � � � � � � �� � �� � � 	 � � � .Ž . Ž . Ž . Ž . Ž .Ž .
Ž . �It has been proved in Casalis and Letac 1996 see discussion following

Ž .� Ž .6.17 that 4.10 implies that the distribution of U � V generates a genuine
Ž .NEF i.e., not concentrated on some affine hyperplane and that � � 0. Thus

Ž .4.3 and Theorem 2.4 are proved.

5. A proof of Olkin and Rubin’s theorem. In this section, we will
prove the following Proposition 5.1. From this proposition and Theorem 2.4,
we obtain a proof of Olkin and Rubin’s theorem, as expressed in the form

Ž .given in Casalis and Letac 1996 , Theorem 3.2. The proof of our Theorem 2.4
Ž . �borrows a number of features from Casalis and Letac 1996 essentially

Proposition 6.1, for our Proposition 2.1; Lemma 6.3, for our Proposition 3.1;
Ž .�and the tedious discussion following 6.17 . Furthermore, the proof of Propo-

Ž .sition 5.1 will use Lemma 5.1 and Proposition 6.2 of Casalis and Letac 1996 .
However, the present approach is basically simpler and seems to be the
normal route, as mountain climbers say, toward Olkin and Rubin’s result.
This elegant peak has not been very much visited after its discovery: The
Science Citation Index acknowledges only three quotations before 1994, and
one of them is confusing it with another paper by the same authors and in the

Ž .same journal, but published in 1964. Srivastava 1965 says that the exten-
sion of the result to complex Wishart laws is ‘‘under investigation.’’ This aim

Ž .seems to have been reached only later, in Casalis and Letac 1996 .
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PROPOSITION 5.1. Let U and V be two independent random variables
concentrated on E such that U � V belongs to E almost surely and is not� �
concentrated on some half line. Let g: E � G be a division algorithm, that is,�

Ž .Ž .a measurable map such that g x x � e for all x in E . Finally, assume that�

Z � g U � V UŽ . Ž .
is independent of U � V and that the distribution of Z is invariant by K.

Ž . Ž .Then there exist a in � and a 2, 2 real matrix b such that � U � U � V �
Ž . Ž .a U � V and 2.8 holds.

Ž .PROOF. Since the distribution of Z is K-invariant, � Z is K-invariant.
Ž .Then, from Lemma 5.1 of Casalis and Letac 1996 , we know that there exists

Ž .a in � such that ae � � Z . Hence

ae � � g U � V U � U � V � g U � V � U � U � V .Ž . Ž . Ž . Ž .Ž . Ž .
Ž .Ž . Ž Ž ..�1Ž . Ž .Since g x x � e for all x, we have g x e � x. Hence a U � V �

Ž .� U � U � V .
Ž . 2 Ž . Ž .Similarly, for � , � in � , Q x � � x 	 x � � � x defines a G-invariant

Ž . Ž Ž ..quadratic polynomial taking its values in L E . Hence � Q Z is a K-s
Ž .invariant element of L E and, from Proposition 6.1 of Casalis and Letacs

Ž .1996 , there exist � and 	 in � such that

�id � 	e 	 e � � Q Z .Ž .Ž .E

Thus

�id � 	e 	 e � � g U � V Q U g U � V * � U � VŽ . Ž . Ž .Ž .Ž .E

� g U � V � Q U � U � V g U � V *.Ž . Ž . Ž .Ž . Ž .
Ž Ž ..�1Ž .Using g U � V e � U � V again, we get

5.1 � Q U � U � V � �� U � V � 	 U � V 	 U � V ,Ž . Ž . Ž . Ž . Ž .Ž .
Ž Ž ..�1ŽŽ Ž ..�1 . Ž . Ž .since g U � V g U � V * � � U � V , by applying � gx �

Ž . � Ž . Ž .� Ž Žg� x g* see 3.8 in Casalis and Letac 1996 to x � e and g � g U �
..�1 Ž . Ž .V . Since � and 	 are linear functions of � , � , 5.1 proves that there

Ž .exists b such that 2.8 holds, and the proof is complete. �

6. Proof of Theorem 2.5. The proof of Theorem 2.5 relies on the fol-
lowing proposition:

PROPOSITION 6.1. Let U be a random variable on E with Wishart distribu-
Ž �1 . Ž .tion � . Then � U is finite if and only if p � n�r � 1 � d r � 1 �2.p, �

Furthermore, for p � n�r one has

��1
�16.1 � U � ,Ž . Ž .

p � n�r

1
�1 �16.2 � U 	 U � �id � p� 	 � .Ž . Ž . Ž .Ep � n�r
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Ž . �REMARKS. Equation 6.1 is well known from symmetric real matrices see
Ž . Ž . �1Muirhead 1982 , pages 97 and 113; note that on page 113, 3.6 b , V should

�be replaced by V . However, the proof is not that easy, and ours is rather
different from the one given by Muirhead. Note also that p � 1 is the

Ž .condition for a gamma random variable U in order that � 1�U is finite.
Ž . Ž .Finally, 6.1 and 6.2 imply that, as in Corollary 2.6,

�1
�1Cov U , U � id .Ž . Ep � n�r

PROOF. Suppose that p � n�r. For x in E , denote�

�1 p�n�rg x � � p det x ,Ž . Ž . Ž .Ž .E

where

Ž .n�r �26.3 � p � 2� � p � p � d�2 ��� � p � d r � 1 �2 .Ž . Ž . Ž . Ž . Ž . Ž .Ž .E

Then the density of U with respect to the Lebesgue measure on the
Ž .Euclidean space E and restricted to E is�

�p�1² :6.4 exp � � , x g x det � .Ž . Ž . Ž .
Ž �1 . �1A way to see that � U exists is to observe that, for x in E , x det x is�

actually a polynomial taking its values in E. This comes from the very
definition of the determinant of x by the equality

rr r�1x � x trace x � ��� � �1 e det x � 0.Ž .
Since p � n�r, this polynomial divided by det x is integrable on E with�

² �1 : Ž .respect to exp � � , x g x dx.
Let us assume that � belongs to �E . Since E is Euclidean, we shall write�

the differential of a real differentiable function on E as a gradient, that is, as
an element of E. Clearly, the function

² :x � exp � , x g xŽ .
has differential

² : �1x � exp � , x g x p � n�r x � � ,Ž . Ž .Ž .
since the differential of x � log det x is x � x�1. Furthermore, this function
is 0 on the boundary E � E . An application of Stokes formula then gives� �

² : �16.5 exp � , x g x p � n�r x � � dx � 0.Ž . Ž . Ž .Ž .H
E�

�1 Ž . Ž . Ž .For � � �� and given the density 6.4 , 6.5 gives now 6.1 . Taking the
Ž .differential of the first member of 6.5 with respect to � yields

² : �1exp � , x g x p � n�r x 	 x � � 	 x � id dx � 0.Ž . Ž .Ž .H E
E�
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�1 Ž .Again, for � � �� and given the density 6.4 , the preceding equality and

�p�1² :exp � � , x g x det � x dx � p� ,Ž . Ž .H
E�

Ž .which is the expectation of U, yield 6.2 .
Ž .Finally, from 6.1 , we get

p�n�r�1 �1² :exp �� , x det x trace x dxŽ . Ž .H
E�

trace ��1Ž . p� det � � p ,Ž . Ž .Ep � n�r

6.6Ž .

which, as a function of p, is a Laplace transform of a positive function. The
Ž . Ž .second member of 6.6 has a pole at p � n�r, and, from 6.3 , we see that the

integral does not exist for p � n�r. The proof of Proposition 6.1 is complete.
�

Ž .PROOF OF THEOREM 2.5. We apply the principle of equality 3.9 to the
Ž . �1 Ž . Ž .pair Q u � u and Q � cQ, with c defined by 2.10 . Replacing � in 6.11
Ž �1 .�1 Ž .by � � � � � will give the first of the two equalities 2.11 . One�

Ž . Ž .proceeds in the same way with 6.2 , to get the second equality in 2.11 , by
Ž . �1dealing with the pair Q u � u 	 u and Q � c id � c Q, where c and c1 1 E 2 1 2

Ž .are defined by 2.10 . The proof of Theorem 2.5 is then complete. �

To end this section, we observe that an analogue of Proposition 2.1 for the
inverse is available here. We skip its proof, which imitates the first part of

Ž .Proposition 2.1. Here again, the symmetry of Q e is important.

Ž .PROPOSITION 6.2. Let QQ be the linear space of functions Q: E � L E1 �
such that for all g in G one has

6.7 Q g x � g*�1 Q x g*Ž . Ž . Ž .Ž .
Ž . Ž .and such that Q e is in L E . Then QQ has dimension 2, and the pairs 1

x � x�1 	 x and x � id defines a basis of QQ .E 1

Ž . Ž . Ž .7. Proof of Theorem 2.7. Since 2.9 is true, 2.12 and 4.1 hold. Re-
Ž . Ž �1 ² :.call that 0 � a � 1. For � in �E , we denote h � � � U exp � , U .� U

Ž .Then the first equality of 2.11 implies that

7.1 h � L � � ch � .Ž . Ž . Ž . Ž .U V U�V

Ž .Taking the differential of both sides of 7.1 , we get

7.2 h� � L � � h � 	 L� � � ch� � .Ž . Ž . Ž . Ž . Ž . Ž .U V U V U�V

Ž .The second equality of 2.11 implies that

7.3 h� � L � � c L � id � c h� � .Ž . Ž . Ž . Ž . Ž .U V 1 U�V E 2 U�V
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� Ž . Ž . Ž . Ž .Eliminating h � between 7.2 and 7.3 and using 4.1 , we getU� V

7.4 c � c h� � � c 1 � a h � 	 � � � � cc L � id � 0.Ž . Ž . Ž . Ž . Ž . Ž . Ž .2 U 2 U 1 U E

Ž . �1 Ž .�1Observe that 2.11 implies that c � 0, since U and U � V are in E .�
Ž .Having c � c � 0 in 7.4 implies2

c1
h � 	 � � � � � L � id ,Ž . Ž . Ž .U U E1 � a

and this is impossible since the left-hand side of the equation has rank 1 and
the right-hand side has rank 0 if c � 0 and rank n if c � 0. Thus c � c � 0.1 1 2

Ž .We adapt to 7.4 the method of resolution of one-dimensional linear and
nonhomogeneous ordinary differential equations, by considering the function
w on �E , taking its values in E and defined by h � L� w, where� � U U

c 1 � aŽ .2
� � � .

c � c aŽ .2

Ž .Then 7.4 becomes
cc1 1��7.5 w� � L id .Ž . U Ec � c2

Ž .We now prove that the second member of 7.5 , denoted by � id , must be aE
constant with respect to � on �E . This comes from the fact that w� is a�
Hessian and must be symmetric; that is, the function on E2 defined by

² :h , k � w� � h , k � � � � , h kŽ . Ž . Ž . Ž .
Ž .is symmetric in h and k. Clearly, this implies that � � � � 0 on �E . Since�

�E is connected, � is a real constant and is equal to 0 if and only if c � 0.� 1
Ž .In this case, from 7.5 , it follows that w is a constant belonging to E. Thus,

Ž² �1 : ² :.for any h in E orthogonal to w, we have � U , h exp � , U � 0 for all � :
This implies that U�1 is concentrated on �w, which implies, in turn, that U
is concentrated on �w�1. Proposition 2.8 implies that the same is true for
U � V, and this contradicts the hypothesis of Theorem 2.7. Thus � � 0, and

Ž .� must be equal to 1, which is equivalent to c � ac. Thus 7.5 becomes2
Ž . Ž . Ž .w� � � c � 1 � a id , and there exists a constant c in E such that w � �1 E 0
Ž .Ž .c � 1 � a � � c . Since h � L w is in E for � in �E , this implies that1 0 U U � �

c � 0 and that c is in E . We write c � ��1 and introduce the positive1 0 � 0
Ž . Ž .numbers p and q defined by p � n�r � � 1 � a �c and a p � q � p. So,1

for � in �E we now have�

��1 � �
7.6 h � � L � ,Ž . Ž . Ž .U Up � n�r

and we are going to deduce from this that the distribution of U is � . Wep, �

introduce the positive measure 	 on E such that the distribution of U is�

² �1 :7.7 exp � � , x g x 	 dx ,Ž . Ž . Ž .
where g has been defined in the proof of Proposition 6.1. We want to show
that 	 is proportional to the Lebesgue measure.
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Ž . Ž . �1Using density 7.7 for computing h in 7.6 and replacing � � � by �U
in �E , we obtain that�

² :7.8 exp � , x g x �	 dx � 0.Ž . Ž . Ž .Ž .H
E�

² : Ž .Since exp � , x g x , as a function of x, is 0 on the boundary of E , using the�
Ž . Ž .Schwartz derivative 	 �, we see that 7.8 implies

² :� exp � , x g x 	 � dx � 0Ž . Ž . Ž .H
E�

Ž .Ž . Ž .for all � in �E . Thus g x 	 � dx � 0, and 	 is proportional to the Le-�
besgue measure. The proof is now complete. �

8. Further comments. Recall the following result by Huang, Li and Lo
Ž .Huang 1994 :

THEOREM. Let U and V be positive, nondegenerate random variables such
Ž �2 .that � U is finite. Then there exists a and b � 0 such that

�1 �2�1 �2� U � U � V � a U � V , � U � U � V � b U � VŽ . Ž . Ž . Ž .
if and only if there exist p � 2, q � 0 and � � 0 such that U and V have
distributions � and � .p, � q, �

� Ž 2 .Huang, Li and Lo Huang add the hypothesis � V � ��. This is not
necessary if one proceeds as follows for the proof: Define for � � 0 the

Ž . Ž �2 Ž ..function f � � � U exp �U . One gets easilyU

8.1 f � L � af � ,Ž . U V U�V

8.2 f L � bf .Ž . U V U�V

Ž . � Ž . Ž . �Derive 8.2 and eliminate f with 8.1 ; then derive 8.1 and use f �U� V U�V
f � L . One gets the two equationsU V

b
� � � � �1 � f L � f L � 0, 1 � a f L � f L � 0,Ž .U V U V U V U Vž /a

Ž � .and the elimination of L , L between them leads to a differential equationV V
�for f .U

Now, a referee has asked for the generalization to the Wishart distribu-
tions of the above result. It seems to be an interesting and difficult problem
which needs new methods. As a partial answer, we shall content ourselves
here to mention the following direct result:

THEOREM 8.1. Let U and V be independent random variables with Wishart
distributions � and � on the simple Euclidean Jordan algebra E, withp, � q, �

Ž .Pierce constant d and rank r. Assume that A � p � 1 � d r � 1 �2 � 0.1
Ž . Ž .Denote also A � p � 2 � d r � 1 �2, B � p � 1 � d r � 2 �2 and consider2
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the matrices

d
A � 121 2

B p �Ž . dA A B1 2 A12

and

b b11 12 �1� B p B p � q .Ž . Ž .b b21 22

Then

�1 �1�1 �1� U 	 U � U � V � b U � V 	 U � VŽ . Ž . Ž .11
8.3Ž .

�1� b � U � V ,Ž .Ž .12

�1 �1�1� � U � b U � V 	 U � VŽ . Ž . Ž .Ž . 21
8.4Ž .

�1� b � U � V .Ž .Ž .22

A statement similar to Corollary 2.3 also holds by considering the line
Ž .eigenvectors of the matrix B p . The proof of Theorem 8.1 is more difficult

than the proofs of Theorems 2.2 and 2.5. It relies on the extension to the
Ž . Ž .Jordan algebras of the formulas of von Rosen 1988 , Theorem 3.1 ii , and

Ž . Ž .Das Gupta 1968 , Lemma 2.4 ii . The tool for this is a result on the Peirce
Ž .decomposition of a Wishart variable obtained by Massam and Neher 1997 ,

Theorem 4.3.1. The proof of our Theorem 8.1 can be found in Letac and
Ž .Massam 1997 , which contains a general study of equalities of the type

� c�1 Q U � U � V � c�1 Q U � V ,Ž . Ž . Ž . Ž .Ž .p p�q

where U and V are independent and have distribution in the same exponen-
Ž .tial dispersion model e.g., the Wishart one , where Q belongs to some

Ž .finite-dimensional linear space � of functions and where c ; p 
 � is ap
suitable family of automorphisms of � .
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