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ISOTONIC INVERSE ESTIMATORS FOR NONPARAMETRIC
DECONVOLUTION

By Bert van Es, Geurt Jongbloed and Martien van Zuijlen

University of Amsterdam, Vrije Universiteit and University of Nijmegen

A new nonparametric estimation procedure is introduced for the distri-
bution function in a class of deconvolution problems, where the convolution
density has one discontinuity. The estimator is shown to be consistent and
its cube root asymptotic distribution theory is established. Known results
on the minimax risk for the estimation problem indicate the estimator to
be efficient.

1. Introduction. An often occurring problem in statistics is that we have
observations Zi which are equal to the sum of independent random variables
of interest Xi and random variables Yi, where the distribution of Yi can be
assumed to be known. For instance, consider a value Xi which is measured
with measurement error Yi. Or, consider Xi to be the time of infection of a
disease and Yi the incubation time. The second example is relevant to so-
called back calculation problems in AIDS research. The known distribution
of Yi in these two examples will be quite different. An error measurement is
usually modelled by a symmetric distribution on the whole real line while the
distribution of a time period will be a skewed distribution on the half line of
positive reals.

More formally, we have the following model. Let X1�X2� � � � �Xn denote a
sample from an unknown distribution with distribution function F and, inde-
pendent of that sample, Y1�Y2� � � � �Yn a sample from a known distribution
with density k on R. Consider the problem of estimating F based on the sam-
pleZ1�Z2� � � � �Zn, whereZi =Xi+Yi. The density g ofZ1 is the convolution
of k and F in the following sense:

g�z� =
∫

R

k�z− x�dF�x� =� k ∗dF�z��
For this reason, this estimation problem is known as a deconvolution problem.

For the special case where the kernel k is a decreasing density on �0�∞�
and F�0� = 0, the nonparametric maximum likelihood estimator (NPMLE)
for F is studied in Groeneboom and Wellner (1992). There this estimator is
shown to be consistent and a conjecture is given concerning its asymptotic
distribution. Except in a few special cases such as uniform deconvolution [see
van Es (1991a, b) and van Es and van Zuijlen (1996)], and exponential de-
convolution [see Jongbloed (1995, 1998)], there is no explicit expression for
the NPMLE available and computing the NPMLE requires an iterative proce-

Received August 1995; revised March 1998.
AMS 1991 subject classifications. Primary 62G05; secondary 62E20.
Key words and phrases. Convex minorant, cube root asymptotics, isotonic estimation, empirical

process.

2395



2396 B. VAN ES, G. JONGBLOED AND M. VAN ZUIJLEN

dure. These maximum likelihood estimators share the same type of cube root
asymptotics as, for instance, the Grenander maximum likelihood estimator of
a decreasing density and the NPMLE in certain interval censoring problems;
see Groeneboom (1996).

We propose an alternative to the NPMLE. Section 2 introduces a nonpara-
metric estimator F̃Mn for F for the more general class of deconvolution prob-
lems with the known density k concentrated on �0�∞�. The kernel k is not
assumed to be decreasing. This isotonic inverse estimator can, in contrast to
the NPMLE, be calculated as the derivative of the convex minorant of a single
function depending on the data via a certain function p which is related to
k by an integral equation. In Section 3, we state a sufficient condition on k
that implies the properties of this function p needed to establish the asymp-
totic results in Section 4. We prove that the estimator F̃Mn �x0� of F�x0� is
consistent. Moreover, for a class of kernels vanishing on �−∞�0�, having a
discontinuity at zero and being smooth on �0�∞�, we derive its asymptotic
distribution of F̃Mn �x0� under the assumption that F is differentiable near x0
with derivative f:

n1/3
(

k�0�2

4f�x0�g�x0�
)1/3(

F̃Mn �x0� −F�x0�
) →� Z�

Here Z is the last time that the process t �→ W�t� − t2 reaches its max-
imum and W is a standard two-sided Wiener process originating from zero.
This asymptotic distribution coincides with the asymptotic distribution conjec-
tured in Groeneboom and Wellner (1992) for the NPMLE in case of decreasing
kernels on �0�∞�. This suggests that the estimator might have good proper-
ties from the point of view of efficiency. As will be seen in Section 4, this is
different in the uniform deconvolution case, where k has two discontinuities.
Efficiency is discussed briefly in Section 5.

The convolution structure of the density of the observations allows inversion
by Fourier transform techniques. Kernel estimators based on this approach
have been introduced and studied by several authors. Some recent references
are Fan (1991) and Hall and Diggle (1993). Kernel estimators based on di-
rect inversion formulas for gamma and Laplace deconvolution problems can
be found in van Es and Kok (1997). Compared to the maximum likelihood
and isotonic inverse estimators, these approaches have both advantages and
disadvantages. An advantage is that if the unknown F is smooth, the rate of
convergence of the kernel estimators is faster. On the other hand, the resulting
estimators of F are not monotone.

2. An isotonic inverse estimator. In this section we introduce a new
nonparametric procedure to estimate F. We restrict attention to the case
where F has support contained in �0�∞�.

Suppose that, given a kernel k, we have a function p living on �0�∞�,
solving the integral equation

p ∗k�x� �=
∫ x

0
p�x− y�k�y�dy = 1 ∗1�x� = x1�x��(1)
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where the function 1 is defined by

1�x� = 1�0�∞��x��
Then we can write, for each x ≥ 0 and a Z having density function g = k ∗dF,

Ep�x−Z� = p ∗g�x� = p ∗k ∗dF�x�

= 1 ∗1 ∗dF�x� =
∫ x

0
F�s�ds =�H�x��

(2)

Let Gn denote the empirical distribution function corresponding to a sample
Z1�Z2� � � � �Zn from the density g. The empirical counterpart of the left-hand
side of (2) is given by a sample mean:

Hn�x� =
∫
�0� x�

p�x− z�dGn�z� =
1
n

n∑
i=1

p�x−Zi��(3)

This functionHn is an estimator for a primitive of F. Taking the derivative of
some smoothed version of Hn (Hn itself will in general not be differentiable)
would therefore yield an estimator for F. We call such an estimator an inverse
estimator, since it is based on the inverse relation

F�x� = d

dx
p ∗g�x� a.e.

which follows from (2). However, using general smoothing techniques for esti-
mating g, for example, kernel estimation, the information that H is convex,
which follows from the monotonicity of F, is not used. Consequently, inverse
estimators for the distribution function will in general not be monotone.

ForM ∈ �0�∞�, denote by H̃Mn the largest convex function dominated byHn
on �0�M� (the convex minorant of Hn on �0�M�). At a fixed point x ∈ �0�M�,
we define the estimator F̃Mn of F as the right derivative of H̃Mn evaluated at x,

F̃Mn �x� = lim
h↓0

H̃Mn �x+ h� − H̃Mn �x�
h

�

This estimator F̃Mn is by construction monotone (isotonic with respect to nat-
ural ordering on R), and therefore called an isotonic inverse estimator.

Figure 1 shows a picture of the isotonic inverse estimator based on a real-
ization of a sample of size 100 from the convolution of the kernel

k�x� = 5
2�1 − x�3/21�0�1��x�

and the uniform distribution function. To obtain this picture we approximated
p numerically and computed the convex minorant of the associated function
Hn on a fine grid. See Jongbloed (1995) for more examples and details on
computational aspects.

One possible choice for M in the definition of F̃Mn is M = ∞. As we will
see in Section 3, we need finiteness of M in order to prove our asymptotic
distribution result for a large class of densities k. If we takeM = ∞, we need
monotonicity of k on �0�∞� in order to make the asymptotics rigorous. For
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Fig. 1. Isotonic inverse estimator of the distribution function based on a sample of size 100� the
dashed curve is the true �uniform� distribution function.

practical purposes, there is no difference between F̃Mn for finite (but large)
and infinite M. See Remark 1.

3. The integral equation. Integral equation (1) is a Volterra equation
of the first kind, of convolution type. The function p is sometimes called the
resolvent of the first kind of k [see Gripenberg, Londen and Staffans (1990),
page 158]. To prove consistency of F̃Mn in Section 4, we have to impose a
condition on p.

Condition 1. On bounded intervals, the function p has only finitely many
discontinuities. All these discontinuities are finite in size.

For the cube root asymptotics of F̃Mn �x� for x < M, as stated in Theorem 2,
we need a slightly stronger condition on p.

Condition 2. The function p is Hölder continuous of order α > 1/2 on
�0�∞� and 0 < p�0� <∞.

In Section 5 we will see that, under the weaker assumption that p satisfies
Condition 1, has more than one discontinuity, is Hölder continuous of order
α > 1/2 between the successive points of jump and has 0 < p�0� < ∞, the
estimator is still n1/3-consistent, but it is not efficient anymore.

Since it is more natural to impose conditions on the kernel k rather than on
the function p, we state Lemma 1. It gives a sufficient condition for Condition
2 and thus also for Condition 1 to hold.

Lemma 1. Let 0 <M <∞. Suppose the density k can be written as

k�x� = k�0�
(

1 +
∫ x

0
l�u�du

)
� x ∈ �0�M�
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for some bounded Borel measurable function l� �0�M� → R. Then the unique
continuous (on �0�M�) solution p of (1) allows the representation

p�x� = 1
k�0�

(
1 +

∫ x
0
q�u�du

)
� x ∈ �0�M��

where q is a bounded Borel measurable function on �0�M�.

Proof. Consider the type-II Volterra convolution equation

q�x� +
∫ x

0
l�x− u�q�u�du = −l�x��

or, equivalently

q+ l ∗q = −l�

By Theorem 3.5 in Gripenberg, Londen and Staffans (1990), it follows that the
solution q of this equation is unique. It is bounded and Borel measurable on
�0�M� whenever l is. Now define p = k�0�−1�1 + 1 ∗q� and observe

k ∗p = k�0��1 + 1 ∗ l� ∗ 1 + 1 ∗q
k�0� = 1 ∗1 + 1 ∗1 ∗ �q+ l+ q ∗ l� = 1 ∗1� ✷

4. Asymptotic results. The first theorem below establishes the almost
sure consistency of the estimator under the weak Condition 1. The next the-
orems give the asymptotic distribution, first for the case that Condition 2 is
satisfied and k is allowed only a jump at zero, and second for uniform decon-
volution where k has jumps at zero and 1.

Theorem 1. Let p satisfy Condition 1. Then, for all 0 < M < ∞ and
x0 ∈ �0�M�,

F�x−0 � ≤ lim inf
n→∞ F̃Mn �x0� ≤ lim sup

n→∞
F̃Mn �x0� ≤ F�x0� a.s.(4)

If F is continuous on �0�M�, then sup0≤x≤M �F̃Mn �x�−F�x�� → 0 almost surely.

Proof. Fix 0 < M < ∞. By Condition 1, p is uniformly continuous on
each of the finitely many open intervals between the successive finite jumps
of p in �0�M�. Therefore, as n→ ∞,

sup
x∈�0�M�

�Hn�x� −H�x�� = sup
x∈�0�M�

∣∣∣∣
∫
p�x− z�d�Gn −G��z�

∣∣∣∣ → 0 a.s.(5)

where G is the distribution function corresponding to g. Since the operation of
taking the right derivative of the convex minorant of a function on �0�M� at a
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fixed point x0 ∈ �0�M� is continuous with respect to the supremum norm [see,
e.g., the lemma preceding Theorem 7.2.2. in Robertson, Wright and Dykstra
(1988)], the theorem follows. ✷

Remark 1. If M = ∞, then (4) cannot be derived from (5). A localization
argument to ensure that the convex minorant of Hn on R evaluated at x0 is
determined byHn on a bounded interval, together with (5) for each finiteM>
0, would imply consistency of the estimator withM = ∞. For this localization,
an additional property of p is needed: limx→∞ x−1p�x� = 1. Taking the Laplace
transform of (1), it follows that p̂�s� = �s2k̂�s��−1. If k has a finite second
moment, permitting a local expansion of k̂�s� = 1 −m1s +m2s

2/2 near zero,
p̂�s� = s−2 +m1s

−1 +m2
1 −m2/2+ o�1� as s ↓ 0. This expansion suggests that

p�x� ∼ x as x → ∞. However, it only implies
∫ x

0 p�y�dy ∼ 1
2x

2 as x → ∞.
When p is monotone, which holds if k is monotone, this asymptotic behavior
of the integral of p implies limx→∞ x−1p�x� = 1. These heuristics can be
made rigorous by so-called Karamata theory; see, for instance, the Karamata
theorems 1.7.1 (monotone form) and 1.7.6 (extended form) in Bingham, Goldie
and Teugels (1987). An alternative proof for monotone k, based on a relation
between (1) and the renewal equation with life time distribution 1−k�x�/k�0�,
can be found in van Es, Jongbloed and van Zuijlen (1995), an earlier version
of this paper.

Since the conditions needed to obtain consistency for F̃∞
n are restrictive (k

monotone) only to allow for a localization argument, it was decided to incor-
porate this localization in the definition of the estimator.

Theorem 2. Let p satisfy Condition 2, 0 < M < ∞ and x0 ∈ �0�M� be
fixed, and F be such that F has a continuous strictly positive derivative f in
a neighborhood of x0. Then, for n→ ∞,

n1/3
(

k�0�2

4f�x0�g�x0�
)1/3(

F̃Mn �x0� −F�x0�
) →� Z�

where Z is the last time that the process t �→W�t� − t2 reaches its maximum.
HereW is a standard two-sided Wiener process originating from zero and →�

denotes convergence in distribution.

Proof. Consider, for a ∈ �0�1� and τ ∈ �0�M�, the event Tn�a� > τ, where

Tn�a� = inf
{
t ∈ �0�M�� Hn�t� − at minimal

}
�

This event occurs if and only if the maximal affine function with slope a
dominated by Hn on �0�M� equals Hn at a point t0 ∈ �τ�M�, whereas for
each t ≤ t0, this affine function is strictly dominated byHn. This is equivalent
to F̃Mn �τ� < a. Therefore, for each τ ∈ �0�M� and a ∈ �0�1�,

Tn�a� ≤ τ ⇐⇒ F̃Mn �τ� ≥ a�
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Fix x0 ∈ �0�M� meeting the requirements of the theorem. Then, for fixed
α ∈ R, we have, for n sufficiently large,

n1/3(F̃Mn �x0� −F�x0�
)
< α

⇐⇒ F̃Mn �x0� < F�x0� + αn−1/3

⇐⇒ Tn�F�x0� + αn−1/3� > x0

⇐⇒ inf
{
x0 + tn−1/3 ∈ �0�M�� Hn�x0 + tn−1/3� −Hn�x0�

−F�x0�tn−1/3 − αtn−2/3 minimal
}
> x0

⇐⇒ inf
{
t ∈ �−x0n

1/3� �M− x0�n1/3��
n2/3(Hn�x0 + tn−1/3� −Hn�x0� −F�x0�tn−1/3)

− αt minimal
}
> 0

⇐⇒ inf
{
t ∈ �−x0n

1/3� �M− x0�n1/3�� Zn�t� − αt minimal
}
> 0�

(6)

where

Zn�t� = n2/3(Hn�x0 + tn−1/3� −Hn�x0� −F�x0�tn−1/3)�(7)

This process Zn can be decomposed as

Zn�t� = n2/3(H�x0 + tn−1/3� −H�x0� −F�x0�tn−1/3)+Wn�t� +Rn�t��(8)

Here

Wn�t� = n2/3p�0�
∫ ∞

0

(
1�0� x0+n−1/3t��z� − 1�0� x0��z�

)
d�Gn −G��z�

and, defining the (α-Hölder continuous, α > 1/2) function p̃ = p− p�0�1�0�∞�,

Rn�t� = n2/3
∫ ∞

0

(
p̃�x0 + n−1/3t− z� − p̃�x0 − z�

)
d�Gn −G��z��

We will show in the Appendix that sup�t�≤K �Rn�t�� → 0 in probability as n→
∞ for K ∈ �0�∞�. The asymptotics of Wn is well known. This process also
plays an important role in the distribution theory of the maximum likelihood
estimator of a decreasing density. For example, Example 3.2.14 in van der
Vaart and Wellner (1996) immediately gives that k�0�g�x0�−1/2Wn converges
in distribution in l∞��−K�K��, for each 0 < K < ∞, to a standard two-
sided Brownian motion W. Therefore, also using a Taylor expansion for the
“deterministic part” of Zn, for each 0 < K < ∞, Zn → Z in distribution in
l∞��−K�K��, where

Z�t� = 1
2
f�x0�t2 +

√
g�x0�
k�0� W�t��
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Moreover, applying Corollary 3.2.6 in van der Vaart and Wellner (1996) to the
class of functions �mx −mx0

� �x− x0� < δ� (δ > 0), where

mx�z� = p�x− z� − xF�x0��
and using Theorem 1, we obtain

inf
{
t ∈ �−x0n

1/3� �M− x0�n1/3�� Zn�t� − αt minimal
} = Op�1��

Hence, by Theorem 3.2.2 in van der Vaart and Wellner (1996),

inf
{
t ∈ �−x0n

1/3� �M− x0�n1/3�� Zn�t� − αt minimal
}

→� argmin
t∈R

(
1
2
f�x0�t2 +

√
g�x0�
k�0� W�t� − αt

)
�

Finally, using the property of W that, for each a > 0 and b ∈ R,

argmin
t∈R

�aW�t� + �t− b�2� =� a
2/3 argmin

t∈R

�W�t� + t2� + b�

we obtain

argmin
t∈R

(
1
2
f�x0�t2 +

√
g�x0�
k�0� W�t� − αt

)

=�
22/3g�x0�1/3

f�x0�2/3k�0�2/3
argmin
t∈R

�W�t� + t2� + α

f�x0�
�

so that

lim
n→∞P

(
n1/3(F̃Mn �x0� −F�x0�

)
< α

)

= P
(

argmin
t∈R

(
1
2
f�x0�t2 +

√
g�x0�
k�0� W�t� − αt

)
> 0

)

= P
(
2 argmin

t∈R

�W�t� + t2� > −α21/3f�x0�−1/3g�x0�−1/3k�0�2/3
)

= P
(
2 argmin

t∈R

�W�t� + t2� < α21/3f�x0�−1/3g�x0�−1/3k�0�2/3
)
�

from which the theorem follows. ✷

Theorem 3. Let k be the uniform density on �0�1�, x0 ∈ �0�∞� be fixed
and F be such that F has a continuous strictly positive derivative f in a
neighborhood of x0. Then, for n→ ∞,

n1/3�4f�x0�F�x0��−1/3(F̃∞
n �x0� −F�x0�

) →� Z�

where Z is defined as in Theorem 2.
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Proof. Note that the function p associated with k is given by

p�x� = �1 + �x��1�0�∞��x��
where �x� denotes the largest integer less than or equal to x, and that p
satisfies Condition 1 contrary to Condition 2. Note also thatF�x� = ∑�x�

j=0 g�x−
j�. Let x0 ∈ �i� i + 1� for some i ∈ N. The proof of Theorem 2 can be copied
until the decomposition of Zn in a deterministic part, Wn and Rn as given in
(8). In this case, however, Rn�t� = 0 for all �t� ≤ K and n sufficiently large.
The process Wn in this situation is given by

Wn�t� =
i∑
j=0

n2/3
∫ ∞

0

(
1�0� x0+n−1/3t−j��z� − 1�0� x0−j��z�

)
d�Gn −G��z�

=
i∑
j=0

W
�j�
n �t��

Using that W�j�
n →�

√
g�x0 − j�W�j� for independent standard two-sided

Brownian motions W�j�, we get that Wn →�

√
F�x0�W for a standard two-

sided Brownian motion W. The result can be obtained along the same lines
as in Theorem 2. ✷

Remark 2. Theorem 3 can be adapted to cover situations where the kernel
k has more than one, but a finite number of jumps. Denoting by 0 = a1 < a2 <
· · · < am the discontinuity points of p and assuming k to satisfy a Hölder
condition of order α > 1/2 between its discontinuity points, the following
asymptotic result can be derived. If x0 ∈ �ai� ai+1� for some i, then

n1/3
(

4f�x0�
i∑
j=0

g�x0 − aj��p�aj� − p�aj−��2
)−1/3(

F̃Mn �x0� −F�x0�
) →� Z�

Remark 3. In deriving our results we have assumed that the distribution
F is concentrated on �0�∞�. This can be generalized to the condition that F
has a finite left threshold. If the support of F extends to minus infinity, there
is a need to control the “right tail” of p. See (3).

5. Discussion. The asymptotic behavior established by Theorem 2 coin-
cides with the asymptotic behavior conjectured in Groeneboom and Wellner
(1992) for the NPMLE in case of decreasing kernels on �0�∞�. Apart from a
universal constant, the asymptotic variance of F̃Mn �x0� depends on k and F in
exactly the same way as the lower bound on the minimax risk for estimating
F�x0� as derived in van Es (1991a).

For certain choices of kernels k, (1) has a simple solution. For instance, if
k�x� = e−x1�0�∞��x�, then p�x� = �1 + x�1�0�∞��x�. For this exponential de-
convolution problem, the asymptotic inverse estimator F̃∞

n is compared to the
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NPMLE F̂n in Jongbloed (1998). It turns out that these estimators are first
order asymptotically equivalent, in the sense that, for each x0 ≥ 0,

n1/3(F̃∞
n �x0� − F̂n�x0�

) →P 0 for n→ ∞�

Also for the uniform deconvolution problem, we saw in the previous section
that p�x� = �1 + �x��1�0�∞��x�, where �x� denotes the largest integer less
than or equal to x. In this case the asymptotic distribution of F̃∞

n �x0� is given
in Theorem 3. However, in van Es and van Zuijlen (1996), an estimator is
introduced which has an asymptotic variance which is strictly smaller than the
asymptotic variance of F̃n�x0�. Under the restriction F�1� = 1, this estimator
coincides with the NPMLE. See also van Es (1991b).

APPENDIX

We will show that sup�t�≤K �Rn�t�� → 0 in probability as n → ∞, where
Rn�t� is defined in the proof of Theorem 2.

Observe that

sup
�t�≤K

�Rn�t�� = max
−kn+1≤i≤kn

sup
t∈�ti−1� ti�

�Rn�t��

≤ max
−kn+1≤i≤kn

(
�Rn�ti�� + sup

t∈�ti−1� ti�
�Rn�t� −Rn�ti��

)
�

where 0 = t0 < t1 < · · · < tkn = K and t−i �= −ti� i = 1� � � � � kn. Using
Markov’s inequality, we obtain

εP
(

sup
�t�≤K

�Rn�t�� > ε
)
≤ E sup

�t�≤K
�Rn�t��

≤ E max
−kn+1≤i≤kn

�Rn�ti��

+E
(

max
−kn+1≤i≤kn

sup
t∈�ti−1� ti�

�Rn�t� −Rn�ti��
)
�

(9)

If we now consider the second expectation in (9), we see that, for each t ∈
�ti−1� ti�,

�Rn�t� −Rn�ti��

= n2/3

∣∣∣∣
∫ ∞

0

(
p̃�x0 + n−1/3t− z� − p̃�x0 + n−1/3ti − z�

)
d�Gn −G��z�

∣∣∣∣
≤ n2/3

∫ ∞

0

∣∣p̃�x0 + n−1/3t− z� − p̃�x0 + n−1/3ti − z�
∣∣d�Gn +G��z�

≤ 2n2/3Ln−α/3�t− ti�α

≤ 2n�2−α�/3L�ti − ti−1�α�
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where α and L are the Hölder index and constant of p̃, respectively. If we take
the grid of ti’s equally spaced such that �ti − ti−1�α = δn−�2−α�/3, we see that
the random variables supt∈�ti−1� ti� �Rn�t� −Rn�ti�� are bounded uniformly in i
by the nonrandom quantity 2Lδ that can be made arbitrarily small just by
taking δ small. Hence,

E
(

max
−kn+1≤i≤kn

sup
t∈�ti−1� ti�

�Rn�t� −Rn�ti��
)
≤ 2Lδ�

Note that kn = O�n�2−α�/3α�.
To bound the first expectation on the right-hand side of (9), we can use the

two lemmas 2.2.9 (Bernstein’s inequality) and 2.2.10 in van der Vaart and
Wellner (1996). Denote by Z1�Z2� � � � �Zn a sample from g and write, for fixed
t, Rn�t� =

∑n
i=1Yi� where

Yi = n−1/3
(
p̃�x0 + n−1/3t−Zi� − p̃�x0 −Zi� −H�x0 + n−1/3t� +H�x0�

+ p�0�G�x0 + n−1/3t� − p�0�G�x0�
)
�

Note that Yi has expectation zero and bounded range. Indeed,

�Yi� ≤ n−1/3�Ln−α/3�t�α +Cn−1/3�t�� = C′n−�1+α�/3 +CKn−2/3�

Note also that

Var�Rn�t�� = nVar�Y1� ≤ n · n−2/3E�p̃�x0 + n−1/3t−Z1� − p̃�x0 −Z1��2

≤ L2K2αn�1−2α�/3�

Using Bernstein’s inequality, we obtain the following bound on the tail of
Rn�t�:

P��Rn�t�� > x� = P��Y1 +Y2 + · · · +Yn� > x�

≤ 2 exp
{
−1

2
x2

C1n
�1−2α�/3 + �C2n

−�1+α�/3 +C3n
−2/3�x

}
�

Applying Lemma 2.2.10 in van der Vaart and Wellner (1996) to Rn�t−kn+1��
� � � �Rn�tkn�, and using that � · �1 ≤ � · �01

, we get

E max
−kn+1≤i≤kn

�Rn�ti�� ≤ C
(
C

1/2
1 n

�1−2α�/6
√

log�1 + 2kn�

+ �C2n
−�1+α�/3 +C3n

−2/3� log�1 + 2kn�
)
�

Using kn = O�n�2−α�/3α� and α > 1/2, the result follows.
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