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BOUNDS FOR PROBABILITIES OF SMALL RELATIVE
ERRORS FOR EMPIRICAL SADDLEPOINT AND

BOOTSTRAP TAIL APPROXIMATIONS

By J. Robinson and Ib M. Skovgaard1

University of Sydney and Royal Veterinary and Agricultural University

To obtain test probabilities based on empirical approximations to the
distribution of a Studentized function of a mean, we need the approxima-
tions to be accurate with sufficiently high probability. In particular, when
these test probabilities are small it is best to consider relative errors. Here
we show that in the case of univariate standardized means and in the gen-
eral case of tests based on smooth functions of means, the empirical approx-
imations have asymptotically small relative errors on sets with probability
differing from 1 by an exponentially small quantity and that these error
rates hold for moderately large deviations. In particular, for standardized
deviations of order n1/6, the probabilities approximated are exponentially
small with exponents of order n1/3 and the corresponding relative errors
tend to zero on sets whose complements have probabilities of the order of
the probabilities being approximated.

1. Introduction. Consider samples taken from a distribution of a random
variable X with EX = µ and var�X� = σ2. To obtain p-values for tests of
hypothesis on µ when σ2 is known we need to calculate

P
(
X̄− µ
σ

≥ a
)
	

If a moment generating function of X exists, then this tail probability can
be approximated using saddlepoint methods. Under regularity conditions the
following result holds for �a� < C:

P
(
X̄− µ
σ

≥ a
)
= Q�a�

(
1+O

(
1
n

))
�(1.1)

where Q�a� will be defined later.
If the distribution, and so the cumulant generating function, of X is un-

known, then we can attempt to approximate the tail probability by an em-
pirical saddlepoint as in Jing, Feuerverger and Robinson (1994), extending
the idea first proposed by Feuerverger (1989). Here we consider a sample
X1� 	 	 	 �Xn and use the sample mean X̄, the sample variance S2 and the
empirical cumulant generating function. Then the empirical saddlepoint ap-
proximation to the tail probability will be written Q̂�a�.
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In more general cases where X is a d-dimensional random vector, we con-
sider a test statistic g�X̄� to test some hypothesis g�µ� = 0, where the function
g may depend on EX = µ and cov�X� = �. To obtain p-values we need to
calculate P�g�X̄� ≥ a�. Again, if a moment generating function of X exists
then this tail probability can be approximated using saddlepoint methods. For
�a� < C we have

P
(
g�X̄� ≥ a) = Q�a�(1+O

(
1
n

))
�(1.2)

where again Q�a� will be defined later. Again the empirical saddlepoint ap-
proximation will be written Q̂�a�.

In both these cases, a bootstrap approximation to the probabilities could
be used in place of the empirical saddlepoint. In fact, it can be seen that the
empirical saddlepoint is just the saddlepoint approximation to the bootstrap
approximation. Saddlepoint approximations to the bootstrap were considered
in Davison and Hinkley (1988), Daniels and Young (1991) and DiCiccio, Martin
and Young (1992), in which papers there are a number of numerical illustra-
tions of the accuracy of the saddlepoint approximation. It is of interest to
consider the relative errors of these approximations.

In Jing, Feuerverger and Robinson (1994), bounds in probability were found
for the relative error of these approximations. Indeed it was shown that the
relative error was Op��1 +

√
na�3/n� for

√
na = o�n1/3�. However, it is of

interest to give a rate of convergence for the probability that the relative
error exceeds such a bound. It is of importance to know the relationship of
this rate to the size of the tail area probability which is being approximated.

In the present paper we consider the standardized variable 0 <
√
na ≤ ηnβ,

so the tail probability at the extreme of this interval is of order exp�−cn2β�, for
β > 0 sufficiently small. It is proved that for 0 ≤ β < 1

3 we can choose 0 < δ ≤
1−3β and 0 < α < min� 1

6+δ/3�2δ
 so that with probability 1−exp�−cnα�, the
empirical saddlepoint and the bootstrap approximations to the tail probability
both have relative error bounded by a quantity of order �1+√na�3n−1+δ. If β
is close to 1/3 and so δ and α are close to 0, then the relative error is bounded
by O��1 +√na�3n−1� with probability of o�1� corresponding to the results of
Jing, Feuerverger and Robinson (1994). If β = 1/6 we can take δ = 1/2 and
α arbitrarily close to 1/3. In this case the bound for the probability of the
relative error exceeding O��1+√na�3n−1/2� matches the tail probability. For
1
6 < β < 1

3 we cannot obtain a probability of the relative error exceeding the
bound as small as the tail probability, while, for 0 ≤ β < 1

6 , we can choose
0 < δ ≤ 1 − 3β and take α large enough to obtain smaller bounds on the
relative errors with probability of the relative errors exceeding these bounds
as small as the tail probability. In the limiting case with β = 0, we can take
δ and α arbitrarily close to 0 achieving a relative error of almost n−1 with
small probability. This corresponds to the usual second order correctness of
the absolute error.
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This is the equivalent in the relative error case of results such as that
in Theorem 5.1 of Hall (1992), which is used to show that the probability of
the bootstrap approximation having an absolute error of more than O�n−1�
is O�n−1−ε�. Results of this type were considered for permutation tests in
Albers, Bickel and van Zwet (1976) and Bickel and van Zwet (1978). Hall
(1990) considers large deviation results for the bootstrap but does not obtain
bounds for the probability of relative errors as discussed here.

In Section 2 we give the notation and the main results on the empirical
saddlepoint approximation in the form of two theorems, the first giving the
result for a univariate standardized mean and the second for the general
case. A detailed proof is given for the first case based on a technical lemma
concerning rates for tilted cumulants, whose proof is deferred to Section 4. It
is shown that the proof for the general case follows exactly the lines of that for
the univariate case. In Section 3 we consider the bootstrap approximation by
comparing it to the empirical saddlepoint. It is clear from this comparison that
the critical errors in the bootstrap approximation are in the relative errors of
the empirical saddlepoint to the true probabilities rather than in the relative
errors of the bootstrap and the empirical saddlepoint. In Section 4 we obtain a
number of new bounds for moments and cumulants which are of independent
interest.

2. Main results. This section contains the main results concerning the
relative error of the empirical saddlepoint approximation to the tail proba-
bilities for the univariate standardized mean (Theorem 1), and for the multi-
variate case (Theorem 2) which covers the univariate Studentized mean as a
special case.

2.1. Notation. Let X1� 	 	 	 �Xn be independent identically distributed ran-
dom variables with EX1 = µ and varX1 = σ2 > 0. Assume that K�t� =
log E exp�tX1� is bounded in �t� < A for some A > 0. For convenience let
a > 0; then the saddlepoint approximation for the tail probability in (1.1) is

Q�a� = 1−�(√nw∗�a�)�(2.1)

where

w∗�a� = w�a� − logψ�a�
nw�a� �

for w�a� = √
2H�a�, where

"�x� = inf
t

{
tx−K�t�}�

H�a� = "�µ+ σa� = inf
x

{
"�x�� x− µ

σ
= a

}
�

(2.2)

where µ =K′�0� and σ2 =K′′�0�, and for

ψ�a� = w�a�
t�a�√K′′�t�a�� �
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where t�a� is the value minimizing tx−K�t� for x = x�a� = µ+σa. We will re-
fer to this as the Barndorff-Nielsen approximation following his r∗ statistic in
Barndorff-Nielsen (1986). Its derivation is in Jing, Feuerverger and Robinson
(1994) and it is shown to be equivalent to the Lugannani–Rice approximation
in Jensen (1992).

The empirical saddlepoint approximation is obtained by replacing K�t� by

K̂�t� = log
1
n

n∑
j=1

exp�tXj��

then the approximation is given by

Q̂�a� = 1−��√nŵ∗�a���
where ŵ∗ is defined in the same way as w∗ with K̂ replacing K. Note that µ
is replaced by X̄ = K̂′�0�, σ2 by σ̂2 = K̂′′�0�, t�a� by t̂�a� and H�a� by Ĥ�a�.

For the general case, consider independent identically distributed random
vectors X1� 	 	 	 �Xn ∈ Rd with cumulant generating function K�t� =
log E exp�tTX1� assumed to be finite for �t� < A, t ∈ Rd. Let µ = EX1 =K′�0�
denote the mean vector, and � = varX1 =K′′�0� the variance matrix.

We consider tail probabilities

P
(
g�X̄�µ��� ≥ a)�(2.3)

still for a > 0, where g is a smooth one-dimensional function satisfying certain
conditions ensuring that

√
ng�X̄�µ��� is asymptotically standard normal. In

the sequel we use the abbreviations g�x� = g�x�µ��� and ĝ�x� = g�x� µ̂� �̂�,
unless the functional dependence on the two moments is of direct concern.
The setting is designed to cover Studentized statistics such as(

f�Ȳ� − f�µY�
)
/
{
f′�µY�TV̂f′�µY�

}1/2
�

where Y1� 	 	 	 �Yn ∈ Rq are independent and identically distributed, µY =
EY1, f is a smooth real function, and

V̂ = 1
n

n∑
1

YiY
T
i − ȲȲT

is the empirical variance matrix. In this case we should takeXi = �Yi�YiY
T
i �;

see Hall [(1992), Section 2.4]. A standardized statistic uses varY1, which is a
subblock of �, instead of V̂, and another variant of the Studentized statistic
is obtained by use of f′�Ȳ� instead of f′�µY�.

In any case we require that the function g satisfies the conditions

g�µ�µ��� = 0(2.4)

and

g′�µ�µ���T�g′�µ�µ��� = 1(2.5)

for any µ and �, where g′ refers to the derivative with respect to the first
argument of g. As in the one-dimensional case, the saddlepoint approximation
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Q�a� is defined in (2.1), using the previous definitions of w∗�a� and w�a�,
except that H�a� and ψ�a� are replaced by their generalizations. Thus, H�a�
is now defined by the equations

"�x� = inf
t

{
tTx−K�t�}�

H�a� = "�x�a�� = inf
x

{
"�x�� g�x� = a}	(2.6)

We let x�a� denote the vector minimizing the second equation and t�a� the
vector minimizing the first for x = x�a�. From Jing and Robinson (1994),
Theorem 3 and equations (4.2) and (4.4), we have

ψ�a� = w�a�G�a�/H′�a��(2.7)

where, using x for x�a�, t for t�a�, Id for the d× d identity matrix and � · � to
denote a determinant,

G�a� = ∣∣Id −H′�a�K′′�t�g′′�x�∣∣−1/2∣∣g′�x�TK′′�t�g′�x�∣∣−1/2
(2.8)

because, in our case, H′�a� equals their Lagrangian multiplier λ. Related
results appear in DiCiccio, Field and Fraser (1990) and Daniels and Young
(1991).

The empirical saddlepoint approximation Q̂�a� is defined in the same way,
using K̂�t� instead of K�t�, µ̂ = K̂′�0� instead of µ and �̂ = K̂′′�0� instead
of �.

Positive constants like c, C and η may differ from occurrence to occurrence.

2.2. Univariate results. Here we will prove the following result.

Theorem 1. For 0 ≤ β < 1
3 , and for any c > 0 and C > 0, there exist

positive constants η and C′ such that for 0 < δ ≤ 1− 3β and 0 < α < min� 1
6 +

δ/3�2δ
 we have, for large enough n,

P
(∣∣Q̂�a� −Q�a�∣∣

Q�a� ≤ C�1+√na�3n−1+δ�0 < a < ηnβ−1/2
)
> 1−C′ exp�−cnα�	

The proof is based on inequalities for moments given by the following
lemma, the proof of which, together with a number of preliminary results
on moments, is given in Section 4.

Lemma 1. For any 0 < α < 1, L ∈ N, C > 0 and c > 0, there exist constants
C′ > 0 and η′ > 0, such that

P
(�K̂�k��t� −K�k��t�� < Cn−1/2+δk� �t� < η′n−α) > 1−C′ exp�−cnα��(2.9)

for k = 0�1� 	 	 	 �L, and any δk’s satisfying

δk − 1
2α > 0 and 1

2 − kα+ δk > 0(2.10)

for k = 1� 	 	 	 �L and δ0 = δ1 − α.
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Remark. Note that under the conditions of the Theorem the restriction
�t� < η′n−α in (2.9) can be replaced by �t� < η′nβ−1/2 since this is a more
restricted range.

Proof of Theorem 1. Noting that φ�x�/�1−��x�
 < 1+x� x > 0, which
implies that for u� v positive,∣∣��v� −��u�∣∣

1−��u� ≤ �1+ u��u− v� exp�u�u− v���(2.11)

we can show∣∣Q̂�a� −Q�a�∣∣
Q�a� =

∣∣��√nŵ∗�a�� −��√nw∗�a��∣∣
1−��√nw∗�a��

≤ C′′√n∣∣ŵ∗�a� −w∗�a�∣∣(1+√nw∗�a�)
(2.12)

for
√
n�ŵ∗�a� −w∗�a�� �1+√nw∗�a�� sufficiently small.

Assume that the inequalities stated in Lemma 1 are satisfied; this is true
with the desired probability. For application of the lemma, the δk’s should be
chosen appropriately small, in particular as an increasing sequence with δ2 <
1/2. To bound differences, like ŵ∗�a� − w∗�a�, between empirical quantities
and their theoretical analogues we need first to show that �t̂�a�� < c′nβ−1/2 for
suitable c′ > 0, so that we may choose η such that t̂�a� is within the range
required for the inequalities in Lemma 1 to hold.

For any u such that �t̂�u�� < c′nβ−1/2 we then have

t̂′�u� = K̂′′�0�1/2
K̂′′�t̂�u��

= 1
σ
+ θ(nδ2−1/2 + nβ−1/2)�(2.13)

where θ is bounded by some constant, and we have used �K′′�t�u��−K′′�0�� <
C′′�t�u�� is of order nβ−1/2.

Recall that t̂�0� = 0 and let

ā = inf
a

{
a > 0� �t̂�a�� ≥ c′nβ−1/2}	

If no such a exists, t̂�a� is within the range given in the lemma for all a > 0.
Now, by the mean value theorem,

t̂�ā� = t̂′�u�ā
for some u between 0 and ā and hence with �t̂�u�� < c′nβ−1/2. Thus, for n
sufficiently large,

ā = �t̂�ā��
�t̂′�u�� > c

′nβ−1/2σ

2
�

say.
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Since this argument is valid for any sufficiently small c′ > 0 we have shown
that for any c′ > 0 we may choose c′′ > 0 such that on a set of probability
1−C′ exp�−cnα�,

a < c′′nβ−1/2 ⇒ �t̂�a�� < c′nβ−1/2	(2.14)

Now we may assume that η′ has been chosen such that t̂�a� < η′nβ−1/2 <
η′n−α.

Returning to (2.12) and the inequality

∣∣ŵ∗�a� −w∗�a�∣∣ ≤ ∣∣ŵ�a� −w�a�∣∣+ 1
n

∣∣∣∣ log ψ̂�a�
ŵ�a� − logψ�a�

w�a�

∣∣∣∣�(2.15)

we now consider the first difference on the right for which we have

∣∣ŵ�a� −w�a�∣∣ = a∣∣∣√2Ĥ�a�/a2 −
√

2H�a�/a2
∣∣∣

≤ a
∣∣Ĥ�a� −H�a�∣∣

a2

(2.16)

for a and �Ĥ�a� −H�a��/a2 sufficiently small, which will be the case since
H�0� = 0, H′�0� = 0 and H′′�0� = 1, as shown in Jing, Feuerverger and
Robinson (1994).

To bound differences of the form

�f̂�a� − f�a��
a

�

where f is some function with f̂�0� = f�0�, we use

1
a

∣∣�f̂− f��a�∣∣ ≤ sup
0<u<a

{�f̂′�u� − f′�u��}	(2.17)

If also f̂′�0� = f′�0�� then the same method gives

1
a

∣∣�f̂− f��a�∣∣ ≤ a

2
sup

0<u<a

{�f̂′′�u� − f′′�u��}�(2.18)

and so on.
In this way we obtain

�Ĥ�a� −H�a��
a2

= a

6
sup

0<u<a

{�Ĥ�3��u� −H�3��u��}	(2.19)

Now

H�3��a� =K�3��t�a��K′′�0�3/2K′′�t�a��−3

with an equivalent result for Ĥ. So we can bound �Ĥ�3��u� −H�3��u�� using

�ÂB̂Ĉ−ABC� ≤ �Â−A� �BC� + �Â� �B̂−B� �C� + �ÂB̂� �Ĉ−C�	(2.20)
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For the first difference in (2.20) we now use Lemma 1 to obtain

sup
0<a<ηnβ−1/2

∣∣K̂�3��t̂�a�� −K�3��t�a��∣∣
≤ sup

0<a<ηnβ−1/2

∣∣K̂�3��t̂�a�� −K�3��t̂�a��∣∣
+ sup

0<a<ηnβ−1/2
�t̂�a� − t�a�� sup

0<a<ηnβ−1/2
K�4��t�a��

< C1n
−1/2+δ3

(2.21)

with the desired probability, for some C1 > 0, where the last inequality uses

�t̂�a� − t�a�� ≤ a sup
0<u<a

�t̂′�u� − t′�u�� < C′′nβ−1/2nδ2−1/2 < C′′nδ3−1/2(2.22)

for some C′′.
A similar argument can be used for K̂′′�t̂�a��−K′′�t�a�� and K̂′′�0�−K′′�0�,

then from (2.20),

P
(�Ĥ�3��a�−H�3��a��<C2n

−1/2+δ3�0<a<ηnβ−1/2)>1−C′ exp�−cnα�(2.23)

for some C2 > 0. Tracing the constants through the argument it may be seen
that (2.23) holds for any C2 > 0 if other constants are properly chosen.

Applying (2.19) and (2.23) in (2.16), we have,

P
(�ŵ�a� −w�a�� < C2a

2n−1/2+δ3�0 < a < ηnβ−1/2) > 1−C′ exp�−cnα�	
For the second difference on the right in (2.15) we may write

logψ�a�
w�a� = a

w�a�
1
2 log�2H�a�/a2
 − log�H′�a�/a
 + 1

2 logH′′�a�
a

�(2.24)

consider the three terms in the numerator of the last fraction one by one and
note that the factor a/w�a� in front gives rise only to an unimportant relative
error compared to �logψ�a��/w�a�. For each of the three terms, the difference
between the empirical term and its theoretical counterpart is bounded by
use of (2.17) or (2.18) in the same way as the bound for �ŵ�a� − w�a�� was
obtained. For each of the three differences the critical estimation error is for
supu��Ĥ�3��u�−H�3��u��
 which is of order n−1/2+δ3 with the stated probability.

Also, w�a�/a and logψ�a�/w�a� are bounded when a is bounded, so using
these results in (2.12) we have the result. ✷

2.3. Multivariate results. For the general case we have the following result
which gives the same rates as for the univariate case.

Theorem 2. Assume that g�X̄�µ��� is three times continuously differen-
tiable in X̄, and that these derivatives, as well as g itself, are continuously



ERROR RATES FOR EMPIRICAL PROBABILITIES 2377

differentiable with respect to µ and � at the values corresponding to the dis-
tribution P of X1. With α, β, δ and other constants as in Theorem 1,

P
(∣∣∣∣Q̂�a� −Q�a�Q�a�

∣∣∣∣ ≤ C(1+√na)3
n−1+δ�0 < a < ηnβ−1/2

)

> 1−C′ exp�−cnα�	
(2.25)

The proof follows the lines of the univariate case, but needs the following
generalization of Lemma 1 to higher dimension. The proof of Lemma 2 is given
in Section 4.2.

Lemma 2. Let

Ki1···ik�t� =
∂kK�t�

∂ti1 · · · ∂tik
denote the kth partial derivative of K at t with respect to k coordinates of t.
Then, for any L ∈ N, C > 0, c > 0, α < 1, there exist constants η′ > 0 and
C′ > 0 such that

P
(∣∣K̂i1···ik�t� −Ki1···ik�t�

∣∣ < Cn−1/2+δk� �t� < η′n−α)
> 1−C′ exp�−cnα��

(2.26)

for all k = 0� 	 	 	 �L, and i1, 	 	 	 , ik, where the δk’s satisfy the same condition
as in Lemma 1.

Remark. Bounding the differences of the partial derivatives in Lemma 2
is equivalent to bounding the norms of the differences of the differentials
considered as multidimensional objects.

Proof of Theorem 2. We start from inequality (2.12) and continue as in
the univariate case to inequality (2.15) for which similar computations will
give the same result as in the univariate case. In the sequel we concentrate
on the alterations to the functions involved. Throughout the proof we assume
that the event stated in Lemma 2 has occurred, which is the case with the
desired probability.

As in the univariate case, it follows that H�0� = 0, H′�0� = 0, H′′�0� = 1,
w�0� = 0, w′�0� = 1 and ψ�0� = 1. Thus, we get the bound (2.16) for �ŵ�a� −
w�a��, if the two factors on the right tend to zero. For this and other similar in-
equalities we need the bounds �t̂�a�� < c′nβ−1/2 and �t̂�a�−t�a�� < C′′nβ−1+δ2 ,
which are obtained as in the univariate case, except that the expression for
t̂′�a� is now slightly more complicated.

A bound for �ŵ − w� is obtained as in (2.16), and for the ψ-part of w∗�a�
we have

logψ�a�
w�a� = a

w�a�
log�w�a�/a
 − log�H′�a�/a
 + logG�a�

a
�(2.27)
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which corresponds closely to (2.24). The difference between each of the three
terms in the last fraction and its empirical analogue is bounded again by use
of (2.17) and (2.18). The first term is already taken care of; the third gives

1
a

∣∣log Ĝ�a� − logG�a�∣∣ ≤ C1 sup
u

∣∣�log Ĝ�′�u� − �logG�′�u�∣∣
for some constant C1 and the second gives

1
a

∣∣∣∣ log�Ĥ′�a�/a
 − log�H′�a�/a

a

∣∣∣∣ ≤ C2 sup
u

∣∣Ĥ�3��u� −H�3��u�∣∣(2.28)

for some C2, where we have bounded the logarithmic difference in terms of the
difference itself, using the fact that the derivative of the logarithmic function
is bounded in a neighborhood of H′�a�/a.

Thus, the crucial quantities are the suprema of differences between the
empirical and theoretical versions of the third derivative of the function H�a�
and of the first derivative of logG�a�. By use of a Lagrange multiplier to derive
the infimum in the definition of H�a�, it may be shown that

H′′�a� = {
g′�x�T(Id −H′�a�K′′�t�g′′�x�)−1

K′′�t�g′�x�}−1
	

For the differentiation of this expression we further need

x′�a� =H′′�a�{Id −H′�a�K′′�t�g′′�x�}−1
K′′�t�g′�x��

and to make it explicit, also

H′�a�g′�x� = t	
By differentiation of the expression for H′′�a�� we see that derivatives of K�t�
and g�x� only up to third occur. All functions involved are bounded since the
only matrices being inverted are the ones from the expression forH′′�a�, which
tend to Id and 1, respectively, due to the assumptions on g�x� and the range
of a. It follows that the difference in (2.28) is bounded by the same rate as the
K�3��t� difference, which is known from Lemma 2 to be n−1/2+δ3 .

For the logG�a� difference, the same arguments may be applied, also lead-
ing to the K�3��t� difference as the limiting quantity. A technical point here is
that the first derivative of the logarithm of the determinant of a matrix M is
given by the first order Taylor series approximation

log �M+ 8� = log �M� + trace�M−18� + o��8��
as �8� → 0. Since the determinant in (2.8) is of a matrix that tends to Id, the
inverse arising by differentiation causes no problem.

Thus, Lemma 2 ensures that we get the same result as for the univari-
ate case, since the differences between empirical and theoretical third-order
derivatives of the cumulant generating function are of order n−1/2+δ3 .
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3. The bootstrap approximation. The empirical saddlepoint of the pre-
vious section is just the saddlepoint approximation to the bootstrap. In this
section we show that an appropriate relative error for this approximation
holds except in sets with exponentially small probability.

3.1. Notation and main result. Consider the notation of Section 2.1. Let
Z1� 	 	 	 �Zn be a bootstrap sample from X1� 	 	 	 �Xn. Write

Q̃�a� = P̃
(
Z̄− X̄
σ̂

≥ a
)
�(3.1)

where P̃ denotes the bootstrap probability conditional on X1� 	 	 	 �Xn. Then
the empirical saddlepoint approximation Q̂�a� is just the saddlepoint approx-
imation to Q̃�a�.

Let En be the set of values of X1� 	 	 	 �Xn such that

K̂�4��t�/[K̂�2��t�]2
< C

(
1+ n−1/2+δ4

)
for �t� < η′nβ−1/2�(3.2) ∣∣exp�K̂�t+ iξ� − K̂�t��∣∣ < 1− ε for γ < �ξ� < <n� �t� < η′nβ−1/2	(3.3)

Then �X1� 	 	 	 �Xn
 ∈ En implies

�Q̃�a� − Q̂�a��
Q̂�a�

<
C

n

( �K̂�4��t̂�a���
K̂�2��t̂�a��2

+C′
)

for �a� < ηnβ−1/2	(3.4)

This result follows as a special case from Theorem 1 of Robinson, Höglund,
Holst and Quine (1990) after approximating the indirect Edgeworth approx-
imation given there by the Barndorff–Nielsen approximation as described in
Jing and Robinson (1994).

Theorem 3. Assume that for γ > 0 there is a d > 0 such that

�φ�ξ�� = �EeiξX� < 1− d for all �ξ� > γ	(3.5)

For any constants 0 < α < 1/2 and δ4 > 0 satisfying α < min�1/8+δ4/4�2δ4
,
then

P
( �Q̃�a� − Q̂�a��

Q̂�a�
≤ Cn−1�1+ n−1/2+δ4��0 < a < ηn−α

)
> 1−C′ exp�−cnα�	

Remark. If we choose α as in Theorem 1, then for this result to be used
in conjunction with the results of Theorem 1, we need to choose δ4 as small
as possible while keeping the conditions imposed in Theorem 1. Such a choice
is always possible in such a way that Q̃�a� can replace Q̂�a� in Theorem 1,
showing that the bootstrap has the same properties as the empirical saddle-
point.
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Proof of Theorem 3. Assume, as in the proof of Theorem 1, that the in-
equalities of Lemma 1 are satisfied, which is true with the desired probability
and that the δk’s are chosen appropriately small as an increasing sequence
with δ2 < 1/2. Then to prove the theorem we first need to choose η, as in the
proof of Theorem 1, so that t̂�a� is within the range required for the inequali-
ties of Lemma 1 to hold and then to note that for such t̂�a�,

∣∣K̂�4��t̂�a��∣∣/K̂�2��t̂�a��2 < C�1+ n−1/2+δ4�(3.6)

for �a� < ηn−α. Then it remains only to show that

P�En� > 1−C′ exp�−cnα�	(3.7)

First, let E′
n and E′′

n be the sets on which (3.2) and (3.3) hold. Then from
Lemma 1, P�E′

n� > 1 − C′ exp�−cnα� by the same methods as in the proof of
Theorem 1.

To obtain such a result for E′′
n we proceed by a number of lemmas, the

proofs of which we defer to the next subsection.

Lemma 3. Under the assumption (3.5), if φB�ξ� = E�exp�iξX�� �X� < B�
then we can choose B sufficiently large such that �φB�ξ�� < 1 − d/2 for all
�ξ� > γ.

Lemma 4. If N =∑n
j=1 I��Xj� < B� then for sufficiently large B there is a

constant c such that if E∗
n = �N > n/2
 then P�E∗

n� > 1− e−cn.

Lemma 5. If

φ̂B�ξ� =
∑n
j=1 exp�iξXj�I��Xj� < B�∑n

j=1 I��Xj� < B�
(3.8)

and if E∗∗
n = ��φ̂B�ξ��� < 1− d/4� γ < �ξ� < <n
, then

P�E∗∗
n � > 1− e−cn	(3.9)

Lemma 6. Suppose

∣∣φ̂B�ξ�∣∣ =
∣∣∣∣N−1

n∑
j=1

exp�iξXj�I��Xj� < B�
∣∣∣∣ < 1− d/4 for all γ < �ξ� < <n	

Then given ε > 0 there exists δ > 0 such that for all real x and all γ < ξ < <n,

�ξXj − x� > ε(3.10)

for at least δN of the j’s.
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To complete the proof, assume without loss of generality that �Xj� < B for
j = 1� 	 	 	 �N and that (3.10) holds for j = 1� 	 	 	 � δN. Then∣∣∣∣exp�K̂�t+ iξ� − K̂�t��

∣∣∣∣ =
∣∣∣∣
n∑
j=1

pj�t� exp�iξXj�
∣∣∣∣�

= 1−
n∑
j=1

pj�t��1− cos�ξXj − y���

where

pj�t� =
exp�tXj�∑n
j=1 exp�tXj�

�

if we choose y such that

tany =
∑n
j=1pj�t� sin�ξXj�∑n
j=1pj�t� cos�ξXj�

and
n∑
j=1

pj�t� cos�ξXj − y� ≥ 0	

Now �t� < A� so for j = 1� 	 	 	 �N,

b

N
= e−AB

NeAB
≤ pj�t�	

So from Lemma 6,

∣∣exp�K̂�t+ iξ� − K̂�t��∣∣ ≤ 1−
δN∑
j=1

pj�t��1− cos�ε��

≤ 1− bδ�1− cos�ε��	
Thus E∗

n ∩E∗∗
n ⊂ E′′

n and the theorem follows from Lemmas 4 and 5. ✷

3.2. Proofs of lemmas.

Proof of Lemma 3. From (3.5) �φ�ξ�� < 1− d for d > 0. So

�φB�ξ� −φ�ξ�� =
∣∣E�exp�iξX�� �X� < B� − E exp�iξX�∣∣

=
∣∣∣∣E exp�iξX�I��X� < B�

EI��X� < B� − E exp�iξX�
∣∣∣∣

≤ 2�1−P��X� < B��
and we can choose B to make this less than d/2. ✷

Proof of Lemma 4. Take B such that P��X� < B� ≥ 3/4, say. The result
then follows immediately from Cramér’s theorem applied to the sum of binary
random variables. ✷
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Proof of Lemma 5. To see this note that

∣∣φ̂B�ξ� −φB�ξ�∣∣ =
∣∣∣∣
∑n
j=1 exp�iξXj�I��Xj� < B�∑n

j=1 I��Xj� < B�
− E exp�iξX�I��X� < B�

EI��X� < B�

∣∣∣∣
≤

∣∣∣∣n
−1 ∑n

j=1 exp�iξXj�I��Xj� < B� − E exp�iξX�I��X� < B�
P��X� < B�

∣∣∣∣
+

∣∣∣∣n−1
n∑
j=1

exp�iξXj�I��Xj� < B�
∣∣∣∣
∣∣∣∣ nN − 1

P��X� < B�

∣∣∣∣	
Let Eξ be the set such that

∣∣φ̂B�ξ� −φB�ξ�∣∣ < d/8�(3.11)

then Cramér’s theorem asserts that

P�Eξ0
� > 1− e−cn	(3.12)

Now

∣∣φ̂B�ξ� −φB�ξ� − φ̂B�ξ0� −φB�ξ0�
∣∣ ≤ �ξ − ξ0�

(
n−1

n∑
j=1

�Xj� + E�X�
)
	(3.13)

Let E1n = �n−1 ∑n
j=1 �Xj� < K
, for K > E�X1�, then since X1 has a moment

generating function for t in an open interval containing 0,

P�E1n� > 1− exp�−c′n��

and in E1n the right-hand side of (3.13) is bounded by �ξ − ξ0�2K ≤ d/8 if
�ξ − ξ0� ≤ d/�16K�. Now choose ξ1� 	 	 	 � ξL such that they are d/�32K� apart
and centered in intervals I1� 	 	 	 � IL of length d/�32K� whose union covers
�ε�Cn�. Then L = O�n� so

P
(
E1n ∩Eξ1

∩ · · · ∩EξL

)
> 1− exp�−c′′n�	

Further

E∗∗
n ⊃ E1n ∩Eξ1

∩ · · · ∩EξL
�

so

P�E∗∗
n � > 1− e−cn	

Proof of Lemma 6. Otherwise, for some ε > 0 and any δ > 0 we can find
�1− δ�N of the j’s with �Xj� < B and �ξXj−x− 2kπ� ≤ ε for some integer k.
So assuming without loss of generality that these are the first �1−δ�N of the
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j’s and writing z = exp�ix� we have

∣∣φ̂B�ξ�∣∣ =
∣∣∣∣N−1

�1−δ�N∑
j=1

exp�iξXj� +N−1
N∑

j=�1−δ�N+1

exp�iξXj�
∣∣∣∣

≥ 1− δ−
∣∣∣∣N−1

�1−δ�N∑
j=1

(
exp�iξXj� − z

)∣∣∣∣−
∣∣∣∣N−1

N∑
j=�1−δ�N+1

exp�iξXj�
∣∣∣∣

≥ 1− δ− ε�1− δ� − δ	
But since δ is arbitrary, this contradicts the Cramér condition for φ̂B.

Remark. The proof of Lemma 6 follows that of a related result in
Kokic (1988).

4. Bounds for empirical moments and generating functions. The
present section proves Lemmas 1 and 2 and thereby provides a major part
of the technical background for the proofs of the results in Section 2. Care
must be taken to obtain the right rates of convergence in the bounds for the
estimation error of moments of all orders, in particular in Lemma 7. Thus
an application of Rosenthal’s lemma [cf. Petrov (1995), Section 2.3] instead of
Lemma 7 would lead to a term of order �l + 1�αnα log n instead of lαnα log n
in the exponent in (4.15), which would not suffice to prove the result.

In the multivariate case, the problem of generalizing the univariate results
is to establish the uniformity in the argument t of the empirical moment gen-
erating function, m̂�t�, since we cannot prove the simultaneous bound for the
infinite sequence of mixed moments, analogous to Lemma 9 from the univari-
ate case.

4.1. Univariate case. Throughout this section we let X1, 	 	 	 , Xn be inde-
pendent and identically distributed real random variables with moments ml

for, at least, some integer values of l. The empirical moments are denoted

m̂l =
1
n

n∑
i=1

Xl
i	

Lemma 7. Let l be a fixed integer, p a fixed even integer and assume that∣∣EXk
i

∣∣ ≤ ck!λk� k = 1� 	 	 	 � lp�(4.1)

for some constants c > 0 and λ > 0. Then

E�m̂l −ml�p <
1
8
η
p
l pp!l�l−1�p(n1−pp�l−1�p + �np�−p/22�l−1�p)�(4.2)

where ηl = 2�c+ 1�el+1λl/l.
For any real r with 1 ≤ r ≤ p,

E�m̂l −ml�r < e2lηrl rl
�l−1�r(n1−rrlr + n−r/2rr/22�l−1�r)	(4.3)
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Proof. The proof of (4.2) is divided into three steps: first the cumulants
of m̂l−ml are bounded on the basis of (4.1); then the pth moment of m̂l−ml

is bounded in terms of its cumulants and finally a certain sum entering this
expression is bounded.

The inequalities

e−kkk < k! ≤ kk�

for any k ∈ N, and

k!/m! ≤ kk−m�

for m < k, will be used frequently in the proof.

Step 1. Let χk denote the kth cumulant of m̂l −ml. We now prove that
from (4.1) we get

�χk� < n1−k�lk�!λ̃kl � 2 ≤ k ≤ p�(4.4)

where λ̃l = �c+ 1��eλ�l/l, while χ1 = 0 because the statistic is centered. If κk
denotes the kth cumulant of Xl

i, we have

χk = n1−kκk	(4.5)

The expression for κk in terms of the moments µk = E�Xl
i�k is

κk = k!
k∑

m=1

1
m
�−1�m−1 ∑

T�k�m�

m∏
j=1

µaj
aj!

�

where T�k�m� is the set of sequences

T�k�m� =
{
�a1� 	 	 	 � am� ∈ Nm� ∑aj = k

}
(4.6)

consisting of strictly positive integers. Insertion of the bounds (4.1) for µk =
EXlk

i gives

�κk� ≤ k!
k∑

m=1

1
m

∑
T�k�m�

m∏
j=1

(
cλlaj�laj�!

aj!

)

≤ k!λlk
k∑

m=1

cm

m

∑
T�k�m�

m∏
j=1

�laj��l−1�aj

≤ k!λlkl�l−1�kk�l−1�k
k∑

m=1

cm

m
�T�k�m���
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where �T�k�m�� = (
k−1
m−1

)
denotes the number of sequences in T�k�m�, and we

have used �laj�!/aj! ≤ �laj�laj−aj to obtain the second inequality. Thus,

�κk� ≤ k!λlkl�l−1�kk�l−1�kc�c+ 1�k−1

<
(
λl�c+ 1�/l)k�lk�lk

< �lk�!elk(λl�c+ 1�/l)k�
which gives (4.4) when substituted into (4.5).

Step 2. Using the bounds just obtained for the cumulants, �χk
, we con-
tinue to prove that

E
∣∣m̂l −ml

∣∣p < p!λ̃pl l
�l−1�pn−p2p−2G�n�p�m��(4.7)

where

G�n�p�m� =
p/2∑
m=1

nm

m!
22�l−1��m−1��p− 2m+ 2��l−1��p−2m+2�	(4.8)

The proof of (4.7) starts from the expression

E�m̂l −ml�p = p!
p∑

m=1

1
m!

∑
T�p�m�

m∏
j=1

χaj
aj!

for the pth moment in terms of cumulants. Since χ1 = 0 we shall use the
notation

∑∗ for the sum over the set of sequences

T∗�p�m� = {�a1� 	 	 	 � am� ∈ T�p�m�� aj ≥ 2�1 ≤ j ≤m}
�(4.9)

which must have m ≤ p/2 to be nonempty. Insertion of the bounds (4.4)
now gives

E�m̂l −ml�p = p!
p/2∑
m=1

1
m!

∑∗ m∏
j=1

n1−aj�laj�!λ̃
aj
l

aj!

≤ p!λ̃pl l
�l−1�p

p/2∑
m=1

nm−p

m!

∑∗ m∏
j=1

a
�l−1�aj
j 	

(4.10)

A sequence �a1� 	 	 	 � am� ∈ T∗�p�m� may be regarded as an m-point distri-
bution with mean

∑
aj/m = p/m. The distribution is concentrated on the

interval �2� p − 2m + 2� since aj ≥ 2 for all j. The maximum of E�Y logY�
over all distributions of Y on this interval with mean p/m puts all mass at the
endpoints, since the function y �→ y log y is convex. The maximum is obtained
by the distribution given by

a1 = p− 2m+ 2� a2 = · · · = am = 2	

Since a
�l−1�aj
j = exp��l− 1�aj log aj
, this leads to the bound∏

a
�l−1�aj
j = exp��l− 1�∑aj log aj� ≤ 22�l−1��m−1��p− 2m+ 2��l−1��p−2m+2�	
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Substitution into (4.10) together with the combinatorial observation that the
number of elements in T∗�p�m� is

(
p−m−1
m−1

)
< 2p−m−1 ≤ 2p−2 leads to inequal-

ity (4.7).

Step 3. For the sum G�n�p�m� from (4.8) we now prove that

G�n�p�m� < 1
2pe

p
{
np�l−1�p + �n/p�p/22�l−1�p}(4.11)

from which the result (4.2) follows immediately. To prove (4.11), observe first
that 1/m! < exp�m−m logm�. Let u =m/p such that

m logm =m logp+ pu log u ≥m logp− pe−1�

because the convex function u �→ u log u has a minimum equal to −e−1 at
u = e−1 for u > 0. Thus,

G�n�p�m� <
p/2∑
m=1

eh�m��(4.12)

where

h�m� =m log n+m−m logp+ pe−1 + 2�l− 1��m− 1� log 2

+ �l− 1��p− 2m+ 2� log�p− 2m+ 2�
is convex. Hence exp�h�m�
 is convex and positive, so

exp�h�m�� < exp�h�1�� + exp�h�p/2��
= exp�pe−1�{nep−1p�l−1�p + �ne/p�p/22�l−1�p}

for 1 ≤m ≤ p/2. Multiplication by the number of terms, p/2, now easily gives
the bound (4.11) for G�n�p�m�. This completes the proof of inequality (4.2) in
Lemma 7.

To obtain inequality (4.3) we use

E�m̂l −ml�r ≤
(
E�m̂l −ml�p

)r/p
� r ≤ p�

with p taken as an even integer satisfying r ≤ p < r + 2. This leads to the
desired inequality after use of the estimations

�A+B�r/p ≤ Ar/p +Br/p� A�B > 0

and

p!r/p ≤ pr < rre2�

and p−r/2 ≤ r−r/2 together with some manipulations with constants. This
completes the proof of Lemma 7. ✷

Remark. The result (4.2) is actually proved under the single condition that
the statistic has cumulants satisfying the inequalities (4.4) without further use
of the structure of the statistic as a sum of centered powers.
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Lemma 8. Assume that Xi has finite moment generating function in a
neighborhood of the origin. For any l ∈ N, C > 0 and c > 0, and any constants
α > 0 and δl > 0 satisfying the inequalities

1
2 + δl − lα > 0�(4.13)

δl − 1
2α > 0�(4.14)

there exists a c1 > 0 and a C′ > 0, both independent of l, such that

P
(�m̂l −ml� ≤ Cn−1/2+δl)

> 1− exp
(
c1ln

α + �l− 1�nα log l
)

(4.15)

× (
exp

(−�1/2+ δl − lα�nα log n
)+ exp

(−�δl − α/2�nα log n
))

> 1−C′ exp�−cnα�	(4.16)

Proof. Since Xi has finite moment generating function in a neighborhood
of the origin, condition (4.1) is fulfilled for all k ∈ N for some c and λ. By
Chebyshev’s inequality and Lemma 7 with r = nα,

P
(�m̂l −ml� ≤ Cn−1/2+δl)

≥ 1−C−rnr/2−δlrE�m̂l −ml�r

> 1−C−rnr/2−δlr exp�c1lr�l�l−1�r(n1−rrlr + n−r/2rr/2)
≥ 1− exp�c1lr+ nα�l− 1� log l�
× (

exp�−�1/2+ δl − lα�nα log n� + exp�−�δl − α/2�nα log n�)
for suitable c1 > 0. This proves the first inequality of the lemma; the second
follows easily. ✷

Lemma 2 trivially extends to a simultaneous bound for moments of order
l = 1� 	 	 	 �L by summing up the probabilities of failure for each l. The following
lemma shows that a simultaneous bound holds for all moments, that is, with
L = ∞.

Lemma 9. Assume that Xi has finite moment generating function in a
neighborhood of the origin and let c > 0, C > 0 and L ∈ N be arbitrary but
fixed. Let α, δ1, δ2, 	 	 	 , be any positive constants satisfying the conditions (4.13)
and (4.14) for l = 1� 	 	 	 �L, and

δl = δl�n = δL + �l−L�
{
α+ �β+ log l�/ log n

}
(4.17)

for l = L+1�L+2� 	 	 	 and some sufficiently large constant β. Then there exists
a C′ > 0 such that

P
(�m̂l −ml� ≤ Cn−1/2+δl � l = 1�2� 	 	 	

)
> 1−C′ exp�−cnα�	(4.18)
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Proof. LetPL denote the probability on the left-hand side in (4.18), except
that we consider only l = L�L+ 1� 	 	 	 � since any finite number of terms may
be disregarded. From Lemma 8 we have the bound

PL > 1−
∞∑
l=L

exp�c1ln
α + �l− 1�nα log l�

× (
exp�−�1/2+ δl − lα�nα log n� + exp�−�δl − α/2�nα log n�)	

Let rL = min�1/2+ δL −Lα� δL − α/2
, which is positive. Then,

PL > 1− 2
∞∑
l=L

exp�l�c1 − β�nα + �log l��L− 1�nα +Lβnα − rLnα log n�	

If β > c1, the exponential factor exp�−l�β − c1�nα
 will dominate the tail
behavior of the sum, which will then behave like its leading term so that

PL > 1−C′′ exp�L�c1 − β�nα + �logL��L− 1�nα +Lβnα − rLnα log n�
for some C′′ > 0. As n→∞ the last term in the exponent becomes dominant,
thus proving the result. ✷

The rate constant δl increases as αl with l in Lemma 9. Thus, for higher
order moments, Lemma 9 does not even prove convergence of the empirical
moments with the given probability. However, the result is essentially the
same as the one established in Lemma 8, which was not a simultaneous bound,
and it is strong enough to obtain uniform bounds for the moment generating
function and its derivatives as shown in the following lemma.

Lemma 10. Under the conditions of Lemma 9, for any C′ > 0 and c > 0
there exist positive constants C′′, Ck and η, such that

P
(∣∣m̂�k��t� −m�k��t�∣∣ < Ckn−1/2+dk �k = 0�1� 	 	 	 � �t� < ηn−α)

> 1−C′′ exp�−cnα��
(4.19)

where m�k��t� denotes the kth derivative of the moment generating function,
Ck = C′k! exp�c′k�, and

dk =
{

max�δk� δk+1 − α� 	 	 	 � δL − �L− k�α
� for k ≤ L�
δk� for k > L�

(4.20)

where δ0 should be omitted on the right in the definition of d0.
For k = 0 the bound for �m̂�t� −m�t�� may be sharpened to C′n−1/2+d1 �t�.

Remark. Notice that the dk’s satisfy the same conditions (4.13) and (4.14)
as the δk’s.
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Proof. A Taylor series expansion around t = 0 shows that with the same
probability as in Lemma 9 we have for any C > 0�

∣∣m̂�k��t� −m�k��t�∣∣ ≤ C ∞∑
l=k

1
�l− k�!n

−1/2+δl �t�l−k�

where the convergence of the Taylor series is guaranteed within the range
of �t�� which gives geometric convergence, because the moment generating
function is known to be analytic. Assume first that k ≤ L. Then,

δl − dk ≤ δl − �δl − �l− k�α� = �l− k�α�
for l ≤ L, so that we may bound the first part of the sum by

L∑
l=k

≤ Cn−1/2+dk
L−k∑
j=0

1
j!

{
nα�t�}j < n−1/2+dkeη

for �t� ≤ ηn−α. For the tail part of the sum from l = L+ 1 we get the bound

∞∑
l=L+1

≤ Cn−1/2+δL
∞∑

l=L+1

1
�l− k�!n

�l−L�α+�l−L��β+log l�/ log n�t�l−k

= Cn−1/2+dL �t�L−k
∞∑

l=L+1

1
�l− k�!

(
nαeβ�t�)l−Lll−L

< Cn−1/2+dL �t�L−keL
∞∑

l=L+1

(
nαeβ�t�)l−L�

where we have used the inequality ll−L < �l−L�!eL to obtain the last inequal-
ity. Taking C sufficiently small, this proves the result for k ≤ L. For the special
case k = 0� the term l = 0 disappears from the sum because m̂�0� = m�0�,
thus leading to trivial modifications.

For k ≥ L+ 1 we similarly get the bound

Cn−1/2+dL+�k−L�α exp��k−L�β�
∞∑
l=k

1
�l− k�!

(
nαeβ�t�)l−kll−L	

Using again the inequality ll−L < �l−L�!eL together with

∞∑
l=k

�l−L�!
�l− k�! a

l−k = �k−L�!�1− a�L−k

for �a� < 1� the result of the lemma follows. ✷

Proof of Lemma 1. It suffices to prove the result for any fixed k. To do
this we use Lemma 10 with

δl = max
{ 1

2α� lα− 1
2

}+ ε�
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where ε > 0 should be chosen sufficiently small to guarantee that δk does not
exceed the δk originally given in the statement of Lemma 1 and in any case
with ε < �1− α�/2.

In the sequel we assume that the bounds for �m̂l�t� − ml�t�� obtained in
Lemma 10 hold; this is true with the desired probability. Note that with the
present choice of δk’s we get dk = δk in Lemma 10.

Consider first the case k = 0. For �t� < η′n−α,∣∣K̂�t� −K�t�∣∣ = ∣∣log m̂�t� − logm�t�∣∣ ≤ C′′∣∣m̂�t� −m�t�∣∣�
for some C′′ > 0, because m�t� converges uniformly to 1 in the range consid-
ered, and �m̂�t� −m�t�� converges uniformly to 0, because δ1 < 1/2. Choosing
C′ in Lemma 10 sufficiently small this proves the case k = 0.

For k ≥ 1 notice that K�k��t� is a linear combination of terms of the form

m�k1��t� · · ·m�ks��t�
m�t�s �

with 1 ≤ s ≤ k, kj ≥ 1 and
∑
kj = k. Any difference of the form∣∣m̂�k1��t� · · · m̂�ks��t� −m�k1��t� · · ·m�ks��t�∣∣

may be bounded by a linear combination of terms of the form∣∣m̂�k1��t� · · · m̂�kj−1��t�∣∣ ∣∣m̂�kj��t� −m�kj��t�∣∣ ∣∣m�kj+1��t� · · ·m�ks��t�∣∣
≤ C′′nδkj−1/2+∑i�=j max�0�δki−1/2


�
(4.21)

where any C′′ > 0 will be valid with probability 1−C′ exp�−cnα� for some C′.
We continue by showing that for

∑s′
i=1 ki ≤ k′ we have

s′∑
i=1

(
δki − 1

2

) ≤ δk′ − 1
2 	(4.22)

Observe that δl’s for which δl = 1
2α + ε satisfy δl − 1

2 < 0 and may hence be
disregarded on the left in (4.22). Thus we may assume that δl = lα− 1

2 + ε for
l = k1� 	 	 	 � ks′ in (4.22). This gives

s′∑
i=1

(
δki − 1

2

) = s′∑
i=1

�kiα− 1+ ε�

≤ �k′α− 1+ ε� − �s′ − 1��1− ε�
≤ δk′ − 1

2 	

Thus, with k′ = k− kj in (4.21), we get the bound

C′′nδkj−1/2+δk′ −1/2
< C′′nδk−1/2

by the same argument as above.
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We further need to bound differences like

m�k1��t� · · ·m�ks��t�
m̂�t�s − m�k1��t� · · ·m�ks��t�

m�t�s �(4.23)

but the factors m�kj��t� are uniformly bounded, m�t� converges uniformly to
1 and ∣∣m̂�t� −m�t�∣∣ ≤ nδ1−1/2−α < nδk−1/2�

so the difference (4.23) will also be of this order.

4.2. Multivariate case.

Proof of Lemma 2. The proof relies heavily on the results obtained for the
univariate case, but their extension is not trivial. If v ∈ Rd is any fixed vector,
the random variables vTX1, 	 	 	 , vTXn satisfy the conditions of Lemmas 7–10,
so, in particular, Lemma 10 ensures that

P
(�m̂�sv� −m�sv�� < Cn−1/2+d1−α� �s� < ηn−α) > 1−C′ exp�−cnα��

where s ∈ R, because m�sv� = E exp�svTX1� is the moment generating func-
tion of vTX1. It is also clear that we get a bound of this type for any finite
number of vectors v; we may even include a number of vectors growing as
any power of n, because the exponential rate in nα will still dominate. The
problem is, however, to obtain the result uniformly for all v with �v� = 1, say,
and similarly for the derivatives of m̂�t� −m�t�.

We continue by showing that for any finite number of partial derivatives
we have similarly the result

P
(�m̂i1···ik�sv� −mi1···ik�sv�� < Cn−1/2+dk �1 ≤ k ≤ L� �s� < ηn−α)

> 1−C′ exp�−cnα��
(4.24)

where L ∈ N, v is fixed with �v� = 1, and it is understood that the ij’s may
denote any of the coordinates. Note that Lemma 10 does not give this bound,
because it only involves derivatives with respect to s, so other methods must
be used.

For notational convenience we take k = 2, i1 = 1 and i2 = 2 as an example.
Let t = sv, and let m�l�

12�0� denote the lth derivative of m12�sv� with respect to
s at s = 0. Then

�m̂12�t� −m12�t�� ≤
L∑
l=1

sl

l!

∣∣m̂�l�
12�0� −m�l�

12�0�
∣∣

+
∞∑

l=L+1

sl

l!

∣∣m̂�l�
12�0� −m�l�

12�0�
∣∣�

(4.25)

The first sum only involves finitely many empirical mixed moments of Xi1,
Xi2 and vTXi, since m�l�

12�0� = E�Xi1Xi2�vTXi�l
 is a mixed moment of order



2392 J. ROBINSON AND I. M. SKOVGAARD

l+2. The polarization identity [see Federer (1969), Section 1.9.3] may be used
to show that any such moment may be written as a linear combination of
moments of order l+ 2 of all the univariate variables of the form uTXi with

uTXi = ±Xi1 ±Xi2 ± vTXi ± · · · ± vTXi�

with l+2 vectors on the right-hand side; see also Skovgaard [(1990), Section 1.4
and equation (1.6)]. The number of vectors u arising in this way is 2l+2, their
lengths do not exceed l + 2, and the coefficients are all ��l + 2�!2l+2
−1 in
absolute value. Hence, the estimation error for the mixed moments may be
bounded as in Lemma 8 with their order l+ 2 replacing l in the lemma, and
the first sum in (4.25) may be bounded as in the proof of Lemma 10 with a
leading term of order n−1/2+δ2 or n−1/2+δk for the more general case with a
partial derivative of order k.

For the second sum in (4.25) we use first the inequality∣∣m̂�l�
12�0� −m�l�

12�0�
∣∣ ≤ ∣∣m̂�l�

12�0�
∣∣+ ∣∣m�l�

12�0�
∣∣

= ∣∣Ê�Xi1Xi2�vTXi�l

∣∣+ ∣∣m�l�

12�0�
∣∣	

The second term on the right is bounded, so if L is chosen large enough it will
be outweighed by sl. For the first term we use Hölder’s inequality,

Ê��Xi1� �Xi2� �vTXi�l�
≤ (

Ê�Xi1�l+2)1/�l+2�(Ê�Xi2�l+2)1/�l+2�(Ê�vTXi�l+2)l/�l+2�

≤ (
ÊXr

i1

)1/r(ÊXr
i2

)1/r(Ê�vTXi�r
)l/r
�

where r is an even integer with r− 2 < l+ 2 ≤ r. Each of the three moments
of the last expression is of order r and hence bounded in order of magnitude
by max�1� n−1/2+δr
, using Lemma 8. Notice that we only use these bounds for
the finite number of random variables consisting of the coordinates and vTXi,
so a simultaneous bound applies with the desired probability. The second sum
in (4.25) may now be bounded as in the proof of Lemma 9, because the bound
for �m̂�l�

12�0� −m�l�
12�0�� is of order

(
n−1/2+δr)1/r(

n−1/2+δr)1/r(
n−1/2+δr)l/r = (

n−1/2+δr)�l+2�/r
�

or of order 1 for small values of r. Thus, the factor sl/l! ensures that the sum
is finite and tends sufficiently rapidly to zero to establish (4.24) for the special
case with k = 2. Other cases are proved in exactly the same way.

We have now proved that (4.24) holds for any fixed unit vector v and hence
also simultaneously for any nm preselected unit vectors, for any m. To show
that it then also holds with sv replaced by any t ∈ Rd within a range of
the form �t� < ηn−α we first note that the fixed vectors may be chosen at
equidistant angles such that t will be within a distance of order n−m from
a vector sv, where v is one of the preselected vectors. Let h = t − sv and
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use again the second derivative with respect to the two first coordinates as
example. Then

�m̂12�t� − m̂12�sv�� =
∣∣∣∣ 1
n

n∑
i=1

Xi1Xi2
{
exp�tTXi� − exp�svTXi�

}∣∣∣∣
=

∣∣∣∣ 1
n

n∑
i=1

Xi1Xi2 exp�svTXi�
{
exp�hTXi� − 1

}∣∣∣∣
≤ 1
n

n∑
i=1

�Xi1Xi2� exp�svTXi��hTXi� exp��hTXi���

using the inequality �ey − 1� ≤ �y� e�y�. By the Cauchy–Schwarz inequality the
bound becomes(

1
n

n∑
i=1

�Xi1Xi2�2�hTXi�2 exp�2svTXi�
)1/2( 1

n

n∑
i=1

exp�2 �hTXi��
)1/2

≤
(

1
n

n∑
i=1

�Xi1Xi2�2�hTXi�2 exp�2svTXi�
)1/2{

m̂�2h� + m̂�−2h�}1/2
	

(4.26)

For the first factor we write �hTXi� in coordinates and get the bound

(
max
j
�hj�

)( d∑
i=1

d∑
j=1

m̂1122ij�2sv�
)1/2

≤ C
(
max
j
�hj�

)(
d2n−1/2+δ6

)1/2
�

where hj is the jth coordinate of h and we have used that v is one of the
preselected directions. Since �h� < n−m, where m may be chosen arbitrarily
large, the bound is of the order of any negative power of n. In (4.26) each
of m̂�2h� and m̂�−2h� may be bounded by use of a convexity argument; the
vector 2h may be written as a convex combination of d vectors proportional to
the coordinate vectors, with coefficient �∑ �hj�� sign�hi� for the ith coordinate
vector. Each of these vectors has length bounded by a constant times �h�,
so Jensen’s inequality applied to the convex function logm�t�, ensures that
m�2h� and m�−2h� are bounded.

Putting it all together, the critical term on the right side of the inequality

�m̂12�t� −m12�t��
≤ �m̂12�t� − m̂12�sv�� + �m̂12�sv� −m12�sv�� + �m12�t� −m12�sv��

is the middle one, which is bounded by Cn−1/2+δ2 above. Other partial deriva-
tives being similar, this completes the proof of the analogue of Lemma 10 for
the multivariate case.

The transition of the estimation error for the moment generating function
and its derivatives to that of the cumulant generating function and its deriva-
tives follows the same lines as in the univariate case, for which this was the
essential part of the proof of Lemma 1. We omit the details which involve
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notationally complicated relations between multivariate cumulants and mo-
ments; see, for example, McCullagh [(1987), Section 2.3]. More terms occur in
the expressions but only the orders matter, and they are given by the orders
of the moments involved, exactly as in the univariate case. ✷
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