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Consider one-sided testing problems for a multivariate exponential
family model. Through conditioning or other considerations, the problem
oftentimes reduces to testing a null hypothesis that the natural parameter
is a zero vector against the alternative that the natural parameter lies
in a closed convex cone � . The problems include testing homogeneity of
parameters, testing independence in contingency tables, testing stochastic
ordering of distributions and many others. A test methodology is developed
that directionalizes the usual test procedures such as likelihood ratio, chi
square, Fisher, and so on. The methodology can be applied to families of
tests where the family is indexed by a size parameter so as to enable
nonrandomized testing by p-values. For discrete models, a refined family
of tests provides a refined grid for better testing by p-values. The tests
have essential monotonicity properties that are required for admissibility
and for desirable power properties. Two examples are given.

1. Introduction A new general testing methodology is presented for test-
ing one-sided alternatives in multivariate exponential family models. Since
there rarely exist optimal tests for such complicated models, the literature
usually contains many ad hoc tests, chi-square based tests and the likelihood
ratio test (when feasible). In many instances these methods do yield reason-
able procedures, but they are also often unsatisfactory. We uncover shortcom-
ings of some existing approaches. One advantage of the new methodology,
which can be applied to a wide variety of testing problems, is that it avoids
the shortcomings of existing approaches. We show how to apply the general
methodology to the particular problem of testing equality of multinomial dis-
tributions versus the stochastic order alternative. This problem motivated the
study. The problem itself is an important one in medical studies as well as
social science studies. Moses, Emerson, and Hosseini (1984) identified 27 in-
stances of 2×J tables in a survey of articles in volume 306 (1982) of The New
England Journal of Medicine. Cohen and Sackrowitz (CS) (1998a) argue that
in many 2×J tables the notion of testing whether a treatment is “better” than
a control should often be approached by testing a stochastic order alternative.
We will see that, in spite of the fact that many tests have been proposed and
used for this problem, none is without some shortcomings.
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One large class of applications is to ANOVA models for testing the null
hypothesis of homogeneity of parameters versus the alternative that the pa-
rameters lie in a closed convex cone. See CS (1994) and Robertson, Wright
and Dykstra (RWD) (1988) for examples of such problems. In contingency ta-
ble models there are a wide variety of one-sided testing problems. For example,
in a two-way ordered table for the full multinomial model, one might test in-
dependence against all local log odds ratios nonnegative (often called trend).
In the 2 × J product multinomial model, one might test equality of multino-
mial distributions against the alternative that one distribution is stochasti-
cally larger than the other. In analogy to one-dimensional problems we refer
to directional situations (such as the two above) as one-sided alternatives in
contrast to non-directional or two-sided alternatives. In the first example, a
two-sided alternative is “not independence.” In the second example, a two-
sided alternative is “distributions not equal.”

Let � be the natural parameter of a multivariate exponential family. Let
� ∈ � , where � denotes the natural parameter space. The approach focuses
on the fundamental problem of testing the null hypothesis H0� � = 0 versus
H1 −H0 where H1� � ∈ � , and � is a closed convex cone and � ⊂ � . (This
formally defines what we mean by a one-sided testing problem. A two-sided
alternative is H2� � �= 0.) This is, in a sense, the canonical form of these prob-
lems. We stress that most of the important applications do deal with composite
null hypotheses. The simple null cases arise most often by conditioning and
could arise by invariance considerations. Complete class and some admissibil-
ity results for this model appear, for example, in Eaton (1970) and Ledwina
(1978).

The first step in our approach is to choose a “good” two-sided test procedure
for testing H0� � = 0 versus H2� � �= 0. In a two-sided problem there typi-
cally exists a number of satisfactory test procedures. Intuitively, our method
serves to directionalize the two-sided test in such a way that the resulting test
will be in a complete class, often be admissible and also satisfy any restric-
tions imposed by practical considerations of the original, usually unconditional
problem.

In the discrete case, a refinement to the method is developed so that more
levels of significance can be accommodated without randomization. In practice
this results in more precise p-values, that is, a finer grid of p-values. This
refinement of the methodology is effective in cases where the original test is
two sided or even one sided. The refined test methodology is akin to the notion
of “peeling.” Peeling is discussed by Green (1985). Our refined methodology
will be called directed vertex peeling (DVP) and will be described in the next
section.

In Section 2 we make notions precise, develop the method and illustrate
the method. Section 3 considers further properties and contains discussion
about bounds and implementation. In Section 4 we discuss the method in
two examples. The first example concerns a data set for testing equality of
three binomial parameters against the alternative that they are decreasing.
This is an example in which reasonable test procedures are already available.
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Although the application of the new method is straightforward in this case,
the example provides an illustration of the model and methodology.

The second example provides a new approach to the problem of testing
equality of two multinomial distributions versus the alternative that the sec-
ond distribution is stochastically larger than the first. Linear tests are often
used. Graubard and Korn (1987) discuss the assignment of different weight-
ing systems to be applied to the ordered categories. Using these weights, they
suggest a discrete version of the two-sample t-test. The above process results
in a linear test. Using rank scores as weights results in the Wilcoxon–Mann–
Whitney (WMW) test. This latter test is very popular. See, for example, Ralphs
and Zimmerman (1993) Emerson and Moses (1985), and Agresti and Finlay
(1997). Linear tests will be shown to lack a robustness property. The justi-
fication for the effectiveness of our methodology in this example is based on
theoretical considerations, practical (intuitive) considerations, and extensive
numerical work. In Section 4 we will discuss justifications. An extensive nu-
merical study on this problem appears in CS (1998b). This latter paper con-
tains relevant numerical power and expected p-value computations and also
gives a detailed illustration of the methodology for testing stochastic ordering
in a 2 × 3 table.

2. Methodology We begin with some facts about cones and cone orders.
A convex cone is a subset � ⊆ R

k such that if x�y ∈ � , λ1x + λ2y ∈ � for all
λ1� λ2 ≥ 0. The cone � is pointed if whenever x ∈ � , x �= 0, then −x �∈ � . A
closed convex cone � induces a preordering less than or equal to �� � as follows:
x ≤ �� �y if and only if y−x ∈ � [Marshall and Olkin (1970)]. A function W�x�
is nondecreasing with respect to (w.r.t.) the cone � or is said to be cone order
monotone w.r.t. � (COM �� �) if W�x� ≤W�y� whenever x ≤ �� �y. Note that if
� ⊂ � ′ and W�x� is COM �� ′�, then W�x� is COM �� �, so that increasing the
cone size decreases the class of cone order monotone functions.

The (positive) dual of a cone � is defined as

� ∗ = {
�� v′� ≥ 0� all v ∈ �

}
	

Throughout this section the model considered concerns a random k × 1
vector, X, having an exponential family density expressed as

�2	1� h�x�β��� exp�x′��	
Note that the sample space is denoted by � . We testH0� � = 0 versusH1−H0,
where H1� � ∈ � and � is a closed convex cone.

First we note that a complete class of tests for H0 versus H1 −H0 consists
of tests which are COM �� ∗� and which have convex acceptance regions. (In
the discrete case, randomization is permitted only on boundary points of the
acceptance region.) This statement follows from the same argument given by
Cohen, Sackrowitz and Samuel-Cahn [(1995), Theorem 3.1] which is based on
a theorem of Eaton (1970).

Of course there exist many admissible tests, but admissibility alone does
not ensure a desirable test procedure. Other considerations due to the nature



2324 A. COHEN AND H. B. SACKROWITZ

of a particular problem may suggest additional compelling restrictions on the
choice of test procedures. As will be seen in Example 4.2, such an effect can
manifest itself in the requirement that a test be COM �� � for some � ⊇ � ∗.

The new test method begins with the selection of a test,

φA�x� =
{

0� if x ∈ A�
1� otherwise,

which is appropriate for testing H0� � = 0 versus the “two-sided” alternative
H2� � �= 0. We point out that “good” two-sided tests based on principles such
as likelihood ratio, chi-square and Fisher are often available. However, at a
minimum, A, the acceptance region of the chosen two-sided test, is taken to
be convex.

For any pointed convex cone � ⊇ � ∗ we define a new, “one-sided,” test for

�2	2�

H0� � = 0 versus H1 −H0 where H1� � ∈ � � by

φÃ�x� =
{

0� if x ∈ Ã�
1� otherwise,

where Ã = A−� = {
x� x = a − b� a ∈ A� b ∈ �

}
	

In Figure 1 we illustrate the construction of Ã, given a particular A and a
particular � . In words, Ã consists of all points that can be expressed as a−b
where a ∈ A and b lies in � . The reader can simply check in Figure 1 that
any x �∈ Ã cannot be expressed as a − b. One can visualize Ã as the union
over a ∈ A of the translated cones a−� .

The one-sided test defined in (2.2) has desirable properties. It is easy to
verify that the test in (2.2) has a convex acceptance region and is COM �� ∗�.
In fact, the test in (2.2) is COM �� �, but since � ⊃ � ∗, any test which is
COM �� � is COM �� ∗�. Thus we are assured that the test in (2.2) lies in the
complete class.

We remark that tests defined by (2.2) are precisely the projected tests of Co-
hen, Kemperman and Sackrowitz (1994) for the specialized models assumed in
that paper. In that paper, projected tests of two-sided Schur convex tests were
shown to have desirable properties. Thus tests here represent an extension of
projected tests to a richer class of models.

At this point we assume that the sample space � is finite. It is desirable
to be able to report p-values or to perform tests by using p-values. In order
to report p-values we focus on nonrandomized tests and further note that one
must have a family of tests with nested acceptance regions, each corresponding
to a different size test. See Lehmann [(1986), page 170].

Thus far we have been concerned with a single “good” two-sided test and
indicated how to convert it to a one-sided test. We can also consider a nested
family of “good” two-sided tests which will be converted to a nested family
of one-sided tests. The family of two-sided acceptance regions can often be
determined by a test statistic T�X� as follows:

�2	3� Aα =
{
x� x ∈ � � T�x� < Cα

}
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Fig. 1. Directionalizing a convex set A in the direction of the cone � . (a) the convex set A� (b) the
cone � �and the cone −� �� (c) finding the points, a�−b� (d) the resulting set A.

as α, the size of the test, varies from 0 to 1. Because of discreteness and limi-
tations to nonrandomized tests, not all values of α ∈ �0�1� are used. Examples
of T�X�’s are Pearson’s chi-square, the likelihood ratio test (LRT) statistic, or
Fisher, that is, T�X� = 1/h�X� where h�·� was defined for the multivariate
exponential family distribution in (2.1). Fisher’s test assigns points to the re-
jection region according to the probability of points under H0. That is, points
with smallest probability underH0 enter the rejection region first. See Pagano
and Halvorsen (1981) for a Fisher exact test in an I × J contingency table.
We will always take T�X� to be a convex function since this will ensure that
Aα is convex.

For a given fixed cone � , the family (2.3) gives rise to the nested family of
one-sided tests

�2	4� Ãα = Aα −� = {
x� x = a − b� a ∈ Aα� b ∈ �

}
	

(Note that Ãα does not have size α even though Aα does.) Let � �T�·��� �
denote this family of directed tests determined by the test statistic T�·� and
the cone � .
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A larger nested family that contains the nested family of (2.4) can be con-
structed. The larger family is more desirable since the grid of p-values for the
larger family is finer and contains the grid of p-values for the smaller family.
This enables more powerful testing through p-values.

The motivation for the forthcoming test construction is fourfold.

1. We wish to utilize the notion of peeling off sample points to assign to the
rejection region. We want to peel off points first which, in a sense, reflect the
largest departure from the null hypothesis in the direction of the alternative
hypothesis.

2. Our resulting acceptance region must be convex and the resulting test must
be COM �� � so as to qualify for admissibility and desirability.

3. The construction must produce a nested family of tests which contains the
nested family � �T�·��� �.

4. Suppose a test procedure depends on a statistic, T∗�x� say, and there were
several x which yielded the same value of T∗ (i.e., ties). When the same
tie occurs for many sample points, an overly conservative p-value ensues.
Our directed vertex peeling method, to be described in the next paragraph,
represents a substantial improvement, since many such ties are broken in
a manner consistent with (1) above. An example of a situation where the
same tie exists for many sample points appears in CS (1992) where another
method of tie breaking is presented.

To describe the construction to achieve (1), (2), (3) and (4), we need some
terminology. If R is a convex set, we say x0 ∈ R is a � directed point of R if

�2	5� � �x0� ∩R = �x0��
where � �x0�= �x0�+� . [� �x0� is the cone � with vertex translated to x0.]

The family of nested tests are represented by acceptance regions of increas-
ing size α (probability of Type I error) constructed in a stepwise fashion. The
first acceptance region is B1 = � . This corresponds to a test of size α = 0. Let
V1 = �vertices of the convex hull of � �. Let V∗

1 = �x� x ∈ V1� � �x� ∩ B1 =
x�, that is, V∗

1 is the collection of � directed vertices of the convex hull of B1.
Lemma 2.1 below will imply that V∗

1 is not empty. Define B2 by

�2	6� B2 = B1 ∩
{
x� x ∈ V∗

1�T�x� = max
v∈V∗

1

T�v�
}c
	

Thus B2 is obtained from B1 by removing the � directed vertices of the
convex hull of B1 having the largest value of the T statistic. We continue in
this fashion, defining

�2	7�

Vi =
{
vertices of the convex hull of Bi

}
�

V∗
i =

{
directed vertices of Vi

}
and

Bi+1 = Bi ∩
{
x� x ∈ V∗

i � T�x� = max
v∈V∗

i

T�v�
}c
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Table 1
Probability distribution of �X1�X2�

x1

0 1 2 3

2 0.025 0.050 0.100 0.025
x2 1 0.100 0.200 0.200 0.100

0 0.025 0.050 0.100 0.025

We continue until all points have been removed. We will refer to this iterative
procedure as a directed vertex peeling (DVP) process. Peeling is discussed in
Green (1985). The number of steps required, call it M, will depend on the
number of points in � and on the number of ties encountered when maxi-
mizing the T statistic among directed vertices. Thus we have a collection of
acceptance regions � = B1 ⊇ B2 ⊇ · · · ⊇ BM+1 = �. The corresponding tests
are φi�x� = 1 − IBi�x�. By the nature of the construction, the Bi are convex
and the φi�x� are COM �� �. We will denote the family of tests generated in
this fashion [based on a given T�·� and � ] by � �T�·��� �.

In terms of achieving the goals (1), (2), (3) and (4), we note that (2.6) and
(2.7) are defined so that (1) is achieved with T evaluated at directed vertices
serving as a measure of distance from H0. We have already noted that (2) is
achieved, and in the next section we will show that � �T�·��� � ⊆ � �T�·��� �.
In connection with (4) the number of sample points giving rise to the same
value of T now result in fewer ties because many of these sample points
are not directed vertices. At this point we will give a very simple numerical
illustration of the construction of the family � �T�·��� �. For a more realistic
and detailed illustration on determining a p-value using this method, we refer
the reader to CS (1998b).

Simple illustration of DVP method. Let the random variables X1�X2 take
on values in � = ��x1� x2�� x1 = 0�1�2�3� x2 = 0�1�2� with probabilities
given in Table 1. Let � be the first quadrant cone, that is, � = ��x1� x2�� x1 ≥
0� x2 ≥ 0�. As test statistic we take T�x� = �x1 − 2�2 + �x2 − 1�2. Table 2 gives
the value of T at each point of � . The DVP process is summarized in Table 3.
A graphical representation is given in Figure 2.

Table 2

Values of T�x1� x2� = �x1 − 2�2 + �x2 − 1�2 on the sample space

x1

0 1 2 3

2 5 2 1 2
x2 1 4 1 0 1

0 5 2 1 2
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Table 3

DVP method, with T = �x1 − 2�2 + �x2 − 1�2, applied to the model given in Tables 1 and 2

Cumulative
probability

Step of removed
i Bi Vi V ∗

i Action points1

1 �0�0��0�1��0�2� �0�0��0�2��3�0� �3�2� remove (3,2) 0.025
�1�0��1�1��1�2� �3�2� with T = 2
�2�0��2�1��2�2�
�3�0��3�1��3�2�

2 �0�0��0�1��0�2� �0�0��0�2��3�0� �2�2� remove (2,2) and 0.225
�1�0��1�1��1�2� �2�2��3�1� �3�1� (3,1) with T = 1
�2�0��2�1��2�2�

�3�0��3�1�
3 �0�0��0�1��0�2� �0�0��0�2��3�0� �3�0� remove (3,0) and 0.300

�1�0��1�1��1�2� �1�2� �1�2� (1,2) with T = 2
�2�0��2�1��3�0�

4 �0�0��0�1��0�2� �0�0��0�2��2�0� �0�2� remove (0,2) 0.325
�1�0��1�1��2�0� �2�1� �2�1� with T = 5

�2�1�
5 �0�0��0�1��1�0� �0�0��0�1��2�0� �2�1� remove (2,1) 0.525

�1�1��2�0��2�1� �2�1� with T = 0

6 �0�0��0�1��1�0� �0�0��0�1��2�0� �2�0� remove (2,0) and 0.825
�1�1��2�0� �1�1� �1�1� (1,1) with T = 1

7 �0�0��0�1��1�0� �0�0��0�1��1�0� �1�0� remove (0,1) 0.875
�0�1� with T = 4

8 �0�0��1�0� �0�0��1�0� �1�0� remove (1,0) 0.975
with T = 2

9 �0�0� �0�0� �0�0� remove (0,0) 1.000
with T = 5

1The cumulative probability of a removed point is equal to the p-value associated with that point
if it is observed.

As an example of p-value determination for an observed sample point, sup-
pose we observe �0�2�. The p-value is 0.325. Note that T for this sample point
is 5, the largest possible value of T in the sample space, yet �0�2� does not
enter the rejection region by the DVP process until the fourth stage.

In Table 3 note that the column labeled Bi lists a decreasing sequence of
acceptance regions for the DVP method using the statistic T�x� = �x1 − 2�2 +
�x2−1�2. By contrast, the coarse method given by (2.2) using the same statistic
T�x� gives a decreasing sequence of four acceptance regions as follows:

B1 corresponding to the whole space with T = 2;
B2 corresponding to the whole space except the point �3�2� with T = 1;
B5 corresponding to T = 0;

and finally the empty set.
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Fig. 2. Graphical representation of Steps 1 and 4 of Table 3.

3. Further properties and remarks. We start this section by demon-
strating that � �T�·��� � ⊆ � �T�·��� �. That is, we will show that a test
determined by ��2	2�� �2	3�� is precisely a test determined by some Bj, j =
1� 	 	 	 �M+ 1. To do so will require the following two lemmas. (For the proofs
of the lemmas and the theorem, see the Appendix.)

Lemma 3.1. Let � be a pointed convex cone and D a convex polygon. Then
there exists a vertex, v0 ∈ D, such that v0 + b �∈ D for all b ∈ � � b �= 0.

Lemma 3.2. Let  be any convex COM �� � set [i.e., I c�x� is a COM �� �
function]. If x0 �∈  , then there exists a hyperplane �′�x − x0� = 0, through x0
such that �′��−x� < 0 for all � ∈  . Furthermore, any such � ∈ � ∗, the dual
of � .

Theorem 3.3. If T�x� is a convex function and � is a closed, convex,
pointed cone, then

�
(
T�·��� ) ⊆ � �T�·��� �	

Theorem 3.3 implies that the set of p-values for tests whose acceptance
regions are of the form (2.4) is contained in the set of p-values corresponding
to the COM �� � tests based on (2.7). The p-value associated with a particular
observed sample point x0 can be obtained by using the same iterative proce-
dure used to construct the Bj’s and stopping as soon as x0 is the point which
is removed. If j�x� = min�j� x �∈ Bj�, then the p-value associated with x0 is
equal to p0�Bcj�x0��, the probability of Bcj�x0� under H0.

The level of difficulty in implementing tests based on this procedure de-
pends on the sample size, the dimension of the cone and the nature of the
cone. As is the case with most exact tests in discrete situations, sometimes
a hand calculator will be sufficient and other times the problem will not be
feasible even by computer. Typically, computer assistance is desirable. If the
dimension of the cone is 3 or more, computer assistance is virtually a necessity.
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From a computing standpoint, the challenge is to develop algorithms which
can quickly and efficiently identify the directed vertices of the convex hulls of
the Bi’s.

Many common models, such as those in Section 4, permit some simplifi-
cation of the programming process. The important features of such models
are (1) the existence of a linear transformation z = Ax on the sample space
so that COM �� � in the x-variables becomes equivalent to nondecreasing
in the z-variables, and (2) the z-variables only assume integer values. When
working with the z’s, the appropriate cone is just the first quadrant, that is,
�z� zi ≥ 0� all i�.

In CS (1998b) two numerical examples are studied in detail. In both cases
the DVP process was carried out using the computer.

Crude bounds on the p-value, which do not necessitate identifying directed
vertices and are thus much more easily computed, are sometimes adequate
for testing purposes.

If one wants to perform a test at size α, then a computed lower bound
that exceeds α means that the null hypothesis should not be rejected. On the
other hand, if a computed upper bound is less than or equal to α, then the null
hypothesis is rejected. A lower bound, more easily obtained by the computer, is

�3	1� p0�� �x0��	
A crude upper bound is �1 − p0��−� ��x0��� where

�3	2� �−� ��x0� =
{
x� x ∈ � � x = x0 − b� all b ∈ �

}
	

A better upper bound can be obtained as follows. For each x ∈ � , let M�x�
be the smallest value T attains in � �x�. That is, M�x� = minu∈� �x�T�u�. For
an observed x0, compute M�x0�. For every other point x �∈ �−� ��x0� = �x0�−
� , M�x� is compared to M�x0�. If W = �x� x �∈ �−� ��x0�� M�x� ≥ M�x0��,
then p0�W� is an upper bound on the p-value. The number of comparisons
needed can be greatly reduced by recognizing that x ∈ � �x0� implies x ∈W.
Also if x �∈W, then x − b �∈W all b ∈ � .

4. Examples.

4.1. Testing equality of binomial parameters versus the simple order al-
ternative. This problem has been studied by Cohen, Perlman, and Sack-
rowitz (1990) and recently by Agresti and Coull (1996). The model is Ui,
i = 1� 	 	 	 � J are independent binomial variables with parameters �ni�pi�.
(For simplicity we take ni = n.) Test H0� p1 = · · · = pJ versus H1 −H0 where
H1� p1 ≥ p2 ≥ · · · ≥ pJ. Another way to express H1 is H1� �p � $p ≥ 0�,
where

$�J−1�×J =




1 −1 0 · · · · · · 0

0 1 −1 · · · · · · 0
			

0 · · · · · · 0 1 −1
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The entire problem could be equivalently stated in terms of the natural pa-
rameters log�pi/�1 − pi��. The joint density of U = �U1� 	 	 	 �UJ�′ is a multi-
variate exponential family with natural parameter vector � = �µ1� 	 	 	 � µJ�′,
µi = log�pi/�1 − pi�� and can be written as

�4	1� fU���u��� = β���h�u� exp�u′µ�	

A complete sufficient statistic under H0 is Y = ∑J
i=1Ui. Let BJ×J = (

$
1�1�			�1

)
,

and let � = B�, X = �B−1�′U. Then from (4.1), we have that the conditional
distribution of X�1�, the first �J − 1� components of X, given Xn = Y = y [of
the form (2.1)] is

�4	2� fX�1��Y=y�x�1��y� = hy�x�1��Cy���1�� exp�x�1�′��1��	

The null hypothesis is transformed to H0� ��1� = 0 and the alternative is
H1 −H0, where H1� νi ≥ 0, i = 1�2� 	 	 	 � J − 1. We may write H1� � ∈ Q
with Q the first quadrant cone and dual Q∗ = Q. In terms of the original
variablesUi, i = 1�2� 	 	 	 � J, theXi’s are partial sums. That is,Xi =

∑i
j=1Uj,

i = 1�2� 	 	 	 � J− 1. See CS (1994), Section 9E2.
As a numerical example, consider the data given in Baker, Detsky, Wesson

(1982) and discussed in Moses, Emerson and Hosseini (1984) on the nutritional
status of 48 hospitalized patients and the occurrence of infections among the
patients. The data is summarized in Table 4. The conditional p-value given the
first row total, using the test method outlined in (2.6) and (2.7) with T�x�1��
the Fisher statistic, that is, T�x�1�� = 1/hy�x�1��, is 0.00064. For this model our
test is admissible. Our test methodology for this discrete model can potentially
be an improvement on others suggested for this model. Other methods do not
offer the refined grid of p-values that our method offers because our method
breaks most ties.

4.2. Testing equality of two multinomial distributions versus stochastic or-
dering.

4.2a. Model. Let Xij, i = 1�2, j = 1�2� 	 	 	 � J be cell frequencies of a
2 × J table where it is assumed that Xi = �Xi1� 	 	 	 �XiJ�′ are indepen-
dent multinomial vectors with cell probabilities pi = �pi1� 	 	 	 � piJ�′, such

Table 4

Nutritional status

Mild Severe
Outcome Normal malnutrition malnutrition Total

Infection 21 4 5 30
No infection 4 3 11 18

Total 25 7 16
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that
∑J
j=1Xij = ni,

∑J
j=1pij = 1. Test H0� p1 = p2 versus H1 −H0 where

H1�
∑k
j=1p1j ≥

∑k
j=1p2j, k = 1�2� 	 	 	 � J− 1. The alternative means that the

second multinomial distribution is stochastically larger than the first. Under
H0, m = �X	1� 	 	 	 �X	J�, where X	j =

∑2
i=1Xij, is a complete sufficient statis-

tic. If we define X�1� = �X11� 	 	 	 �X1�J−1��′, then the conditional distribution of
X�1��m is of the form

�4	3� fX�1��m�x�1��m� = βm���hm�x�1�� exp�x�1�′���

with νj = lnp1jp2J/p2jp1J� j = 1� 	 	 	 � J − 1 as natural parameters. The νj
are log odds ratios formed by the jth and Jth columns of the 2 × J table
of cell probabilities. Whereas � is a function of �p1�p2�, the function is not
one–one. It is many to one. Nevertheless, the null hypothesis H0� p1 = p2 is
equivalent to H0� � = 0. The alternative H1−H0 is not equivalent to H∗

1−H0
whereH∗

1� ν1 ≥ 0. However, Berger and Sackrowitz (1997) show that given any
� such that ν1 > 0, there exists some �p1�p2� which satisfies the stochastic
order alternative. Therefore, it is desirable to have a test with reasonable
power for all � such that ν1 > 0.

In fact, the complete class of tests for the conditional problem of testing
H0 versus H∗

1 −H0 serves as a complete class for the unconditional problem
of testing H0 versus H1 −H0. Furthermore, any test which is conditionally
admissible for testing H0 versus H∗

1 −H0 is shown in CS (1998a) to be uncon-
ditionally admissible for testing H0 versus H1 −H0. Conditional testing in
contingency tables is common. Of course, what is most desirable is a test with
good conditional properties and good unconditional properties. Our method-
ology is applied conditionally, but clearly such an approach yields a test that
also qualifies as an unconditional test.
H1 may be expressed as H1� � ∈ � where � is the cone ��� �1�0� 	 	 	 �0�� ≥

0�. Thus the dual cone � ∗ consists only of the single ray �λ�0� 	 	 	 �0�, all λ ≥ 0.
Hence to be COM �� ∗� (and in the complete class) a test need only be monotone
in X11. Most tests proposed for this problem, including the LRT and WMW
tests are COM �� ∗�. Unfortunately, merely satisfying this modest condition
does not guarantee a desirable test procedure.

It is also important to view the problem from a practical standpoint. We
begin with Tables 5 and 6, which present two possible data sets consistent
with the marginal totals appearing in Patefield (1982). After examining the
tables, some statisticians would be more inclined to assert stochastic order

Table 5

Worse Same Better Total

Control 5 11 1 17
Treatment 3 8 4 15

Total 8 19 5
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Table 6

Worse Same Better Total

Control 0 16 1 17
Treatment 8 3 4 15

Total 8 19 5

for Table 5 than for Table 6. Therefore, they would want that the p-value
associated with Table 5 should be less than that for Table 6.

Nguyen and Sampson (1987) study the related problem of testing inde-
pendence versus positive quadrant dependence in R × C contingency tables.
Although they assume the full multinomial model, their problem reduces to
testing equality of multinomials versus stochastic ordering when R = 2, the
row totals are fixed and the cell probabilities are normalized, that is, �pij/pi	�.
They also, in essence, argue that intuitively any test procedure for their prob-
lem should be COM �� �. In their terminology, they would say that Table 5 is
more concordant than Table 6.

In fact, intuitively, in our opinion, to be recommended for use in prac-
tice, a procedure should have the property that its p-value will decrease
if any X1j increases while some X1j′ decreases for j < j′, holding all
margins fixed. Using our current terminology, this is equivalent to a proce-
dure being COM �� � where � is the cone with generators �1�−1�0� 	 	 	��
�0�1�−1�0� 	 	 	�� 	 	 	 � �0� 	 	 	 �0�1�−1�� �0� 	 	 	 �0�1�. That is, the test function
should be monotone in each of these directions.

The cone � is chosen because it contains � ∗ and because it is the smallest
cone containing � ∗ that preserves the concordance property. Tests which are
COM �� � are said to be concordant monotone.

4.2b. Recommended tests. The unconditional LRT is studied by Grove
(1980) and Bhattacharya and Dykstra (1994). Agresti and Coull (1998)
consider the unconditional LRT statistic and perform the test using that
statistic, conditionally. That is, they use simulation to determine a conditional
critical value. The large sample distribution of the LRT statistic is studied
in Bhattacharya and Dykstra (1994) and recently by Wang (1996), Section 3,
who notes difficulties with the computational aspects of the LRT. Agresti and
Coull (1998) avoid some of the difficulties. They do not perform the conditional
LRT. (Thus far, the conditional maximum likelihood estimators (MLE) have
only been found in the 2 × 2 table by Kou and Ying (1996).) Yet the test
used by Agresti and Coull would appear to be reasonable for the conditional
problem.

These likelihood ratio based tests are not COM �� � although they are COM
�� ∗�. Among its capabilities, the program of Agresti and Coull (1998) can be
used to find the LRT conditional p-values as 0.169 for the data of Table 5 and
a p-value of 0.019 for the data of Table 6.

The LRT statistic, T01, as given by Bhattacharya and Dykstra (1994),
page 243, rejects for large values. In this example, the LRT statistic is 2.777
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for Table 5 and is 22.652 for Table 6. This ordering of values for the LRT
statistic is consistent with the p-values found. Since, in our opinion, the COM
�� � property is intuitively appealing we prefer to recommend a test with
this property. Of course, the LRT for composite hypotheses also has intuitive
support of a different type and some statisticians often find that intuition
compelling.

As noted earlier, the WMW test is the most popular of linear tests suggested
for this problem. Let � be a �J − 1� × 1 vector of constants. For a particular
choice of �, a linear test rejects if �′x is large. It is easy to see that such tests
are conditionally Bayes with respect to prior distributions, which concentrate
all their mass on the single ray �λ�� λ ≥ 0�. Thus, despite its intuitive appeal,
we are lead by the narrowness of the prior to suspect a lack of robustness for
such tests; that is, an inability of the WMW and other linear tests to detect
many important alternatives that are not “near” the direction �.

The test procedures we recommend are based on statistics such as chi-
square, LRT and Fisher that use the DVP process for the cone � . For example,
if T�X� = 1/h�X�, that is, Fisher’s statistic, then we do recommend its use in
the DVP process, along with the cone � . We call this the COM �� � Fisher
test.

We refer to CS (1998b) for a numerical study which compares the WMW test
with the COM �� � Fisher test. Conditional power and conditional expected
p-values are computed for a 2 × 3 table and a 2 × 4 table. The numerical
results regarding WMW are consistent with the lack of robustness we would
expect from a test which is Bayes against a prior putting all its mass in one
direction. The study indicates that the power and expected p-value indices
are comparable for alternative points for which WMW is expected to do well.
For all other alternatives, the COM �� � Fisher test is decidedly better. The
superiority of COM �� � Fisher over WMW was observed numerically in other
2 × 3 and 2 × 4 tables.

When trying to establish the relative worth of procedures, we must keep in
mind that both the COM and WMW tests are admissible (as are most tests
which have been proposed for use). Thus neither test can be better for all
alternatives. Therefore, in comparing two tests, the issues are (1) how often
one power is greater than the other, (2) the magnitude of the differences in
power and (3) if the tests are sensitive to alternatives of interest.

In Table 7 we present some values of the conditional power functions of
the COM �� � Fisher and WMW tests studied in CS (1998b). The marginal
totals are those of Patefield (1982) and used in our Tables 5 and 6. The level
of the COM �� � Fisher test is 0.043 and that of the WMW test is 0.047.
The information in Table 7 is extremely helpful in trying to understand the
subtleties of the problem. We focus on only a few parameter points, but the
behavior seen here is not unusual and is repeated many times throughout the
parameter space.

Comparing entry 1 with entry 2 or entry 3 with entry 4 of Table 7, we find
the behavior of the power function of the WMW test disappointing. Surely
for each pair of alternatives, the first presents a stronger case of stochastic
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Table 7
Selected alternatives for the model of Tables 5 and 6

True proportions
p11 p12 p13 Log odds
p21 p22 p23 ratios Power

Worst · · · Best v1 v2 COM [LLL ] WMW

Control 0.4 0.5 0.1 2.77 1.39 0.646 0.738
Treatment 0.1 0.5 0.4

Control 0.4 0.5 0.1 3.47 3.69 0.825 0.240
Treatment 0.1 0.1 0.8

Control 0.2 0.5 0.3 1.39 1.20 0.472 0.353
Treatment 0.1 0.3 0.6

Control 0.2 0.5 0.3 1.67 0.29 0.569 0.147
Treatment 0.1 0.1 0.8

Control 0.2 0.7 0.1 1.61 2.46 0.546 0.155
Treatment 0.2 0.3 0.5

Control 0.3 0.1 0.6 1.39 0.29 0.481 0.554
Treatment 0.1 0.1 0.8

Control 0.3 0.2 0.5 1.28 −0.22 0.511 0.570
Treatment 0.1 0.3 0.6

Control 0.4 0.4 0.2 1.39 −0.56 0.678 0.617
Treatment 0.1 0.7 0.2

Control 0.3 0.6 0.1 1.79 3.58 0.700 0.004
Treatment 0.3 0.1 0.6

Control 0.4 0.5 0.1 0.69 0.92 0.258 0.160
Treatment 0.4 0.4 0.2

Control 0.6 0.2 0.2 1.10 0.69 0.375 0.351
Treatment 0.4 0.2 0.4

Control 0.6 0.3 0.1 3.40 1.32 0.929 0.954
Treatment 0.1 0.4 0.5

Control 0.6 0.3 0.1 3.04 3.04 0.859 0.556
Treatment 0.2 0.1 0.7

order. Yet the power of the WMW test decreases dramatically as one goes from
the less preferred alternative to the more preferred alternative. The table also
reveals the level of sensitivity of the WMW test to certain types of alternatives.

It is also of interest to note that, in this example, the WMW test rejects for
large values of 51X11 + 24X12. Therefore, the WMW is conditionally Bayes
with respect to a prior putting all its mass on the set ��� ν1 = 51ν2/24�. This
property is approximately true for the first entry in Table 7.

In summary, the COM �� � Fisher test is concordant monotone, is robust
in the sense of being sensitive to most stochastic order alternatives (a prop-
erty not enjoyed by WMW), has comparable conditional power and expected
p-value properties in areas where WMW does well and superior properties
elsewhere and finally, is an admissible test.
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Remark 4.1. Some commentaries above are qualitative judgments based
on examples and based on some mathematical results. A clearly preferred test
may not exist in some circumstances, depending on the size of the conditional
sample space, as sizes of tests can be arbitrarily chosen. In fact, if the size
is small enough, all the tests may be the same. Based on our understanding
of this problem and based on some additional numerical work, our opinion
is that our test procedures will be preferred whenever test sizes are not too
small relative to the sample sizes.

APPENDIX

Proof of Lemma 3.1. Since � is pointed, there exists a p such that p′b >
0 for all b ∈ � , b �= 0. Let v0 be a vertex of D such that p′v0 = supv∈D p′v
[i.e., p′�x−v0� = 0 is tangent to D through v0]. Thus p′�v−v0� ≤ 0, all v ∈ D.
Next consider, for b ∈ � � b �= 0, p′��v0+b�−v0� = p′b > 0 and so v0+b �∈ D.

Proof of Lemma 3.2. Since  is convex and x0 �∈  , the separating hy-
perplane theorem [e.g., Ferguson (1967), page 73] implies the existence of a
� such that �′�� − x0� < 0, all � ∈  . We claim � ∈ � ∗. If not, there exists
a b∗ ∈ � such that �′b∗ < 0. Let �0 ∈  . Then since  is a COM �� � set,
�0 − λb∗ ∈  for all λ ≥ 0. Thus 0 > �′��0 − λb∗ − x0� = �′��0 − x0� − λ�′b∗,
which is a contradiction for large λ.

Proof of Theorem 3.3. It suffices to show Ãα ∩ � = Bj for some j =
1�2� 	 	 	 �M+ 1.

Obviously Ãα ∩ � ⊆ � = B1. Thus, to establish the result, it suffices to
show that whenever Bi ⊇ Ãα ∩� but Bi �= Ãα ∩� , then Bi+1 ⊇ Ãα ∩� .

By definition, any � directed point of Ãα must belong to Aα. In particular,
any � directed vertex of Bi that lies in Ãα must lie in Aα. Also, by definition
T�x1� > T�x2� for all x1 ∈ Ãcα, x2 ∈ Aα. Thus if v1�v2 are � -directed vertices
of Bi such that v1 ∈ Ãcα and v2 ∈ Ãα, then T�v1� > T�v2�. In such a case, in
going from Bi to Bi+1, no point of Ãα would be removed. Hence, under the
assumption that Bi ⊇ Ãα ∩� , but Bi �= Ãα ∩� , it suffices to show that there
exists a � directed vertex of Bi which does not belong to Ãα.

To accomplish this, let x0 be any point such that x0 �∈ Ãα and x0 ∈ Bi. By
Lemma 2.2, there exists a � ∈ � ∗ such that �′�x − x0� < 0 for all x ∈ Ãα. Let
Rγ be such that

Rγ = sup
x∈Bi

�′�x − x0�	

The hyperplane �′�x−x0� = Rγ (which is a tangent hyperplane to the polygon
Bi) is such that �′�x − x0� ≤ Rγ, all x ∈ Bi. Furthermore D� = �x� �′�x −
x0� = Rγ� ∩Bi is a polygon whose vertices are a subset of the vertices of Bi.
By Lemma 2.2, there exists a vertex v0 of D� (and hence of Bi) such that
v0 + b �∈ D� for all b ∈ � , b �= 0.
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Next we show that v0 is the vertex we seek. Certainly v0 �∈ Ãα as �′�v0 −
x0� = Rγ ≥ 0. Next consider v0 + b for b ∈ � . Since v0 + b �∈ D�, v0 + b can
belong to Bi only if �′�v0+b−x0� < Rγ. But �′�v0+b−x0� = �′�v0−x0�+�′b =
Rγ + �′b ≥ Rγ as � ∈ � ∗, b ∈ � . This completes the proof. ✷

REFERENCES

Agresti, A. and Coull, B. A. (1996). Order restricted tests for stratified comparisons of binomial
proportions. Biometrics 52 1103–1111.

Agresti, A. and Coull, B. A. (1998). Order restricted inference using odds ratios for monotone
trend alternatives in contingency tables. Comput. Statist. Data Analysis. 28, 139–155.

Agresti, A. and Finlay, B. (1997). Statistical Methods in the Social Sciences, 3rd ed. Prentice
Hall, Upper Saddle River, NJ.

Baker, J. P., Detsky, A. S., Wesson, D. E., Wolman, S. L., Stewart, S., Whitewell, J., Langer,
B. and Jeejeebhog, K. N. (1982). Nutritional assessment: a comparison of clinical
judgment and objective measurements. New England J. Medicine 306 969–972.

Berger, V. and Sackrowitz, H. B. (1997). Improving tests of stochastic order. J. Amer. Statist.
Assoc. 92 700–705.

Bhattacharya, B. and Dykstra (1994). Statistical inference for stochastic ordering. In Stochas-
tic Orders and Their Applications (M. Shaked and J. G. Shantikumar, eds.) 221–249.
Academic Press, Boston.

Cohen, A., Kemperman, J. H. B. and Sackrowitz, H. B. (1994). Projected tests for order restricted
alternatives. Ann. Statist. 22 1539–1546.

Cohen, A., Perlman, M. D. and Sackrowitz, H. B. (1990). Unbiasedness of tests of homogeneity
when alternatives are ordered. In Proceedings of the Symposium on Dependence in
Statistics and Probability (H. W. Block, A. R. Sampson and T. H. Swirts, eds.) 135–146.
IMS, Hayward, CA.

Cohen, A. and Sackrowitz, H. B. (1992). An evaluation of some tests of trend in contingency
tables. J. Amer. Statist. Assoc. 87 470–475.

Cohen, A. and Sackrowitz, H. B. (1994). Association and unbiased tests in statistics. In Stochas-
tic Orders and Their Applications (M. Shaked and J. G. Shantikumar, eds.) 251–274.
Academic Press, Boston.

Cohen, A. and Sackrowitz, H. B. (1998a). Testing whether treatment is better than control
with ordered categorical data: definitions and complete class theorems. Unpublished
manuscript.

Cohen, A. and Sackrowitz, H. B. (1998b). Testing whether treatment is better than control with
ordered categorical data: an evaluation of new methodology. Unpublished manuscript.

Cohen, A., Sackrowitz, H. B. and Samuel-Cahn, E. (1995). Constructing tests for normal order-
restricted inference. Bernoulli 1 321–333.

Eaton, M. L. (1970). A complete class theorem for multidimensional one-sided alternatives. Ann.
Math. Statist. 41 1884–1888.

Emerson, J. D. and Moses, L. E. (1985). A note on the Wilcoxon–Mann–Whitney test for 2 × k
ordered tables. Biometrics 41 303–309.

Ferguson, T. S. (1967). Mathematical Statistics, A Decision Theoretic Approach. Academic Press,
New York.

Graubard, B. I. and Korn, E. I. (1987). Choice of column scores for testing independence in
ordered 2 ×K contingency tables. Biometrics 43 471–476.

Green, P. J. (1985). Peeling data. In Encyclopedia of Statistical Sciences 6 660–664. Wiley, New
York.

Grove, D. M. (1980). A test of independence against a class of ordered alternatives in a 2 × C
contingency table. J. Amer. Statist. Assoc. 75 454–459.

Kou, S. G. and Ying, Z. (1996). Asymptotics for a 2×2 table with fixed margins. Statist. Sinica 6
809–829.



2338 A. COHEN AND H. B. SACKROWITZ

Ledwina, T. (1978). Admissible tests for exponential families with finite support. Math. Opera-
tionsforsch. Statist. Ser. Statist. 9 105–118.

Lehmann, E. L. (1986). Testing Statistical Hypotheses. Wiley, New York.
Marshall, A. W. and Olkin, I. (1970). Inequalities: Theory of Majorization and Its Applications.

Academic Press, New York.
Moses, L. E., Emerson, J. D. and Hosseini, H. (1984). Analyzing data for ordered categories.

New England J. Medicine 311 442–448.
Nguyen, T. T. and Sampson, A. R. (1987). Testing for positive quadrant dependence in ordinal

contingency tables. Naval Res. Logist. 34 859–877.
Pagano, M. and Halvorsen, K. T. (1981). An algorithm for finding the exact significance levels

of r by c contingency tables. J. Amer. Statist. Assoc. 76 931–934.
Patefield, W. M. (1982). Exact tests for trends for ordered contingency tables. J. Roy. Statist.

Soc. Ser. C 31 32–43.
Rahlfs, V. W. and Zimmerman, H. (1993). Scores: Ordinal data with few categories—how they

should be analyzed. Drug Inform. J. 27 1227–1240.
Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference.

Wiley, New York.
Wang, Y. (1996). A likelihood ratio test against stochastic ordering in several populations.

J. Amer. Statist. Assoc. 91 1676–1683.

Department of Statistics
Rutgers University
Hill Center, Busch Campus
110 Frelinghuysen Road
Piscataway, New Jersey 08854-8019
E-mail: artcohen@rci.rutgers.edu


