
The Annals of Statistics
1998, Vol. 26, No. 6, 2246–2263

ESTIMATING INTEGRALS OF STOCHASTIC
PROCESSES USING SPACE-TIME DATA1
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Florida State University

Consider a space–time stochastic process Zt�x� = S�x� + ξt�x� where
S�x� is a signal process defined on R

d and ξt�x� represents measurement
errors at time t. For a known measurable function v�x� on R

d and a fixed
cube D ⊂ R

d, this paper proposes a linear estimator for the stochastic
integral

∫
D v�x�S�x�dx based on space–time observations �Zt�xi�� i =

1
 � � � 
 n� t = 1
 � � � 
T	. Under mild conditions, the asymptotic properties of
the mean squared error of the estimator are derived as the spatial distance
between spatial sampling locations tends to zero and as time T increases
to infinity. Central limit theorems for the estimation error are also studied.

1. Introduction. In spatial data analyses, a common problem is to esti-
mate integrals of the type

g�v
Z� =
∫
D
v�x�Z�x�dx
(1.1)

where D ⊂ R
d, �Z�x�� x ∈ R

d	 is a second-order stochastic process, and v�x�
is a known measurable function on R

d. Throughout this article, it is assumed
that v�x�Z�x� is integrable in quadratic mean such that Eg2�v
Z� is nonzero
and finite. When v�x� ≡ 1/

∫
D dx, the integral

∫
DZ�x�dx/ ∫D dx represents

the average of the process �Z�x�� x ∈ R
d	 over the set D, which is often of

interest in geostatistical studies.
Letting ĝ�v
Z� be an estimator of the integral g�v
Z� based on spatial

observations �Z�x1�
 � � � 
Z�xn�� xi ∈ D	, it is important to study the be-
havior of the mean squared error E
ĝ�v
Z� − g�v
Z��2. When the process
�Z�x�� x ∈ R

d	 is observed at different time periods, this article proposes new
estimators for stochastic integrals related to the process and studies asymp-
totic properties of the mean squared error.

Currently, two types of asymptotic theories in spatial settings have been
intensively investigated. The first type of asymptotics is to fix the distance
between neighboring observations and let the size of D increase with the
sample size n. Quenouille (1949), Iachan (1985) and Matérn (1986), among
others, used this approach to study the asymptotic mean squared error for es-
timating the integral g�v
Z�. An alternative way to obtain asymptotic theory
is based on fixing the size of D and letting observations within the set get
increasely dense [see, e.g., Tubilla (1975), Schoenfelder and Cambanis (1982)
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and Stein (1987, 1993, 1995a, b)], which is preferable in geostatistical data
analyses such as mining and hydrology where the domain D is often thought
to be bounded and extra units of information come from observations taken
between those already observed. Following the terminology used by Cressie
(1993), the two types of asymptotics are called increasing domain asymptotics
and infill asymptotics, respectively.

In many fields such as ecology, biology and meteorology, data are usually
collected at different spatial locations over a long time period. For example, to
monitor the water quality of a lake, ecologists may divide the lake into equal-
size blocks, sample water at each block weekly or monthly for several years
and analyze the samples for concentration levels of some specific chemical–
physical parameters. In environmental studies, one of the main concerns about
air pollution is excessive tropospheric ozone levels, which arise as a conse-
quence of changes in precursor emissions; surface ozone data have been col-
lected by ground-based station networks throughout the United States for
many years to monitor changes and trends in ozone concentration.

Statistical techniques for analyzing space–time data have been developing
rapidly in last two decades. For example, Cliff, Haggett, Ord, Bassett and
Davies (1975) proposed a class of space–time autoregressive moving-average
(STARMA) models. Taneja and Aroian (1980) studied the required stationar-
ity and invertibility conditions of STARMA models, and Pfeifer and Deutsch
(1980a, b) proposed a three-stage iterative procedure for building space–time
models. Most recently, Niu and Tiao (1995) used space–time regression mod-
els for long-term trend assessment in the total ozone mapping spectrometer
(TOMS) data. Niu, McKeague and Elsner (1997) developed a class of seasonal
space–time models for general lattice systems and applied them to maps of
monthly averaged 500 mb geopotential heights over a 10 × 10 lattice in the
Northern Hemisphere for the purpose of improving climate prediction.

For the purpose of estimating integrals of spatial processes, space–time
observations, if available, provide valuable information and should be used
to construct new estimators. Consider a space–time process �Zt�x�� x ∈ R

d�
t = 1
 � � �	 with the decomposition

Zt�x� = µ�x� +W�x� + ξt�x�
(1.2)

where µ�x� is a deterministic mean structure of the process �Zt�x�	, �W�x��
x ∈ R

d	 is a zero-mean, weakly stationary spatial process and �ξt�x�� x ∈ R
d	

is a zero-mean noise process representing measurement and other random
errors at time t. In this article, the process �ξt�x�� x ∈ R

d� t = 1
 � � �	 is
assumed to be independent of �W�x�� x ∈ R

d	.
Let S�x� = µ�x� +W�x� and define

g�v
S� =
∫
D
v�x�S�x�dx�(1.3)

It makes more sense to estimate the integral g�v
S� instead of g�v
Zt�, since
one is more interested in the average value of the signal process �S�x�	 than
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that of the noise-distorted process �Zt�x�	. In this study, we suppose that ob-
servations of the process �Zt�x�	 are available at locations �x1
 � � � 
 xn	 within
the set D and at given time periods t = 1
 � � � 
T, that is,

Zt�xi� = µ�xi� +W�xi� + ξt�xi�
 i = 1
 � � � 
 n� t = 1
 � � � 
T
(1.4)

where the time intervals are assumed to be equal and fixed. Unlike spatial
sampling designs, the sample size n × T may increase in two directions: n
increases as the locations �x1
 � � � 
 xn	 within D become dense or T increases.

Estimating integrals of spatial processes using space–time data is very use-
ful in environmental studies. For instance, in ozone data analyses, the average
levels of surface ozone concentration in a city before and after a new regulation
comes into effect are often compared. Let �Zt�x� = S�x� + ξt�x�� x ∈ D� t =
1
 � � � 
T	 and �Z∗

t �x� = S∗�x� + ξ∗t �x�� x ∈ D� t = T + t0
 � � � 
T
∗	, where t0

is a given integer, denote, respectively, the ozone concentration processes in
the city before and after the regulation is enforced. Instead of estimating the
value of the spatial processes at a specific location x0 and a given time t, es-
timating and comparing the aggregated random variables

∫
D S�x�dx/

∫
D dx

and
∫
D S

∗�x�dx/ ∫D dx based on long-term observations of the processes will
provide more reliable information about the ozone level changes in the city.

Investigating statistical properties of stochastic integral estimators based
on space–time observations is a challenging topic, which involves spatial
and temporal characteristics of the process �Zt�x�	. As pointed out by Niu,
McKeague and Elsner (1997), the behavior of a space–time process in the
temporal direction is usually quite different from that in the spatial direction.
Instead of simply viewing the time direction as one more dimension, spatial
and temporal features of a space–time process should be studied separately.

The asymptotic theory of estimating stochastic integrals using space–time
data will be addressed in this article, and, to some extent, it is a combination
of the infill and increasing domain asymptotics. Section 2 proposes a linear
estimator for g�v
S� and investigates asymptotic properties of the estimator.
Under conditions C1–C4 specified in the section, the mean squared error of the
estimators is shown to converge to zero as both spatial and temporal sample
sizes increase to infinity. The conditions are carefully discussed and examples
of space–time processes satisfying the conditions are given. The distribution of
the estimation error 
ĝ�v
S� −g�v
S�� is shown to be asymptotically normal
when the spatial sample size is a function of T and T → ∞. Some potential
applications of the derived results are discussed in Section 3. Proofs of the
main results are given in the Appendix.

2. Asymptotic properties of the estimators. In this section, we study
the asymptotic behavior of estimators of the stochastic integral g�v
S� based
on observations of the space–time process �Zt�x�	. To avoid complications at
the borders, D is assumed to be a cube in the space R

d with the sides paral-
lel to the axes. Without loss of any generality, let D = 
0
1�d. For the three
components of the space–time process �Zt�x�	 specified in (1.2), we assume
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that
∫
µ�x�v�x�dx <∞, W�x� is a weakly stationary process on R

d with mean
zero and spectral density f1�ω�, �ξt�x�� x ∈ R

d� t = 0
±1
 � � �	 is a weakly sta-
tionary space–time process and the spectral density of ξt�x� for any given t is
denoted by f2�ω�. Following Stein (1995a), let v�x�� R

d → R be a measurable
and square-integrable function and define V�ω� = ∫

D v�x� exp�iω′x�dx. Fur-
thermore, assume that

∫ �V�ω��2f�ω�dω < ∞ where f�ω� = f1�ω� + f2�ω�.
Then

∫
v�x�S�x�dx is well defined as a mean squared limit of finite weighted

sums of the process �S�x� = µ�x� +W�x�	.
Let γ1�x� and γ2�x� be the covariance functions defined on R

d for the pro-
cesses �W�x�	 and �ξt�x�	 at any given time t, respectively. Then

γ1�x� =
∫

exp�iω′x�f1�ω�dω
 γ2�x� =
∫

exp�iω′x�f2�ω�dω�(2.1)

Based on spectral theory of weakly stationary spatial processes [e.g., Matérn
(1986), page 20], the first two moments of the integral g�v
S� are Eg�v
S� =∫
D µ�x�v�x�dx and

Var�g�v
S�� =
∫
D

∫
D
γ1�x− y�v�x�v�y�dxdy

=
∫ ∣∣∣∣

∫
D
v�x� exp�iω′x�dx

∣∣∣∣
2

f1�ω�dω�

For estimating the integral g�v
S�, measurements of the space–time pro-
cess �Zt�x�	 are needed. In this article, spatial measurement sites �x1
 � � � 
 xn	
are selected by the centered systematic sampling scheme, a common method
used in meteorological studies. In the sampling design, the spatial cube D is
divided into an md grid of smaller cubes and values of the process �Zt�x�� x ∈
R
d	 at a given time t are observed at the center of each of the md cubes. There-

fore, for a fixed integer m, the sample size is n =md. Stein (1993, 1995a) stud-
ied the asymptotic properties of linear predictors of integrals

∫
D v�x�Z�x�dx

under this sampling design, and some results of his papers will be used in
this study.

For the space–time random noise process �ξt�x�� x ∈ R
d� t = 0
±1
 � � �	 in

(1.2), define

�t�m� = 
ξt�x1�
 � � � 
 ξt�xmd��′(2.2)

and

ηt�m� =m−d
md∑
i=1

v�xi�ξt�xi�
(2.3)

where the spatial locations �x1
 � � � 
 xmd	 depend on the integer m. Since
�ξt�x�	 is assumed to be a weakly stationary space–time process, ��t�m�� t = 0

±1
 � � �	 for any given integer m is a temporally stationary vector process.
Throughout this article, we assume that ��t�m�� t = 0
±1
 � � �	 is in the class
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of infinite-order moving average vector processes with the form

�t�m� =
∞∑
k=0

A�k
m��t−k�m�
(2.4)

where ��t�m�� t = 0
±1
 � � �	 is a sequence of uncorrelated random vectors
with mean zero and E
�t�m��′

t�m�� = �, and the A�k
m�’s are md ×md real
constant matrices that satisfy the condition

∞∑
k=0

�Aij�k
m�� <∞ for i
 j = 1
 � � � 
md�(2.5)

For a fixed integer m, the vector process �t�m� specified in (2.4) and (2.5)
is stationary with autocovariance matrices

��h
m� = E��t�m��′
t+h�m�� =

∞∑
k=0

A�k
m��A′�k+ h
m�


and ��h
m� satisfy the following condition:
∞∑

h=−∞
��ij�h
m�� <∞ for i
 j = 1
 � � � 
md�(2.6)

In this case, the autocovariance matrix function ���h
m�	 has a spectral den-
sity matrix function ϕ�λ
m� with the form

ϕ�λ
m� = 1
2π

∞∑
h=−∞

e−iλh��h
m�
 −π ≤ λ ≤ π(2.7)

and the autocovariance matrix ��h
m� can be expressed in terms of ϕ�λ
m� as

��h
m� =
∫ π

−π
eiλhϕ�λ
m�dλ�(2.8)

In particular, ��0
m� is the variance matrix of the random vector �t�m� and
the elements of ��0
m� are given by

�ij�0
m� = E
ξt�xi�ξt�xj�� = γ2�xi − xj��
It is easy to see that �ηt�m�� t = 0
±1
 � � �	 defined in (2.3) is weakly sta-

tionary with mean zero and autocovariance function

γη�h
m� = E
ηt�m�ηt+h�m�� =m−2d
md∑
i=1

md∑
j=1

v�xi��ij�h
m�v�xj�

=m−2dv′
m��h
m�vm =m−2d

∫ π

−π
eiλh

[
v′
mϕ�λ
m�vm

]
dλ


=
∫ π

−π
eiλhfη�λ
m�dλ


(2.9)

where vm = 
v�x1�
 � � � 
 v�xmd��′ and fη�λ
m� = m−2dv′
mϕ�λ
m�vm is the

spectral density of the process �ηt�m�� t = 0
±1
 � � �	.



ESTIMATING STOCHASTIC INTEGRALS 2251

Based on observations �Zt�xi�� i = 1
 � � � 
md� t = 1
 � � � 
T	, we propose to
estimate g�v
S� by

ĝTm�v
S� =
1
T

T∑
t=1

{md∑
i=1

v�xi�Zt�xi�
}
�(2.10)

Define

ĝm�v
µ� =m−d
md∑
i=1

v�xi�µ�xi�


ĝm�v
W� =m−d
md∑
i=1

v�xi�W�xi�


ĝTm�v
 ξ� =
1
T

T∑
t=1

ηt�m��

Then the linear estimator ĝTm�v
S� can be expressed as

ĝTm�v
S� = ĝm�v
µ� + ĝm�v
W� + ĝTm�v
 ξ��(2.11)

For spatial points x ∈ D and y ∈ D, �ξt�x�
 t = 1
 � � � 
T	 and �ξt�y�
 t =
1
 � � � 
T	 are two univariate time series. When �t = �ξt�x�� x ∈ R

d	 is a
temporally weakly stationary random field, for any given x ∈ R

d and y ∈ R
d

the cross-covariance function �xy�t
 t+h� = E
ξt�x�ξt+h�y�� is independent of
t, that is, �xy�t
 t+ h� = �xy�h�.

In order to investigate the asymptotic behavior of the linear estimator, the
following conditions will be imposed on the function v�x�, the spatial process
�W�x�� x ∈ R

d	 and the temporal process �ηt�m�� t = 0
±1
 � � �	.

(C1) v�x� has bounded partial derivatives of order �d+ 1� on D.
(C2) The spectral density f1�ω� of the spatial process �W�x�� x ∈ R

d	 is
bounded and there exists a regularly varying function β�t� with expo-
nent p (d < p < 4) as t → ∞ such that β��ω��f1�ω� is bounded away
from 0 and ∞ as �ω� → ∞.

(C3) The limit γη�h� = limm→∞ γη�h
m� exists and there exists a nonnegative
summable sequence �γ�h�	 such that ��xy�h�� = �E
ξt�x�ξt+h�y��� ≤ γ�h�
for any given x ∈ R

d and y ∈ R
d.

(C4) The product function µ�x�v�x� is of bounded variation over the hypercube
D = 
0
1�d with total variation VD�µ
 v�.

Remark 1. Suppose that �Z�x�� x ∈ R
d	 is a weakly stationary spatial

process with mean zero and spectral density f�ω�. Under conditions C1 and
C2, Stein [(1995a), Proposition 3.1], showed that Ẑm =m−d∑md

i=1 v�xi�Z�xi� is
an asymptotically efficient estimator for the integral

∫
D v�x�Z�x�dx relative

to the optimal linear estimators. The expected mean squared error satisfies

E
(∫

D
v�x�Z�x�dx− Ẑm

)2

∼ B�m� as m→ ∞
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where

B�m� =
∫
m�−π
π�d

[∑
∗ f1�ω+ 2πmJ�

]
�V�ω��2 dω

and
∑

∗ means summing J over all elements of �Zd except the origin. In partic-
ular, for v�x� ≡ 1 and assuming that limm→∞ β�m�f�ν +mω� = f̃�ω� exists,
Stein (1993), Theorem 2, proved that under C2,

lim
m→∞β�m�B�m� = �2π�d−p∑∗ f̃�J��(2.12)

Remark 2. As an example of time series with autocovariance functions
satisfying C3, for any x ∈ R

d consider the following AR(1) process

ξt�x� = φ�x�ξt−1�x� + εt�x�
(2.13)

where �εt�x�� t = 0
±1
 � � �	 is a temporally independent process for any fixed
location x. Assume �φ�x�� ≤ φ < 1 and define

+�m� = Diag�φ�x1�
 � � � 
 φ�xmd���

Then the vector process �t�m� defined in (2.2) can be expressed in the form

�t�m� =
∞∑
k=0

+k�m��t�m��

The autocovariance matrices ���h
m�	 for this AR(1) process satisfy

��h
m� = +h�m���0
m� for h ≥ 1�(2.14)

In this case, we have

��ij�h
m�� = �φh�xi�γ2�xi − xj�� ≤ φhγ2�0�


where γ2�0� = Var�ξt�x�� is finite and the sequence �γ�h� = φhγ2�0�	 is
summable.

The following result characterizes the covariance structure of the process
�ηt�m�� t = 0
±1
 � � �	 when �ξt�xi�� t = 0
±1
 � � �	 is an AR(1) process. The
proof of this lemma is given in the Appendix.

Lemma 2.1. For the AR(1) process �ξt�x�� t = 0
±1
 � � �	 specified in (2.13),
assume that the coefficient function φ�x� satisfies the condition �φ�x�� ≤ φ < 1
fox x ∈ D. Then:

(i) fη�λ� = limm→∞ fη�λ
m� and γη�h� = limm→∞ γη�h
m� exist.

(ii) γη�h� =
∫ π
−π e

iλhfη�λ�dλ.
(iii) The sequence �γη�h�� h = 0
±1
 � � �	 is absolutely summable.
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Remark 3. Let �x1
 x2
 � � �	 be a sequence points in the hypercube D =

0
1�d. Let R be a subset of D of the form R = ∏d

i=1
ai
 bi� and denote the
volume of R by Vol�R�. For every integer n, let � (R
n) be the number of the
points �x1
 x2
 � � � 
 xn	 that lie in R. Set

� �n� = sup
R⊂D

�� �R
n� − Vol�R���

Then, based on the numerical integration theory [see, e.g., Davis and Rabi-
nowitz (1975), page 268], under C4 we have∣∣∣∣n−1

n∑
i=1

v�xi�µ�xi� −
∫
D
v�x�µ�x�dx

∣∣∣∣ ≤ VD�µ
 v�� �n��

In particular, Davis and Rabinowitz [(1975), page 267], showed that∣∣∣∣m−d
m−1∑

k1
���
kd=0

v�k1/m
 � � � 
 kd/m�µ�k1/m
 � � � 
 kd/m�

−
∫
D
v�x�µ�x�dx

∣∣∣∣
≤ dVD�µ
 v�

m
�

(2.15)

Similarly to (2.15), it can be shown that the following result is valid for the
centered systematic sampling scheme.

Lemma 2.2. Suppose that �x1
 x2
 � � � 
 xmd	 are the centers of the md cubes
of side m−1. Under C4, we have∣∣∣∣m−d

md∑
i=1

v�xi�µ�xi� −
∫
D
v�x�µ�x�dx

∣∣∣∣ ≤ dVD�µ
 v�
m

�(2.16)

For the temporal process �ηt�m�� t = 0
±1
 � � �	 defined in (2.3), we have
the following general result that will be used in the proofs of Theorem 2.1 and
Lemma 2.4.

Lemma 2.3. Suppose that there exists a nonnegative summable sequence
�γ�h�	 such that ��xy�h�� ≤ γ�h� for any x
y ∈ R

d. Then limm→∞ γη�h
m� =
γη�h� exists if and only if fη�λ� = limm→∞ fη�λ
m� exists.

The following theorem and Corollary 2.1 give asymptotic properties of the
mean squared error E�ĝTm�v
S� − g�v
S��2.

Theorem 2.1. Suppose that C1–C4 are valid. Then we have

E
(
ĝTm�v
S� − g�v
S�)2 = σ2

µ�m� + σ2
W�m� + σ2

ξ �T
m�
(2.17)
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where

σ2
µ�m� =

(
ĝm�v
µ� −

∫
D
v�x�µ�x�dx

)2

≤ �dVD�µ
 v��2

m2



σ2
W�m� = E

(
ĝm�v
W� −

∫
D
v�x�W�x�dx

)2

∼ B�m� as m→ ∞

and

σ2
ξ �T
m� = Eĝ2

Tm�v
 ξ� ∼ T−1
∞∑

h=−∞
�γη�h�� as m→ ∞ and T→ ∞�

Corollary 2.1. Suppose that limm→∞ β�m�f�ν +mω� = f̃�ω� exists and
v�x� ≡ 1. Then under C1–C4 we have

E
(
ĝTm�v
S� − g�v
S�)2 → 0 as m→ ∞ and T→ ∞�(2.18)

Proof. Based on the results of Stein [(1993), Theorem 2], (2.12) is valid
under C2, which implies that B�m� → 0 as m → ∞. Then (2.18) follows
directly from Theorem 2.1. ✷

Before studying the limiting distribution theory of the linear estimator
ĝTm�v
S�, we discuss further the asymptotic behavior of the temporal process
�ηt�m�� t = 0
±1
 � � �	. When C3 is valid, the sequence �γη�h�� h = 0
±1
 � � �	
is the autocovariance function of a weakly stationary process �ηt� t = 0
±1 � � �	
which has the spectral density function fη�λ� =

∑∞
h=−∞ γη�h�e−iλh. In fact, un-

der appropriate conditions, we have

E�ηt�m� − ηt�2 → 0 as m→ ∞�

For example, if C1 is valid, and the spectral density function f2�ω� of the
process �ξt�x�� x ∈ R

d	 for any given t is bounded and there exists a regu-
larly varying function β̃�t� with exponent d < p̃ < 4 as t → ∞ such that
β̃��ω��f2�ω� is bounded away from 0 and ∞ as �ω� → ∞, applying the results
of Stein [(1995a), Proposition 3.1] to the process �ξt�x�� x ∈ D	 for any given
t we have

E�ηt�m� − ηt�2 ∼ B̃�m� as m→ ∞


where ηt =
∫
D v�x�ξt�x�dx and

B̃�m� =
∫
m�−π
π�d

[∑
∗ f2�ω+ 2πmJ�

]
�V�ω��2 dω�

Under mild conditions, we have B̃�m� → 0 as m→ ∞.
Letting Xn and X be random variables with respective distribution func-

tions Fn and F, Xn converging in distribution to X will be denoted by Xn ⇒
X. Let ĝT�v
 ξ� =

∑T
t=1 ηt/T. We give the following central limit theorem for

the two-dimensional array �ĝTm�v
 ξ�	 and the sequence �ĝT�v
 ξ�	.
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Lemma 2.4. Suppose that C3 is valid and fη�0� =
∑∞
h=−∞ γη�h� > 0. Then

for the infinite moving average vector process ��t�m�� t = 0
±1
 � � �	 specified
in (2.4) and (2.5), we have

√
TĝTm�v
 ξ� ⇒N�0
 fη�0�� as T→ ∞ and m→ ∞�(2.19)

Furthermore, if E�ηt�m� − ηt�2 → 0 as m → ∞ where ηt =
∫
D v�x�ξt�x�dx,

then
√
TĝT�v
 ξ� has the same limiting distribution N�0
 fη�0��.

In space–time sample designs, it is ideal to choose spatial sample size m
as a function of T. In this case, we will denote the sample size at each spatial
dimension by m�T� and assume that m�T� → ∞ as T → ∞. In practice,
we may choose m�T� such that TB�m�T�� → c as T → ∞. As an example,
consider the spectral density function f1�ω� = �a2 + �ω�2�−q for a �= 0 and
d/2 < q < 4. When v�x� ≡ 1 for x ∈ D, Stein [(1993), Theorem 2] showed that
B�m� = O�m−2q�. In this case, if we choose m�T� such that T
m�T��−2q → c1,
then TB�m�T�� → c2 as T→ ∞, where c1 and c2 are some constants. For the
asymptotic distribution for the estimation error 
ĝTm�T��v
S� − g�v
S��, we
have the following result.

Theorem 2.2. Let ��t�m�� t = 0
±1
 � � �	 be the infinite moving aver-
age vector process specified in (2.4) and (2.5) and suppose that fη�0� =∑∞
h=−∞ γη�h�>0.

(i) If C3 is valid, we have
√
TĝTm�T��v
 ξ� ⇒N�0
 fη�0�� as T→ ∞�(2.20)

(ii) Suppose that C1–C4 are valid and E�ηt�m�−ηt�2 → 0 as m→ ∞ where
ηt =

∫
D v�x�ξt�x�dx. When Tm−2�T� → 0 and TB�m�T�� → 0 as T→ ∞, we

have
√
T
[
ĝTm�T��v
S� − g�v
S�] ⇒N�0
 fη�0�� as T→ ∞�(2.21)

In geostatistical and environmental studies, it is quite often assumed
that �W�x�� x ∈ R

d	 is a Gaussian process. In this case, the integral∫
D v�x�W�x�dx, as the limit of ĝm�v
W�, is also normally distributed. Notice

that

E
[
ĝm�T��v
W� −

∫
D
v�x�W�x�dx

]
= 0

and

E
[
ĝm�T��v
W� −

∫
D
v�x�W�x�dx

]2

∼ B�m�T���

If TB�m�T�� → σ2 as T→ ∞, we have
√
T

[
ĝm�T��v
W� −

∫
D
v�x�W�x�dx

]
⇒N�0
 σ2� as T→ ∞�(2.22)
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Since �W�x�� x ∈ R
d	 is independent of �ξ�x�� x ∈ R

d	, from Theorem 2.2 we
can derive the following result.

Theorem 2.3. Suppose that C1-C4 are valid and sample sizes T and m�T�
satisfy

Tm−2�T� → 0
 TB�m�T�� → σ2 as T→ ∞�

If �W�x�� x ∈ R
d	 is a Gaussian process, and if E�ηt�m�−ηt�2 → 0 as m→ ∞

where ηt =
∫
D v�x�ξt�x�dx, then

√
T
[
ĝTm�T��v
S� − g�v
S�] ⇒N�0
 σ2 + fη�0�� as T→ ∞�

Remark 4. In Theorem 2.3, the normality assumption on the process
�W�x�� x ∈ R

d	 and the condition

TB�m�T�� → σ2 as T→ ∞
can be replaced by (2.22), that is, for any spatial process �W�x�� x ∈ R

d	 that
satisfies (2.22), the result in Theorem 2.3 is also true. Equation (2.22) may be
proved under different conditions rather than the normality assumption on
�W�x�� x ∈ R

d	, which will not be pursued in this article.

3. Discussion. Estimating stochastic integrals of the form g�v
S� =∫
D v�x�S�x�dx is an interesting topic in geostatistical data analyses and en-

vironmental studies. In this article, we proposed a linear estimator for g�v
S�
using space–time observations and investigated the asymptotic properties
of the mean squared error of the estimator. The limiting distribution of the
estimation error was shown to be normal under mild conditions.

The results derived from this study can be used to make statistical infer-
ences about the stochastic integral g�v
S�. For example, from the result in
Theorem 2.2(ii), we know that the estimation error

[
ĝTm�T��v
S� − g�v
S�]

is approximately normally distributed with mean zero and variance fη�0�/T
when the conditions are valid and T is large. Confidence intervals for g�v
S�
can be constructed based on this approximate distribution and the statistic
ĝTm�T��v
S�.

The limiting distribution results may also be used to test hypotheses about
the expectation of g�v
S�. For instance, consider the surface ozone pollution
problem mentioned in Section 1. Suppose that the ozone concentration pro-
cesses at the city, before and after the enforcing of the new regulation, are
�Zt�x� = µ�x� + ξt�x�� x ∈ D� t = 1
 � � � 
T	 and �Z∗

t �x� = µ∗�x� + ξ∗t �x�� x ∈
D� t = T+ t0
 � � � 
T∗	, respectively. Furthermore, assume the two space–time
processes �ξt�x�	 and �ξ∗t �x�	 are independent. In the two processes, the sig-
nal processes S�x� = µ�x� and S∗�x� = µ∗�x� are both deterministic. In this
case g�v
S� = ∫

D v�x�µ�x�dx and g�v
S∗� = ∫
D v�x�µ∗�x�dx are simply two

constants. To test the hypothesis H0� g�v
S� = g�v
S∗�, we may use the
statistic

√
T
[
ĝTm�T��v
S� − ĝTm�T��v
S∗�]/√f̂η�0� + f̂η∗�0�
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which has an approximate standard normal distribution under the null hy-
pothesis.

In practice, space–time data sets are often observed on a finite spatial lat-
tice, that is, the spatial sample size m is fixed while the time T increases.
In this case, the result given in Theorem 2.1 can be used to assess the mean
squared error E�ĝTm�v
S� − g�v
S��2. In meteorological studies, space–time
data sets related to the climate system are often available for spatial lat-
tices with different resolutions. For example, the space–time data analyzed in
Niu, McKeague and Elsner (1997) are monthly averaged 500 hPa geopotential
heights on a 4◦ latitude by 6◦ longitude lattice for a portion of the Northern
Hemisphere over the period January 1946–December 1988. The geopotential
height maps on finer spatial lattices, such as 2◦ latitude by 3◦ longitude and 1◦

latitude by 1◦ longitude, can also be obtained from the U.S. National Centers
for Environmental Predictions (NCEP). When observations of a space-time
process are available on a high-resolution spatial lattice, that is, the spa-
tial sample size m is large enough, the results in Lemma 2.4, Theorem 2.2
and Theorem 2.3 will be approximately valid for making inferences about the
stochastic integral g�v
S�.

It should be pointed out that, when a space–time process is observed on a
daily or monthly basis, the data set often shows a seasonal pattern. In this
case, the observed space–time process has the form

Yt�x� = Zt�x� +Ut�x�

where the process Zt�x� is specified in (1.2) and Ut�x� represents the seasonal
pattern. In order to estimate the integral g�v
S� = ∫

D v�x�S�x�dx, seasonal
adjustments should be performed first on the space–time process �Yt�x�	 and
the linear estimator for g�v
S� defined in (2.10) then can be constructed based
on the adjusted process �Ẑt�x� = Yt�x� − Ût�x�	.

APPENDIX

Proofs of the main results.

Proof of Lemma 2.1. Notice that for a fixed m, the autocovariance matri-
ces satisfy ��−h
m� = ��h
m�′. The spectral density matrices of the vector
AR(1) process ��t�m�� t = 0
±1
 � � �	 are

ϕ�λ
m� = 1
2π

∞∑
h=−∞

e−iλh��h
m� = 1
2π

∞∑
h=−∞

e−iλh+h�m���0
m�

= 1
2π

{
��0
m�

[ ∞∑
h=0

+h�m�eiλh
]
+

[ ∞∑
h=1

+h�m�e−iλh
]
��0
m�

}

= 1
2π

{
��0
m�+̃�m� + [

+̃∗�m� − Imd

]
��0
m�}
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where “∗” denotes complex conjugate transpose, +̃�m� is the diagonal matrix
with elements

+̃jj�m� = 1
1 −φ�xj�eiλ




and Imd denotes the md ×md identity matrix. It is easy to see that

fη�λ
m� =m−2dv′
mϕ�λ
m�vm

= m−2d

2π

md∑
j=1

md∑
k=1

v�xj�γ2�xj − xk�v�xk�/
1 −φ�xk�eiλ�

+ m−2d

2π

md∑
j=1

md∑
k=1

v�xj�γ2�xj − xk�v�xk�φ�xj�e−iλ/�1 −φ�xj�e−iλ�

= 1
2π

∫ {[
m−d

md∑
j=1

eiω
′xjv�xj�

]

×
[
m−d

md∑
k=1

e−iω
′xkv�xk�/�1 −φ�xk�eiλ�

]}
f2�ω�dω

+ 1
2π

∫ {[
m−d

md∑
j=1

eiω
′xjv�xj�

φ�xj�e−iλ
1 −φ�xj�e−iλ

]

×
[
m−d

md∑
k=1

e−iω
′xkv�xk�

]}
f2�ω�dω�

(A.1)

When �φ�x�� ≤ φ < 1 for x ∈ D, we have

fη�λ� = lim
m→∞fη�λ
m�

= 1
2π

∫ {
V�ω�

[∫
D
e−iω

′x v�x�
1 −φ�x�eiλ

]

+V∗�ω�
[∫

D
eiω

′xv�x� φ�x�e−iλ
1 −φ�x�e−iλ

]}
f2�ω�dω�

In order to show that limm→∞ γη�h
m� exists, notice that the autocovari-
ance function γη�h
m� has the form

γη�h
m� =m−2dv′
m+

h�m���0
m�vm

=m−2d
md∑
j=1

md∑
k=1

φh�xj�v�xj�γ2�xj − xk�v�xk�
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=
∫ {[

m−d
md∑
j=1

eiω
′xjφh�xj�v�xj�

]

×
[
m−d

md∑
k=1

e−iω
′xkv�xk�

]}
f2�ω�dω


which has the limit

γη�h� = lim
m→∞γη�h
m�

=
∫ [∫

D
exp�iω′x�φh�x�v�x�dx

]
V∗�ω�f2�ω�dω�

(A.2)

Moreover, we have

�γη�h�� ≤ φh
∫ [∫

D
�v�x��dx

]2

f2�ω�dω�

Therefore the limiting autocovariance function �γη�h�	 is also absolutely
summable.

Finally, notice that �γ2�x�� ≤ γ2�0� <∞ and

�1 −φ�x�eiλ�2 = 1 +φ2�x� − 2φ�x� cos�λ� ≤ �1 − �φ�x���2 ≤ �1 −φ�2�

From (A.1), we have

fη�λ
m� ≤ γ2�0��1 +φ�
2π�1 −φ�

[
m−d

md∑
j=1

�v�xj��
]2

→ γ2�0��1 +φ�
2π�1 −φ�

[∫
D
�v�x��dx

]2

<∞ as m→ ∞�

Now γη�h� = ∫ π
−π e

iλhfη�λ�dλ follows from Lemma 2.1(i) and the dominated
convergence theorem. ✷

Proof of Lemma 2.3. Notice that when ��xy�h�� ≤ γ�h� for any x
y ∈ R
d,

the spectral density matrices �ϕ�λ
m�	 given in (2.7) satisfy

�ϕij�λ
m�� ≤ 1
2π

∞∑
h=−∞

��ij�h
m�� ≤ 1
2π

∞∑
h=−∞

γ�h� = c0 <∞�

Then we have

0 ≤ fη�λ
m� =m−2dv′
mϕ�λ
m�vm =m−2d

md∑
i=1

md∑
j=1

v�xi�ϕij�λ
m�v�xj�

≤ c0

[
m−d

md∑
i=1

�v�xi��
]2

→ c0

[∫
D
�v�x��dx

]2

<∞ as m→ ∞�
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If fη�λ� = limm→∞ fη�λ
m� exists, by the dominated convergence theorem we
have

γη�h� = lim
m→∞γη�h
m� = lim

m→∞

∫ π

−π
eiλhfη�λ
m�dλ =

∫ π

−π
eiλhfη�λ�dλ�

Conversely, notice that

γη�h
m� = m−2dv′
m��h
m�vm ≤ γ�h�

[
m−d

md∑
i=1

�v�xi��
]2

→ γ�h�
[∫

D
�v�x��dx

]2

as m→ ∞�

Because �γ�h�	 is summable, the sequence �γη�h
m�	 is absolutely summable
and the spectral density function fη�λ
m� can be expressed in the form

fη�λ
m� = 1
2π

∞∑
h=−∞

γη�h
m�e−iλh�

if limm→∞ γη�h
m� = γη�h� exists, then �γη�h�	 is also absolutely summable
and the spectral density function

fη�λ� =
1

2π

∞∑
h=−∞

γη�h�e−iλh

is well defined. The convergence of fη�λ
m� as m→ ∞ follows from

�fη�λ
m� − fη�λ�� ≤
1

2π

∞∑
h=−∞

�γη�h
m� − γη�h�� → 0 as m→ ∞� ✷

Proof of Theorem 2.1. Because EW�x� = 0, Eξ�x� = 0, and the two pro-
cesses �W�x�� x ∈ R

d	 and �ξt�x�� x ∈ R
d� t = 0
±1
 � � �	 are independent, we

have

E
(
ĝTm�v
S� − g�v
S�)2

=
(
ĝm�v
µ� −

∫
D
v�x�µ�x�dx

)2

+ E
(
ĝm�v
W� −

∫
D
v�x�W�x�dx

)2

+ Eĝ2
Tm�v
 ξ�

= σ2
µ�m� + σ2

W�m� + σ2
ξ �T
m��

(A.3)

By Lemma 2.2, we have

σ2
µ�m� =

(
ĝm�v
µ� −

∫
D
v�x�µ�x�dx

)2

≤ �dVD�µ
 v��2

m2
�
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When C1 and C2 are valid, Stein [(1995a), Proposition 3.1] proved that

σ2
W�m� = E

(
ĝm�v
W� −

∫
D
v�x�W�x�dx

)2

∼ B�m� as m→ ∞�

Finally, notice that under C3 and for a fixed T,

σ2
ξ �T
m� = Eĝ2

Tm�v
 ξ� = E
[

1
T

T∑
t=1

ηt�m�
]2

= T−2
T∑
s=1

T∑
t=1

γη�s− t�

= T−1 ∑
�h�<T

�1 − �h�/T�γη�h
m�

→ T−1 ∑
�h�<T

�1 − �h�/T�γη�h� as m→ ∞�

By the proof of Lemma 2.3, �γη�h�	 is absolutely summable. Hence we have

σ2
ξ �T
m� = Eĝ2

Tm�v
 ξ� ∼ T−1
∞∑

h=−∞
�γη�h�� as m→ ∞ and T→ ∞� ✷

Proof of Lemma 2.4. The spectral density matrices for the infinite mov-
ing average process ��t�m�� t = 0
±1
 � � �	 specified in (2.4) and (2.5) have the
form

ϕ�λ
m� = 1
2π

[ ∞∑
k=0

A�k
m�eikλ
]
�

[ ∞∑
k=0

A�k
m�eikλ
]∗
�

Let

�̄T�m� = 1
T

T∑
t=1

�t�m��

Then as T → ∞,
√
T�̄T�m� converges weakly to a normal distribution with

mean zero and covariance matrix ϕ�0
m� [see, e.g., Brockwell and Davis
(1991), Proposition 11.2.2]. Therefore for a fixed integer m, we have

√
TĝTm�v
 ξ� =

√
T

T

T∑
t=1

ηt�m� =
√
T

m−dv′
m�̄T�m�

⇒ Ym as T→ ∞


where Ym has a normal distribution with mean zero and variance

m−2dv′
mϕ�0
m�vm�

Notice that the spectral density function of the process �ηt�m�� t = 0

±1
 � � �	 is

fη�λ
m� =m−2dv′
mϕ�λ
m�vm�

By C3 and Lemma 2.3, fη�λ� = limm→∞ fη�λ
m� exists. Therefore we have

m−2dv′
mϕ�0
m�vm → fη�0�

and Ym ⇒N�0
 fη�0�� as m→ ∞.
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Furthermore, let γ̃η�t− s
m� = E
ηs�m�ηt�. Notice that

�γ̃η�t− s
m�� =m−d
∣∣∣∣
md∑
i=1

v�xi�
∫
D
v�y��xiy�t− s�

∣∣∣∣dy
≤ γ�t− s�

∫
D
�v�y��dy

[
m−d

md∑
i=1

�v�xi��
]
�

Therefore, the sequence �γ̃η�t − s
m�	 is absolutely summable. It is easy to
see that

E
[√
TĝTm�v
 ξ� −

√
TĝT�v
 ξ�

]2

= 1
T

T∑
s=1

T∑
t=1

E
[�ηs�m� − ηs��ηt�m� − ηt�

]

= 1
T

T∑
s=1

T∑
t=1

[
γη�t− s
m� + γη�t− s� − γ̃η�t− s
m� − γ̃η�s− t
m�]

→
∞∑

h=−∞

[
γη�h
m� + γη�h� − 2γ̃η�h
m�] as T→ ∞�

If E�ηt�m� − ηt�2 → 0 as m→ ∞, we have

�γ̃η�h
m� − γη�h��2 = �E
�ηt�m� − ηt�ηt+h��2

≤ E�ηt�m� − ηt�2Eη2
t+h → 0 as m→ ∞�

(A.4)

Then (A.4) and C3 imply that

lim
m→∞ lim

T→∞
E
[√
TĝTm�v
 ξ� −

√
TĝT�v
 ξ�

]2 = 0�

Therefore,
√
TĝT�v
 ξ� has the same limiting distribution N�0
 fη�0��. ✷

Proof of Theorem 2.2. (i) When the spatial sample size m is a function
of T, it is clear that �ĝTm�T��v
 ξ�� T = 1
2
 � � �	 is a subsequence of the two-
dimensional array �ĝTm�v
 ξ�� T = 1
2
 � � � � m = 1
2
 � � �	. Therefore (2.19)
implies (2.20).

(ii) Notice that
√
T
[
ĝTm�T��v
S� − g�v
S�] = √

T

(
ĝm�v
µ� −

∫
D
v�x�µ�x�dx

)

+
√
T

(
ĝm�v
W� −

∫
D
v�x�W�x�dx

)

+
√
TĝTm�T��v
 ξ��

Based on the results of Theorem 2.1, we have
√
T

∣∣∣∣ĝm�v
µ� −
∫
D
v�x�µ�x�dx

∣∣∣∣ = O�
√
Tm−1�T��
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and

TE
(
ĝm�v
W� −

∫
D
v�x�W�x�dx

)2

∼ TB�m�T���

Therefore from (i) of this theorem, when Tm−2�T� → 0 and TB�m�T�� → 0
as T→ ∞, we have

√
T
[
ĝTm�T��v
S� − g�v
S�] ⇒N�0
 fη�0�� as T→ ∞� ✷
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