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STRONG APPROXIMATION OF DENSITY ESTIMATORS FROM
WEAKLY DEPENDENT OBSERVATIONS BY DENSITY
ESTIMATORS FROM INDEPENDENT OBSERVATIONS

By Michael H. Neumann

Humboldt Universität

We derive an approximation of a density estimator based on weakly de-
pendent random vectors by a density estimator built from independent ran-
dom vectors. We construct, on a sufficiently rich probability space, such a
pairing of the random variables of both experiments that the set of observa-
tions �X1� � � � �Xn� from the time series model is nearly the same as the set
of observations �Y1� � � � �Yn� from the i.i.d. model. With a high probability,
all sets of the form ��X1� � � � �Xn���Y1� � � � �Yn��∩��a1� b1�×· · ·×�ad� bd��
contain no more than O���n1/2∏�bi − ai�� + 1� log�n�� elements, respec-
tively. Although this does not imply very much for parametric problems, it
has important implications in nonparametric statistics. It yields a strong
approximation of a kernel estimator of the stationary density by a ker-
nel density estimator in the i.i.d. model. Moreover, it is shown that such
a strong approximation is also valid for the standard bootstrap and the
smoothed bootstrap. Using these results we derive simultaneous confidence
bands as well as supremum-type nonparametric tests based on reasoning
for the i.i.d. model.

1. Introduction. Density estimation on the basis of i.i.d. observations is
one of the most often studied problems in nonparametric statistics. Important
asymptotic properties concerning the pointwise as well as the joint probabilis-
tic behavior of commonly used estimators are now well known and allow for
powerful methods of statistical inference such as tests for certain hypotheses
or simultaneous confidence bands which guarantee asymptotically the desired
error probability of the first kind and coverage probability, respectively.

In contrast, much less is known in the case of dependent observations. This
case is very important from the practical point of view, since data from time
series usually show some dependence. In order to develop analogous tools as
in the independent case, it seems to be on first sight unavoidable to account
for the dependence by specific corrections. This might, however, turn out to be
quite a difficult and messy task. Hence, it is tempting to seek for conditions
which ensure asymptotically the same behavior of certain statistics as known
from the i.i.d. setting.

Whereas long-range dependence usually leads to phenomena essentially dif-
ferent from those under independence, there seems to be some hope for asymp-
totic similarities to the independent case under short-range dependence. Some
commonly imposed conditions for weak dependence are strong (α-) mixing and
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absolute regularity (β-mixing). Provided the corresponding mixing coefficients
decay fast enough, commonly used nonparametric estimators converge with
the same rates as in the independent case; compare [19]. The fact that desir-
able properties of the estimators remain valid in the dependent case provides
a strong motivation for applying just the same estimation techniques as under
the assumption of independence. However, some important tools for statistical
inference require a more accurate knowledge of the asymptotic properties of
the underlying estimators. Assuming mixing and some additional, not very re-
strictive, condition on the boundedness of the joint densities of consecutive ran-
dom variables, it was shown in [39], [30] and [26] that certain nonparametric
estimators have actually the same asymptotic variance as in the independent
case. This phenomenon, which was described as “whitening by windowing” by
Hart, is in sharp contrast to what happens in (finite-dimensional) paramet-
ric problems. For example, the asymptotic variance of the mean of time-series
data does of course depend on the covariances as well. Results such as those of
[39], [30] and [26] on the pointwise behavior of nonparametric estimators allow
one, for example, to neglect the dependence structure when one establishes
pointwise confidence intervals for the density function. Such an effect was
also observed in [24], which showed that the mean integrated squared error
(MISE) of a kernel density estimator from a MA(∞)-process may be expanded
as the sum of the MISE of a kernel estimator based on an i.i.d. sample, plus
a term E�X−X1�

∫ �f′�2 which is O�n−1� under short-range dependence.
On the other hand, other problems of statistical inference require an even

stronger notion of asymptotic equivalence. For example, the construction of
simultaneous confidence bands or the determination of critical values for cer-
tain tests against a nonparametric alternative require knowledge about the
joint distribution of the nonparametric estimator used to define the corre-
sponding statistic. A first step in this direction has been done in [34]. The
authors characterized the asymptotic equivalence of nonparametric autore-
gression and nonparametric regression through a strong approximation of a
local polynomial estimator of the autoregression function by a local polyno-
mial estimator in an appropriate regression setup. However, the nonparamet-
ric autoregressive model automatically imposes certain structural conditions
on the data-generating process, which were essential for the approximation
method used. Since this restricts the applicability of such a method in prac-
tice, it would be very desirable to develop similar results without any such
structural assumptions.

In the present paper we show quite a surprising similarity between the ob-
servations that stem from a time-series model and a set of independent obser-
vations. Let X1� � � � �Xn be d-dimensional, weakly dependent random vectors
with a stationary density f. As a counterpart we consider i.i.d. random vec-
tors Y1� � � � �Yn with the same density. Let �n = �X1� � � � �Xn���Y1� � � � �Yn�
be the symmetric difference of both sets of observations. We show that there
exists, on a sufficiently rich probability space, a pairing of the random vari-
ables of both models, which preserves the respective joint distributions, such
that the following fact is true. With a probability exceeding 1 −O�n−λ�, the
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relation

#
(
�n ∩ �a� b�

) = O

({[
n1/2

d∏
i=1

�bi − ai�
]
+ 1
}

log�n�
)

is simultaneously satisfied for all hyperrectangles �a� b� = �a1� b1� × · · · ×
�ad� bd�, where λ < ∞ is an arbitrarily large constant. The link is achieved
by embedding both the random variables from the time-series model and the
i.i.d. model in a common Poisson process on �0�∞�× �d.

Let f̂h�x� = �nhd�−1∑n
i=1 K��x−Xi�/h�� and f̃h�x� = �nhd�−1∑n

i=1 K��x−
Yi�/h�� be kernel estimators of f�x�, where K is a compactly supported kernel
function. Then we see that, with a high probability,

sup
x

{
#
[
�n ∩ supp�K��x− ·�/h��]} = O

(
n1/2hd log�n�)�

and, therefore,

sup
x∈�d

{
f̂h�x� − f̃h�x�

} = O
(
n−1/2 log�n�)�

In view of the fact that supx�var�f̂h�x��� � �nhd�−1, we have a useful strong
approximation of the kernel estimator �f̂h�x��x∈�d by �f̃h�x��x∈�d .

As some interesting applications we construct simultaneous confidence
bands for f as well as tests based on the maximum absolute deviation between
the above kernel estimator f̂h and estimators corresponding to hypotheses of
lower-dimensional parametric or semiparametric structures. To determine the
required tuning parameters, that is, the width of the bands and the critical
value for the test, respectively, we propose two bootstrap methods, both devel-
oped under the assumption of independence.

2. The approximation scheme. The main goal in this section is to es-
tablish a link between density estimation under weak dependence and den-
sity estimation based on independent observations. This will be achieved in
a mainly constructive way, by embedding the random variables of both mod-
els in a common Poisson process indexed by time as well as spatial position
in �d. The seemingly quite involved problem of finding a global (in x) con-
nection between kernel estimators f̂h�x� and f̃h�x� in these models will be
reduced to a collection of one-dimensional problems, which can be analyzed
separately from each other. Hence, in contrast to many other papers on strong
approximations, the pleasant fact with our approximation method is that the
technical part of the calculations becomes quite elementary.

2.1. The model and basic assumptions. Assume we have d-dimensional
realizations X1� � � � �Xn of a stationary process with a stationary density f.
Let �

j
i = σ�Xi�Xi+1� � � � �Xj� be the σ-field generated by Xi� � � � �Xj .

Throughout the paper we use the letter C to denote a generic constant which
may attain different values at different places. Sometimes we use the let-
ters C1�C2� � � � for constants whose exact value is important in subsequent
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calculations. To obtain some kind of asymptotic equivalence to the case of
i.i.d. random variables, we impose the following conditions.

Assumption 1. The coefficient of absolute regularity (β-mixing coefficient)
is defined as

β�k� = sup
i

E sup
V∈� n

i+k

{�P�V �� i
1 � −P�V��}�

We suppose that the β�k� decay with an exponential rate, that is,

β�k� ≤ C exp�−C1k��

Assumption 2. Let fXi �� i−1
j

be the density of the conditional distribution
� �Xi �Xj� � � � �Xi−1�. We assume that there exist constants C2�C3 > 0 such
that

sup
i>γ+1

{
P
(

sup
x

{�fXi �� i−1
1
�x� − fXi �� i−1

i−γ
�x��} > C exp�−C2γ�

)}
≤ C exp�−C3γ�

holds for all γ ≥ 1 and

sup
i>1

sup
x∈�d

{
fXi �� i−1

1
�x�} ≤ C�

Remark 1. (i) Our assumption of exponentially decaying mixing coeffi-
cients is stronger than actually needed and can possibly be relaxed on the
expense of a slightly larger error in our approximation. Nevertheless, many
of the commonly used time series models describe processes which are geo-
metrically absolutely regular under natural conditions. For example, sufficient
conditions for geometric absolute regularity of multivariate MA(∞) processes
and ARMA processes can be easily read off from results of [37]; see also [31]
for geometric β-mixing of vector ARMA processes. This property was estab-
lished in [36] for generalized random coefficient autoregressive models and
bilinear models. Sufficient conditions are provided in [32], Theorem 2.1, for a
Markov chain to be geometrically β-mixing. This result was used in [2] to de-
rive sufficient conditions for a vector autoregressive process with conditional
heteroscedasticity given as

Xi+1 =m�Xi� + g�Xi�εi+1�

εi i.i.d., to be geometrically ergodic, which implies geometrical β-mixing if
the chain is stationary. In [17] this is extended to the case of not necessarily
identical distributions of the innovations which may also have compact sup-
port. A survey on available results concerning mixing properties of popular
time-series models is given in [9].

(ii) Some kind of mixing seems to be a minimal requirement which brings
the time series model close to an i.i.d. situation. This is, however, not enough
to get the desired asymptotic equivalence. We need some additional condition
which ensures that closely neighbored (in time) observations do not behave
too differently from an i.i.d. situation. Whereas [39], [30] and [26] imposed
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a condition on the boundedness of the joint densities, we set this slightly
stronger Assumption 2, which also reflects a rapidly decaying memory of the
process �Xi�.

2.2. Embedding the random variables in a common Poisson process. Now
we relate the random vectors X1� � � � �Xn from the above setup to i.i.d. random
vectors Y1� � � � �Yn having a density f. For that, we define on a sufficiently
rich probability space copies X′

1� � � � �X
′
n and Y′

1� � � � �Y
′
n with the same joint

distribution as X1� � � � �Xn and Y1� � � � �Yn, respectively. As the connecting
device, which determines both X′

1� � � � �X
′
n and Y′

1� � � � �Y
′
n, we use a Poisson

process N on �0�∞� × �d with an intensity function equal to the Lebesgue
measure. For details concerning the definition and construction of N, see [38],
Section 2.1. In contrast to Reiss, we use the equivalent formulation of a set-
valued process instead of a point measure-valued process. Furthermore, since
it is unlikely that this causes any confusion, we do not distinguish between
Xi and X′

i as well as Yi and Y′
i and denote the versions of these random

variables on the common probability space simply by Xi and Yi, respectively.
First we describe in detail how the Poisson process N is used to generate

the observations X1� � � � �Xn, retaining the joint distribution of these random
vectors. The embedding of Y1� � � � �Yn is completely analogous, since indepen-
dence is a special case of weak dependence.

A part of a realization of a Poisson process on �0�∞�×� is shown in Figure 1.

(i) Embedding of X1. Let ��Uj�Vj�� j = 1�2� � � �� denote a realization of
N, where Uj ∈ �0�∞� and Vj ∈ �d. The basic idea of how X1 is represented
by N�1� = N may be explained as follows: consider the graph �tfX1

�v�� v� of
the function gt�v� = tfX1

�v�, which spreads out, starting from �0� ×�d, with
a velocity proportional to fX1

�v�. We define

X1 = Vj1
�

where �Uj1
�Vj1

� is the first realization of N�1� hit by �tfX1
�v�� v� as t grows

from zero to infinity. In other words, we have

j1 = arg inf
{
Uj/fX1

�Vj�
}
�

Note that ��Uj/fX1
�Vj��Vj�� j = 1�2� � � �� is a Poisson process on �0�∞�×

�d with intensity function p�u� v� = fX1
�v�. Hence, it is clear that X1 has

just the desired density fX1
= f.

To explain the following steps in a formally correct way, we introduce stop-
ping times τ

�i�
v indexed by spatial position v ∈ �d, i = 0� � � � � n. Define

τ
�0�
v ≡ 0

and

τ
�1�
v = τ

�0�
v + [Uj1

/fX1
�Vj1

�]fX1
�v��
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Fig. 1. Realization of the Poisson process.

The process of determining �Uj1
�Vj1

� is sketched in Figure 2. For the pur-
pose of illustrating our embedding method, we generated a Gaussian time
series Xi = aXi−1 + εi, where εi ∼ N�0�1 − a2� are i.i.d. and a = 0�8. Then
�Uj1

�Vj1
� is marked by a star and the corresponding value of X1 is marked

by a circle. The graph of the stopping times τ
�1�
v is drawn as a solid line.

If we order ��Uj/fX1
�Vj��Vj�� j = 1�2� � � �� with respect to the first com-

ponent, we may alternatively construe this object as a marked Poisson point
process where the second argument has the density fX1

. If we denote the cor-
responding realizations of this process by �Sj�Wj�, S1 < S2 < · · ·, then X1 is
just equal to W1. By the strong Markov property of a marked Poisson point
process, the remaining part of N,

N�2� = {�Uj − τ
�1�
Vj
�Vj�

} ∩ (�0�∞�× �d
)
�

is again a Poisson process on �0�∞�× �d.

(ii) Embedding of Xi. Assume that X1� � � � �Xi−1 have already been em-
bedded in N, according to their conditional distributions � �Xk �Xk−1� � � � �

X1�. Moreover, assume that τ�1�v � � � � � τ
�i−1�
v are already defined. We embed Xi
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Fig. 2. Process of determining �Uj1
�Vj1

�.

in the remaining part of N, that is,

N�i� = {(Uj − τ
�i−1�
Vj

�Vj

)} ∩ (�0�∞�× �d
)
�

In other words, we use from the whole set of realizations ��Uj�Vj�� of N only

those from the subset ��Uj�Vj� �Uj > τ
�i−1�
Vj

�. By the strong Markov property

of the corresponding marked Poisson point process, N�i� is again a Poisson
process on �0�∞�× �d. Now we define

Xi = Vji
�

where

ji = arg inf
{�Uj − τ

�i−1�
Vj

�/fXi �� i−1
1
�Vj��Uj > τ

�i−1�
Vj

}
�

Further, we set

τ
�i�
v = τ

�i−1�
v + [(Uji

− τ
�i−1�
Vji

)/
fXi �� i−1

1
�Vji

)]
fXi �� i−1

1
�v��

The process of determining �Uj2
�Vj2

� is sketched in Figure 3; �Uj2
�Vj2

�
is marked by a star and the corresponding value of X2 is marked by a circle.
The graph of the stopping times τ

�2�
v is drawn as a solid line.
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Fig. 3. Process of determining �Uj2
�Vj2

�.

Finally, we obtain that

�X1� � � � �Xn� =
{
Vj �Uj ≤ τ

�n�
Vj

}
�(2.1)

(iii) Embedding of Y1� � � � �Yn. The embedding of Y1� � � � �Yn is completely
analogous to that of X1� � � � �Xn. Since � �Yi �Yi−1� � � � �Y1� = � �Y1�, we
have to deform the time axis only once.

Let ��T̃j� W̃j�� j = 1�2� � � �� be the marked Poisson point process corre-
sponding to ��Uj/f�Vj��Vj�� j = 1�2� � � ��. That is, we have in particular
T̃1 < T̃2 < · · · . Then we define

Yi = W̃i� i = 1� � � � � n�

We may introduce stopping times τ̃
�i�
v analogous to the τ

�i�
v ’s. We obtain τ̃

�n�
v =

T̃nf�v�, which implies that

�Y1� � � � �Yn� =
{
Vj �Uj ≤ τ̃

�n�
Vj

}
�(2.2)
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Fig. 4. X1�X2�X3 vs. Y1�Y2�Y3.

Figure 4 displays the first three realizations of the processes �Xi� (left side)
and �Yi� (right side).

Remark 2. (i) It may well happen that the Xi’s emerge in a different
chronological order than the Yi’s. Since the transition densities are usually dif-
ferent from the stationary density, the construction for the time-series model
“borrows” some probability mass assigned to future time points in the i.i.d.
model. This is just the reason why we introduce a “time axis” for our embed-
ding method.

(ii) Poisson processes are occasionally used to generate other stochastic pro-
cesses. A marked Poisson point process to generate a Poisson process with
random intensity is used in [6]. However, apart from the common fact in both
papers that a Poisson process is used to generate some other stochastic process,
both the purpose as well as the method of embedding in their paper are com-
pletely different from ours. The author is not aware of any other work where
time-series data are generated by a Poisson process in the way described here.

2.3. Approximation results. To get estimates for the number of elements of
�n that fall in certain hyperrectangles, we derive first an estimate for the dis-
tance between τ

�n�
v and τ̃

�n�
v , respectively, and their common expectation nf�v�.
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Since many assertions in this article are of the type that a certain random
variable is below some threshold with a high probability, we introduce the
following notation.

Definition 2.1. Let �Zn� be a sequence of random variables and let �αn�
and �γn� be sequences of positive reals. We write

Zn = Õ�αn� γn�
if

P��Zn� > Cαn� ≤ Cγn

holds for n ≥ 1 and some C <∞.

This definition is obviously stronger than the usual OP and it is well suited
for our particular purposes of constructing confidence bands and nonparamet-
ric tests; see its application in Section 3.

Further, we make throughout the paper the convention that δ > 0 will
denote an arbitrarily small and λ <∞ an arbitrarily large constant.

Lemma 2.1. Suppose Assumptions 1 and 2 are fulfilled. Then, for arbitrary
fixed v ∈ �d, ∣∣τ�n�v − nf�v�∣∣+ ∣∣τ̃�n�v − nf�v�∣∣ = Õ

(
n1/2 log�n�� n−λ)�

Whereas the pointwise (in v) similar behavior of τ�n�v and τ̃
�n�
v does not imply

anything essential, a uniform version of the result given in Lemma 2.1 will
finally yield the desired result about the difference set �n. To derive such a
uniform version, we impose the following smoothness condition on the condi-
tional densities.

Assumption 3. There exists some constant C <∞ such that

sup
i

sup
F∈� i−1

1

{∣∣fXi �F�v� − fXi �F�v′�
∣∣} ≤ C�v− v′��

Lemma 2.2. Suppose that Assumptions 1–3 are fulfilled. Then we have, for
any fixed hyperrectangle �a� b� = �a1� b1� × · · · × �ad� bd�, that

sup
v∈�a�b�

{∣∣τ�n�v − nf�v�∣∣+ ∣∣τ̃�n�v − nf�v�∣∣} = Õ
(
n1/2 log�n�� n−λ)�

Now we are in a position to relate both experiments to a common experiment
given by the restriction of N to

Sn =
{�u� v� ∣∣ 0 < u ≤ nf�v�� v ∈ �d

}
�

Let

�Z1� � � � �Zν� = �Vj �Uj ≤ nf�Vj���(2.3)
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We obtain estimates for the cardinality of the sets ��X1� � � � �Xn�� �Z1�
� � � �Zν�� ∩ �a� b� as well as ��Y1� � � � �Yn�� �Z1� � � � �Zν�� ∩ �a� b� from
Lemma 2.2 and an appropriate exponential inequality for Poisson processes.

Proposition 2.1. Suppose Assumptions 1–3 are fulfilled. Then, with a
probability exceeding 1−O�n−λ�,

#
{(�X1� � � � �Xn���Z1� � � � �Zν�

) ∩ �a� b�}
#
{(�Y1� � � � �Yn���Z1� � � � �Zν�

) ∩ �a� b�}
}

= O

({[
n1/2

d∏
i=1

�bi − ai�
]
+ 1
}

log�n�
)

holds simultaneously for all hyperrectangles �a� b� = �a1� b1� × · · · × �ad� bd�
with maxi�bi − ai� = O�nC�.

If additionally, P�X1 ∈ �a� b�� ≤ C
∏d

i=1��bi − ai� ∧ 1� is satisfied, then the
above assertion holds, with a probability exceeding 1−O�n−λ�, for all �a� b�.

Now we obtain, as an immediate consequence of Proposition 2.1, the desired
strong approximation of a kernel estimator f̂h in the time-series model by a
kernel estimator f̃h in the i.i.d. model. Let

f̂h�x� =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
and

f̃h�x� =
1

nhd

n∑
i=1

K

(
x−Yi

h

)
�

For simplicity we impose the following condition.

Assumption 4. The kernel K is supported on �−1�1�d and

sup
x

{�K�x��} ≤ K0�

It is obvious that, with a probability exceeding 1−O�n−λ�,∣∣f̂h�x� − f̃h�x�
∣∣

≤ K0

nhd
#
{(�X1� � � � �Xn���Y1� � � � �Yn�

)
∩ (�x1 − h�x1 + h� × · · · × �xd − h�xd + h�)}

= Õ
(�n−1/2 + �nhd�−1� log�n�� n−λ)

(2.4)

holds simultaneously for all x ∈ �d. This is formalized by the following
theorem.
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Theorem 2.1. Suppose Assumptions 1–4 are fulfilled. Then

sup
x∈�d

{∣∣f̂h�x� − f̃h�x�
∣∣} = Õ

([
n−1/2 + �nhd�−1] log�n�� n−λ)�

Now it becomes clear what we have achieved by our embedding of �X1�
� � � �Xn� and �Y1� � � � �Yn� in a common Poisson process: the seemingly quite
difficult task of getting a uniform (in x) approximation of f̂h�x� by f̃h�x� is
reduced to the technically much simpler task of proving a pointwise result as
in Lemma 2.1.

3. Application to simultaneous confidence bands and nonparamet-
ric tests. Theorem 2.1 in Section 2 provides an approximation of a kernel
estimator in the time-series model by a kernel estimator in an i.i.d. model. Be-
sides the more fundamental message that weak dependence is asymptotically
negligible, the practical significance lies on the possibility of transfering meth-
ods of inference originally developed under the assumption of independence
to the case of weakly dependent random variables. As two important applica-
tions, we propose in this section confidence bands and supremum-type tests
based on a bootstrap approximation of the distribution of the L∞-distance be-
tween f̂h and Ef̂h. We did not attempt to develop versions of these methods
based on asymptotic theory. Although, at least in the one-dimensional case,

the process ��f̂h�x� −Ef̂h�x��/
√

var�f̂h�x���x∈�a� b� can be well approximated
by a Gaussian process, the approximation of the supremum of the modulus
of this Gaussian process by its limit, as proposed by [5], converges with the
very slow rate �log�n��−1; compare [20]. In contrast, it will be shown that the
bootstrap approximation converges with a certain algebraic rate.

3.1. Two bootstrap proposals. We consider two methods of bootstrapping
the empirical process: the standard bootstrap and the smoothed bootstrap.
Both versions were proposed in [12] in the context of i.i.d. observations.

Denote by Pn the empirical distribution based on �X1� � � � �Xn�. In the stan-
dard bootstrap, we draw with replacement n independent bootstrap resamples
X∗

1� � � � �X
∗
n. That is, the unknown distribution P is replaced by its empirical

analog Pn. In the smoothed bootstrap, we draw n independent bootstrap re-
samples X

∗� g
1 � � � � �X

∗� g
n from a smoothed version Pn�g of Pn. Here Pn�g is the

distribution function which corresponds to the kernel estimate

f̂g�x� =
1

ngd

n∑
i=1

L

(
x−Xi

g

)
of f�x�. We use the letters L and g to indicate that one may use a kernel and
a bandwidth different from K and h, respectively. It will turn out that there
is very much freedom for the choice of g.

A discussion about the relative merits of the standard bootstrap and the
smoothed bootstrap as well as some examples may be found in [12], [13],
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[41], [23], [14] and [15]. A survey is given in [21], Appendix IV. Roughly
speaking, smoothing does not improve the convergence rate of the bootstrap
estimate, if that estimate can be expressed as (or is well approximated by) a
smooth function of a vector sample mean. In other cases such as in estimating
the distribution of a quantile estimate, the smoothed bootstrap can signifi-
cantly outperform the unsmoothed one; compare [23] and [14]. Moreover, [15]
showed that the smoothed bootstrap is consistent w.r.t. the variational dis-
tance, whereas the unsmoothed one is merely correct w.r.t. the Kolmogorov–
Smirnov distance.

The derivation of asymptotic properties of the bootstrap methods goes again
via strong approximations. We begin with the smoothed bootstrap and con-
struct a pairing of �Y1� � � � �Yn� and �X∗� g

1 � � � � �X
∗� g
n �, which are both vectors

of i.i.d. random variables, as follows. First we draw n independent Bernoulli
random variables Bi ∼ Bernoulli�p�, where p = ∫ �f�x� ∧ f̂g�x��dx. If Bi =
1, then we generate Yi according to the density �f�x� ∧ f̂g�x��/p, and set
X
∗� g
i = Yi. If Bi = 0, then we draw independently Yi according to the density

�f�x� − �f�x� ∧ f̂g�x���/�1 − p� and X
∗� g
i with the density �f̂g�x� − �f�x� ∧

f̂g�x���/�1−p�. It is easy to see that Y1� � � � �Yn are i.i.d. with density f and
X
∗� g
1 � � � � �X

∗� g
n are i.i.d. with density f̂g. The next theorem shows that this

construction actually leads to a useful approximation of �f̂h�x�−Ef̂h�x��x∈�d

by �f̂ ∗� gh �x� −Ef̂
∗� g
h �x��x∈�d , where

f̂
∗� g
h �x� = 1

nhd

n∑
i=1

K

(
x−X

∗� g
i

h

)
�

Since the proofs of the assertions of this section use approximations of the
kernel estimators on fine grids, we impose the following additional conditions:

Assumption 5. The kernel K is Lipschitz continuous and of second order.

Assumption 6. The kernel L is Lipschitz continuous and of second order.
Moreover, L is supported on �−1�1�d and supx��L�x��� ≤ L0.

Theorem 3.1. Suppose Assumptions 1–6 are fulfilled. Let

µn = g2 + �ngd�−1/2
√

log�n��

Then there exists a pairing of the random variables X1� � � � �Xn and X
∗� g
1 � � � � �

X
∗� g
n such that

sup
x∈�d

{∣∣�f̂h�x� −Ef̂h�x�� − �f̂ ∗� gh �x� −Ef̂
∗� g
h �x��∣∣}

= Õ
(
n−1/2 log�n� + �nhd�−1 log�n� + �nhd�−1/2µ1/2

n

√
log�n�� n−λ

)
�
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Now we turn to the standard bootstrap. Here �f̂h�x� −Ef̂h�x��x∈�d is ap-
proximated by �f̂ ∗�0

h �x� −Ef̂
∗�0
h �x��x∈�d , where

f̂
∗�0
h �x� = 1

nhd

n∑
i=1

K

(
x−X∗

i

h

)
�

In contrast to the case of the smoothed bootstrap, the distributions P and Pn

are actually orthogonal. Hence, there is no hope of finding a pairing of both
experiments such that enough random variables from them coincide. However,
obviously one can define a pairing of �X∗� g

1 � � � � �X
∗� g
n � and �X∗

1� � � � �X
∗
n� such

that �X∗� g
i −X∗

i� ≤
√
dg for all i. Hence, for g � h, f̂ ∗�0

h �x� is well approxi-
mated by f̂

∗� g
h �x�, which finally provides the desired strong approximation of

�f̂h�x� −Ef̂h�x��x∈�d by �f̂ ∗�0
h �x� −Ef̂

∗�0
h �x��x∈�d .

Theorem 3.2. Suppose Assumptions 1–5 are fulfilled. Then there exists a

pairing of the random variables X1� � � � �Xn and X
∗�0
1 � � � � �X∗�0

n such that

sup
x∈�d

{∣∣�f̂h�x� −Ef̂h�x�� − �f̂ ∗�0
h �x� −Ef̂

∗�0
h �x��∣∣}

= Õ
(
n−1/2 log�n� + �nhd�−1 log�n�

+ �nhd�−1/2
√

log�n� inf
g

{
�ngd�−1/2

√
log�n� + g/h

}
� n−λ

)
�

In order to assess the significance of the above strong approximation results
for the desired approximation of the distribution of the maximum absolute
deviation of f̂h from its expectation, we still need an upper bound for the
probabilities that this supremum falls into small intervals.

Proposition 3.1. Suppose Assumptions 1–5 are fulfilled.

P
(

sup
x∈�d

{∣∣f̂h�x� −Ef̂h�x�
∣∣} ∈ �c� d�)

= O
(
�d− c��nhd�1/2�log�n��1/2 + h log�n� + �nhd�−1/4�log�n��5/4

+ hd/2�log�n��3/2 + �nhd�−1/2�log�n��3/2
)
�

This estimate will finally imply, in conjunction with Theorems 2.1, 3.1
and 3.2, the validity of the bootstrap for the supremum functional. We apply
this to the construction of simultaneous confidence bands and nonparametric
tests in the following two subsections.

3.2. Simultaneous confidence bands. Confidence bands are an important
universal tool which provide some impression about the exactness of a non-
parametric estimator. Similarly to nonparametric tests, they can indicate
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whether there is empirical evidence for certain conjectured features of the
curve.

There already exists a considerable amount of literature on the construction
of confidence bands in the context of independent observations. Work on si-
multaneous confidence bands in nonparametric density estimation dates back
to the seminal paper [5], which used a first-order asymptotic approximation of
the distribution of the supremum of a certain Gaussian process that approx-
imates the deviation of the kernel estimator from its mean. The use of the
bootstrap to determine an appropriate width for confidence bands for a uni-
variate density was proposed in [16] on a heuristic level and investigated in
more detail by [22]. One of the main messages in [20] and [22] is that the ap-
plication of the bootstrap leads to much smaller errors in coverage probability
than the approach of [5].

In contrast to the papers mentioned above, we consider confidence bands
of uniform size rather than bands with a varying size, proportional to

�var�̂̂fh�x���1/2. The latter bands seem to be somewhat more natural and they
work well as long as they are restricted to some compact set on which the
density f is bounded away from zero. One has to exclude regions where the
density is low, because the performance of the bootstrap approximation deteri-
orates there. Such a truncation is not necessary with uniform bands, because
then the problematic regions are automatically faded out.

Let t∗α be the �1 − α�-quantile of the distribution of supx��f̂ ∗� gh �x� −
Ef̂

∗� g
h �x���, that is,

P
(

sup
x∈�d

{∣∣f̂ ∗� gh �x� −Ef̂
∗� g
h �x�∣∣} > t∗α

∣∣∣X1� � � � �Xn

)
= α�(3.1)

For simplicity, we restrict the following considerations to the smoothed boot-
strap. Using Theorem 3.2 instead of Theorem 3.1, one may derive results
similar to the following theorems for t∗α based on the standard bootstrap.

Let Kh be the smoothing operator defined by

Kh�f��x� =
∫ 1
hd

K

(
x− z

h

)
f�z�dz�(3.2)

Although statisticians usually focus on confidence intervals or bands for the
density itself, we consider first simultaneous confidence bands for Kh�f�. The
reason is that this problem is much easier to deal with, and with bands for
Kh�f� we have also more freedom to choose h. Theorems 2.1 and 3.2 and
Proposition 3.1 imply the following theorem.

Theorem 3.3. Suppose Assumptions 1–6 are fulfilled. Then

P
(
Kh�f��x� ∈

[
f̂h�x� − t∗α� f̂h�x� + t∗α

]
for all x ∈ �d

)
= 1− α+O

(
hd/2�log�n��3/2 + �nhd�−1/2�log�n��3/2 + µ

1/2
n log�n�

+ h log�n� + �nhd�−1/4�log�n��5/4
)
�



DENSITY ESTIMATION UNDER WEAK DEPENDENCE 2029

If

h = o
(�log�n��−��3/d�∨1�)�(3.3)

�nhd�−1 = o
(
log�n��−5)(3.4)

and

µn = o
(�log�n��−2)�(3.5)

then the confidence band will have asymptotically the prescribed coverage
probability for Kh�f�. Certain qualitative features of f such as unimodality
or monotonicity in some region remain valid for the smoothed version Kh�f�
under mild regularity assumptions on the kernel K. Hence, the confidence
band for Kh�f� can also be used as a criterion to assess whether there is
enough evidence for such a feature. This is, of course, closely related to the
formal test proposed in Section 3.3.

Since density estimation is an ill-posed inverse problem, there are certain
limitations for any kind of pointwise inference about f�x�. For example, one
cannot consistently distinguish between two densities that differ only on an
interval shrinking at a sufficiently fast rate. This is in some way reflected in
the bias problem one necessarily encounters in the construction of confidence
bands for f. Nevertheless, there seems to be considerable interest in such
bands, because they provide an easily accessible quantitative characterization
of the precision of a nonparametric estimator.

To determine the width of the confidence band, we will use again the �1−α�-
quantile t∗α of the bootstrapped maximum absolute deviation of the density
estimator from its mean. We will obtain an asymptotically correct coverage
probability, if the bias of f̂h is of smaller order of magnitude than its standard
deviation. Hence, the nominal coverage probability is asymptotically attained
for an undersmoothed estimator f̂h, which, however, excludes the usual mean-
squared-error optimal choice of h.

Theorem 3.4. Suppose Assumptions 1–6 are fulfilled. Then

P
(
f�x� ∈ �f̂h�x� − t∗α� f̂h�x� + t∗α� for all x ∈ �d

)
= 1− α+O

(
hd/2�log�n��3/2 + �nhd�−1/2�log�n��3/2 + µ

1/2
n log�n�

+ h log�n� + �nhd�−1/4�log�n��5/4 + h2�nh�1/2�log�n��1/2
)
�

We see from this theorem that the confidence band has asymptotically the
desired coverage probability, if, besides (3.3), (3.4) and (3.5),

h2 = o
(�nhd�−1/2�log�n��−1/2)(3.6)

is satisfied. (3.6) means that we have to undersmooth in order to make the
bias of f̂h, which was not mimicked by the bootstrap, negligible. A well-known
alternative consists in an explicit bias correction, which allows then also band-
widths h = hn decaying at the mean-squared-error optimal rate n−1/�4+d�.
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We do not dwell on the effect of a data-driven bandwidth choice which is
important for a real application of this method. Usually data-driven band-
widths ĥ are designed to approximate a certain nonrandom bandwidth hn. If
�ĥ−hn�/hn converges at an appropriate rate, then the estimators f̂ĥ and f̂hn

are sufficiently close to each other such that the results obtained in this paper
remain valid; see [33] for a detailed investigation of these effects for pointwise
confidence intervals in nonparametric regression.

3.3. A nonparametric test. Tests against a nonparametric alternative are
an important tool to assess the appropriateness of a parametric or a semipara-
metric model. In contrast to classical tests such as the Kolmogorov–Smirnov
or the Cramér–von Mises test, our density-based test is more powerful for
local deviations from the assumed model. Moreover, by considering the supre-
mum statistic, we exploit the whitening-by-windowing principle, which allows
one to neglect the dependence structure. We allow for a composite hypothesis,
that is,

H0� f ∈ � �

where the only requirement is that the functional class � allows a faster rate
of convergence than the full nonparametric model. We will assume:

Assumption 7. There exists an estimator ̂̂f of f such that, for f ∈ � ,

sup
x∈�d

{∣∣∣∣∫ h−dK
(
x− z

h

)[ ̂̂
f�z� − f�z�]dz∣∣∣∣}

= oP
(�nhd�−1/2�log�n��−1/2)�

Note that Assumption 7 is in particular fulfilled if

sup
x∈�d

{∣∣ ̂̂f�x� − f�x�∣∣} = oP
(�nhd�−1/2�log�n��−1/2)�

In the case d = 1, this includes some parametric models,

� = �fθ� θ ∈ 7��
In the higher-dimensional case, one may test for parametric but also for cer-
tain semiparametric models such as a multiplicative nonparametric model
that corresponds to the assumption that the components of the Xi’s are inde-
pendent,

� =
{
f�x� =

d∏
i=1

fi�xi�
∣∣∣∣fi “sufficiently smooth”

}
�

or a semiparametric model proposed in [18],

� =
{
f�x� = f0�x�

M∏
i=1

fi�α′ix�
∣∣∣∣fi “sufficiently smooth”

}
�
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In accordance with our theory above, we consider the maximum absolute

deviation between f̂h and Kh� ̂̂f�, that is,

T = sup
x∈�d

{∣∣∣∣f̂h�x� −
∫
h−dK

(
x− z

h

)̂̂
f�z�dz

∣∣∣∣}�
The next theorem shows that the prescribed error of the first kind is asymp-
totically guaranteed.

Theorem 3.5. Suppose Assumptions 1–7 as well as (3.3), (3.4) and (3.5)
are fulfilled. Then

PH0
�T > t∗α� → α as n→∞�

Remark 1. It seems that L2-tests such as those proposed by [5] for the den-
sity and by [25] in the regression setup, are the most popular ones among non-
parametric statisticians. Such tests can be optimal for testing against smooth
alternatives, whereas supremum-type tests have less power in such a situa-
tion. On the other hand, supremum-type tests can also outperform L2-tests
for testing against local alternatives having the form of sharp peaks; see [28]
and [42] for more details.

The methodology in this paper is obviously restricted to supremum-type
tests. The negligibility of weak dependence for L2-tests is proved in [43] and
[35] by arguments different from those in the present paper.

4. Discussion.

4.1. Mixing plus extra conditions on joint densities. By now, strong mixing
and absolute regularity have been accepted as being benchmark conditions
to characterize weak dependence. A lot of effort has been devoted to show
that estimation problems under weak dependence allow the same rates of
convergence as under independence.

However, as we see in this paper, as well as in [39], [30] and [26], suitable
extra conditions on the joint densities lead to qualitatively much stronger
results: then we obtain asymptotic equivalence on the level of constants. In
many instances, such an extra condition is not very restrictive and leads to
an immediate applicability of important statistical methods developed under
the assumption of independence.

4.2. Does a multiscale approach lead to a better approximation? In many
cases one obtains better rates for strong approximations by a multiscale ap-
proach based on a dyadic partition of the interval of interest. A classical exam-
ple is the construction in [27]. A dyadic approximation scheme has also been
employed in [34] for constructing a strong approximation of nonparametric
autoregression by nonparametric regression. The simultaneous consideration
of different resolution scales makes sense for the above examples, because the
relative approximation rate deteriorates as one moves to smaller intervals.



2032 M. H. NEUMANN

However, in our context, the possibility of approximating density estima-
tors under weak dependence by density estimators under independence is
essentially based on the “whitening-by-windowing” principle. Therefore, the
relative approximation rate becomes even better for finer scales. It seems to
be unlikely that a multiscale approach leads to better approximation rates
between kernel estimators from both models.

4.3. Optimality of the approximation. Our basic result (Proposition 2.1)
is stronger than usual as well as stronger than necessary. For our particular
purpose of constructing a strong approximation of kernel estimators it is not
necessary at all that most of the observations coincide. Therefore, it is nat-
ural to ask whether our pairing on the level of exact coincidence of random
variables is actually an appropriate method.

However, it seems that our pairing is indeed the closest possible between
nonparametric estimators in both models, perhaps up to some logarithmic
factor. Suppose, for example, that f has support �0�1� and we have such a
pairing of �X1� � � � �Xn� with �Y1� � � � �Yn� that the corresponding histogram
estimators satisfy

sup
k=1� ���� �h−1�+1

{�nh�−1[#�i �Xi ∈ ��k− 1�h�kh�� − #�i �Yi ∈ ��k− 1�h�kh��]}
= Õ

(
rn� n

−λ)�
Let X̃i = h�Xi/h� and Ỹi = h�Yi/h�. Then

n−1/2
[∑

i

X̃i −
∑
i

Ỹi

]

= n−1/2
�h−1�+1∑
k=1

�k− 1�h
[
#�i �Xi ∈ ��k− 1�h�kh��

− #�i �Yi ∈ ��k− 1�h�kh��
]

= Õ
(
n1/2rn� n

−λ)�
If rn were of order o�n−1/2�, then the asymptotic distributions of n−1/2∑ X̃i

and n−1/2∑ Ỹi would coincide, which is not necessarily the case under our
conditions. Hence, although it is not impossible that one can find a closer
pairing of the nonparametric estimators at one single point, it seems that
there does not exist an essentially better approximation in the uniform norm.

4.4. Are these nonstandard proofs really necessary? Compared to existing
literature on similar topics, the methods of proof in this paper are somehow
nonstandard. In particular, all proofs are based on certain constructive pair-
ing techniques instead of the commonly used first-order approximation by the
supremum of the limiting Gaussian process. This is done for the following two
reasons: First, a purely analytical derivation of the asymptotic distribution
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of the maximal deviation between f̂h and its expectation is presumably very
technical and neither pleasant for the author nor for the reader. Second, it is
well known that first-order asymptotic theory leads to poor rates of conver-
gence in this context. Once we had used such an approximation at any point,
we were not able to prove that the bootstrap actually leads to better rates of
convergence.

There exists an extensive literature on strong approximations for empirical
cumulative distribution functions by certain Gaussian processes. For example,
[8] and [11] showed for absolutely regular processes that the cumulative dis-
tribution function can be approximated by a Gaussian process with an error
of order n−1/2−λ, for a certain λ > 0. Such a result can also be used to show
that a kernel density estimator is approximated by a certain Gaussian pro-
cess. However, in dependence on the value of λ, there are limitations for the
significance of such results. Kernel estimators with small bandwidths h will
require more localized approximations.

4.5. Two stages of generating time-series data. The successful simultane-
ous embedding of time-series data and i.i.d. data in a common Poisson process
provides a new view on the generation of random variables from stochastic
processes. Actually, our embedding shows that the generation of each new da-
tum can be construed as a two-stage process: first, the influence of the past is
reflected by the specific manner in which the graphs �tfXi �� i−1

1
�x�� x� spread

out as t→∞; and second, the remaining uncertainty can be driven by an in-
dependent process. The result of our embedding procedure is comparable to a
result in an i.i.d. situation because the determining conditions are on average
the same as those for the i.i.d. counterpart. This has of course similarities to
well-known embeddings of martingales in Wiener processes, which then lead
to strong approximations by partial sum processes of i.i.d. random variables.

4.6. Alternative bootstrap methods. Even if the effect of the dependence
vanishes asymptotically, it is still present in higher order terms. Instead of
neglecting it, one could also try to mimic the dependence structure by the
bootstrap. One standard tool is the blockwise bootstrap introduced in [29]. In
[7] it is shown that the blockwise bootstrap consistently estimates the dis-
tribution of a multivariate empirical process based on α-mixing observations,
and this result is applied to a nonlinear estimator of a finite-dimensional pa-
rameter. On the other hand, the blockwise bootstrap requires the estimation
of many more features of the data-generating process, which in turn leads to
new fluctuations of the resulting estimates. It seems to be an important and
challenging task to explore by how much such an approach can improve the
rate of approximation.

4.7. Existing results for nonparametric estimation in the supremum norm.
There already exists some literature on density estimation under weak depen-
dence where the error is measured in the uniform norm. Under appropriate
α- or β-mixing conditions, it has been shown that appropriate kernel estima-
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tors can attain the same rate of uniform convergence that is optimal in the
i.i.d. case; see [45], [44], [3] and [4]. The proofs of these results are based on
blocking techniques which allow one to replace dependent blocks of observa-
tions by independent ones. For our purpose of constructing confidence bands
and supremum-type tests we need more exact approximations of the distribu-
tion of the supremum deviation, which requires a different method of proof.

4.8. Other nonparametric estimators. The whitening-by-windowing princi-
ple, even in its global version described in this article, is closely connected with
the occurence of rare events. It is quite obvious that it also applies to a vari-
ety of other nonparametric estimators such as histogram estimators, smoothed
histogram estimators or linear wavelet estimators, provided the correspond-
ing analogue to the bandwidth in kernel estimation tends to zero. Moreover,
although first-order asymptotics of empirical versions of the Fourier coeffi-
cients does depend on the dependence structure, one can show that certain
Fourier series estimators also obey the whitening-by-windowing principle. To
be specific, suppose it is known that supp�f� ⊆ �0�1�, which gives rise to the
following Fourier series estimator:

f̂n�x� = 1+
∞∑
k=1

rk
[
ĉk cos�2πkx� + ŝk sin�2πkx�]�

where ĉk = n−1∑2 cos�2πkXi� and ŝk = n−1∑2 sin�2πkXi�. Assume further
that 1 ≥ r1 ≥ r2 ≥ · · · and

∑
k �rk� = O�cn�. It is easy to see that f̂n can be

rewritten as

f̂n�x� = 1+ n−1
n∑

i=1

∞∑
k=1

rk2 cos�2πk�x−Xi���

The kernel Kn�x� z� = 1 +∑ rk2 cos�2πk�x − z�� does not have a shrinking
support, however, by using the well-known fact

∑N
k=1 cos�2πku� = cos�π�N+

1�u� sin�πNu�/ sin�πu�� it can be shown that∑
s� −1−1/cn<�s−1�/cn<1

sup
�s−1�/cn≤x−z≤s/cn

{∣∣Kn�x� z�
∣∣} = O

(
cn log�cn�

)
�

Hence, we obtain analogously to the proof of Theorem 2.1 a strong approxi-
mation of f̂n by its analogue f̃n in the i.i.d. model

sup
x∈�0�1�

{∣∣f̂n�x� − f̃n�x�
∣∣} = Õ

(�n−1/2 log�n� + n−1cn log�n��� n−λ)�
5. Proofs.

Proof of Lemma 2.1. Define

Ti =
(
Uji

− τ
�i−1�
Vji

)/
fXi �� i−1

1
�Vji

��
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We split up

τ
�n�
v =

n∑
i=1

TifXi �� i−1
1
�v� = nf�v� +R1 +R2�(5.1)

where

R1 =
n∑

i=1

Ti

[
fXi �� i−1

1
�v� − fXi �� i−1

i−γn
�v�]�

R2 =
n∑

i=1

[
TifXi �� i−1

i−γn
�v� − f�v�]

and γn is chosen such that γn ≥ max�log�n�/�4C2�� λ log�n�/C3�, γn =
O�log�n��, where C2 and C3 are given by Assumption 2. According to As-
sumption 2, we have that

sup
v

{∣∣fXi �� i−1
1
�v� − fXi �� i−1

i−γn
�v�∣∣} = Õ�n−1/4� n−λ��(5.2)

It is easy to see that the vector �T1� � � � �Tn� is independent of �X1� � � � �Xn�
and that Ti ∼ Exp�1� are i.i.d. [To see this, consider for a moment the sit-
uation where we start with independent vectors �T̃1� � � � � T̃n� and �X̃1� � � � �

X̃n�, where T̃i ∼ Exp�1� are i.i.d. and � �X̃i � X̃i−1 = xi−1� � � � � X̃1 = x1� =
� �Xi �Xi−1 = xi−1� � � � �X1 = x1�. Now we easily see that the conditional
distributions � ��Ti�Xi� � �Ti−1�Xi−1�� � � � � �T1�X1�� and � ��T̃i� X̃i� � �T̃i−1�

X̃i−1�� � � � � �T̃1� X̃1�� coincide, which implies that �T1� � � � �Tn� and �X1� � � � �
Xn� are actually independent.]

R1 is a weighted sum of the Ti’s, where �T1� � � � �Tn� is independent of
the weights ��fXi �� i−1

1
�v� − fXi �� i−1

i−γn
�v��� i = 1� � � � � n�. Hence, we obtain by

Theorem 4 of [1] that

P

(
�R1� ≥ κ

√∑[
fXi �� i−1

1
�v� − fXi �� i−1

i−γn
�v�]2√log�n�

∣∣∣X1� � � � �Xn

)
= Õ�n−κ2/2� n−λ�

holds for arbitrary κ <∞ and uniformly in X1� � � � �Xn. This implies that

R1 = Õ
(
n1/2

√
log�n�� n−λ

)
�(5.3)

To estimate R2, we consider blocks of observations �Xj�j ∈ Ji�, where Ji =
��i−1�ρn−γn+1� � � � � iρn� and ρn ≥ �λ+1� log�n�/C1+γn−1, ρn = O�log�n��.
Without loss of generality, we consider the blocks with odd numbers. Note that
we have

β
(
σ��Xj�j ∈ Ji��� σ��Xj�j ∈ Jk�� k = i+ 2� i+ 4� � � ��)
≤ C exp�−C1�ρn − γn + 1���
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By Proposition 2 of [10], page 407, there exists a sequence of indepen-
dent blocks �X̃j� j ∈ Ji�, i odd, where the X̃j’s are independent of the Tj’s,
� ��X̃j� j ∈ Ji�� = � ��Xj�j ∈ Ji��, and

P
(�X̃j� j ∈ Ji� != �Xj�j ∈ Ji�

) ≤ C exp
(−C1�ρn − γn + 1�)

= O�n−λ−1��
(5.4)

Now we have

var
( iρn∑
j=�i−1�ρn+1

TjfX̃j � X̃j−1�����X̃j−γn
�v�
)

≤ ρn

iρn∑
j=�i−1�ρn+1

var
(
TjfX̃j � X̃j−1�����X̃j−γn

�v�)�
which implies, again by Theorem 4 of [1], that

∑
i odd

iρn∑
j=�i−1�ρn+1

(
TjfXj �� i−1

i−γn
�v� − f�v�)

= Õ


√√√√ρn

∑
i odd

iρn∑
j=�i−1�ρn+1

var
(
TjfXj �� i−1

i−γn
�v�)√log�n�� n−λ


= Õ

(
n1/2 log�n�� n−λ)�

An analogous result can be shown for the blocks with even numbers, which
implies, in conjunction with (5.4), that

R2 = Õ
(
n1/2 log�n�� n−λ)�(5.5)

The proof of the assertion about τ̃�n�v is analogous, which completes the proof. ✷

Proof of Lemma 2.2. We prove the assertion only for supv∈�a� b���τ�n�v −
nf�v���. Let �n = �v1� � � � � vγn� be an n−1/2-net for the hyperrectangle �a� b� of
cardinality #�n = γn = O�nd/2�. It is clear from Lemma 2.1 that

sup
1≤j≤γn

{∣∣τ�n�vj − nf�vj�
∣∣} = Õ

(
n1/2 log�n�� n−λ)(5.6)

holds. Let v ∈ �a� b� be arbitrary. Then there exists a j�v� ∈ �1� � � � � γn� such
that �v − vj�v�� = O�n−1/2�. Since the Ti are i.i.d., we have according to [1],
Theorem 4, that

n∑
i=1

Ti = O�n� + Õ
(
n1/2

√
log�n�� n−λ

)
�
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Because of supi supv��fXi �� i−1
1
�v� − fXi �� i−1

1
�vj�v���� = O�n−1/2�, we have that∣∣τ�n�v − τ

�n�
vj�v�

∣∣ ≤ n∑
i=1

Ti

∣∣fXi �� i−1
1
�v� − fXi �� i−1

1
�vj�v��

∣∣
= Õ

(
n1/2� n−λ

)
�

(5.7)

which yields, in conjunction with �f�v�−f�vj�v��� = O�n−1/2�, the assertion. ✷

Proof of Proposition 2.1. (i) Proof of the assertion for fixed �a� b�.
Let �n1 = �X1� � � � �Xn���Z1� � � � �Zν�. According to Lemma 2.2, we have

that

�n1 ∩ �a� b� ⊆
{
Vj ∈ �a� b�

∣∣nf�v� −Cλn
1/2 log�n� ≤ Uj ≤ nf�v�

+Cλn
1/2 log�n�}

holds with a probability exceeding 1 − O�n−λ�, where Cλ is an appropriate
constant. To get an estimate for the cardinality of the latter set, we apply an
exponential inequality to the restriction ND of the Poisson process N to

D = {�u� v�∣∣nf�v� −Cλn
1/2 log�n� ≤ u ≤ nf�v� +Cλn

1/2 log�n�� v ∈ �a� b�}�
It is clear that ND is a Poisson process with intensity µ�D� = O�n1/2 log�n�∏�bi − ai��.

If µ�D� ≥ �8/3�λ log�n�, then we obtain by Inequality 14.5.1 on page 569
and Proposition 11.1.1(10) on page 441 in [40] that

P
(
ND > 2µ�D�) ≤ exp

(
−µ�D�

2
ψ�1�

)
≤ exp

(
−µ�D�

2
3
4

)
= O�n−λ��(5.8)

If µ�D� < �8/3�λ log�n�, then we obtain, again by inequality 14.5.1 and Propo-
sition 11.1.1(10) of [40], that

P

(
ND − µ�D� > 8

3
λ log�n�

)
≤ exp

(
−��8/3�λ log�n��2

2µ�D� ψ

( �8/3�λ log�n�
µ�D�

))
≤ exp

(
−��8/3�λ log�n��2

2µ�D�
3
4

µ�D�
�8/3�λ log�n�

)
= O�n−λ��

(5.9)

Inequalities (5.8) and (5.9) imply

#
(
�n1 ∩ �a� b�

) = Õ

([
n1/2

( d∏
i=1

�bi − ai�
)
+ 1
]

log�n�� n−λ
)
�(5.10)

(ii) Uniformity over the set of all �a� b� with maxi�bi−ai� ≤ CnC. Let Fk be
the cumulative distribution function of the kth component of X1. We consider
the hyperrectangles

Is� t = �u�1�s1 � u
�1�
t1
� × · · · × �u�d�sd � u

�d�
td
��
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where 0 ≤ sk < tk ≤ n, u�k�s = F−1
k �s/n�, F−1

k �0� = −∞ and F−1
k �1� = ∞.

(Without loss of generality, we prove the assertion for the case that the Fk are
continuous. The result in the general case follows by simple modifications of
the arguments.)

Since the number of these hyperrectangles is of an algebraic order, we ob-
tain from (5.10) that

#
(
�n1 ∩ Is� t

) = Õ

([
n1/2

d∏
k=1

(
u
�k�
tk
− u

�k�
sk

)+ 1
]

log�n�� n−λ
)

(5.11)

holds for all s� t with maxk�u�k�tk
− u

�k�
sk � ≤ CnC.

Now we consider the slices

I
�k�
j = �−∞�∞�k−1 × [F−1

k

(
u
�k�
j−1

)
�F−1

k

(
u
�k�
j

))× �−∞�∞�n−k�
Since they are of unbounded size, we cannot use (5.10) to estimate the cardi-
nality of the sets �n1 ∩ I

�k�
j . However, since P�X1 ∈ I

�k�
j � = O�n−1� , we can

find sufficiently small upper estimates via exponential inequalities.
For i.i.d. random variables Z1� � � � �Zn with EZ1 = 0 and �Z1� ≤ Kn we

obtain by Bernstein’s inequality (see, e.g., [40], page 855)∑
Zi = Õ

(√
n var�Z1�

√
log�n� +Kn log�n�� n−λ

)
�(5.12)

Using this in conjunction with the same blocking technique as in the proof of
Lemma 2.1, we obtain

#
(�X1� � � � �Xn� ∩ I

�k�
j

) = ∑
i odd

[ iρn∑
l=�i−1�ρn+1

I
(
Xl ∈ I

�k�
j

)]+ ∑
i even

�· · ·�

= Õ
(
log�n�� n−λ)�

(5.13)

Further, we obtain from (5.8) and (5.9) that

#
(�Z1� � � � �Zν� ∩ I

�k�
j

) = Õ
(
log�n�� n−λ)�(5.14)

According to (5.11), (5.13) and (5.14), there exists a set of events Dn with
P�Dn� = 1−O�n−λ�,

#��n1 ∩ Is� t� ≤ C

[
n1/2

d∏
k=1

�u�k�tk
− u

�k�
sk � + 1

]
log�n�

for all s� t with maxk�u�k�tk
− u

�k�
sk � ≤ CnC, and

#
(
�n1 ∩ I

�k�
j

) ≤ C log�n��
Let now �a� b� be arbitrary with maxk�bk − ak� ≤ CnC. Then there exist s� t
such that

Is� t ⊆ �a� b� ⊆ Is� t ∪
( d⋃
k=1

I
�k�
sk ∪ I

�k�
tk+1

)
�
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which implies, for ω ∈ Dn,

#
(
�n1 ∩ �a� b�

) ≤ #��n1 ∩ Is� t� +
d∑

k=1

#
(
�n1 ∩ �I�k�sk ∪ I

�k�
tk+1
�)

≤ C

[
n1/2

( d∏
k=1

�bk − ak�
)
+ 1
]

log�n��
(5.15)

(iii) Uniformity over all hyperrectangles. Under the additional condition
P�X1 ∈ �a� b�� ≤ C

∏d
i=1��bi − ai� ∧ 1�� we have that

u
�k�
j+1 − u

�k�
j ≥ Cn−1/2�

If �a� b� contains some Is� t with max�u�k�tk
− u

�k�
sk � ≥ nd/2, then

d∏
k=1

�bk − ak� ≥
d∏

k=1

(
u
�k�
tk
− u

�k�
sk

) ≥ Cn1/2�

In this case (5.15) is trivially fulfilled. Otherwise the assertion follows from
(ii).

Finally, since independence is a special case of weak dependence, the second
part of the assertion concerning �Y1� � � � �Yn���Z1� � � � �Zν� is also proved. ✷

Proof of Theorem 3.1. It is easy to show that

sup
x∈�d

{∣∣f̂g�x� − f�x�∣∣} = Õ�µn�n
−λ��(5.16)

We show in this proof that there exists a pairing of the random variables
Y1� � � � �Yn and X

∗� g
1 � � � � �X

∗� g
n such that

sup
x∈�d

{∣∣�f̃h�x� −Ef̃h�x�� − �f̂ ∗� gh �x� −Ef̂
∗� g
h �x��∣∣}

= Õ
(
�nhd�−1/2µ1/2

n

√
log�n� + �nhd�−1 log�n�� n−λ

)
�

(5.17)

The assertion of the theorem follows then in conjunction with Theorem 2.1.
Since Yi =X

∗� g
i if Bi = 1, we have[

f̃h�x� −Ef̃h�x�
]− [f̂ ∗� gh �x� −Ef̂

∗� g
h �x�]

= 1
nhd

∑
i

{
I�Bi = 0�

[
K

(
x−Yi

h

)
−K

(
x−X

∗� g
i

h

)]

−
∫
K

(
x− z

h

)[
f�z� − f̂g�z�

]
dz

}
�

(5.18)
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To estimate the right-hand side of (5.18), we distinguish between two sets
of hypercubes Ik = ��k1 − 1�h�k1h� × · · · × ��kd − 1�h�kdh�:

�1 =
{
k

∣∣∣∣ ∫
Ik

∣∣f̂g�z� − f�z�∣∣dz ≥ n−τ
}
�

�2 =
{
k

∣∣∣∣ ∫
Ik

∣∣f̂g�z� − f�z�∣∣dz < n−τ
}
�

where τ > λ+ 1. The cardinality of the set �1 is O�nτ�.
First we investigate the case of x ∈ � = ⋃k∈�1

⋃
x∈Ik supp�K��· − x�/h���.

Let �n = �x1� � � � � xcn
� be an n−1-net of � , where cn = O�nd+τ�. Because of

var
([
f̃h�x� −Ef̃h�x�� − �f̂ ∗� gh �x� −Ef̂

∗� g
h �x�])

= O

(
n�nhd�−2

∫
supp�K��x−·�/h��

∣∣f�z� − f̂g�z�
∣∣dz) = O

(�nhd�−1µn

)
�

we obtain by (5.12) that

sup
x∈�n

{∣∣[f̃h�x� −Ef̃h�x�
]− [f̂ ∗� gh �x� −Ef̂

∗� g
h �x�]∣∣}

= Õ
(
�nhd�−1/2µ1/2

n

√
log�n� + �nhd�−1 log�n�� n−λ

)
�

(5.19)

Let x ∈ � be arbitrary. Then there exists a j�x� ∈ �1� � � � � cn� such that
�x− xj�x�� = O�n−1�. Since∣∣f̃h�x� − f̃h�xj�x��

∣∣+ ∣∣f̂ ∗� gh �x� − f̂
∗� g
h �xj�x��

∣∣ = O
(
h−dn−1)

is satisfied with probability 1, we have that

sup
x∈�

{∣∣[f̃h�x� −Ef̃h�x�
]− [f̂ ∗� gh �x� −Ef̂

∗� g
h �x�]∣∣}

= Õ
(
�nhd�−1/2µ1/2

n

√
log�n� + �nhd�−1 log�n�� n−λ

)
�

(5.20)

Concerning the set �2, we show, analogously to the corresponding part of
the proof of Proposition 2.1, that

sup
k∈�2

{
#
(�Y1� � � � �Yn���X∗� g

1 � � � � �X∗� g
n �) ∩ Ik

} = Õ
(
log�n�� n−λ)�

which implies

sup
x !∈�

{∣∣�f̃h�x� −Ef̃h�x�� − �f̂ ∗� gh �x� −Ef̂
∗� g
h �x��∣∣}

= Õ
(�nhd�−1 log�n�� n−λ)�(5.21)

Equations (5.20) and (5.21) imply (5.17), which yields the assertion in con-
junction with Theorem 2.1. ✷
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Proof of Theorem 3.2. As already mentioned, we cannot use the idea of
the proof of Theorem 3.1, because the probability measures P and Pn are
orthogonal. However, we may exploit the pairing of X1� � � � �Xn and X

∗� g
1 � � � � �

X
∗� g
n used for proving Theorems 2.1 and 3.1 as an intermediate step to show

the closeness of �f̂h�x�−Ef̂h�x�� and �f̂ ∗�0
h �x�−Ef̂

∗�0
h �x��. In addition to this

paring we pair the X
∗�0
i ’s with the X

∗� g
i ’s in such a way that∥∥X∗�0

i −X
∗� g
i

∥∥ ≤ √dg(5.22)

holds with probability 1. Since then

K

(
x−X

∗�0
i

h

)
−K

(
x−X

∗� g
i

h

)
= O

(
g

h

)
�

we obtain by an approximation on a sufficiently fine grid that

sup
x∈�d

{∣∣[f̂ ∗�0
h �x� −Ef̂

∗�0
h �x�]− [f̂ ∗� gh �x� −Ef̂

∗� g
h �x�]∣∣}

= O
(
�nhd�−1/2�g/h�

√
log�n�� n−λ

)
�

This yields, in conjunction with Theorem 3.1, that

sup
x∈�d

{∣∣[f̂h�x� −Ef̂h�x�
]− [f̂ ∗�0

h �x� −Ef̂
∗�0
h �x�]∣∣}

= O
(
n−1/2 log�n� + �nhd�−1 log�n�

+ �nhd�−1/2
√

log�n�
[
�ngd�−1/2

√
log�n� + g/h

]
� n−λ

)
� ✷

Proof of Proposition 3.1. Upper estimates for Poisson probabilities. Be-
fore we turn directly to the proof of the assertion, we first derive some technical
results to be applied in the main part of this proof.

Let Ps��k�� = e−ssk/k! be a Poisson probability. Let k = s ± s1/2
√
rs log�s�

be an integer. Then we obtain by formula 11.9.19 in [40], page 486, that

Ps��k�� =
exp�−a�k��√

2πs

1√
1± s−1/2

√
rs log�s�

× exp
(
−−rs log�s�

2
ψ
(
±s−1/2

√
rs log�s�

))
�

where 1/�12k + 1� < a�k� < 1/�12k�. Using the estimate for ψ��̇ given in
Proposition 11.1.1(10) in [40], page 441, we get, for an appropriate cλ,

Ps��k�� = O�s−λ� if �k− s� ≥ s1/2
√
cλ log�s��(5.23)
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For k < s+ s1/2
√
cλ log�s� we obtain that

Ps��k� k+ 1� � � ���
Ps��k��
= 1+ s

k+ 1
+ s

k+ 1
s

k+ 2
+ · · ·

≥
[(

s

cλ log�s�
)1/2]( s

s+√scλ log�s� + [√s/�cλ log�n��]
)�√s/�cλ log�s���

≥
[(

s

cλ log�s�
)1/2](

1−
√
scλ log�s� +√s/�cλ log�s��

s

)�√s/�cλ log�s���

≥ C
√
s/ log�s��

(5.24)

Analogously we get, for k > s− s1/2
√
cλ log�s�, that

Ps��k� k− 1� � � ���
Ps��k��

= 1+ k

s
+ k

s

k− 1
s

+ · · ·

≥
[(

s

cλ log�s�
)1/2](s−√scλ log�s� −√s/�cλ log�s��

s

)�√s/�cλ log�s���

≥ C
√
s/ log�s��

(5.25)

Equations (5.23) and (5.24) imply

Ps��k�� ≤ Cλ

[√
log�s�/sPs��k� k+ 1� � � ��� + s−λ

]
�(5.26)

and (5.23) and (5.25) yield

Ps��k�� ≤ Cλ

[√
log�s�/sPs��k� k− 1� � � ��� + s−λ

]
(5.27)

for all k ∈ �.
(ii) Some preparatory considerations. We consider instead of f̂h the artificial

quantity

f̄h�x� =
1

nhd

ν∑
i=1

K

(
x−Zi

h

)
�(5.28)

where �Z1� � � � �Zν� were defined by (2.3).
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The crucial point is that f̄h is based on a Poisson process instead of an em-
pirical process. Therefore, f̄h�x1� and f̄h�x2� are independent, if the supports
of the corresponding kernels are disjoint.

We decompose the �d into nonoverlapping hypercubes of sidelength 2h;
that is,

Ik =
[
2�k1 − 1�h�2k1h

)× · · · × [2�kd − 1�h�2kdh
)
�

Further, we divide the set �d into 2d subsets,

�l =
{
k = �k1� � � � � kd� �ki = 2ji + li� ji ∈ �

}
�

where l = �l1� � � � � ld� ∈ �0�1�d. We fix l and consider

Zl = sup
k∈�l

sup
x∈Ik

{∣∣f̄h�x� −Ef̂h�x�
∣∣}�

It can be seen from the following considerations that

P
(
Zl < Cλ�nhd�−1/2�log�n��1/2) = O�n−λ�(5.29)

holds for sufficiently small Cλ.
Let

µk = sup
x∈Ik

{∫
h−dK

(
x− z

h

)
f�z�dz

}
�

Similarly to the considerations in the proof of Proposition 2.1, we can show
that

P
(

sup
k� µk<µ̄

sup
x∈Ik

{∣∣f̄h�x� −Ef̂h�x�
∣∣} ≥ Cλ�nhd�−1/2�log�n��1/2

)
= O�n−λ��

(5.30)

for some µ̄ sufficiently small. Hence, with a probability exceeding 1−O�n−λ�,
the supremum Zl will be attained on one of the intervals Ik with µk ≥ µ̄. Let

�k1� � � � � kρl
� = {k ∈�l �µk ≥ µ̄

}
�

(iii) Decomposition of f̄h�x� −Ef̂h�x�. Let

�k = Ik ⊕ supp
(
K

(
x− ·
h

))
= [�2k1 − 3�h� �2k1 + 1�h)× · · · × [�2kd − 3�h� �2kd + 1�h)�



2044 M. H. NEUMANN

Further, let Zk
i be the ith variable of Z1� � � � �Zν that falls into �k, and let

ν̂k = #�1 ≤ i ≤ ν � Zi ∈ �k� be the number of them. Then

f̄h�x� =
1

nhd

ν̂k∑
i=1

K

(
x−Zk

i

h

)
�

Let νk = Eν̂k = nP�Z1 ∈ �k�.
Now we have, for x ∈ Ik, that

f̄h�x� −Ef̂h�x�

= 1
nhd

ν̂k∑
i=1

[
K

(
x−Zk

i

h

)
− 1

P�Z1 ∈ �k�
∫
K

(
x− z

h

)
f�z�dz

]

+ 1
nhd

ν̂k − νk
P�Z1 ∈ �k�

∫
K

(
x− z

h

)
f�z�dz

= 1
nhd

ν̂k − νk
P�Z1 ∈ �k�

1
�Ik�

∫
Ik

∫
K

(
x− z

h

)
f�z�dzdx

+ 1
nhd

�νk�∑
i=1

[
K

(
x−Zk

i

h

)
− 1

P�Z1 ∈ �k�
∫
K

(
x− z

h

)
f�z�dz

]

+ 1
nhd

ν̂k − νk
P�Z1 ∈ �k�

{∫
K

(
x− z

h

)
f�z�dz

− 1
�Ik�

∫
Ik

∫
K

(
x− z

h

)
f�z�dz

}

+ 1
nhd

{ ν̂k∑
i=1

�· · ·� −
�νk�∑
i=1

�· · ·�
}

= Tk1 +Tk2�x� +Rk1�x� +Rk2�x��

(5.31)

The main purpose of this decomposition was to split f̄h�x�−Ef̂h�x� into a term
Tk1 proportional to the Poisson variable ν̂k ∼ Pνk

, a term �Tk2�x��x∈Ik inde-
pendent of Tk1, and two asymptotically negligible terms, Rk1�x� and Rk2�x�.

(iv) Proof of the assertion. Next we show that

P
(

sup
k∈�l

�Tk1 +Tk2� ∈ �c� d�
)
= O

(
�d− c��nhd�1/2

√
log�n� + n−λ

)
�(5.32)

where

Tk2 = sup
x∈Ik

�Tk2�x���
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We keep for a moment �Tk2�k∈�l
fixed. Since the Tk1’s are independent of

the Tk2’s, we obtain, by (5.26), that

P
(

sup
k∈�l

�Tk1 +Tk2� ∈ �c� d�
∣∣∣Tk1�2� � � � �Tkρl

�2

)
≤ P

(
Tk1�1 ∈ �c−Tk1�2� d−Tk1�2�

)
+P

(
Tk2�1 ∈ �c−Tk2�2� d−Tk2�2�'Tk1�1 < c−Tk1�2

)+ · · ·
+P

(
Tkρl

�1 ∈ �c−Tkρl
�2� d−Tkρl

�2�' Tk1�1 < c−Tk1�2� � � � �

Tkρl−1�1 < c−Tkρl−1�2
)

≤ �d− c��nhd�1/2
√

log�n�{P(Tk1�1 > c−Tk1�2
)+ � � �

+P
(
Tkρl

�1 > c−Tkρl
�2'Tk1�1 ≤ c−Tk1�2� � � � �Tkρl−1�1 ≤ c−Tkρl−1�2

)}
+O�n−λ�

= O

(
�d− c��nhd�1/2

√
log�n�

×P
(

sup
k∈�l

�Tk1 +Tk2� > c
∣∣∣Tk1�2� � � � �Tkρl

�2

))
+O�n−λ�

= O
(
�d− c��nhd�1/2

√
log�n� + n−λ

)
�

Integrating over all realizations for Tk1�2� � � � �Tkρl
�2, we get (5.32).

Since f is Lipschitz, we easily obtain that

sup
x∈Ik

��Rk1�x��� = Õ
(
�nhd�−1/2h

√
log�n�� n−λ

)
�(5.33)

Because of ν̂k − �νk� = Õ��nhd�1/2�log�n��1/2� n−λ�, we can readily show that

sup
x∈Ik

��Rk2�x��� = Õ
(�nhd�−3/4�log�n��3/4 + �nhd�−1 log�n�� n−λ)�(5.34)

By (5.31) to (5.34) we obtain, with κn = C��nhd�−1/2h�log�n��1/2
+ �nhd�−3/4�log�n��3/4�, that

P
(
Zl ∈ �c� d�

)
≤ P

(
sup
k∈�l

�Tk1 +Tk2� ∈ �c− κn�d+ κn�
)
+O�n−λ�

= O
(�d− c��nhd�1/2�log�n��1/2 + h log�n� + �nhd�−1/4�log�n��5/4)�

(5.35)
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By analogous considerations, where we only have to use (5.27) instead of (5.26),
we obtain

P
(

inf
k∈�l

inf
x∈Ik

{
f̄h�x� −Ef̂h�x�

} ∈ �−d�−c�)
= O

(�d− c��nhd�1/2�log�n��1/2 + h log�n� + �nhd�−1/4�log�n��5/4)�(5.36)

This implies

P
(

sup
x∈�d

{�f̄h�x� −Ef̂h�x��
} ∈ �c� d�)

≤ ∑
l∈�0�1�d

P
(

sup
k∈�l

sup
x∈Ik

{�f̄h�x� −Ef̂h�x��
} ∈ �c� d�)+O�n−λ�

= O
(�d− c��nhd�1/2�log�n��1/2 + h log�n� + �nhd�−1/4�log�n��5/4)�

(5.37)

Using

sup
x∈�d

{�f̄h�x� − f̂h�x��
} = Õ

(�n−1/2 + �nhd�−1� log�n�� n−λ)�
we obtain the assertion. ✷

Theorems 3.3, 3.4 and 3.5 are straightforward implications of Theorem 3.1
and Proposition 3.1. We omit these proofs.
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[7] Bühlmann, P. (1994). Blockwise bootstrapped empirical process for stationary sequences.
Ann. Statist. 22 995–1012.

[8] Dhompongsa, S. (1984). A note on the almost sure approximation of the empirical process
of weakly dependent random vectors. Yokohama Math. J. 32 113–121.

[9] Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statist. 85. Springer,
New York.



DENSITY ESTIMATION UNDER WEAK DEPENDENCE 2047

[10] Doukhan, P., Massart, P. and Rio, E. (1995). Invariance principles for absolutely regular
empirical processes. Ann. Inst. H. Poincaré Probab. Statist. 31 393–427.
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