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We develop a nonparametric Bayes factor for testing the fit of a
parametric model. We begin with a nominal parametric family which we
then embed into an infinite-dimensional exponential family. The new
model then has a parametric and nonparametric component. We give the
log density of the nonparametric component a Gaussian process prior. An
asymptotic consistency requirement puts a restriction on the form of the
prior, leaving us with a single hyperparameter for which we suggest a
default value based on simulation experience. Then we construct a Bayes
factor to test the nominal model versus the semiparametric alternative.
Finally, we show that the Bayes factor is consistent. The proof of the
consistency is based on approximating the model by a sequence of expo-
nential families.

1. Introduction. Many statistical analyses begin with the assumption
that the data are generated from a distribution that belongs to a finite-di-
mensional parametric model. Usually, the model is only an approximation
and is used mainly for convenience. It is thus important to check the fit of the
assumed model and, when the fit is poor, replace the nominal model with a
more flexible one. There exist many frequentist methods for checking fit.

Ž . Ž .Recent examples include Dumbgen 1998 , Eubank and LaRiccia 1992 ,¨
Ž . Ž . Ž .Hardle and Mammen 1993 , Hart 1997 and Inglot and Ledwina 1996 ,¨

among others. These tests generally posit a parametric null against an
infinite-dimensional alternative. However, Bayesian methods for testing a
parametric model against an infinite-dimensional alternative are lacking and
it seems reasonable to see how such a test can be constructed. This paper
proposes such a test. Of course, this test can also be used as a frequentist
test. Although we examine some of the frequentist properties of the test, we
leave more detailed questions about comparisons with other methods to
future work.
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Our aim is to construct a nonparametric alternative model MM to a given1
parametric model MM and to find the Bayes factor0

�Pr MM Data Pr MMŽ .Ž .0 0
B � � .

�Pr MM Data Pr MMŽ .Ž .1 1

The Bayes factor can be used directly as a test of fit. Alternatively, one can
make inferences using a mixture of the two models. For example, predictions
of a future observation can be based on

� � �Pr Y � y Data � Pr Y � y Data, MM Pr MM DataŽ . Ž . Ž .0 0

� �� Pr Y � y Data, MM Pr MM Data .Ž . Ž .1 1

Ž � .However, the latter require one to find Pr MM Data , which is a function of B.0
In either case, one must find B. Thus, our focus will be on B without regard
to whether the ultimate goal is testing or model averaging.

Most Bayesian methods for assessing the fit of parametric models gener-
ally fall into three categories. The first category consists of informal methods,

� Ž .such as predicting deleted observations Gelfand, Dey and Chang 1992 ,
Ž .� �Gelfand and Dey 1994 which, though simple, are difficult to justify Raftery

Ž .�1992 and are not guaranteed to lead to an asymptotically consistent test.
The second consists of p-values and related techniques, perhaps cast in some

Ž . Ž .partially Bayesian way. Examples include Box 1980 , Good 1967, 1992 ,
Ž . Ž . Ž .Rubin 1984 , Gelman, Meng and Stern 1996 and Meng 1994 . Again, the

simplicity of these procedures is appealing, but they are difficult to interpret
in a Bayesian framework. A third approach, which we use in this paper, is to
embed the parametric family in a larger family, which we call the extended

Ž .model. For example, Box and Tiao 1973 , Chapter 3, embedded the normal
family within the power exponential family. This family has an extra parame-

Ž .ter � and the normal corresponds to � � 0. Neyman 1937 proposed an
Ž .exponential family extension of the nominal model; see also Ledwina 1994

Ž .and Rayner and Best 1990 . This is the approach we follow. A criticism of
this third approach is that the larger model could itself be wrong. We address

Ž .this problem by using an infinite-dimensional nonparametric model, thus
making the extended model nonparametric. We test the nominal model using

Ž .a Bayes factor approach. Delampady and Berger 1990 consider Bayes
factors for testing fit based on partitioning the real line. Kass and Raftery
Ž .1995 discuss Bayes factors in greater detail; see also Berger and Pericchi
Ž . Ž .1994 and O’Hagan 1995 .

To implement the method, we need to construct a specific extended model.
There are many infinite-dimensional models used in Bayesian inference such

� Ž .�as Dirichlet processes Ferguson 1973 , mixtures of Dirichlet processes
� Ž .� � Ž .�Antoniak 1974 , Polya trees Lavine 1994 and Gaussian and log Gauss-´

� Ž . Ž . Ž .ian processes Barron 1998 , Lenk 1988, 1991 , Leonard 1978 , Thorburn
Ž .�1986 . Alternatively, one may use high-dimensional parametric families

� Ž . Ž .such as mixtures of normals Diebolt and Robert 1994 , Nobile 1994 ,
Ž . Ž .�Roeder and Wasserman 1995 , West 1992 . We use a log Gaussian process
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built from orthogonal polynomials. This model was used in a different context
Ž . Ž . Ž .in Barron 1988 , Barron and Sheu 1991 , Barron and Cover 1991 and

Ž .Crain 1974, 1976 . Briefly, our approach is as follows.
We begin with a random variable U on the unit interval. We model the log

density of this random variable as an infinite series of orthogonal polynomi-
als. We then place Gaussian priors on the coefficients of the polynomials. The
prior variances of the coefficients die off rapidly to ensure consistency of both
the density estimate and the Bayes factor. The log density is thus a Gaussian

�Ž . � Ž .process as in Barron 1988 , Section 8 , Lenk 1988, 1991 and Leonard
Ž .1978 . Next, we perform an inverse integral transform using the original

�1Ž .parametric family; that is, we set Y � F U where � is the parameter of�

the nominal model. The result is a semiparametric family focused around the
parametric family F . Although previous authors have used inverse integral�

transforms to transfer the distribution to the unit interval, it seems that this
transformation is usually assumed to be known. Instead, we allow parame-
ters in the transformation. In our formulation, gross features of the distribu-
tion such as location and scale are picked up parametrically, and the non-
parametric component accommodates deviations from the parametric model.
If a fixed inverse integral transform is used, then the nonparametric part
must also estimate location and scale. In a sense, this places a much greater
burden on the nonparametric component of the analysis. We also discuss a

Ž .simple approximation based on a method of Brunk 1978 .
Obviously, it is not possible to carry out computations with the infinite-

dimensional model, so in practice, we truncate the infinite series at a fixed
number of terms m. However, the theory still works even when m is infinite.
We have found it is usually not necessary to let m be very large; often taking
m � 5 to m � 10 suffices.

Other authors have built nonparametric models around parametric mod-
Ž .els. Some recent approaches are discussed in Hjort 1994 , Hjort and Glad

Ž . Ž . Ž .1994 and Hjort and Jones 1994 . Efron and Tibshirani 1995 consider a
method which might be seen as the dual of our method. They start with a
nonparametric estimate, such as a kernel density estimate, and multiply this
by a correction factor consisting of a parametric exponential family. In
contrast, we multiply a parametric component by an infinite dimensional
Ž . Ž .nonparametric exponential family. Evans and Schwartz 1994 construct a
family consisting of a normal times a polynomial. A related idea is discussed

Ž .in Geweke 1989 . All these papers emphasize density estimation. We know of
none that deal with Bayes factors for testing fit.

Our approach may also be viewed as a Bayesian version of Neyman’s
Ž .1937 smooth goodness-of-fit test against uniformity. Neyman used a finite-
dimensional exponential family as an alternative against the uniform. This
test has further been developed in a frequentist setting by many people;
recent results along with a review of the literature are given in Ledwina
Ž . Ž .1994 and Rayner and Best 1990 . However, it appears that little has been
done in the way of formal Bayesian goodness-of-fit testing using Bayes

Ž .factors. Delampady and Berger 1990 discuss a Bayesian goodness-of-fit test
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obtained by dividing the real line into a finite partition and then using a
multinomial model. This is an important step forward but still leaves open

Ž .many questions such as the choice of partition. Bayarri 1985 used a one-
parameter extension model together with a decision theoretic framework in
place of a Bayes factor approach.

We present the model in Section 2 and we discuss the construction of the
priors in Section 3. The prior has a hyperparameter that acts as a smoothing
parameter. A further prior is placed on this parameter so that the data can
adaptively choose the amount of smoothing. We choose the prior variances so
that nonparametric consistency is guaranteed for a large class of densities.
We completely specify the prior apart from a single hyperparameter. We then
suggest a default value for the hyperparameter based on simulation experi-
ence. In Section 4 we consider methods for computing the posterior. In
Section 5 we discuss the Bayesian goodness-of-fit test. Like all Bayesian tests,
ours has the virtue that it quantifies evidence for and against the nominal
model in contrast to frequentist tests, which can only reject a nominal model.
In Section 6 we discuss density estimation. We study some examples and
simulations in Section 7. In Section 8 we show that the Bayes factor and the
density estimate are consistent. In Section 9 we give some closing remarks.

Before proceeding, we need to say a word about the purpose of simulation
studies and consistency results in Bayesian inference. We believe that non-
parametric Bayesian methods have not become popular partly because the
user needs to specify numerous hyperparameters on a case-by-case basis.
This renders the methods impractical. Indeed, some papers on Bayesian
nonparametric inference present examples where the hyperparameters are
tuned specifically for each example. We think it is important to provide
suggested default values for the hyperparameters so that the prior is com-
pletely specified. Moreover, it is also important to provide at least some
simulation evidence that the method works reasonably well under a variety
of conditions as well as theoretical results to show good large sample behav-
ior.

From a strict Bayesian point of view, the sampling properties of a Bayesian
procedure are not relevant and the hyperparameters should be chosen subjec-
tively. From a more pragmatic perspective, poor sampling properties suggest

� Ž .�that the model or prior is not well chosen Diaconis and Friedman 1986 . We
acknowledge that some statisticians may object to choosing the hyperparame-
ters of a prior this way, but we feel it is simply impractical to choose them

Ž .subjectively. Berger and Bernardo 1989 argue that frequentist behavior of
Bayes procedures is useful in choosing priors.

2. Extending a parametric model. Consider a family of distributions
� Ž � . 4 Ž � .FF � F � � : � � � and let Y be a random variable such that Y � F � � . We

refer to FF as the nominal model. We begin by reexpressing the distribution
for Y in the following way:

�1 �1 Y � F U � where U � UU 0, 1 and � � � .Ž . Ž . Ž .
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� Ž � . 4 � � Ž � .Let GG � G � � ; � � S be a family of distributions on 0, 1 and let G � � be0
Ž .the uniform 0, 1 distribution which we assume is a member of GG. Here, S is

the parameter space for � . We use GG to model departures from the family FF

Ž .and we refer to GG as the extended model. Specifically, we replace 1 with

�1 � �2 Y � F U � where U � G � � , � � � and � � S.Ž . Ž . Ž .
Ž . Ž � . Ž Ž � . � .From 2 , the distribution function for Y is H y � , � � G F y � � and,

Ž � . Ž � . Ž � . Ž � .assuming F y � has density f y � and G u � has density g u � , the
density for Y is

� � � �3 h y � , � � f y � g F y � � .Ž . Ž . Ž . Ž .Ž .
Thus, the new density is simply the product of the original density and a
perturbation factor. The new family of distribution functions is

� � �4 HH � H � � , � � G F � � � ; � � � , � � S ,� 4Ž . Ž .Ž . Ž .
which we call the hybrid of FF and GG. Of course, the nominal model FF is
contained as a special case when � � � .0

For GG we use an infinite-dimensional exponential family considered by
Ž . Ž .Barron 1988 and Lenk 1988, 1991 . The family is based on orthogonal

Ž .series which has been used in many different settings; see Brunk 1978 ,
Ž . Ž . Ž .Wahba 1981 , Whittle 1958 and the book by Tarter and Lock 1993 .
� 4Let � , � , � , . . . , be a sequence of bounded, orthonormal functions on0 1 2

� �0, 1 with respect to Lebesgue measure where � � 1. In what follows, any0
basis could be used. In our implementation we use Legendre polynomials. The
polynomials have been rescaled to live on the unit interval and to have mean
0 and variance 1 with respect to the uniform probability. In other words,

˜ ˜Ž . Ž . � �'� u � 2 j � 1 � 2u � 1 where � are defined on �1, 1 byj j j

1 d j
j2�̃ x � x � 1 .Ž . Ž .j j j2 j! dx

Ž .Let � � � , � , . . . and define1 2

�

�5 g u � � exp � � u � c � ,Ž . Ž . Ž .Ž . Ý j j½ 5
j�1

Ž . 1 � Ž .4where c � � log H exp Ý � � u du. The choice of prior for � is important;0 j j j
we discuss this in Section 3.

Ž . Ž .Barron and Sheu 1991 consider the model in 5 but with the summation
extending only to a finite number of terms m. Then they let m increase with

Ž .sample size n thus creating a sieve in the sense of Grenander 1981 , and
they obtain the best rates of convergence for the sieve maximum likelihood

Ž .estimator. The infinite-dimensional version is considered in Barron 1988 .
Although we do not pursue them here, we now briefly mention some

alternatives. First, one can put a prior on m and include m as a parameter in
the estimation procedure. Asymptotically, this is the same as using the
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� Ž .� Ž .Schwartz criterion Schwartz 1978 to choose m; Barron and Cover 1991
discuss this possibility. Still another alternative is to let 0 � m � M where
M grows at an appropriate rate and a prior is placed on m with support
� 41, . . . , M . This combines the sieve idea with the Bayesian approach and has
the advantage of allowing the choice of dimension to be data dependent.

The methods in this paper are very general and can be applied to any
parametric model. For concreteness, we shall mostly concern ourselves with

Ž � . �1� 4�1�2 � Ž .2 2 .4the normal family. Thus we take f x � � 	 2
 exp � x � � �2	
Ž .where � � �, � and � � log 	 .

3. The prior. In this section we discuss the choice of prior. We shall take
Ž � . Ž .� and � to be independent, that is, p � � � p � . This is a nontrivial

assumption and there are good reasons for thinking it may be inappropriate.
Ž .However, the crucial part of the prior is p � so we shall content ourselves

with the independence assumption. The prior for � seems not to be too
important and we shall use standard reference priors. In the normal, writing

Ž . �� � �, � where � is the mean and 	 � e is the standard deviation, we use
Ž .p �, � 	 1.

The prior for � is more important. Since nonzero values of � representj
deviations from the nominal model, it seems reasonable to use priors that are
symmetric, unimodal and centered at 0. Note that had we not allowed the
inverse integral transform to have free parameters, we could not interpret
the coefficients this way, and the construction of a reasonable prior would be
much more difficult. For simplicity, we take � , � , . . . , to be independent.1 2
The orthogonality of the polynomials � , � , . . . suggests that independence1 2

Ž 2 . Ž .is reasonable. A natural choice is � � N 0,  . Thus, Ý � � u is a Gaussianj j j j j
process. One guiding principle in choosing  is to require some sort ofj

Žconsistency. One possibility is to require that the predictive density which is
.the Bayes estimate of the unknown density under a variety of loss functions

be consistent, in the sense that it converges in total variation distance, with
probability 1, to the true density p, for a large class of p’s. Based on work of

Ž .Barron 1988 , a sufficient condition for consistency of the predictive distribu-
Ž Ž � �. Ž .tion is E exp � b � � exp a for some � � 0 where b is the supremum ofk k k k

� 4the derivative of the kth Legendre polynomial and a ; k � 1, 2, . . . is ank
absolutely summable sequence; see Section 8. We achieve this consistency by

3�� Ž . jfixing � � 0 and choosing  � �c where c � j or c � 1 � � . Alterna-j j j j

Žtively, we might require consistency of the Bayes factor. The Bayes factor is
.defined in Section 5. We show in Section 8 that consistency of the Bayes

8�� Ž . jfactor is implied by c � j or c � 1 � � . For the numerical results ofj j
this paper we used c � 2 j.j

The parameter  controls the amount of smoothing. Rather than fixing this
value, we have found it better to add a further stage to the model by placing a
prior on  and letting the data choose the amount of smoothing. Doing so has
another important benefit: treating  as an unknown parameter simplifies

Ž . Ž .the goodness-of-fit test. For, instead of testing � , � , . . . � 0, 0, . . . , we1 2
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now only need to test  � 0. In Section 5, we show that there is a simple
method for doing this one-dimensional test.

Ž .Finally, we need a prior p  for  . We would like a prior that decreases
Ž .monotonically from 0. Further, it is important that p 0 be finite and strictly

greater than 0 at  � 0; otherwise it may not make good sense to test  � 0.
Ž . 2We choose p  to be a normal distribution with mean 0, variance w ,

truncated to the positive part of the real line. This leaves only the choice of w.
Our numerical experience, documented in Section 7, suggests that w � 1
works well. With w specified, the prior is now completely determined and
requires no subjective input.

4. The posterior. We now need to obtain the posterior distribution of
Ž . Ž .� ,� ,  given Y � y where Y � Y , . . . , Y and y � y , . . . , y . For computa-1 n 1 n

tion, we truncate the infinite sums to m. By a direct application of Bayes’
Ž � .theorem, the posterior has a density p � ,  , � y , . . . , y on the space � �1 n

��� � m given by

� � �p � ,  , � y , . . . , y 	 f y � g u �Ž . Ž . Ž .Ł Ł1 n i i
i i

m
�m 2 2 2�  exp � c � � 2Ž .Ý j j½ 5

j�1

6Ž .

� exp � 2� 2w2Ž .Ž .

Ž � .where u � F y � . When the nominal family is normal, and the priori i
Ž . Ž .p �, � 	 1 is used, 6 becomes

�p � , � ,  , � y , . . . , yŽ .1 n

1 22	 exp �n� exp � n � 1 s � n y � �Ž . Ž . Ž .½ 52 exp 2�Ž .
m

T �m 2 2 2� exp n � � � c �  exp � c � � 2Ž . Ž .Ýž / j j½ 5
j�1

� exp � 2� 2w2 ,Ž .Ž .
2 T Ž .where y is the sample mean, s is the sample variance, � � � , . . . , �1 m

�1 n Ž .and � � n Ý � u .j i�1 j i
Ž � .Computing p � ,  , � y is intractable so we shall draw a random sample

from the posterior using Markov chain Monte Carlo. This technique has now
become quite standard and has been discussed in so many contexts that we

Ž .shall not go into detail; some key references are Tanner and Wong 1987 ,
Ž . Ž .Gelfand and Smith 1990 and Tierney 1994 .
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To draw from the posterior we use a Metropolis algorithm embedded in a
Ž .Gibbs sampling scheme. Let � � log  . At the ith step in the algorithm we

draw

Ž i. � Ž i�1. Ž i�1. Ž i�1. Ž i�1.� � p � � , � , � , . . . , � ,Ž .1 m

Ž i. � Ž i. Ž i�1. Ž i�1. Ž i�1.� � p � � , � , � , . . . , � ,Ž .1 m

Ž i. � Ž i. Ž i. Ž i�1. Ž i�1.� � p � � , � , � , . . . , � ,Ž .1 m
7Ž .

Ž i. � Ž i. Ž i. Ž i. Ž i�1. Ž i�1.� � p � � , � , � , � , . . . , � , y ,Ž .1 1 2 m
...

Ž i. � Ž i. Ž i. Ž i. Ž i. Ž i.� � p � � , � , � , � , . . . , � , y .Ž .m m 2 m�1

Ž Ž i. Ž i. Ž i. Ž i. Ž i..The vector � , � , � , � , . . . , � has a distribution which, under weak1 m
conditions converges to the posterior as the number of iterations N goes to

Ž .infinity. To draw from each of the conditional distributions in 7 we use a
Metropolis algorithm driven by a Gaussian random walk. Suppose that � is

Ž . �one of the parameters and its conditional density is p � . We draw � �
Ž . � Ž � . Ž . 4 �N � , t for some fixed t. Let r � max p � �p � , 1 . We then set � � �i i i

with probability r and � � � with probability 1 � r. The efficiency of thisi i�1
method depends on the choice of t. We have found that the following choices

' ' 'Ž . Ž . Ž .of t work well for this model: � t � s� n , � t � 1� n , � t � 10� n and
'Ž .� t � 2� n .j

Our ultimate goal is to compute a Bayes factor. Drawing a random sample
from the posterior does not lead immediately to an estimate of the Bayes
factor needed in the goodness-of-fit test. Discussion on this matter is post-
poned until Section 5.

4.1. Brunk ’s method. The procedures described above are computation-
Ž .ally intensive. Brunk 1978 proposed a simpler method that may be regarded

as a crude approximation of the current method. Assume that � is not too far
Ž � . � Ž .from 0. A first order approximation of g is then g u � 
 1 � Ý � � u .j�1 j j

ˆ ˆLet � be a point estimate of � under the nominal model and fix � at � . Let
Ž .U � F X and treat the U as a sample from g. Then we employ a normalˆi � i i

Ž .approximation from Brunk 1978 to the resulting posterior and fix  at its
Ž . �'prior expectation 2�
 w. This leads to the approximation � y , . . . , y 
1 n

2 2ˆ ˆŽ . Ž .N � , � where � � n� � n � c � and � is diagonal with the jth diagonalj j j

element being b2 where b�2 � n � c2� 2. The behavior of this method isj j j
examined in Section 7.

5. Goodness of fit. We are now ready to test the null hypothesis that
the nominal model is correct. We begin by giving a brief, general description
of Bayesian testing. Then we discuss a method for computing the Bayes
factor.
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�Ž . �5.1. Bayesian testing. Jeffreys’ 1961 , Chapter 5 , method for testing the
� Ž � . 4 � Ž � . 4model FF � F � � ; � � � versus the model FF � F � � ; � � � is to1 1 1 1 2 2 2 2

compute the Bayes factor
�Hf x � p � d�Ž .Ž .1 1 1 1

B � .
�Hf x � p � d�Ž .Ž .2 2 2 2

This may be interpreted as the ratio of the posterior odds in favor of model 1
to the prior odds in favor of model 1 under a prior that puts mass 
 on model

Ž .1 0 � 
 � 1 and mass 1 � 
 on model 2 and spreads the mass in each
model according to the densities p and p , respectively. Large values are1 2
interpreted as evidence for model 1. In this paper, we take B � 1 as a
criterion for rejecting the nominal model, which corresponds to putting equal
prior probability on each model. Under weak conditions, it can be shown that
B is consistent in the sense that the probability of choosing the wrong model
tends to 0 as n tends to infinity, almost surely. If the parameter in FF can be2

Ž .written as � � � , � and if FF corresponds to FF with � � � , then the2 1 2 0
models are nested and the Bayes factor is testing the hypothesis that � � � .0

Bayes factors are sometimes criticized on the grounds that it may be
unrealistic to assume that one of the two models holds. In particular, in the
nested model case, it may seem unrealistic to place a lump of positive mass
on a lower-dimensional submodel. Although it is not our goal to defend
Jeffreys’ approach to testing, we do want to remark that one need not believe
that a given model has a positive probability of exactly being true to use a
Bayes factor. Rather, the Bayes factor may be interpreted as testing whether
a hypothesis is a reasonable working hypothesis. For example, when we test
whether the data are normal, say, we interpret this as a test of whether
normality is a reasonable working hypothesis. Thus, regardless of the fact
that we would not seriously expect the data to be exactly normally dis-
tributed, we do think it is reasonable to test for normality. This view is

Ž .expressed in Jeffreys and is discussed by Kass and Raftery 1995 and
Ž .Raftery 1992 .

5.2. Computing Bayes factors. Note that the Bayes factor is the ratio of
the normalizing constants. Most methods for simulating from the posterior
avoid computing the normalizing constant of the posterior so standard Monte
Carlo methods do not give a direct estimate of B. The problem of estimating
these constants by simulation is an active area of research; see Gelfand and

Ž . Ž .Dey 1994 , DiCiccio, Kass, Raftery and Wasserman 1995 and Meng and
Ž .Wong 1993 . Most of these methods are variations on importance sampling

and require making delicate choices of importance samplers. A method that
Ž .avoids these difficulties was given in Verdinelli and Wasserman 1995 and is

applicable to this case. Here, that method reduces to the following observa-
Ž � . Ž .tion: after some simple algebra we may write B � p 0 y , . . . , y �p 0 . The 1 n 

subscripts indicate that these are marginal densities for  . The numerator is
unknown but can be estimated by kernel density estimation from the sam-
pled values  , . . . ,  . Since we are interested in the posterior at the bound-1 N
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Ž .ary we use a reflected normal kernel as in Silverman 1986 , page 30. We also
Ž .use Silverman’s 1986 , page 45, rule of thumb for choosing the bandwidth,

1�5 Žnamely, h � 1.06s�N where s is the standard deviation of  , � ,  ,1 1 2
.� , . . . ,  , � .2 N N

5.3. Approximate Bayes factor. Arguing as in Section 4.1 and noting that
Ž � . Ž .when  is taken as fixed the Bayes factor is simply p 0 y , . . . , y �p 0 , we� 1 n �

get the following crude approximation to the log Bayes factor:
m m 2ˆ 1 �j j

8 log B 
 log � ,Ž . Ý Ý 2b 2 bj jj�1 j�1

ˆwhere b and � are defined as in Section 4.1.j j

6. Density estimation. Although density estimation is not our prime
goal, it is a virtue of the current method that, in addition to a goodness-of-fit
test, we also get a semiparametric density estimator. The usual Bayesian
density estimate is the predictive distribution given by

ˆ � �9 h s � h s � , � p � , � y , . . . , y d� d� ,Ž . Ž . Ž . Ž .H 1 n

Ž � . Ž .where h s � , � was defined in 3 . As explained in Section 8, for a large class
ˆŽ .of distributions P, d h, p tends to 0 almost surely under i.i.d. sampling from

Ž . � Ž . Ž . � Ž .P where d f, g � H f s � g s ds. Now 9 is easily estimated from the
Monte Carlo by

N1ˆ �h s 
 h s � , � .Ž . Ž .Ý j jN j�1

Ž � .However, the evaluation of this estimate involves computing h s � , � over aj j
grid of values of s at each iteration. This can be very time consuming. A

ˆ ˆ ˆ ˆ ˆŽ . Ž � .cruder estimate is simply h s 
 h s � , � for some point estimates � and �
such as the posterior mean. In practice, this is usually accurate enough and
the examples reported in this paper were computed this way.

7. Examples and simulation study. We now consider some examples
and simulations. In particular, the simulations in Section 7.3 provide guid-
ance for choosing the hyperparameter w.

7.1. Kevlar pressure vessels. For comparison with Evans and Swartz
Ž .1994 , we consider the logarithms of 100 stress-rupture lifetimes of Kevlar

� Ž . �pressure vessels Andrews and Herzberg 1985 , page 183 . Using w � 1 and
m � 10, we obtained a Bayes factor of 0.10, that is, 10 to 1 odds against the

Ž .normal. The first plot in Figure 1 shows a kernel density estimate solid line
Ž .along the normal estimate dotted line of the density. The bandwidth for the

� Ž .kernel was chosen using Silverman’s rule of thumb Silverman 1986 , page
� Ž .45 . The second plot shows the density estimate using our method solid line

Ž .together with the normal estimate dotted line and the Brunk estimate
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Ž .FIG. 1. Density estimates for Kevlar pressure vessels data Section 7.1 . First plot is kernel
Ž . Ž .density estimate solid line and normal estimate dotted line . Second plot is exponential family

Ž . Ž . Ž .estimate solid line , Brunk ’s method dashed line and normal dotted line .

Ž .dashed line . Our method seems to smooth a little more in the left tail than
the kernel. The Brunk estimate smooths the tail even more. The estimate of
Evans and Swartz is similar but the bump in the left tail is more pronounced
than in the kernel estimate. All the methods suggest that the normal is a
poor fit.

Ž .7.2. Marron�Wand examples. Marron and Wand 1992 provided a set of
15 test cases for density estimation. Each is a finite mixture of normal
densities. The first eight are reasonably smooth. The ninth is a trimodal
mixture with two large modes and one small mode in the middle. The
remaining six are rather bizarre densities which are of some theoretical
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interest but are not the typical deviations from normality that we are hoping
to detect. We thus focus on the nine fairly nice cases and we include one
bizarre case just to see how our estimate behaves. Marron and Wand call this

Žlast case the ‘‘claw density,’’ though Michael Escobar personal communica-
.tion has suggested that the name ‘‘Bart Simpson density’’ might be more

appropriate. We do not expect the method to work for the Bart Simpson
density though we include this for completeness.

Figure 2 shows these 10 densities. The first column in Figure 2 is the true
density, the second is our estimate based on 100 observations from the

FIG. 2a. Marron�Wand examples, densities 1�5. Column 1 is true density. Column 2 is estimate
based on n � 100. Column 3 is estimate based on n � 1000.
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FIG. 2b. Marron�Wand examples, densities 6�10. Column 1 is true density. Column 2 is
estimate based on n � 100. Column 3 is estimate based on n � 1000.

density and the third is our estimate based on 1000 observations. In all cases
we took m � 10 and w � 1. The examples in Figure 2 are typical. The
well-behaved densities are reasonably well estimated, especially for large
sample sizes. The small node in the trimodal density is not picked up without
a large sample size. The method fails to estimate the Bart Simpson density;
to successfully handle this case it may be necessary to tweak the hyperpa-
rameter w and increase m. Figure 3 shows the behavior of the Brunk
estimates. These do not do as well, but are much easier to compute.
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FIG. 3a. Marron�Wand examples using Brunk method. Densities 1�5. Column 1 is true density.
Column 2 is estimate based on n � 100. Column 3 is estimate based on n � 1000.

7.3. Simulation study. To investigate the goodness-of-fit test we con-
ducted a small simulation. Further, as discussed at the end of the Introduc-
tion, the simulation will be used to provide guidance in selecting a reasonable
value of the hyperparameter w.

Ž .The simulation involves 30 conditions: three choices for w 1�5, 1, 5 , two
Ž .choices for n 25, 100 , and five densities: densities 1, 2, 3, 5, 7 from the

Marron�Wand examples. In each of the 30 conditions, we carried out 100
replications using m � 10. Because the computing is so intensive, we calcu-
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FIG. 3b. Marron�Wand examples using Brunk method. Densities 6�10. Column 1 is true
density. Column 2 is estimate based on n � 100. Column 3 is estimate based on n � 1000.

lated the Legendre polynomials on a grid of size 10. This is quite coarse but
limited experimentation suggests that increasing the grid size does not have
a dramatic effect. The Markov chain was run for 1000 iterations in each case.

Ž .Table 1 shows Pr B � 1 . For density 1, this corresponds to type 1 error; for
the others it represents power.

Density 2 is very similar to a normal so we expect poor power; this is
verified in the simulation. In all other cases, the power is quite good for
n � 100; much lower powers are obtained for n � 25. This is not too surpris-
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TABLE 1
� 4Simulation study for the Marron�Wand examples: values of Prob Bayes factor � 1 , for

100 replications

Density Type 1 2 3 5 7
Sample Size 25 100 25 100 25 00 25 100 25 100

Values of w

1�5 0�29 0�38 0�29 0�36 0�27 0�88 0�40 0�97 0�36 0�91

1 0.16 0.16 0.23 0.33 0.17 0.95 0.50 0.96 0.36 0.95

5 0.01 0.00 0.03 0.03 0.07 0.78 0.32 0.96 0.25 0.93

ing given that we are using test densities that are mixtures of normals for
which the method was not tailored. The values of the type I error suggest
choosing w between 1 and 5. A conservative test which rejects too often
might be preferable since the method automatically provides a suitable
alternative model. From this point of view, a value of w � 1 seems reason-
able.

We carried out a similar simulation for the Bayes factor from Brunk’s
Ž .method Section 5.3 . The computations are much less demanding so we used

1000 replications. The results are in Table 2.
This test has excellent type I error. Its power is worse for density 2 but

otherwise seems to have better power than we saw in Table 1. Again, w � 1
appears to be a reasonable value. We found the good performance of this
approximation rather surprising. It is orders of magnitude simpler to com-
pute than the previous Bayes factor. The main advantage of the previous
method is that it produces a full posterior distribution for all the parameters.
In cases where a simple goodness-of-fit test is all that is needed, the Brunk
approximation to the Bayes factor may suffice.

8. Consistency. In this section we discuss the consistency of the method.
We are interested in two types of consistency: consistency of the Bayes factor

TABLE 2
� 4Simulation study for Brunk ’s method: values of Prob Bayes factor � 1 , for 1000 replications

Density Type 1 2 3 5 7
Sample Size 25 100 25 100 25 100 25 100 25 100

Values of w

1�5 0.001 0.001 0.013 0.186 0.404 1.000 0.724 0.997 0.077 1.000

1 0.003 0.006 0.027 0.240 0.531 1.000 0.717 0.995 0.381 1.000

5 0.003 0.000 0.008 0.067 0.507 1.000 0.630 0.987 0.801 1.000
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and consistency of the density estimate. For the former, we shall approximate
the infinite-dimensional problem with a sequence of finite-dimensional expo-

Ž . Ž .nential families as in Barron and Sheu 1991 and Portnoy 1988 .

8.1. Consistency of the Bayes factor. Recall that Y , . . . , Y are inde-1 n
Ž � .pendent observations from a distribution with density h y � , � �

Ž � . Ž Ž � . � . Ž � . � Ž . Ž .f y � g F y � � where log g u � � Ý � � u � c � . Let 
 be the priorj�1 j j

for the � ’s. Recall from Section 3 that 
 makes the � ’s independent withj j
Ž 2 2 .� � N 0,  �c . In Section 3 we also placed a prior on  . Here, we provej j

consistency for a simplified version of the model in which  and � are fixed.
In this case, there is no loss of generality in transforming the problem to the
unit interval. Thus we assume Y , Y , . . . are observations from a distribution1 2
on the unit interval.

Ž 	 . Ž 	 . Ž . � Ž 	 . 4Let D p q � D P Q � Hp log p�q, let N p � q; D p q � � and let�

Ž . Ž . n Ž . Ž .D p, q � 1�n Ý log p Y �q Y . Let p be the uniform density and letn i�1 i i 0
P be the corresponding measure. We are interested in testing:0

Ž .H : Y , . . . , Y are independent observations from a U 0, 1 distribution ver-0 1 n
sus

H : Y , . . . , Y are independent observations from a distribution with density1 1 n
Ž � . � � Ž . Ž .4 � � �g u � � exp Ý � � u � c � , for some � such that Ý � � �,j�1 j j j�1 j

Ž 	 .with 0 � D p g � �.0

� Ž . � � 4The parameter space is � � � � � , � , . . . ; Ý � � � . Equivalently, we1 1 j j
� Ž . Ž � . � � 4can regard the parameter space as � � q � � g � � ; Ý � � � . We will usej j

both q and � to denote the parameter.
Ž .Assuming 0 � Pr H � 1, the Bayes factor B is defined by0 n

�1n�Pr H Y , . . . , Y Pr HŽ .Ž .0 1 n 0
10 B � � � q Y 
 dq .Ž . Ž . Ž .ŁHn i½ 5�Pr H Y , . . . , Y Pr HŽ .Ž . � i�11 1 n 1

Let P be the true sampling distribution and let P� be the corresponding
infinite product measure.

THEOREM 8.1. Let c � jk where k � 8.j

Ž .i If H is true then B � 0 exponentially quickly, almost surely with1 n
respect to P�.

Ž . �1ii If H is true, then B � 0 in probability.0 n

Ž . Ž . �1Case i is the easier one to prove. For case ii , we will approximate Bn
with a sequence of finite-dimensional integrals which tend to 0 in probability;

Ž . Ž .related calculations can be found in Barron and Sheu 1991 , Portnoy 1988
Ž .and Shun and McCullagh 1994 .

Before proving Theorem 8.1, we first need the following two lemmas from
Ž .Barron 1988 . Since that paper is unpublished, we provide a proof for one of

the lemmas.
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Ž . Ž 	 .LEMMA 8.1 Barron 1988 . If D p f � � and 
 is as described above0
Ž Ž ..with  � 0, then, for every � � 0, we have 
 N f � 0.�

Ž . Ž Ž ..LEMMA 8.2 Barron 1988 . Suppose that 
 N p � 0 for every � � 0.�

Ž Ž .. Ž . Ž .Then, for every � � 0, we have H exp �nD p, q 
 dq � exp �n� for� n
large n with probability 1.

Ž .PROOF. Let A � N p and note that��2

exp n� exp �nD p , q 
 dqŽ . Ž . Ž .Ž .H n
�11Ž .

� exp n� exp �nD p , q 
 dq .Ž . Ž . Ž .Ž .H n
A

Ž . Ž 	 . � ��For each q, D p, q � D p q almost surely P by the strong law of largen
numbers. By Fubini’s theorem, there exists a set of sequences of probability 1

Ž . Ž . Ž 	 .such that, for each x � x , x , . . . , in the set we have D p, q � D p q1 2 n
for 
-almost all q. By Fatou’s lemma,

lim inf exp n� exp �nD p , q 
 dqŽ . Ž . Ž .Ž .H n
A

� lim inf exp n � � D p , q 
 dqŽ . Ž .Ž .H n
A

12Ž .

� lim inf exp n � � D p , q 
 dq .Ž . Ž .Ž .H n
A

Ž . Ž 	 .Since D p, q � D p q � ��2, for 
-almost all q in A the integrand tendsn
Ž .to �. Furthermore, 
 A � 0 by assumption. Thus,

lim inf exp n� exp �nD p , q 
 dq � �Ž . Ž . Ž .Ž .H n
�

Ž . Ž Ž .. Ž .almost surely. In particular, exp n� H exp �nD p, q 
 dq � 1 for large n� n
Ž Ž .. Ž . Ž .with probability 1. Hence H exp �nD p, q 
 dq � exp �n� for large n� n

with probability 1. �

Ž .PROOF OF CASE i OF THEOREM 8.1. We claim that there exists r � 0 such
that, for all large n, B � e�n r with P� probability 1. Write B asn n

exp �nD p , pŽ .Ž .n 0
B � .n H exp �nD p , q 
 dqŽ . Ž .Ž .� n

Ž . Ž 	 .By the law of large numbers, D p, p tends to D p p almost surely. Byn 0 0
Ž 	 .assumption, D p p � c � 0. Thus, for large n, with probability 1,0

Ž .D p, p � c�2. Let � � c�4. By Lemma 8.2, for large n with probability 1,n 0
the denominator of B is larger than e�n c�4. Thus, for large n with probabil-n
ity 1, B � e�n c�4. �n
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REMARK. In the more general model used throughout the paper, with �
not fixed, a similar proof holds. In that case, B has an integral in then
numerator which is shown to be exponentially small by appropriately cover-
ing the parameter space with finitely many sets as in the usual Wald
approach.

Ž .We now turn to case ii of Theorem 8.1. The idea is to approximate the
infinite-dimensional exponential family with a sequence of finite-dimensional

�Ž . � Ž . � �'families. Let m � m n and let A � � � � , � , . . . ; Ý 2 j � 1 � �n 1 2 j�m j
41�n . We will need the following two lemmas.

LEMMA 8.3. Let c � jk where k � 8 � � for some � � 0. Let m � n1�7�a
j

� Ž .� Ž c . Ž .where 0 � a � �� 7 7 � � . Then 
 A � o 1 as n � �.n

� � � Ž .'PROOF. Let R � Ý 2 j � 1 � . Let z � 
 R � 1�n . By Chernoff’sn j�m j n n
inequality,

�
j� �'z � inf exp �t E exp nt 2 j � 1 �Ž . Ž . Ýn

t�0 j�m

� b inf exp �t exp n2 t 2 2U �2Ž . Ž .n
t�0

� Ž . 2where U � Ý 2 j � 1 �c and b is a positive constant. The inf occurs atn j�m j

Ž 2 2 . Ž Ž 2 2 ..t � 1� n  U . Thus, z � exp �1� 2n  U . Now,n n n

� �1 1
U � 2 �Ý Ýn 2 k�1 2 kj jj�m j�m

2 1
� � � 2k � 2, m � � 2k � 1, m ,Ž . Ž .

2k � 2 ! 2k � 1 !Ž . Ž .
Ž .where � r, y is the r th derivative of the psi function evaluated at y. In

Ž . r Ž . r � Ž . Ž .other words, � r, y � d � x �dx where � x � d log � x �dx. Sincex�y
Ž . Ž .r�1�Ž . r Ž �r .� Ž �Ž2 k�2..� r, y � �1 r � 1 !�y � o y for y � �, then U � O mn

2 Ž Ž1�7�a.Ž2 k�2.�2 . 2 Ž .and n U � O 1�n . Thus, since k � 8, n U � o 1 and z �n n n
Ž .o 1 . �

Ž . Ž .LEMMA 8.4. Let � � � , . . . , � and let Cov � , � denote the co-1 m � i j
variance between functions � and � under the distribution with densityi j
Ž � . � m Ž .4 1 � m Ž . 	 	g u � � exp Ý � � u �H exp Ý � � t . Also, let � denote thej�1 j j 0 j�1 j j

Euclidean norm. Then,
2 	 	Cov � , � � O m � .Ž .Ž .� i j

For the proof, see the Appendix.
Ž .Lemma 8.4 implies that the covariance matrix Cov � , � can be written�̂ i j

5 ˆŽ .'as I � A, where A is a matrix whose elements a are O m �n where � isi j
the maximum likelihood estimate of � in the family defined in Lemma 8.4.
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Ž .PROOF OF CASE ii OF THEOREM 8.1. Let m and A be as in Lemma 8.3.n
Denote the n-fold product of the sample space by GG n, the n-fold product

n n Ž . Ž n.measure of P by P and let Y � Y , . . . , Y . We write p y to mean1 n
n Ž .Ł p y . Theni�1 i

B�1 � exp �nD p , q 
 dq � exp �nD p , q 
 dqŽ . Ž . Ž . Ž .Ž . Ž .H Hn n 0 n 0
cA An n

� I � I , say.1 2

Ž .First we show that I � o 1 . Fix c � 0, and apply Markov’s inequality and2 P
then Fubini’s theorem to get

Pr exp �nD p , q 
 dq � cŽ . Ž .Ž .H N 0ž /cAn

� c�1 exp �nD p , q 
 dq dP nŽ . Ž .Ž .H H n 0 0n cYY An

� c�1 q y n �p y n dP n y n 
 dqŽ . Ž . Ž . Ž .H H 0 0ncA YYn

� c�1
 Ac .Ž .n

Ž .The latter quantity goes to zero by Lemma 8.3. Thus I � o 1 .2 P
Ž n. Ž n. n Ž � .Next we bound q Y , where q Y � Ł g Y � , � � A . From thei�1 i n

� Ž . � 'definition of A and the fact that sup � u � 2 j � 1 , we see that �1�nn u j
� Ž . m Ž . Ž � m.� Ý � � u � 1�n. let � � � , . . . , � and define g u � �j�m j j 1 m m

� m Ž .4 1 � m Ž .4exp Ý � � u �H exp Ý � � t dt. Then,j�1 j j 0 j�1 j j

�exp nÝ � �ž /j�1 j jnq Y �Ž . n1 �H exp Ý � � u duŽ .Ž .0 j�1 j j

mexp nÝ � �ž /j�1 j j� exp 2n 1�nŽ .Ž . n1 mH exp Ý � � u duŽ .Ž .0 j�1 j j

n � m� exp 2 g Y � ,Ž . Ž .m

�1 n Ž .where � � n Ý � Y .j i�1 j i
Let 
 be the measure on the Borel sets of � m that makes � independentm j

normals with mean 0 and variance  2, j � 1, . . . , m. Let f � d
 �d� wherej m m
� is Lebesgue measure on � m. Then

n 2 n � mq Y 
 dq � e g Y � 
 dqŽ . Ž . Ž .Ž .H H m
A An n13Ž .

2 n � m m m� e g Y � f � � d� .Ž . Ž .Ž .H m m
m�

Our strategy is to bound this last integral using Laplace’s method. A
complication is that the dimension m is increasing along with n.
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For notational convenience, we drop the superscript and subscript m. Also,
ˆlet � denote the maximum likelihood estimator for the m-dimensional expo-

Ž 1�7.nential family. Since m � o n , from Lemma 5 and Theorem 2 of Barron
mˆŽ . 	 	 Ž . � Ž .'and Sheu 1991 we conclude that � � O m�n . Let l � n Ý � � YP n j�1 j j i

Ž .� Ž .�c � be the log likelihood corresponding to the m � m n -dimensional

 Ž . 
Ž .exponential family. Let l � � �nc � be the matrix of second derivativesn


Ž . Ž .with respect to � . Note that c � � Cov � , the covariance matrix of the � ’sj� ��1
 �1 �1ˆ� Ž .�for fixed � . Let � � �l � � n Cov . From Lemma 8.4, Cov� I � An n n
5Ž .'where I is the identity matrix and A has entries which are O m �n .n P

Ž .Now we approximate 13 with a normal integral. Let � be a sequence ofn
2Ž . Ž . Ž . 'numbers such that a � � o 1�m and b m�n �� � 0. Such sequencesn n

Ž 1�7. � 	 	 4exist since m � o n . Let N � � ; � � � . Thenn n

n �g Y � f � � d�Ž . Ž .Ž .H m
m�

n � n �� g Y � f � � d� � g Y � f � � d�Ž . Ž . Ž . Ž .Ž . Ž .H Hm m
cN Nn n

� J � J .1 2

Ž .First we show that J � o 1 .2 P
� Ž .� Ž .c cSince J � exp sup l � it suffices to show that sup l � tends2 � � N n � � N nn n

TŽ . � Ž .�to �� in probability. Recall that l � � n � � � c � is strictly concaven
ˆ ˆ ˆ	 	 Ž . 	 	 Ž .'and is maximized at � . Since � � O m�n it follows that � � O �P P n

ˆ ˆ Ž .and hence � � N with probability tending to 1. And when � � N , l � isn n n
c 	 	maximized over N at some point � satisfying � � � . Expanding the logn n n n

likelihood around 0 we have
T T �14 l � � n � � � 1�2 � Cov � � ,Ž . Ž . Ž . Ž .n n n n n

where �� lies on the line segment joining 0 and � . Since ��� N , it followsn n
Ž �.from Lemma 8.4 that Cov � � I � B where the elements of B are of order

2Ž . Ž . Ž .O � m . Given a matrix C, Let � C and � C denote the smallest andP n
Ž . Ž 2 . Ž .largest eigenvalues of C. Note that � B � O m � . From 14 , theP n

	 	 Ž .'Cauchy�Schwarz inequality and the fact that � � O m�n ,P

2 �	 	 	 	 	 	l � � n � � � 1�2 � � Cov �Ž . Ž . Ž .� 4n n n n

2 2	 	� n � a � 1�2 � 1 � O m � ,Ž . Ž .½ 5n n n n

1�7 2Ž . Ž . Ž .'where a � 0 and a � O m�n . Since m � o n and � � o 1�m , then n P n
Ž .last expression goes to �� in probability. Thus, J � o 1 as claimed.2 P

Next we show that, with probability tending to 1, for each � � 0,
� ��1�2 �1�2

T15 sup � Cov Cov � Cov � � 1 � � .Ž . Ž .
	 	��N , � �1n

�
5Ž .'Recall that Cov� I � A where the elements of A are O m �n and thatP

Ž . Ž 2 .for any � � N , Cov � � I � B where the elements of B are O � m . Now,n n
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for any � � N ,n

� � � ��1�2 �1�2 1�2 �1�2
T� Cov Cov � Cov � � � Cov Cov � CovŽ . Ž .ž /

�1�2 �1�2� � I � A I � B I � AŽ . Ž . Ž .
�1�2 �1�2� � I � A � I � B � I � AŽ . Ž . Ž .

� � I � A � I � BŽ . Ž .
� 1 � � A 1 � � B � 1 � o 1 ,Ž . Ž . Ž .P

7 2Ž . Ž . Ž . Ž .'since � A � O m �n and � B � O m � . The second inequality followsP n
Ž . Ž .from Anderson and DasGupta 1963 , Theorem 2.2. Hence, 15 holds except

on a set of probability tending to 0. It follows from the definition of � thatn
T Ž . Ž .�� Q � � � � 1 � � for all � � N , with probability tending to 1, wheren

Ž . 1�2 
 Ž . 1�2Q � � �� l � � .n n n
1 
Tˆ ˆ ˜ ˆ ˜ ˆŽ . Ž . Ž . Ž .Ž .Now l � � l � � � � � l � � � � where � is between � and � .2

ˆ ˆ T 
 ˜ ˆŽ . Ž . ŽŽ .Ž . Ž .Ž ..Hence L � � L � exp 1�2 � � � l � � � � . Let
T
1�2 1�2 T �1�2˜ ˆ 	 	Q � �� l � � , b � � � � � and � � b� b .Ž . Ž .n n n

Then

1 2 Tˆ 	 	J � L � f � d� � L � exp � b � Q� f � d�Ž . Ž . Ž .� 4Ž .H H1 2
N Nn n

1 2ˆ 	 	� L � exp � 1 � � b f � d�Ž . Ž .� 4Ž .H 2
Nn

1 2ˆ 	 	� L � exp � 1 � � b f � d�Ž . Ž .� 4Ž .H 2
m�

16Ž .

ˆ �1�2 �1 �1 �1�2� � � �� L � T 1 � � � � TŽ .Ž . n

�1�11 Tˆ ˆ� exp � � T � 1 � � � �Ž .Ž .½ 5n2

ˆ �1�2 �1 �1 �1�2� � � �� L � T 1 � � � � T ,Ž .Ž . n

where T is a diagonal matrix with jth diagonal element equal to  2 �  2�j 2 k.j
Tˆ ˆ ˆŽ . � Ž .� Ž .Now we examine l � � n � � � c � . First, expand c � around 0, not-

� �ˆŽ . Ž . Ž .ing that c 0 � 0 and that c � � E � � �. Thus, for some � between 0�̂
ˆand � ,

1T T �ˆ ˆ ˆ ˆc � � � � � � Cov � �Ž .Ž . 2

1T Tˆ ˆ ˆ� � � � � I � A �Ž .2

21Tˆ ˆ	 	� � � � � � I � AŽ .2

21T 5ˆ ˆ	 	 '� � � � � 1 � O m �n .ž /P2 ž /
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ˆŽ . Ž . � � Ž .We conclude that l � � � n�2 a 1 � b where a � 0, a � O m�nn n n n P
5 ˆŽ . Ž .'and b � O m �n . Hence, L � is bounded in probability. Finally, we usen P

the next lemma, which is proved in the Appendix.

LEMMA 8.5. As n � �,

� �1 ��1�21 � � T � � I � o 1 .Ž . Ž .n P

Ž .Thus, J � o 1 and the proof is complete. �1 P

COROLLARY 8.1. The conclusions of Theorem 8.1 continue to hold if c � k j
j

with k � 1.

The proof is the same as Theorem 8.1 except that one takes m � c log n
Ž .with c � 2�log k .

8.2. Consistency of the density estimate. Although density estimation is
not the main goal of this paper, we take this opportunity to point out that the
Bayes estimate from our model is consistent under mild conditions. To show

Ž . �this, we appeal to the results in Barron 1988 . An alternative proof can be
Ž . �constructed along the lines of Shen 1995 . Barron gives two conditions

ˆ� Ž . Ž . � Ž .which are sufficient to guarantee that H f x � f x � dx � 0 almostn
ˆsurely, where f is the predictive density and f is the true density. Ourn

model is essentially his Example 2. The consistency follows from Barron’s
calculations; we state relevant results without proof.

�� . � � .Let T be a sequence of partitions defined by T � 0, 1�n , 1�n, 2 n ,n n
�Ž . �4. . . , n � 1 �n, 1 . For every density q define

H q s d� sŽ . Ž .A
17 q x � for x � A � TŽ . Ž .˜ n� AŽ .

˜Ž . Ž . Ž . Ž . � � � Ž .and let Q dx � q x � dx . Let d p, q � H p � q and let C � q; d p, q˜ �

4 Ž .� � , where p represents the true density. For every � � 0 define B � �n
� Ž . 4q; d q, q � � . The following is a specialization of a more general theorem˜

Ž .in Barron 1988 .

Ž .THEOREM 8.2 Barron 1998 . Let X , X , . . . be i.i.d. P and suppose that:1 2

Ž . Ž Ž ..a For every � � 0, 
 N p � 0;�

Ž . Ž cŽ .. �n rb For every � � 0, 
 B � � e for large n, for some r � 0.n

n � ˆ �Ž � . � � � Ž . Ž . � Ž . � �Then, 
 C X � 1, a.s. P and H f x � f x � dx � 0 a.s. P .� n

THEOREM 8.3. Consider the prior in Section 3 and let � � 0. If c � j3�� orj
Ž . j Ž . Ž . Ž 	 .c � 1 � � then a and b hold for any density q such that D p q � �.j 0

We thus see that the conditions needed to make the Bayes factor consis-
tent are strong enough to make the density estimate consistent too.
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9. Discussion. We have taken the nominal family to be normal. One
would hope that, if the underlying density is heavy tailed and produces many
outliers, the nonparametric component of the model will suitably accommo-
date the extreme observations. This is indeed the case as was born out by
density five of the example in Section 7. Nonetheless, there are advantages to
handling extreme observations in another way, namely, by using a heavy-
tailed density such as a t-density, for the nominal model. This may improve
the efficiency of the density estimator. It also allows us to test, by way of
Bayes factors whether the fully nonparametric model is necessary or whether
a long-tailed parametric nominal model suffices. We do not pursue such an
extension here, although it appears that it would be straightforward. Also, we
have not attempted to get rates of convergence of the density estimate. The

Ž .results of Shen 1995 would be useful for this. Finally, the Brunk method
works well, more in terms of the Bayes factor than its density estimate. This
model deserves further investigation.

APPENDIX

Ž . Ž . Ž . Ž .PROOF OF LEMMA 8.4. Consider Cov � , � � E � � � E � E � .� i j � i j � i � j

Ž . Ž . Ž . Ž .Let f � � E � � and let � � � E � . Also, note that for 1 � r � m,� i j r � r

' '� Ž . � Ž .sup � u � 2r � 1 � 2m � 1 . We show that f � has the appropri-0 � u�1 r
Ž . Ž .ate order; the proof for � � is similar. A first-order expansion of f �r

around � � 0 yields, for some �� between 0 and � ,

m
1 ��f � � � � u � u � u � � � g u � duŽ . Ž . Ž . Ž . Ž . Ž .Ý Hr i j r r

0r�1
m

1 �� � � � � � � � �� � � u � u � u � � � g u � duŽ . Ž . Ž . Ž . Ž .Ý Hr i j r r
0r�1

m
3�2 3�2 2'� � 	 	 	 	� 4 � 4� 2 2m � 1 � � 2m � 1 m � � O m � . �Ž .Ý r

r�1

PROOF OF LEMMA 8.5. Note that

H � 1 � � T ��1 � I � 1 � � Tn I � A � IŽ . Ž . Ž .n

5Ž . � �'where A has entries O m �n . Thus, H � h h whereP 1 2

� �nT I � A � IŽ .0
h � ,1 � �nT � I0

� � Ž .h � nT � I and T � 1 � � T. A simple calculation shows that h � � as2 0 0 2
n � �. Now we show that h is bounded away from 0 in probability. Given a1

Ž . Ž .matrix C, let � C � ��� � C be the ordered eigenvalues. Using Theorem1 m
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Ž .2.2 from Anderson and DasGupta 1963 , we have

mŁ � nT I � A � IŽ .i�1 i 0
h �1 m � �Ł � nT � Ii�1 i 0

mŁ � I � A � nT � 1Ž . Ž .i�1 m i 0� mŁ � nT � 1Ž .i�1 i 0

m � AŽ .m� 1 �Ł 2 k 21 � i � n 1 � � Ž .Ž .i�1

m
5'O m �nž /P

� 1 � .21 � 1� n 1 � � Ž .Ž .

Ž 1�7.The last term is bounded away from 0 in probability both when m � o n
and when m � c log n. �
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