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ON THE AVERAGE RUN LENGTH TO FALSE ALARM
IN SURVEILLANCE PROBLEMS WHICH POSSESS

AN INVARIANCE STRUCTURE1

BY BENJAMIN YAKIR

Hebrew University of Jerusalem

Surveillance can be based, in some change-point detection problems,
on a sequence of invariant statistics. Gordon and Pollak prove that, under

Ž .certain conditions, the average run length ARL to false alarm of invari-
ance-based Shiryayev�Roberts detection schemes is asymptotically the
same as that of the dual classical scheme that is based on the original
sequence of observations. In this paper we give alternative conditions
under which the two ARLs coincide and demonstrate that these conditions
are satisfied in cases where Gordon and Pollak’s conditions are difficult to
check.

1. Introduction. The setting of the classical change-point problem has
initial observations which are independent and identically distributed, until a
change occurs at some unknown point in time � . Subsequently, the distribu-
tion changes, though the observations are again independent and identically
distributed. One obtains the observations sequentially, with the goal of
raising an alarm as soon as it becomes clear that the distribution has
changed. The prechange distribution is assumed to be known. Classical
surveillance schemes invariably make heavy use of this knowledge, and
ignorance of the precise specification of the prechange distribution typically
renders them inoperable.

In practice, there are many situations in which the prechange distribution
is only partially specified, or not specified at all. A typical example is

Ž .discussed in Wilson, Griffiths, Kemp, Nix and Rowlands 1979 . There, a
scheme for monitoring the quality of laboratory tests is constructed. Samples
are sent at regular intervals for assay. One is on the lookout for a change of

Ž .variance. The observations are assumed to be normally distributed. The
scenario is such that the initial variance is unknown.

In this setting, the prechange distribution is known up to a nuisance
parameter. A naive approach to this problem would call for estimation of the
unknown parameter and subsequent use of classical procedures with the true

Žvalue of the parameter replaced by its estimate. This assumes the possibility
.of obtaining a learning sample from the prechange distribution. The diffi-

culty with this approach is that the operating characteristics of classical
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schemes are very sensitive to misspecification of distributional parameters.
� Ž .See Section 2.4 in van Dobben de Bruyn 1968 . See also Table 1 in Gordon

Ž .�and Pollak 1995 .
Ž .This difficulty can be both overcome and sometimes circumvented. Over-

coming this difficulty requires an analysis of the operating characteristics
which takes into account the fact that there are parameters being estimated.

Ž .This approach was taken by Siegmund and Venkatraman 1995 . See also Lai
Ž .1995 . Circumvention can be done if the problem possesses invariance prop-
erties. The idea is to base surveillance on a sequence of invariant statistics
instead of on the original observations. The invariance causes the prechange
distribution of the sequence to be devoid of unknown parameters, thereby

Ž .making the prechange distribution of the invariant statistics known. This
Ž .approach was taken by Pollak and Siegmund 1991 in a parametric setting

Ž . Ž .and by Macdonald 1990 , Gordon and Pollak 1994, 1995, 1997 , Bell, Gordon
Ž .and Pollak 1992 in a nonparametric one.

While the invariance approach is appealing, it does entail difficulties. The
dependence between the invariant statistics makes evaluation of operating

Ž .characteristics more difficult. Gordon and Pollak 1997 prove a general
Ž .theorem which states under certain conditions that the ARL to false alarm

of invariance-based Shiryayev�Roberts detection schemes is asymptotically
the same as that of the parallel classical scheme for the case where the

Ž .prechange parameters are known. Gordon and Pollak 1997 require that
Ž .three conditions A, B and C be satisfied.

Problems which can be solved using Gordon and Pollak’s theorem are
detection of a change in the mean of a normal distribution with known
variance where the initial value of the mean is unknown, detection of a
change in the scale parameter of a gamma distribution with unknown initial

� Ž .�scale Gordon and Pollak 1997 , detection of a decrease in the variance of a
normal distribution where the mean and the initial variance are unknown
� Ž .� �Damian 1994 and a variety of nonparametric detection schemes Bell,

Ž . Ž .�Gordon and Pollak 1992 , Gordon and Pollak 1994, 1995, 1997 . Nonethe-
Žless, there are a number of problems such as detection of an increase in the

variance of a normal distribution where the mean and the initial variance are
unknown, and detection of a change in the mean of a normal distribution

.where the variance and the initial mean are unknown for which it seems
very hard to apply Gordon and Pollak’s theorem. The main difficulty lies with
showing fulfillment of Gordon and Pollak’s Condition C.

In this paper, an alternative to Gordon and Pollak’s theorem is presented.
Ž .Essentially, Conditions A and B are roughly preserved, but condition C is

relaxed, facilitating proofs in cases where Gordon and Pollak’s theorem is
hard to apply. This alternative theorem is shown to handle the two cases
mentioned in the previous paragraph as being examples of situations where
Gordon and Pollak’s theorem is apparently hard to apply.

The difference between the approach studied in this paper and that of
Gordon and Pollak is essentially the same as the difference between Pollak’s
Ž . Ž .1987 and Yakir’s 1995 approaches to proving the basic asymptotic proper-
ties of the ARL to false alarm of the simple Shiryayev�Roberts schemes.
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2. General theory. We consider surveillance for a change in the case
where the problem admits an invariance structure.

To fix ideas, consider the case of monitoring for an increase of a normal
mean, where none of the parameters are known. Prior to a change, the

Ž 2 . Ždistribution of the observations is N � , � and postchange it is N � �0 0
2 . 2�, � , where � , �, � are unknown, � � 0, and the observations are0

independent. Since � and � 2 are unknown, one cannot apply a standard0
Cusum or Shiryayev�Roberts control chart. One way of circumventing this

Žproblem is to exploit the invariance structure invariance under increasing
.affine transformations and base surveillance on a sequence of invariant

statistics instead of the raw observations. More explicitly, suppose one can
obtain a learning sample X , X , . . . , X , m � 2, of prechange obser-�m �m�1 �1
vations and monitoring commences with the observations X , X , . . . . The1 2
statistics

X � Xn �m
1 T � , n � 1, 2, . . . ,Ž . n S�m

where

m mÝ X 1 2i�1 �i
2 X � , S � X � X ,Ž . Ž .Ý�m �m �i �m(m m � 1 i�1

form a sequence of invariant statistics. The prechange distribution of the
Žsequence is fully known, so that likelihood-ratio based schemes such as

.Cusum or Shiryayev�Roberts can be applied.
Here we study the ARL to false alarm of Shiryayev�Roberts procedures for

a general setting of a surveillance problem having an invariance structure.
For a formal definition of the general invariance structure, see Gordon and

Ž .Pollak 1997 .
In the general setting the sequence of raw observations will be denoted by

X , X , . . . , X , X , X , . . . , where X , X , . . . , X are a learn-�m �m�1 �1 1 2 �m �m�1 �1
ing sample of size m from the prechange distribution. The sequence of
invariant statistics, upon which the surveillance will be based, will be de-

Ž .noted by T , T , . . . where T � T X , . . . , X . For purposes of defining1 2 n n �m n
likelihood ratios, it is assumed that one can choose a ‘‘representative’’ of the
set of possible postchange distributions without hurting the invariance of the

� 4 Žproblem and the sequence T . In the aforementioned example, one cani
choose a value � � 0 and pretend that � � �� for purposes of defining a
likelihood ratio. For practical purposes, � would be a value such that there
would be serious interest in detecting an increase in mean of at least �

.standard deviations. Note that the prechange properties of any scheme based
on the sequence T , T , . . . are the same for all possible values of the nuisance1 2
parameters, so that in order to study the properties one may choose a

Žconvenient set of nuisance parameters. In the example, it would be natural
.to take � � 0, � � 1 . Henceforth, we assume that such a choice was made.0

We denote by P the measure under which X , . . . , X , X , . . . , Xk �m �1 1 k�1
are prechange observations and X , X , . . . are postchange, where allk k�1
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nuisance parameters have been set for convenience and a representative has
Žbeen chosen. In the example, this would mean that � � 0 is fixed and
.� � 0, � � 1. Here P will denote the distribution when there is no change0 �

Ž .k � � and dP and dP are the appropriate densities with respect to somek �

�-finite measure. Denote by FF the �-field generated by T , T , . . . , T .n 1 2 n
The main result of this article�Theorem 1�states that the asymptotic

first-order properties of the ARL to false alarm of the Shiryayev�Roberts
procedure based on the sequence of invariant statistics are the same as those
of the parallel procedure which would have been used had all nuisance
parameters been known. It is necessary, therefore, to differentiate the nota-
tion of the two cases.

Define, for 1 � k � n, the likelihood-ratio statistics

dP T , . . . , TŽ .k 1 n
� n � ,Ž .k dP T , . . . , TŽ .� 1 n

dP X , . . . , XŽ .k 1 nfs� n � .Ž .k dP X , . . . , XŽ .� 1 n

Ž .The invariant Shiryayev�Roberts statistics and stopping time are
n

R n � � n , n � 1, 2, . . . ,Ž . Ž .Ý k
k�1

N � inf n: R n � A .� 4Ž .A

The Shiryayev�Roberts statistics and stopping time when the nuisance pa-
rameters are fully specified are

n
fs fsR n � � n , n � 1, 2, . . . ,Ž . Ž .Ý k

k�1

N fs � inf n: R fs n � A .� 4Ž .A

In Theorem 1 the P -asymptotic properties of N �A and N fs�A are� A A
compared. In the process of proving the theorem, auxiliary stopping times are

Ž . Ž . Žused. Given r, r � r A such that log A � r A � A, the invariant and
.truncated Shiryayev�Roberts statistics and stopping time are

n

Q n � � n , n � 1, 2, . . . ,Ž . Ž .ÝA k
� �k� n�r r�1

	 � inf n: Q n � A .� 4Ž .A A

Ž .The fully specified and truncated Shiryayev�Roberts statistics and stopping
time are

n
fs fsQ n � � n , n � 1, 2, . . . ,Ž . Ž .ÝA k

� �k� n�r r�1

	 fs � inf n: Q fs n � A .Ž .� 4A A
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Consider the following conditions:

Ž .CONDITION 1. There exists a function r � r A such that for any given

 � 0 one can find constants � � 1 and A . For this function and constants,1 1 1
and for all A � A and t � 
 A, one can find an event B �1 1 1

Ž .B X , . . . , X such that1 t�1 t�r

� n 
 r � tŽ .k 1 1
P X , . . . , X 	 B , sup � 1 � 
 � exp �Ž .� t�1 t�r 1 1fs ž /ž / A A� nŽ .t�k�n�t�r k

and
r

P X , . . . , X � B � 
 .Ž .Ž .� t�1 t�r 1 1 A

Ž . Ž .The function r � r A should be such that, as A � �, r A �A � 0 but
Ž .r A �log A � �.

Ž .CONDITION 2. Given the function r � r A from Condition 1 and given
any 
 � 0 and C � � one can find A such that the relation2 2 2

n

P N � n � 
 rŽ .Ý k A 2
k�1

holds for all A � A and C A � n � 
 A.2 2 2

ŽTHEOREM 1. If Conditions 1 and 2 hold, then the limit in P -distribu-�

.tion of N �A, as A � �, is exponential with scale �, whereA

� � lim A�E N fs .� A
A��

Moreover, E N �A � 1��.� A A��

REMARK 1. The constant � satisfies 0 � � � 1. Its exact value can be
� Ž . �computed by standard renewal theory. See Pollak 1987 .

REMARK 2. Condition 1 is similar in nature to Condition A in Gordon and
Ž .Pollak 1997 . To see the connections between Condition B in Gordon and
Ž .Pollak 1997 , which deals with the P -behavior of the likelihood ratios�

Ž .which define the statistic R n , and our Condition 2, notice that

n

P N � n � E R n � N � n .Ž . Ž . Ž .Ý k A � A
k�1

Before proving Theorem 1 we will state and prove two lemmas that deal
with the properties of the invariant and truncated Shiryayev�Roberts stop-
ping time 	 .A
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Ž .LEMMA 1. Given r � r A , let t be an integer multiple of r. Then for any A,
for which r�A � 1,

1 t
P 	 � t � exp � .Ž .� A ž /1 � r�A AŽ .

PROOF. It is easy to see that

P 	 � t 
 	 � t � rŽ .� A A

� P sup Q n � A 	 � t � rŽ .� A Až /
t�r�n�t

� E P sup Q n � A FF 	 � t � r .Ž .� � A t�r Až /
t�r�n�t

� Ž . 4However, Q n : t � r � n � t is a submartingale with respect to theA
Ž . � 4 � Ž .measure P 

 FF and the filter FF : t � r � n � t . Moreover, E Q t 
� t�r n � A

�FF � r. Hence, by Doob’s inequality,t�r

r
P sup Q n � A FF � .Ž .� A t�rž / At�r�n�t

Thus
r

P 	 � t 
 	 � t � r � .Ž .� A A A

By induction one gets that

t�rr
P 	 � t � 1 � .Ž .� A ž /A

Ž . Ž .Finally, the relation log 1 � x � x� 1 � x , valid for all x � �1, can be used
to show that

t�rr 1 t
1 � � exp � ,ž / ž /A 1 � r�A AŽ .

and the result follows. �

Ž . Ž . Ž .Let r � r A be such that r A �A � 0 but r A �log A � �, as A � �.
For the fully specified case it can be shown that for any 
 � 0 and for any1
large A,

A
fsP sup Q n � A � � � 
 ,Ž .� A 1ž /r t�n�t�r

� Ž . �where � was defined in Theorem 1. See Yakir 1995 .
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Ž .LEMMA 2. If Condition 1 holds, then the limit in P -distribution of�

	 �A, as A � �, is exponential with scale �. Moreover, the P -expectation ofA �

	 �A converges to 1��.A

PROOF. Assume that Condition 1 holds and that A is large. Let

� nŽ .k
B � sup � 1 � 
 .2 1fs½ 5� nŽ .t�k�n�t�r k

On the event B it is true that2

1 � 
 sup Q fs n � sup Q n � 1 � 
 sup Q fs n .Ž . Ž . Ž . Ž . Ž .1 A A 1 A
t�n�t�r t�n�t�r t�n�t�r

For any t � 
 A, t an integer multiple of r, one can write1

P t � 	 � t � rŽ .� A

� P t � 	 , sup Q n � AŽ .� A Až /
t�n�t�r

� P t � 	 , 1 � 
 sup Q fs n � AŽ . Ž .� A 1 Až /
t�n�t�r

� P X , . . . , X 	 B , BcŽ .Ž .� t�1 t�r 1 2

� P X , . . . , X � B , t � 	Ž .Ž .� t�1 t�r 1 A

r 
 exp �� t�AŽ .Ž .1 1� P t � 	 1 � 
 � � 
 � � 
 ,Ž . Ž . Ž .� A 1 1 1A P t � 	Ž .� A

� 4 Ž .since t � 	 is independent of X , . . . , X .A t�1 t�r
In a similar fashion

P t � 	 � t � rŽ .� A

� P t � 	 , 1 � 
 sup Q fs n � A , B , BŽ . Ž .� A 1 A 1 2ž /
t�n�t�r

r 
 exp �� t�AŽ .Ž .1 1� P t � 	 1 � 
 � � 
 � � 
 .Ž . Ž . Ž .� A 1 1 1A P t � 	Ž .� A

Ž .The result follows Lemma 1 and induction see the proof of Theorem 1 below .
�

PROOF OF THEOREM 1. Let 
 � 0 be a given small number. Define, for2
Ž . � � Ž . � �any A, t � t A � 
 A�r r, where r � r A is an integer, and x is the0 0 2
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integer part of x. It can be shown, using a measure transformation, that
t0

P N � t � P N � nŽ . Ž .Ý� A 0 � A
n�1

t n0 � N � nŽ .A� EÝ Ý k R nŽ .n�1 k�1

t t0 0 � N � nŽ .A� EÝ Ý k R NŽ .Ak�1 n�k

t0 � k � N � tŽ .A 0� E .Ý k R NŽ .Ak�1

Ž . Ž .It can be concluded, since R N � A, that P N � t � t �A � 
 . Hence,A � A 0 0 2
Ž .P N � t � 1 � 
 .� A 0 2
Let C be a given large number. Consider any t, an integer multiple of r,2

such that t � t but t � r � C A. It is easy to see that0 2

P t � N � t � rŽ .� A

� P t � N , sup Q n � AŽ .� A Až /
t�n�t�r

r 
 exp �� t�AŽ .Ž .1 1� P t � N 1 � 
 � � 
 � � 
 .Ž . Ž . Ž .� A 1 1 1A P t � NŽ .� A

Hence,

P N � t � r 
 N � tŽ .� A A

r 
 exp �� t�AŽ .Ž .1 1� 1 � 
 � � 
 � � 
 .Ž . Ž .1 1 1A P t � NŽ .� A

3Ž .

Likewise,

P t � N � t � rŽ .� A

� P t � N , sup Q n � 1 � 
 AŽ . Ž .� A Až /
t�n�t�r

� P t � N , sup R n � Q n � 
 A� 4Ž . Ž .� A Až /
t�n�t�r

P t � N r 
 exp �� t�AŽ . Ž .Ž .� A 1 1� 1 � 
 � � 
 � � 
Ž . Ž .1 1 11 � 
 A P t � NŽ . Ž .� A

� P t � N , sup R n � Q n � 
 A .� 4Ž . Ž .� A Až /
t�n�t�r

Consider the stopping time T , where
 , A, t

T � inf t � n: R n � Q n � 
 A .� 4Ž . Ž .
 , A , t A
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It follows that,

P t � N , sup R n � Q n � 
 A � P t � N , T � t � r� 4Ž . Ž . Ž .� A A � A 
 , A , tž /
t�n�t�r

and
t�r

P t � N , T � t � r � P t � N , T � nŽ . Ž .Ý� A 
 , A , t � A 
 , A , t
n�t�1

t�r t � t � N , T � nŽ .A 
 , A , t� EÝ Ý k R n � Q nŽ . Ž .An�t�1 k�1

t � t � N , T � t � rŽ .A 
 , A , t� EÝ k R T � Q TŽ . Ž .
 , A , t A 
 , A , tk�1

t1
� P t � N .Ž .Ý k A
 A k�1

It follows, applying Condition 2, that

P N � t � r 
 N � tŽ .� A A

r 1 � 
 
 exp �� t�AŽ .Ž .1 1 1� � � 
 � � 1Ž .1 ž /A 1 � 
 1 � 
 P t � NŽ .� A4Ž .

2�


 P t � NŽ .� A

Given any � , 1 � � � � � 0, choose 
 , 
 , and then 
 , all small enough to1 2
ensure that

r
1 � exp � � � �Ž .ž /A

r 1 � 
 
 2 � 
 
Ž .1 1 2 2� � � 
 � �Ž .1A 1 � 
 1 � 
 1 � 
 
 exp �C � � �Ž . Ž . Ž .Ž .2 2

and

r r 
1
1 � exp � � � � � 1 � 
 � � 
 � � 
 ,Ž . Ž . Ž .1 1 1ž /A A 1 � 
2

Ž . Ž .for all A such that r�A is small. It follows from 3 , 4 and induction that

t � t t0
exp � � � � � P N � t � 1 � 
 exp � � � � ,Ž . Ž . Ž . Ž .� A 2ž / ž /A A

for all t, 
 A � t � C A, t an integer times r. The limit in distribution of2 2
N �A is thus obtained. The limit E N �A � 1�� follows from the fact thatA � A
N �A is dominated by 	 �A. �A A
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3. Examples. Consider a setting in which the observations are indepen-
dent and the in-control distribution is normal with mean � and variance � 2.0
One can envision a number of surveillance problems:

1. A change in mean;
2. A change in variance;
3. A change in both mean and variance.

Nuisance parameters in all three cases can be either:

Ž .a An unknown initial mean;
Ž .b An unknown initial variance or
Ž .c Both initial mean and initial variance unknown.

Ž . Ž .Consider problems 1 and 2 in the above list: the case of no nuisance
Ž .parameters i.e., the in-control distribution is fully specified was handled by

Ž .Pollak 1987 .
Ž .Case 1 �detecting a change in mean when the initial mean is unknown

but the initial variance is known�was studied by Pollak and Siegmund
Ž . � Ž . �1991 . See also Gordon and Pollak 1997 .

Ž .Case 2a �detecting a change in variance when the initial variance is
known but the initial mean is unknown�was handled by Gordon and Pollak
Ž .1997 .

Ž .Case 2c �detecting a change in variance when both the initial mean and
Ž .initial variance are unknown�was tackled by Damian 1994 , who solved the

Ž .problem of detecting a decrease in variance using Gordon and Pollak’s 1997
Theorem 1.

The asymptotics of the ARL to false alarm in the other cases have not been
worked out. The difficulty of applying Gordon and Pollak’s Theorem 1 lies in
showing that their Condition C is satisfied.

To show that our Theorem 1 can handle such cases, we fully work out two
examples.

Ž .EXAMPLE 1. Case 1c �detecting a change in mean when the initial mean
and variance are both unknown.

Ž .EXAMPLE 2. Case 2c �detecting an increase in variance when the initial
mean and variance are both unknown.

Again, we assume that X , X , . . . , X is a learning sample of m�m �m�1 �1
independent observations from the in-control distribution. Ensuing observa-

� 4tions are X , X , . . . . Surveillance is based on the statistics T , defined in1 2 n
Ž .1 . This sequence is a sequence of invariant statistics both for Example 1 and
for Example 2. We use Ýn to denote sums of the form Ý�1 � Ýn .i��m i��m i�1

In Example 2, an explicit form of the likelihood ratio is available. Therefore
it will be developed first. We consider the case where the representative

Ž 2 2 . 2 Ž .postchange distribution is N �, c � , where c � 1 has a fixed known
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value. We apply Theorem 1, assuming for convenience that the prechange
Ž . Ž .distribution is N 0, 1 . As mentioned above, this entails no loss of generality.

Straightforward calculations yield

n1 1
fs �Žn�k�1. 2� n � c exp 1 � XŽ . Ýk i2½ 5ž /2 c i�k

and

� nŽ .k

�Ž n�k�1.'c m � n
�

2'k � 1 � m � n � k � 1 �cŽ .
Ž .m�n�1 �2

2n 2 nm � 1 � Ý T � Ý T � m � nŽ .Ž .i�1 i i�1 i
� .2k�1 n 2Ý T � Ý T �cŽ .Ž .i�1 i i�k i� 0k�1 2 n 2 2m �1�Ý T � Ý T �c �Ž .i�1 i i�k i 2m�k �1 � n �k �1 �cŽ .

Ž .It is easy to see that the value of the statistic � n does not change if we addk
a constant to all of the X ’s or multiply by a positive constant. It follows, byi
subtracting X from each of the X ’s in the expression below and dividing�m i
them by S , that�m

� nŽ .k

�Ž n�k�1.'c m � n
�

2'm � k � 1 � n � k � 1 �cŽ .
Ž .m�n�1 �2

2n 2 nÝ X � Ý X � m � nŽ .Ž .i��m i i��m i
� .2k�1 2 nÝ X � 1�c Ý XŽ .Ž .i��m i i�k i� 0k�1 2 2 n 2Ý X � 1�c Ý X �Ž .i��m i i�k i 2m�k �1 � n �k �1 �cŽ .

Hence,
1 2 n 2� n exp � 1 � 1�c Ý XŽ . � 4Ž .k i�k i2�fs 2� nŽ . ' m � k � 1 � m � n � 1�c 1 � m � k � 1 �m � nŽ . Ž . Ž .k Ž .Ž .

Ž .� m�n�1 �22 n 2u n � 1 � 1�c Ý XŽ . Ž .k i�k i
� 1 � ,2ž /m � n � 1 �Ž . n̂

where
2nn1 Ý XŽ .i��m i2 2� � X �ˆ Ýn im � n � 1 m � ni��m
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and

22n k�1 2 nÝ X Ý X � 1�c Ý XŽ . Ž .Ž .i��m i i��m i i�k i
u n � � .Ž .k 2m � n m � k � 1 � n � k � 1 �cŽ .

Ž . Ž 2 . n 2Denote b n � 1 � 1�c Ý X . It follows thatk i�k i

� n 1 n � kŽ .k 2 � � �2 log � � b n 
 � � 1 � u n � O ,Ž . Ž .ˆk n kfs 2 ž /n � m� n �Ž . ˆk n

� 2 � � �� n 1 b n � � 1 � u n n � kŽ . Ž . Ž .ˆk k n k
2 log � � O ,fs 2 2 ž /n � m� n � 1 � u n � b n � m � n � 1 �Ž . Ž . Ž . Ž .Ž .ˆ ˆŽ .k n k k n

Ž .where O x �x is a bounded function in x.
� t�r 2 4Let B � Ý X � 4r . It follows that over the event B the random1 i�t�1 i 1
Ž . � k�1 � � n �variables b n , Ý X and Ý X are all bounded by a constant timesk i�t�1 i i�k i

r. The bound is uniform in k and n, where t � k � n � t � r. Hence, over
2 2'� Ž . � Ž . � � Ž . Ž .the event B , u n � Z O r�t � Z O r� t � O r �t , with Z �1 k

t ' Ž � Ž . �Ý X � t � m . Therefore, given any 
 � � 0, P B , sup u ni��m i � 1 t � k � n� t�r k
. Ž 2 . Ž .� 
 � � exp �dt�r , for some positive d � d 
 � . The distribution of both

Ž . t�r 2 2m � n � 1 � and Ý X is � . The moment generating function of thisn̂ i�t�1 i
and large deviation theory can be used to show that for any 
 � � 0,

� 2 � 2P sup � � 1 � 
 ��r � r exp �gt�rŽ .ˆ� nž /
t�n�t�r

and

t�r
2P X � 4r � exp �r�2Ž .Ý� iž /

i�t�1

Ž . Ž .with g � g 
 � � 0. Condition 1 is accounted for by taking r � r A such
that r 2 log A�A � 0, as A � �, but r�log A � �.

In order to verify Condition 2 notice that

j

P N � n � P max � j � A � P � j � A ,Ž . Ž . Ž .Ž .Ýk A k l k kž /j�n l�1

� �for any j, k � j � n. In particular, let j � j � k � 
 � r , for some 
 �3 �k 2

 � � 0 and for all k such that 
 r�3 � k � n � 
 r�3. Consider the events2 2

j
2 2B � X � j � k � 1 c � 
 � j � k � 1 ,Ž . Ž .Ý2 i½ 5

i�k

B � � 2 � 1 � 
 � ,ˆ� 43 j

B � u j � �
 � j � k � 1 ,� 4Ž . Ž .4 k
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Note that

j
�2 �2 2 2 22 log � j � 1 �c � X � log c j �k �1 � u j �� � o 1 ,Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆÝk j i k j

i�k

Ž .where o 1 � 0 as 
 � � 0. It follows that, if 
 � is small enough but 
 � r�log A
is large, then

P � j � A � P Bc � P Bc , B � P Bc , B .Ž . Ž . Ž . Ž .Ž .k k k 2 k 3 2 k 4 2

Ž c. � 4Large deviation arguments can be used to show that P B � exp �d r , fork 2 2
some positive d that depends on 
 �. On the event B the relation � 2 �ˆ2 2 j

k�1 2 Ž . Ž 2 .Ž . Ž .Ý X � j � m � 1 � c � 
 � j � k � 1 � j � m � 1 holds. This cani��m i
Ž c . � 4 Žbe used to show that P B , B � exp �d k , for some positive d thatk 3 2 3 3

.depends on 
 � . Finally, on the event B ,2

2 'u j � Z � O j � k �k � Z � O j � k � k � o 1 ,Ž . Ž . Ž . Ž .Ž . Ž .k

k�1 ' Ž . Ž .where Z � Ý X � k � m � 1 , O 
 is a bounded function, and o 1 � 0i��m i
Ž c . � 4as 
 � � 0. It follows that P B , B � exp �d k , for yet another d � 0.k 4 2 4 4

The above claims can be summed up in order to conclude that for some d � 0,

n

P N � n � 2�3 
 r � 3 AC exp �dr .Ž . Ž . Ž .Ý k A 2 2
k�1

Ž .Condition 2 thus follows, provided that r � r A is such that r�log A � �,
as A � �.

Consider next Example 1�detecting a change in mean when the initial
mean and variance are both unknown. We consider the case where the

Ž 2 .representative postchange distribution is N � � �� , � , where � has a
Ž .fixed known value. We apply Theorem 1, again assuming for convenience

Ž . Ž .without loss of generality that the prechange distribution is N 0, 1 .
Recall that

2nn1 Ý XŽ .i��m i2 2� � X �ˆ Ýn in � m � 1 m � ni��m

n Ž .and define X � Ý X � m � n . It is shown in the Appendix that then i��m i
likelihood ratio of the invariant statistics for the case of detecting a change in
the mean is given by

2n 2 2Ý X � X � n � k � 1 �Ž .Ž .i�k i n'� n � E exp W � � n � k � 1 � ,Ž . Ž .k ½ 5� 2 2 n � mŽ .n̂

where expectation is with respect to W. The random variable W is indepen-
dent of the observations X , �m � i � n, and has Gamma distribution withi

Ž .both shape and scale equal to m � n � 1 �2.
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The fully specified likelihood ratio for this case is given by
n

fs 2� n � exp � X � n � k � 1 � �2 .Ž . Ž .Ýk i½ 5
i�k

Hence,
2 2� n n � k � 1 �Ž . Ž .k � exp � � n � k � 1 XŽ . nfs ½ 52 n � m� n Ž .Ž .k

n
'� E exp � X � X W �� � 1 .ˆŽ .Ž .Ý i n n½ 5

i�k

The crucial part in the estimation of the ratio between the invariant and
the fully-specified likelihood ratios�thus showing Conditions 1 and 2�de-

Ž . Ž .pends on bounding the term � n � � X , . . . , X , n , wherek k �m n

'� n � E exp W �� � 1 v n � 1,Ž . Ž .ˆ� 4Ž .k n k

nŽ . Ž Ž . .and v n � � Ý X � n � k � 1 X .k i�k i n
It follows that

' '� �� n � E exp W �� � 1 v n � W �� � 1Ž . Ž .ˆ ˆ� 4Ž . Ž .k n k n

' '� E exp W �� � 1 v n � W �� � 1Ž .ˆ ˆ� 4Ž . Ž .n k n

' '� P W �� � 1 � P W �� � 1 ,ˆ ˆŽ . Ž .n n

where, again, the computation of the probability and of the expectation is
'� 4with respect to W. However, on the event W �� � 1 ,n̂

2W�� � 1n̂'W �� � 1 �n̂ 2
� �Ž .Ž 2 . Ž .4 Ž 2 .�and E exp 1�2 W�� � 1 v n � W�� � 1 is equal toˆ ˆn k n

Ž .� m�n�1 �2v n v nŽ . Ž .k k
exp � 1 � 2½ 5 ž /2 � m � n � 1Ž .n̂

v nŽ .k2� P W�� � 1 �n̂ 2ž /� m � n � 1Ž .n̂

'� 4Likewise, on the event W �� � 1 ,n̂

2'W �� � 1 � W�� � 1ˆ ˆn n

� �Ž 2 . Ž .4 Ž 2 .�and E exp W�� � 1 v n � W�� � 1 is equal toˆ ˆn k n

Ž .� m�n�1 �22v nŽ .k
exp �v n 1 �� 4Ž .k 2ž /� m � n � 1Ž .n̂

2v nŽ .k2� P W�� � 1 �n̂ 2ž /� m � n � 1Ž .n̂
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The above discussion leads to the following approximation:

Ž .� m�n�1 �2v n v nŽ . Ž .k k
� �� n � exp � 1 � � 1Ž .k 2½ 5 ž /2 � m � n � 1Ž .n̂

Ž .� m�n�1 �22v nŽ .k� exp �v n 1 � � 1� 4Ž .k 2ž /� m � n � 1Ž .n̂

� �2 v nŽ .k2� �� P W�� � 1 � .n̂ 2ž /� m � n � 1Ž .n̂

Ž . Ž .However, the mode of a � s, s distribution is attained at s � 1 �s. It follows
that the last expression in the above approximation is bounded by a constant

'� Ž . �times v n m � n � 1 .k
This approximation, together with arguments parallel to those used for

Example 2, can be applied in order to show that conditions 1 and 2 hold for
Example 1.

APPENDIX

We seek a convenient representation of the likelihood ratio of the invariant
statistics for the case of a change in the mean. Let there be given the random

Ž . Ž .couple T, S . Consider two distinct joint distributions for this element. For
ease of notation, assume that the distributions are represented by two

Ž . Ž .continuous densities with a common support: f t, s and f t, s . Assume,k �

furthermore, that the marginal densities of S, both under P and under P ,k �

are identical. Hence,

f t H f t , s dsŽ . Ž .k k�
f t H f t , s dsŽ . Ž .� �

f t , s f t , sŽ . Ž .k �� dsH f t , s H f t , u duŽ . Ž .� �

f t 
 sŽ .k� f s 
 t ds.Ž .H �f t 
 sŽ .�

Ž . Ž .If, in particular, T � T , . . . , T and S � U, V , where U � X and V �1 n �m
Ž . 2m � 1 S , then the conditional likelihood ratio becomes�m

2n'f t 
 s v �Ž .k
5 � exp � t � n � k � 1 � n � k � 1 � uŽ . Ž . Ž .Ý i½ 5'f t 
 s 2Ž . m � 1� i�k

The random variables U and V are independent. The marginal distribution
2 Ž .of V is � and the marginal distribution of U is N 0, 1�m . StandardŽm�1.

Bayesian argumentation can be used to show that the conditional distribu-
tion of U, given V and FF , is Gaussian. The conditional mean and variance ofn
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that distribution are given by
n'v Ý t 1i�1 i

E U 
 v , FF � � , var U 
 v , FF � .Ž . Ž .n n' n � m n � mm � 1
The conditional distribution of V, given FF , is a Gamma distribution withn

Ž .shape parameter given by n � m � 1 �2 and scale parameter given by
2nn1 Ý tŽ .i�1 i2t � m � 1 � .Ý i2 m � 1 n � mŽ . i�1

Ž .Integrating the conditional likelihood ratio 5 with respect to the condi-
tional distribution of U yields

2n 2 2n'v Ý t � n � k � 1 �Ž .i�1 i
exp � t � � n � k � 1 � .Ž .Ý iž /½ 5' n � m 2 2 n � mŽ .m � 1 i�k

Define the random variable W by
2nnV 1 Ý TŽ .i�1 i2W � T � m � 1 � .Ý im � 1 m � n � 1 m � ni�1

Note that W is independent of FF and has a Gamma distribution with bothn
Ž .shape and scale equal to m � n � 1 �2. Moreover, it can be shown that

2n nn nÝ T Ý TŽ .i�1 i i�1 i2n � m � 1 T � T � m � 1 �Ž . Ý Ýi iž /n � m m � ni�k i�1

n 2 nŽ . Ž .is equal to Ý X � X �� , where X � Ý X � m � n andˆi�k i n n n i��m i
2nn1 Ý XŽ .i��m i2 2� � X � .ˆ Ýn in � m � 1 m � ni��m

Therefore,
2n 2 2Ý X � X � n �k �1 �Ž .Ž .i�k i n'� n �E exp W � � n � k � 1 � ,Ž . Ž .k ½ 5� 2 2 n � mŽ .n̂

where expectation with respect to W.

Ž .REMARK. The computation of the likelihood ratio � n involves integra-k
tion.
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