
The Annals of Statistics
1998, Vol. 26, No. 3, 1103–1125

ON LOCALLY UNIFORMLY LINEARIZABLE HIGH BREAKDOWN
LOCATION AND SCALE FUNCTIONALS

By P. L. Davies

Universität Essen

This article gives two constructions of a weighted mean which has a
large domain, is affinely equivariant, has a locally high breakdown point
and is locally uniformly linearizable. One construction is based on M-
functionals with smooth defining ψ− and χ-functions which are used to
control the weighting. The second construction involves a locally uniformly
linearizable reduction of the data to a finite set of points. This construction
has the advantage of computational speed and opens up the possibility of
allowing the weighting to take the shape of the original data set into ac-
count. Its disadvantage lies in its inability to deal with large atoms. The
aim of the locally uniform linearizability is to provide a stable analysis
based on uniform asymptotics or uniform bootstrapping. The stability of
the first construction is exhibited using different stochastic models and
different data sets. Its performance is compared with three other function-
als which are not locally uniformly linearizable.

0. Overview. This article is arranged as follows. Section 1 contains a
discussion of the reasons for constructing locally uniformly linearizable high
breakdown functionals. The definition of locally uniform linearizability is
given in Section 2. A first construction based on M-functionals is given in
Section 3 which is used in Section 4 to give a locally uniformly linearizable
weighted mean. A second construction is given in Section 5. Finally, in
Section 6 we apply the weighted mean based on the M-functional to some
models and real data sets and compare its performance with those of some
nonlinearizable functionals.

1. Introduction. One of the simplest statistical problems is the location-
scale problem on the real line. Given a data set xn = �x1� � � � � xn�, we are
required to specify two numbers L and S, together with upper and lower
bounds, which describe the location and the scale, respectively, of the data. In
spite of its apparent simplicity, the problem has as yet no satisfactory solu-
tion. Most approaches including robust ones are based on a central model F0
which is assumed to be true or to contain the truth within some small metric
ball. An exception is [19] where k different models or challenges are consid-
ered simultaneously. Data rarely come accompanied by a central model and
when analyzing large numbers of data sets in an automatic manner, such an
approach is unwarranted. One possibility is to use nonparametric measures
of location and scale as in [5, 6, 7]. This is the approach we shall adopt but
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with the added restriction of requiring stability of analysis over a wide range
of models and data sets. By stability of analysis we mean stability of quan-
tiles of the sampling distribution. This is a much stronger demand than the
continuity of the functional itself as considered in Section 4 of [6].

By location and scale functionals, we mean functionals which have the ap-
propriate equivariance properties with respect to affine transformations. We
shall denote a generic location functional by TL and a generic scale functional
by TS. We shall limit the discussion to the location functional, treating the
scale as a nuisance parameter. For data xn the point value of the location
functional is TL�Pn�xn�� where Pn�xn� denotes the empirical distribution as-
sociated with the data. The set of acceptable values of the location functional
is given by

A�xn�TL� = �TL�P�� P is an adequate approximation for the data�
(see [12]) where we use the following two concepts of approximation. The first
is based on the Kuiper metric defined by

dku�P�Q� = sup
{�P�I� −Q�I��� I an interval

}
�

In the sense of the Kuiper metric, a distribution P will be considered to be an
adequate approximation if

dku�Pn�xn��P� ≤ qu�n�0�99� dku�P��(1)

where qu�n�α�dku�P� denotes the α-quantile of the Kuiper metric. Asymp-
totic values can be derived from Proposition 12.3.6 of Dudley [13].

The second concept requires that the value of the location functional TL
for the real data is close to the values obtained from i.i.d. samples of size n
deriving from the distribution P. We base this concept of approximation on
the Studentized location functional TLS defined by

TLS�Q�P� = �TL�Q� −TL�P�� /TS�Q��
In the sense of TLS� a distribution P will be considered to be an adequate
approximation if

qu�n�0�02�TLS�P�/
√
n ≤ TLS�Pn�xn��P�
≤ qu�n�0�98�TLS�P�/

√
n�

where qu�n�α�TLS�P� denotes the α-quantile of the statistic
√
nTLS�Pn�P��

P�� under the model P. Here Pn�P� denotes the empirical distribution of
n i.i.d. random variables with distribution P. We note that if the data xn
really are the realization of i.i.d. random variables with distribution P, then
P will be regarded as an adequate approximation with a probability of at least
0�95. The approximation region for the values of TL based on both concepts
of approximation is given by

A�xn�TL� =
{
TL�P�� dku�Pn�xn��P� ≤ qu�n�0�99� dku�P��
qu�n�0�02�TLS�P�/

√
n ≤ TLS�Pn�xn��P�

≤ qu�n�0�98�TLS�P�/
√
n
}
�

(2)
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The discussion so far applies to any functionals TL and TS, but the for-
mulation of (2) requires functionals which are well defined for a large class of
distributions. This is one of the demands we shall make. Second, we wish to
allow for the possibility that the data include a proportion of erroneous val-
ues. Even in this situation we do not want the functionals to fail completely,
and to avoid this we shall require a high local breakdown point. Third, it is
often important for applications that the functional be interpretable. In my
experience, many practitioners are unhappy with M-functionals but will ac-
cept weighted means if the weights seem reasonable. Two further reasons
for considering weighted means are that they allow a smooth adaptation to
a finite set of different models (Section 5) and that they give an additional
flexibility which can be important, for example if the scale functional is of
independent interest [10]. Fourth, we shall be interested in functionals for
which the statistical analysis is stable. This will be so if the values TL�P�,
TS�P� and qu�n�α�TLS�P� are continuous as a function of P with respect to
the Kuiper metric. This is not the case for the median nor for the mean for
which it is known that there does not exist any nontrivial nonparametric con-
fidence interval [2]. It is the case for functionals TL and TS, which are locally
uniformly linearizable in the sense to be defined below. For such functionals
the approximation region itself can be approximated by

A�xn�TLS� =
[
TL�Pn

(
xn�� − qu�n�0�98�TLS�Pn�xn�

)
TS�Pn�xn��/

√
n�

TL�Pn�xn�� − qu
(
n�0�02�TLS�Pn�xn�

)
TS

(
Pn�xn�

)
/
√
n
]
�

(3)

which is nothing more than the bootstrap estimate.
A further consequence of locally uniform linearity is that the functionals

are asymptotically normal. If we denote the influence function of TL at the
point P by I�·�TL�P�� then we have

√
n
(
TL�Pn�P�� −TL�P�

) ⇒N
(
0� σ�TL�P�2)�

where

σ�TL�P�2 =
∫
I�u�TL�P�2 dP�u��

We shall require that σ�TL�P�2 is continuous in a Kuiper neighborhood and
consequently we may replace P by Pn�xn� to give the following approximation
to the approximation interval;

A�xn�TLS� =
[
TL

(
Pn�xn�

)− 2�05σ
(
TL�Pn�xn�

)
/
√
n�

TL
(
Pn�xn�

)+ 2�05σ
(
TL�Pn�xn�

)
/
√
n
]
�

(4)

which is the asymptotic bootstrap approximation.
Huber ([18], page 5), has a list of desirable features which a functional

should exhibit. These include reasonably good efficiency at the assumed model
and stable asymptotic behavior in a neighborhood of the model. Bickel and
Lehmann [6] consider the relative efficiences of different nonparametric esti-
mators at certain specified models. As we are also concerned with a situation
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where there is no central model, pointwise efficiency considerations, even over
neighborhoods of a single model, are of limited relevance. What is important
is the performance over a large range of different models or challenges [19]
and real data sets. The measures of performance may include the number
of complete failures, the lengths of the approximation intervals as well as
the accuracy of these intervals and the computational costs. Putting all these
requirements together, we have the following list of desirable properties.

DP1. Affine equivariance.
DP2. A large domain.
DP3. A high local breakdown point.
DP4. Interpretability of the functional.
DP5. Locally uniform differentiability.
DP6. Superior performance over existing competitors.

Morgenthaler and Tukey [19] consider an approach which in one sense
lies between the nonparametric approach of this paper and the standard one-
model situation of robust statistics. They consider a finite number of models
or challenges and look for a procedure which performs well at all of them. The
hope is that such a procedure will also perform reasonably well for challenges
which lie between. For a given sample a likelihood based compromise between
the two challenges is made. The use of likelihood means that the method of
Morgenthaler and Tukey does not satisfy DP5. In Section 5 we show how it is
possible to “coarsen” a large class of distributions by reducing them to a finite
sample of m points which themselves satisfy DP5. These points can be used
to decide between a finite set of challenges and hence to make the weights of
the weighted mean depend on the shape of the sample but in a differentiable
manner.

2. Local uniform linearity.

2.1. Notation and definition. To fulfill DP2, the domains we consider are
of the form

W�η� = �P� ��P� < η��
where ��P� denotes the size of the largest atom of P. The Kuiper ball of
radius δ and with center P will be denoted by B�P�δ�. Given any P in W�η�,
it is clear that there exists a δ�P� such that B�P�δ�P�� ⊂ W�η�. The local
breakdown point ε∗�P�T� of T at P is defined by

ε∗�P�T� = sup
{
ε > 0� sup

Q∈B�P�ε�

(�TL�Q�� + � logTS�Q��) <∞
}
�(5)

The variation of a function h� R → R will be denoted by �h�v; the variation
�H�v of a function H� R→ R2 is defined to be the sum of the variations of the
components. We use the usual order of magnitude notation but shall write OP
to emphasize that the constant involved depends only on the distribution P.
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The functional T�W�η� → R2 is said to be locally uniformly linearizable if
the following hold.

L1. There exists a function I�·�T� ·�� R×W�η� → R2 with the following prop-
erties for each P ∈W�η�:
L1.1. I�·�T�P�� R→ R2 is of bounded variation.
L1.2. There exists a δ�P� > 0 such that

sup
u

∥∥I�u�T�Q� − I�u�T�P�∥∥ = OP�dku�Q�P��

for all Q ∈ B�P�δ�P��.
L1.3.

∫
I�u�T�P�dP�u� = 0�

L1.4.
∫
Ij�u�T�P�2 dP�u� > 0 for each component j.

L2. There exists a strictly increasing function τ:R→R satisfying limu→0 τ�u�/
u = 0 such that the following holds: there exists a δ�P� > 0 such that for
all Q and Q′ in B�P�δ�P��,∥∥∥∥T�Q′� −T�Q� −

∫
I�u�T�Q�dQ′�u�

∥∥∥∥ = OP
(
τ
(
dku�Q′�Q�))�

The function I�·�T�P� is the influence function of the functional T. The
requirements here are stronger than those of [16] and [20]. In [16] fixed P is
considered, as well as deviationsQ of the form �1−ε�P+εδx where δx denotes
the unit mass in x. In [20] also attention is restricted to fixed P but with Q
and Q′ in a shrinking neighborhood of P. The regularity conditions placed on
I�·�T�P� are also stronger than those required by [16] and [20].

2.2. The asymptotics of locally uniformly linearizable functionals. In this
section we show that locally uniformly linearizable functionals converge lo-
cally uniformly to a normal distribution. A referee pointed out that the loca-
tion functional without an auxiliary scale functional which is based on Huber’s
minimax estimator [17], ψ�x� = �−k� ∨ x ∧ k� has uniform asymptotics for a
restricted class of distributions, namely for all symmetric distributions in the
ε-contamination ball of the standard normal distribution with F�±k� = 0.
Rieder [20] uses uniformity in a local asymptotic sense to derive asymptotic
minimax and convolution theorems for the estimation of functionals. The rela-
tionship between asymptotic expansions and Fréchet differentiability is con-
sidered in [4]. Most results on differentiability are pointwise but such results
do not guarantee robustness or the success of bootstrapping for any sample
size ([18], pages 5 and 51). The proofs mimic those in [9], [17], [21], [22] and
[23], among others.

The formula we use for partial integration is

d�FG� = F̃ dG+ G̃ dF�
where

h̃�u� = h�u+ 0� + h�u− 0�
2

(6)

for any nondecreasing function h. We have the following theorem.
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Theorem 2.1. Let h� R→ R be of bounded variation and F and G be two
distribution functions. Then∣∣∣∣

∫
hd�F−G�

∣∣∣∣ ≤ 2�h�V dku�F�G��

The asymptotics are covered by the Theorem 2.2. Here and in future Qn

denotes the empirical distribution associated with n i.i.d. random variables
�X1�Q�� � � � �Xn�Q�� with common distribution Q.

Theorem 2.2. Let T be a real-valued functional which is locally uniformly
linearizable on W. Then for all P in W�η� there exist constants δ1�P�, c1�P�
and c2�P� such that

sup
∣∣∣∣P

(√
n

(
T�Qn� −T�Q�
σ�T�Q�

)
≤ u

)
−,�u�

∣∣∣∣ ≤ c1�P��n−1/2 + rn��(7)

where

σ2�T�Q� =
∫
I�u�T�Q�2 dQ�u��

, is the distribution function of the standard N�0�1� distribution, rn satisfies

τ
(√

−8 log�rn�/n
)
= c2�P�rn/

√
n

and the supremum in (7) is taken over all u ∈ R and all Q ∈ B�P�δ1�P��.

Proof. The proof is a standard application of the exponential inequality of
[14] and Berry–Esseen. It follows the proofs in [22] and [23], Theorem 2.2(ii),
but with explicit consideration of the constants involved to ensure that they
depend only on P for all Q and Q′ in a sufficiently small neighborhood of P.
We omit the details. ✷

We note that if τ�u� = u2 then rn = O�log�n�/√n�. This leads to the fol-
lowing corollaries.

Corollary 1. If τ�u� = u2� then

sup
u∈R�Q∈B�P�δ2�P��

∣∣∣∣P
(√
n

(
T�Qn� −T�Q�
σ�T�Q�

)
≤ u

)
−,�u�

∣∣∣∣ ≤ c3�P� log�n�/√n�

Corollary 2. Suppose τ�u� = u2 and that the location-scale functional
T = �TL�TS�t is locally uniformly linearizable on W�η�. Then for each P ∈
W�η�,

sup
u∈R�Q∈B�P�δ3�P��

∣∣P(
n−1/2�TL�Qn�� −TL�Q�� ≤ uσ�TL�Qn�

)−,�u�∣∣
≤ c4�P� log�n�/√n�
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We note that the errorO�log n/
√
n� is the same as that of [23], Theorem 2.2,

and that Corollary 2 justifies the approximations (3) and (4) for the approxi-
mation interval (2).

3. Locally uniformly linearizable M-functionals.

3.1. M-functionals. The functionals we construct are weighted means
with an automatic downweighting of outlying observations. In order to
accomplish this successfully, we require a reliable method of determining
which observations are outlying. Furthermore, this must be done in a smooth
manner so that the resulting weights are locally uniformly linearizable. The
obvious solution is to use M-functionals.

An M-functional M = �ML�MS�t is the solution to the equations
∫
ψ

(
u−ML�P�
MS�P�

)
dP�u� = 0�(8)

∫
χ

(
u−ML�P�
MS�P�

)
dP�u� = 0�(9)

We say that M is well defined if (8) and (9) have a unique solution with
MS�P� > 0. To guarantee existence, uniqueness and locally uniform linearity,
we impose the following conditions on ψ and χ.

M1. ψ is asymmetric, strictly increasing with ψ�∞� = 1.
M2. ψ has a continuous second derivative and �1+u2���ψ�1��u��+ �ψ�2��u��� is

bounded and integrable.
M3. χ is symmetric, strictly increasing on �0�∞� with χ�0� = −1 and χ�∞� =

1.
M4. χ has a continuous second derivative and �1 + u2����χ�1��u�� + �χ�2��u���

is bounded and integrable.
M5. χ�1�/ψ�1� is strictly increasing.

Theorem 3.1 (Scholz [21]). Let ψ and χ satisfy M1–M5 and P be a distri-
bution with ��P� < 1/2. Then the M-functional M is well defined at P.

It follows from Theorem 3.1 that M is well defined on W�1/2�. A closer
examination of the proof shows that M is well defined if

p1 + ��P�χ
(
ψ−1

(
p1 − p2

��P�
))

+ p2 > 0�(10)

where p1 and p2 denote, respectively, the probabilities to the left and right of
the largest atom.

The breakdown point ε∗�M�P� of M at P in W�1/2� is defined by (5) where
we set ML�Q� = ∞ if M is not well defined at Q. For ψ and χ satisfying
M1–M5, we define ε0 by

ψ−1
(

ε0

1 − ε0

)
= χ−1

(
− ε0

1 − ε0

)
�(11)
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Theorem 3.2. For all P in W�1/2� we have

min
{
1/2 − ��P�� ε0

} ≤ ε∗�M�P� ≤ �1 − ��P��/2�

Proof. If ε < 1/2 − ��P�, then for all Q ∈ B�P�ε� we have ��Q� <
��P� + dku�Q�P� < 1/2 so that M�Q� is well defined. In [18], pages 142 and
143, the breakdown of joint location and scale functionals for the gross error
model is considered. The method of proof for the lower bound continues to hold
for the Kuiper neighborhood. The condition ε < 1/2 − ��P� guarantees that
the scale does not implode and we obtain the left-hand inequality of the theo-
rem. The right-hand side follows from general results for affinely equivariant
functionals (see [11]). ✷

We note that it follows from [9] that M is continuous at each point of
W�1/2�. For any distribution P ∈W�1/2� we define the Jacobian J�P� by

J�P� = −1
s



∫
ψ�1��u�dP′�u�

∫
uψ�1��u�dP′�u�

∫
χ�1��u�dP′�u�

∫
uχ�1��u�dP′�u�


 �

where M�P� = �t� s�t and P′�B� = P�sB+ t� for each Borel set B.

Lemma 3.1. For each P ∈W�1/2� and for each ε�P� < ε∗�M�P�, we have

0 < inf λ1�Q� ≤ supλ2�Q� <∞�
where λ1�Q� and λ2�Q� denote, respectively, the smallest and largest eigenval-
ues of the Jacobian J�Q� and the infimum is taken over all Q ∈ B�P�ε�P��.

Proof. As ε < ε∗ it follows that inf MS�Q� > 0� implying that the el-
ements of J�Q� are bounded. This shows supλ2�Q� < ∞. In order to show
that the smallest eigenvalue is bounded away from zero, we suppose this is
not the case and consider a sequence �Qn�∞1 with limn �J�Qn�� = 0 where �J�
denotes the determinant of J. By Helly’s theorem there exists a convergent
subsequence which tends to a possibly defective but nondegenerate distribu-
tion Q. If we denote this subsequence also by �Qn�∞1 � then it follows from M2
and M4 that point masses at infinity have no effect on any of the integrals
in the definition of J�P�. This implies �J�Q�� = limn→∞ �J�Qn�� = 0 but as
Q�R� > 1 − ε�P� > 0� the proof of Theorem 4.1. as given in [18] shows that
this cannot be the case. This contradiction proves the lemma. ✷

The next step is to show that M is locally uniformly Lipschitz on W�1/2�.

Lemma 3.2. For any distributionP ∈W�1/2�� there exist constants δ4�P� >
0 and c5�P� > 0 such that∥∥M�Q′� −M�Q�∥∥ ≤ c5�P�dku�Q′�Q�
for all Q and Q′ in B�P�δ4�P��.



LOCALLY UNIFORMLY LINEARIZABLE FUNCTIONALS 1111

Proof. We set δ5�P� = min�1/2 − ��P�� ε0�/2 with ε0 as given by (11).
This implies

c6�P� = sup
{
MS�Q�−1� Q ∈ B�P�δ5�P��

}
<∞�(12)

For Q and Q′ in B�P�δ5�P�� we write

M�Q� = �t� s�t� M�Q′� = �t′� s′�t�
On writing

y = u− t
s

� y′ = u− t′
s′

� η = t− t′
s

� κ = s− s′
s

a Taylor expansion gives

ψ�y′� − ψ�y� = ηψ�1��y� + κyψ�1��y� +OP
(�M�Q′� −M�Q��2)�(13)

On integrating (13) with respect to Q′ and using Theorem 2.1 and M2, we
obtain∫
ψ�y�dQ′�u� = η

∫
ψ�1��y�dQ�u� + κ

∫
ψ�1��y�dQ�u�

+OP
(�M�Q′� −M�Q���dku�Q′�Q� + �M�Q′� −M�Q���)

with the same inequality with χ in place of ψ.
This gives with 5 = �ψ�χ�t�∫
5�y�dQ′�u� = J�Q�(M�Q′� −M�Q�)

+OP
(�M�Q′� −M�Q��(�M�Q′� −M�Q�� + dku�Q′�Q�))

for all Q and Q′ in B�P�δ6�P��. A further application of Theorem 2.1 shows
that ∥∥∥∥

∫
5�y�dQ′�u�

∥∥∥∥ =
∥∥∥∥
∫
5�y�d(Q′�u� −Q�u�)

∥∥∥∥ ≤ c7�P�dku�Q′�Q�

and hence

J�Q�(M�Q′� −M�Q�) = R8(14)

with

�R8� ≤ c8�P�
(�M�Q′� −M�Q��2 + dku�Q′�Q�)�

From this and Lemma 3.1 we can conclude that

�M�Q′� −M�Q�� ≤ 6�P�−1c9�P�
(�M�Q′� −M�Q��2 + dku�Q′�Q�)

Because of the continuity of M, we can choose 0 < δ7�P� ≤ δ6�P� such that∥∥M�Q′� −M�Q�∥∥ ≤ 1
26�P�c9�P�−1
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for all Q and Q′ in B�P�δ8�P�� it follows that

�M�Q′� −M�Q�� ≤ 26�P�−1c9�P�dku�Q′�Q�
as was to be proved. ✷

Theorem 3.3. Suppose that M1–M5 are satisfied. Then the functional M
is locally uniformly linearizable on W�1/2� with τ�u� = u2. In particular, for
each P ∈W�1/2� there exist constants δ9�P� and c10�P� such that∥∥∥∥M�Q′� −M�Q� −J�Q�−1

∫
5

(
u−ML�Q�
MS�Q�

)
dQ′�u�

∥∥∥∥
≤ c10�P�dku�Q′�Q�2

(15)

for all Q and Q′ in B�P�δ9�P�� and where 5 = �ψ�χ�t.

Proof. The inequality (15) follows from what we have just proved. The
locally uniform linearity follows from (15) by showing that the function

I�u�M�Q� = J�Q�−15

(
u−ML�Q�
MS�Q�

)

satisfies L1 and L2. This is done using arguments similar to those of the proof
of Lemma 3.2. ✷

4. A smooth weighted average.

4.1. Locally uniform linearity. As mentioned in the Introduction, the func-
tional we construct is a weighted mean with outlying observations being
downweighted. The outlyingness of observations is determined using the M-
functional of the last section. In order to retain the locally uniform linearity
we require a smooth weight function w. We shall assume that it fulfills the
following conditions.

W1. w is symmetric and strictly decreasing on �0�∞��
W2. w�1� = 1�w�∞� = 0�
W3. w has a continuous second derivative w�2��
W4. limu→∞ u2�w�u� + �w�1��u�� + �w�2��u��� = 0�

Given the weight function w we define the weighted mean functional Mw =
�Mw

L�M
w
S�t by

Mw
L�P� =

∫
uw��u−ML�P��/MS�P��dP�u�∫
w��u−ML�P��/MS�P��dP�u�

(16)

and

Mw
S�P�2 =

∫ �u−Mw
L�P��2w��u−ML�P��/MS�P��dP�u�∫
w��u−ML�P��/MS�P��dP�u�

(17)

It is clear that Mw is well defined on W�1/2� and that it is affinely equiv-
ariant. We show first that its breakdown point is at least that of M.
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Theorem 4.1. For any P in W�1/2� we have

ε∗�Mw�P� ≥ ε∗�M�P��

Proof. Choose an ε < ε∗�M�P� and an interval I withP�I� > 3
4 . It follows

that

sup
u∈I�Q∈B�P�ε�

∣∣∣∣u−ML�Q�
MS�Q�

∣∣∣∣ = A <∞(18)

and hence for all Q ∈ B�P�ε� we have
∫
w

(
u−ML�Q�
MS�Q�

)
dQ�u� ≥ w�A�Q�I� ≥ w�A�

(
3
4
− ε

)
> 0�(19)

To show that Mw
L�Q� remains bounded we note that

sup
Q∈B�P�ε�

∣∣∣∣
∫
uw

(
u−ML�Q�
MS�Q�

)
dQ�u�

∣∣∣∣ <∞�

which follows from∫
uw

(
u−ML�Q�
MS�Q�

)
dQ�u�

=ML�Q�
∫
w

(
u−ML�Q�
MS�Q�

)
dQ�u�

+MS�Q�
∫ (u−ML�Q�

MS�Q�
)
w

(
u−ML�Q�
MS�Q�

)
dQ�u��

the boundedness of ML�Q� and MS�Q� and W4.
A similar argument shows that Mw

S�Q� is bounded above and it remains
to show that it is bounded away from zero. If this is not the case then there
exists a sequence �Qn�∞1 in B�P�ε� with

lim
n→∞

∫ (
u−Mw

L�Qn�
)2
w

(
u−ML�Qn�
MS�Qn�

)
dQn�u� = 0�

By choosing subsequences if necessary we can assume that

lim
n→∞

(
Mw

L�Qn��ML�Qn��MS�Qn�
) = �t′� t� s�

with s > 0. Let γ > 0 and η > 0 be given. We set I′�γ� = �t′ − γ� t′ + γ� and
choose a finite interval I�η� with P�I�η�� > 1−η and I�η� ⊃ I′�γ�. It follows
that limn→∞ Qn�I�η� ∩ �R\I′�γ��� = 0 and hence

lim
n→∞

(
Qn�I�η�� −Qn�I′�γ��

)
= 0�

As Qn�I�η�� > P�I�η�� − ε > 1 − η− ε� we obtain

lim sup
n→∞

Qn�I′�γ�� > 1 − η− ε�
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This implies

P�I′�γ�� ≥ lim sup
n→∞

Qn�I′�γ�� − ε > 1 − η− 2ε�

On letting γ tend to zero, it follows that ��P� ≥ P��t′�� ≥ 1 − η − 2ε and
as η is arbitrary we obtain ��P� ≥ 1 − 2ε > ��P� by Theorem 4.2. This is a
contradiction and proves the theorem. ✷

Theorem 4.2. Suppose M1–M5 and W1–W4 are satisfied. Then the func-
tional Mw is locally uniformly linearizable with τ�u� = u2.

The proof follows from a second-order Taylor expansion using W1–W4 and
the locally uniform linearity of M.

4.2. The influence function. If the approximate approximation region is
to be calculated using asymptotics then the influence function I�·�Mw�P� is
required. We give it here in terms of the influence function I�·�M�P� of the
M-functional. To shorten the expressions we set

u′ = u−ML�P�
MS�P�

� u′′ = u−Mw
L�P�

MS�P�
� u′′′ = u−Mw

L�P�
Mw

S�P�
�

We write

w�P� =
∫
w�u′�dP�u��

C1�P� =
1

w�P�
∫
u′′w�1��u′�dP�u��

C2�P� =
1

w�P�
∫
u′′u′w�1��u′�dP�u��

C3�P� = − 1
w�P�

∫
u′′′w�u′�dP�u��

C4�P� =
1

2w�P�
∫
�1 − u′′′2�w�1��u′�dP�u��

C5�P� =
1

2w�P�
∫
�1 − u′′′2�u′w�1��u′�dP�u��

With this notation we have

I�u�Mw
L�P� =

�u−Mw
L�P��

w�P� w

(
u−ML�P�
MS�P�

)

−C1�P�I�u�ML�P� −C2�P�I�u�MS�P�
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and

I�u�Mw
S�P� =

Mw
S�P�

2w�P�
((
u−Mw

L�P�
Mw

S�P�
)2)

−w
(
u−ML�P�
MS�P�

)

+C3�P�I�u�Mw
L�P�+C4�P�I�u�ML�P�+C5�P�I�u�MS�P�

5. A second construction: coarsening.

5.1. Coarsening. We write ρ for a function which satisfies the following
conditions.

R1. ρ� �−1�1� → R is symmetric, positive and nonincreasing on �0�1� with
ρ�0� = 1 and ρ�1� = 0.

R2. ρ has a continuous second derivative with ρ�1��1� = 0 and ρ�2��1� = 0.

We recall the definition (6) of F̃ for the distribution function F. For any
distribution P we denote the associated distribution function by FP. With
this notation and for any integer m ≥ 3� we define

y�j�m�P� =
∫
uρ

(
2�m+ 1��F̃P�u� − j/�m+ 1��)dFP�u�∫

ρ
(
2�m+ 1��F̃P�u� − j/�m+ 1��)dFP�u� �(20)

Clearly y�j�m�P� is well defined if
∫
ρ

(
2�m+ 1�

(
F̃P�u� −

j

m+ 1

))
dFP�u� > 0(21)

and ∫
�u�ρ

(
2�m+ 1�

(
F̃P�u� −

j

m+ 1

))
dFP�u� <∞�(22)

Lemma 5.1. Here y�j�m�P� is well defined for all P ∈W�1/�m+ 1��.

Proof. As the integral in (22) is over a finite interval it is finite. To prove
(21) we note that if it does not hold for some j then for all u either F̃P�u� ≥
j+ 1

2/�m+ 1� or F̃P�u� ≤ j− 1
2/�m+ 1�. This implies

��P� ≥ j+ 1
2

m+ 1
− j− 1

2

m+ 1
= 1
m+ 1

�

contradicting P ∈W�1/�m+ 1��. ✷

Theorem 5.1 [The functional y�j�m� ·�]. W�1/�m+ 1�� → R is locally
uniformly linearizable.

Proof. We set s = 2�m + 1�, t = j/�m+ 1�, y�P� = y�j�m�P�, y�Q� =
y�j�m�Q� and write F and G for the distribution functions of P and Q,
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respectively. We have

y�Q� − y�P� =
∫ �u− y�P��ρ(s�G̃�u� − t�)dG�u�∫

ρ
(
s�G̃�u� − t�)dG�u�

�(23)

It suffices to show that the numerator and demoninator of (20) are locally
uniformly linearizable. We consider only the numerator. Precise arguments
can be given just as in Section 4 but we restrict ourselves to the main steps.
A Taylor expansion gives∫

�u− y�P��ρ(s�G̃�u� − t�)dG�u� = R1 +R2 +R3�

where

R1 =
∫
�u− y�P��ρ

(
s�F̃�u� − t�

)
d�G−F��u��

R2 = s
∫
�u− y�P��ρ�1�(s�F̃�u� − t�)(G̃�u� − F̃�u�)dG�u��

R3 = s2

2

∫
�u− y�P��ρ�2�(s�F̃�u� θ� − t�)(G̃�u� − F̃�u�)2

dG�u��

with F̃�u� θ� = θ�u�F̃�u�+�1−θ�u��G̃�u� for some θ�u��0 < θ�u� < 1. Clearly
R3 = OP�dku�Q�P�2� while for R2 we have

R2 = s
∫
�u− y�P��ρ�1�(s�F̃�u� − t�)(G̃�u� − F̃�u�)dF�u�

+
∫
�u− y�P��ρ�1�(s�F̃�u� − t�)(G̃�u� − F̃�u�)d�G−F��u�

= s
∫
�u− y�P��ρ�1�(s�F̃�u� − t�)(G̃�u� − F̃�u�)dF�u� +OP�dku�Q�P�2�

On noting∫
�u− y�P��ρ�1�(s�F̃�u� − t�)(G̃�u� − F̃�u�)dF�u�

=
∫ (∫

�u−y�P��ρ�1�(s�F̃�u�−t�)��v ≤ u�− 1
2�u = v��dF�u�

)
�G−F��v�

and on performing a similar calculation for the denominator of (23) we finally
obtain

y�Q� − y�P� =
∫
I�u�j�m�P�d�Q−P��u� +OP

(
dku�Q�P�2)�

where

I�u�j�m�P� = I′�u�j�m�P� − ∫
I′�u�j�m�P�dF�u�∫

ρ
(
s�F̃�u� − t�)dF�u�



LOCALLY UNIFORMLY LINEARIZABLE FUNCTIONALS 1117

and

I′�u�j�m�P� = �u− y�P��ρ(s�F̃�u� − t)− s

2

(
u− y�P�)ρ�1�(s�F̃�u� − t�)

− s
∫
�v− y�P��ρ�1�(s�F̃�v� − t�)�v ≥ u�dF�v��

It can be checked that the functions I�·� j�m� ·� fulfill the conditions L1 and
L2, proving the theorem. ✷

5.2. The location and scale functionals. We assumem to be an odd number
and write me = �m+ 1�/2. The location functional TcL is simply defined by

TcL�P� = y�me�m�P��
From what was shown in the last section it is clear that TcL is locally uniformly
linearizable with influence function I�u�TcL�P� = I�u�me�m�P�. To obtain
its breakdown behavior we note that the definition of y�me�m�P� depends
only on an interval centered at the median with a mass of at most 1/�m+ 1�.
This implies the following.

Theorem 5.2. For any P ∈ W�1/�m+ 1�� and for any ε < 1
2 − 1/�m+ 1�

we have

sup
Q

�TcL�Q�� <∞�

where the supremum is taken over all Q ∈ B�P�ε� ∩W�1/�m+ 1��.

Given the location functional TcL we define the scale functional TcS to be
the unique solution of

m∑
j=1

χ

(
y�j�m�P� − y�me�m�P�

TcS�P�
)
= 0�

where the function χ satisfies M3 and M4. The locally uniform linearity of TcS
is covered by Theorem 5.3.

Theorem 5.3. The scale functional TcS is locally uniformly linearizable on
W�1/�m+ 1�� and satisfies

TcS�Q� −TcS�P�
TcS�P�

=
∫
IS�u�P�d�Q−P��u�

H
+OP

(
dku�Q�P�2)�

where

IS�u�P� =
m∑
j=1

χ�1�
(
y�j�m�P� −TcL�P�

TcS�P�
)(
I�u�j�m�P� − I�u�me�m�P�

TcS�P�
)
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and

H =
m∑
j=1

χ�1�
(
y�j�m�P� −TcL�P�

TcS�P�
)(
y�j�m�P� − y�me�m�P�

TcS�P�
)
�

The proof is just a straightforward calculation.
The breakdown behavior of TcS is covered by the following theorem.

Theorem 5.4. (a) For any P ∈W�1/�m+ 1�� and for any ε < 1
2 − �1/�m+

1�� we have

sup
Q

TcS�Q� <∞�

where the supremum is taken over all Q ∈ B�P�ε� ∩W�1/�m+ 1��.
(b) For any P ∈ W�1/�m+ 1�� and for any ε < 1

2 − �2/�m + 1�� − ��P� we
have

inf
Q
TcS�Q� > 0�

where the infimum is taken over all Q ∈ B�P�ε� ∩W�1/�m+ 1��.

Proof. (a) Let ε be as in (a) of the theorem and �Qn�∞n=1 be a sequence of
distributions in B�P�ε� ∩W�1/�m+ 1�� with distribution functions �Gn�∞n=1.
We suppose that y�i�m�Qn� tends to −∞ and that y�j�m�Qn� tends
to ∞. We set an = G−1

n �i/�m+ 1� − 1/�2�m+ 1��� and bn = G−1
n �j/�m+ 1� +

1/�2�m+ 1���. Then the an tend to −∞ and the bn to ∞. As limP��an� bn�� = 1�
we conclude

ε > 1 − (
Gn�bn� −Gn�an�

)

≥ 1 −
(

j

m+ 1
+ 1

2�m+ 1� −
(

i

m+ 1
− 1

2�m+ 1�
))

= m+ 1 − j+ i− 1
m+ 1

�

It follows that m + 1 − j + i < �m+ 1�/2 and hence the total number of the
y’s which tend to ±∞ is at most �m+ 1�/2−1 which is strictly less than m/2.
This implies that the TcS�Qn� remain bounded, proving (a) of the theorem.

To prove (b) we set an = G−1
n �i/�m+ 1� + 1/�2�m+ 1��� and bn =

G−1
n �j/�m+ 1� − 1/�2�m+ 1��� and suppose that the TcL�Qn� − y�i�m�Qn�

and y�j�m�Qn� − TcL�Qn� converge to some finite number ζ. An argument
similar to the one just used shows that

ε >
∣∣P��ζ�� − (

Gn�bn� −Gn�an�
)∣∣∣∣

≥
(

j

m+ 1
− 1

2�m+ 1� −
(

i

m+ 1
+ 1

2�m+ 1�
))

− ��P�

= j− i− 1
m+ 1

− ��P��
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It follows that j − i + 1 < �m+ 1�/2 and hence the total number of the �y −
TcL�Qn��’s which tend to zero is at most �m+ 1�/2 − 1 which is strictly less
than m/2. This implies that the scale cannot implode. ✷.

5.3. A smooth weighted average. Just as in Section 4 we take the final
functionals to be weighted averages with the weights being determined by the
functionals TcL and TcS. The Theorems 4.1 and 4.2 hold correspondingly as do
the expressions for the influence functions given in Section 4.2.

5.4. Adjusting the weights. As indicated above, one further possible use
of the coarsened sample is to allow adjustment of the weights depending on
the shape of the sample. We do this by defining the standardized coarsened
sample by

ys�j�m�P� = y�j�m�P� − y�me�m�P�
TcS�P�

�

The standardized coarsened sample is a locally uniformly differentiable ap-
proximation to the distribution from which it is calculated. The nature of the
approximation may be seen by the following examples for the Gauss and slash
distributions. The slash distribution is defined as X/U with X a standard
Gaussian random variable and U uniformly distributed on �0�1� and inde-
pendent of X. Morgenthaler and Tukey [19] discuss its advantages over the
Cauchy distribution for modelling heavy tailed distributions. We take m = 15
and for reasons of symmetry we give only the positive values:

Gauss: 0�157 0�319 0�489 0�674 0�887 1�151 1�537

slash: 0�136 0�280 0�441 0�636 0�906 1�387 2�843�

For generalm� let ys�j�m�G�, 1 ≤ j ≤m� and ys�j�m�C�, 1 ≤ j ≤m� denote
the coarsened samples Gauss and slash distributions, respectively. For any
sample xn = �x1� � � � � xn�� let ys�j�m�xn�, 1 ≤ j ≤ m� denote the coarsened
sample. Distances between the empirical coarsened sample and those derived
from the Gauss and slash distributions may be defined as follows:

d�xn�G�2 =
m∑
j=1

(
ys�j�m�xn� − ys�j�m�G�)2

�(24)

d�xn�S�2 =
m∑
j=1

(
ys�j�m�xn� − ys�j�m�S�

)2
�(25)

Other choices are possible. If now a weight function wG is judged to be appro-
priate for Gaussian samples and the weight function wS for slash samples we
may now use a convex combination based on (24) and take the weight function
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to be

w = d�xn�S�wG + d�xn�G�wS
d�xn�S� + d�xn�G� �

6. Examples.

6.1. Choice of functions. We restrict attention to the weighted mean with
the weights being determined by theM-functional. To define theM-functional
we must specify defining functions ψ and χ which satisfy the conditions im-
posed in Section 2. The functions we use are of the form

ψ�u� = ψ�u� cl� = exp�u/cl� − 1
exp�u/cl� + 1

and

χ�u� = u2 − 1
u2 + 1

�

It is clear that M1–M4 are satisfied. Numerical calculations show that M5 is
satisfied if cl < 0�6418�

Apart from a possible uncontrollable atom of P� the breakdown point is
effectively governed by the ε0 of (11). We choose cl = 0�2� giving ε0 = 0�427.
The weight function w is taken to be

w�u� = exp
(
−
(
u

5�0

)2)
�

This satisfies W1–W4. The resulting functional is now completely specified
and will be denoted by Mw = �Mw

L�M
w
S�.

6.2. Comparisons. As argued in Section 2 a procedure should be compared
with other competing procedures where the comparison is to be as broadly
based as possible using theoretical challenges and real data sets. A comparison
on the scale required is beyond the bounds of this article but to indicate what
is intended we give the results of a small study. We consider three alternative
procedures. They are (i) the mean and standard deviation, (ii) the median
and the mad and (iii) the mean and standard deviation after elimination of
outliers as proposed in [15]. This involves eliminating all observations which
deviate from the median by more than 5�2mad�xn� where mad�xn� denotes the
median absolute deviation of the data xn. We shall denote these proposals by
mean/sdv, median/mad and Hmean/Hsdv, respectively. None of the proposals is
locally uniformly linearizable but this is least likely to be felt for Hmean/Hsdv.

6.3. Theoretical challenges. In this section we consider three theoretical
challenges in the sense of [19]. It is not at all clear which theoretical challenges
we should use. Traditionally, the Gaussian challenge is included as is one
with heavy tails, which we take to be the slash distribution rather than the
Cauchy distribution for reasons given in [19]. Many real data sets exhibit
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a high degree of discreteness even though they would normally be modelled
using a continuous distribution. For this reason we include the die challenge
by which we mean the uniform distribution over the integers �1� � � � �6�.

We restrict consideration to the location part of the functionals without any
Studentization. This enables us to compare the location parts directly without
the influence of the scale functionals. The comparisons will be made using the
0.975-quantile of

√
n�TL�Pn�P��−TL�P�� for n = 20�50�100�∞. The results

for the three challenges are given in Tables 1, 2 and 3. The mean fails for the
slash challenge and the median for the die.

6.4. Practical challenges. The three practical challenges we consider
are the moth data, the study data and Darwin’s data on self- and cross-
fertilization. The complete data sets are given in Tables 4, 5 and 6. The moth
data give the number of moths caught on each of 276 nights; the first number
in each column is the number of moths while the second gives the frequency.

The second example gives the lengths of study of 189 German students.
The first number gives the lengths of study to the nearest month or one-sixth
of one semester. Thus the number 10�3 is to be read as 10 3

6 semesters, that
is, as 10�5 semesters.

Table 1
Gauss

n 20 50 100 �

Mw
L 2.08 1.99 2.02 2.03

Mean 1.96 1.96 1.96 1.96
Median 2.38 2.41 2.47 2.46
Hmean 2.02 1.99 1.96 1.96

Table 2
Slash

n 20 50 100 �

Mw
L 4.96 4.86 4.76 4.68

Mean 72.33 131.77 157.00 ∞
Median 4.96 4.86 4.95 4.91
Hmean 5.79 5.54 5.61 5.36

Table 3
Die

n 20 50 100 �

Mw
L 4.10 3.85 3.86 3.97

Mean 3.35 3.28 3.33 3.35
Median 6.71 3.54 5.00 ∞
Hmean 3.35 3.28 3.33 3.35
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Table 4
Moth

0 124 5 4 10 2 15 1 22 1
1 45 6 5 11 6 16 2 23 1
2 28 7 8 12 2 18 1 30 1
3 18 8 3 13 1 20 1 31 2
4 14 9 3 14 1 21 1 60 1

Table 5
Study

8,0 1 12,1 26 14,3 4 17,1 3 20,2 1
8,1 5 12,2 7 15,0 1 17,2 1 20,4 1
9,1 10 12,5 1 15,1 8 18,0 1 21,0 1
9,3 1 13,0 3 15,3 2 18,1 1 22,0 2

10,1 18 13,1 14 15,3 5 18,3 1 22,3 2
10,2 3 13,2 7 16,1 6 18,5 1 22,5 2
10,5 1 13,4 1 16,2 1 19,1 1 23,1 2
11,1 14 13,5 1 16,3 2 19,3 2
11,2 3 14,1 10 16,5 1 19,5 2
11,4 1 14,2 3 17,0 1 20,1 4

Table 6
Darwin

−67 −48 6 8 14 16 23 24
28 29 41 49 56 60 75

Finally, we include Darwin’s data which gives the differences in heights of
self- and cross-fertilized plants. The unit of measurement is one-eighth of an
inch [1]. The data set has been analyzed several times in the literature [3],
[8], [24].

The problem with practical challenges is that it is not possible to consider
approximation intervals based on all models which are a reasonable approxi-
mation to the data as defined in Section 1. Any given challenge can of course be
included. We restrict ourselves to the standard bootstrap obtained by simula-
tions (3) and the asymptotic bootstrap (4). In the sense of [19] we also include
the Gauss and the slash challenges. Apart from the Darwin data these are
not adequate approximations but it may be argued that if the approximation
intervals based on these challenges are not too different from the bootstrap
intervals then this is further evidence of stability.

The statistic we use is the Studentized location functionals given by

Mw
LS�Pn�P��P� =

(
Mw

L�Pn�P�� −Mw
L�P�

)
/Mw

S

(
Pn�P�

)

with Mw
L and Mw

S given by (16) and (17), respectively, and where the functions
ψ, χ and w are as in Section 6.1. The measures of performance we employ are
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the size and variability of approximation intervals of the form
[
Mw

L�Pn�xn�� − qu�n�0�975�Mw
LS�P�Mw

S�Pn�xn�/
√
n�

Mw
L�Pn�xn�� − qu�n�0�025�Mw

LS�P�Mw
S�Pn�xn�/

√
n
](26)

for various P. Here as before qu�n�α�Mw
LS�P� denotes the α-quantile of√

nMw
LS�Pn�P��P�. The models P we consider are P = Pn�xn� (bootstrap),

Gauss and slash. The asymptotic bootstrap approximation interval uses the
quantile qu�∞� α�Mw

LS�P�.

7. Conclusions. Taking the theoretical challenges and the real data sets
together (Tables 7, 8 and 9) we see that the weighted mean based on the
M-functional is the only one which does not fail completely in the sense of
giving infinite approximation intervals. Its worst performance is perhaps for
the die distribution where the approximation intervals are 20% longer than

Table 7
Moth: approximation intervals (26)

Functional Mn Mean/sdv Median/mad Hmean/Hsdv

Location/scale 1.03/1.57 2.93/6.08 1.00/1.00 1.1/1.5
Asy.boot [0.72,1.35] [2.21,3.65] [1.00,1.00] [0.83,1.36]
Boot [0.75,1.43] [2.34,3.89] [1.00,∞] [0.92,∞]
Gauss [0.82,1.24] [2.21,3.65] [0.78,1.22] [0.93,1.27]
Slash [0.84,1.23] [2.29,3.56] [0.80,1.20] [0.90,1.31]

Table 8
Study lengths: approximation intervals (26)

Functional Mn Mean/sdv Median/mad Hmean/Hsdv

Location/Scale 13.12/2.88 13.59/3.45 13.17/2.00 13.59/3.45
Asy.boot [12.61,13.62] [13.09,14.08] [13.17,13.17] [13.09,14.08]
Boot [12.65,13.65] [13.12,14.12] [13.01,14.17] [13.11,14.49]
Gauss [12.66,13.59] [13.09,14.08] [12.62,13.68] [13.08,14.09]
Slash [12.68,13.56] [13.15,14.02] [12.68,13.65] [13.03,14.14]

Table 9
Darwin: approximation intervals (26)

Functional Mn Mean/sdv Median/mad Hmean/Hsdv

Location/Scale 26.62/27.00 20.93/36.47 24,00/17.00 27.21/28.86
Asy.boot [13.02,40.22] [2.47,39.39] [24.00,24.00] [9.78,44.66]
Boot [9.52,43.05] [-7.81,38.15] [4.73,42.89] [5.55,51.59]
Gauss [8.44,45.29] [0.73,41.13] [4.68,45.13] [8.13,46.29]
Slash [9.40,43.23] [2.91,38.95] [7.17,40.83] [7.61,46.81]
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those of the mean. The approximation intervals for the real data sets show
an acceptable degree of stability over the four different ways of calculating
them. The mean/sdv is of course susceptible to outliers as, for example, in the
moth data whereas the median/mad is susceptible to atoms as in the moth
and study length data where the approximation intervals are not stable. The
Hmean/Hsdv functional performs well apart from the bootstrap approximation
interval for the moth data. Its simplicity is a great advantage and for this
reason it may well be preferable to Mw if large atoms are not to be expected.
It can certainly be recommended for a first course in data analysis as an
alternative to the usual mean/sdv functional.
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