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Fan, Heckman and Wand proposed locally weighted kernel polynomial
regression methods for generalized linear models and quasilikelihood func-
tions. When the covariate variables are missing at random, we propose a
weighted estimator based on the inverse selection probability weights. Dis-
tribution theory is derived when the selection probabilities are estimated
nonparametrically. We show that the asymptotic variance of the result-
ing nonparametric estimator of the mean function in the main regression
model is the same as that when the selection probabilities are known, while
the biases are generally different. This is different from results in para-
metric problems, where it is known that estimating weights actually de-
creases asymptotic variance. To reconcile the difference between the para-
metric and nonparametric problems, we obtain a second-order variance
result for the nonparametric case. We generalize this result to local esti-
mating equations. Finite-sample performance is examined via simulation
studies. The proposed method is demonstrated via an analysis of data from
a case-control study.

1. Introduction. This paper is concerned with nonparametric function
estimation via quasilikelihood when the predictor variable may be missing,
and the missingness depends upon the response. We use local polynomials
with kernel weights, generalizing the work of Staniswalis (1989), Severini
and Staniswalis (1994) and Fan, Heckman and Wand (1995) to the missing
data problem.

In practice, covariates may be missing due to reasons such as loss to follow
up. For example, in a study of acute graft versus host disease of bone marrow
transplants of 97 female subjects conducted at the Fred Hutchinson Cancer
Research Center, the outcome is the acute graft host disease and one covariate
of interest is the donor’s previous pregnancy status, which was missing for
31 patients because of the incompleteness of the donors’ medical history. In
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this paper, we consider the missing covariate data problem in nonparametric
generalized linear models. We assume that covariates are missing at random
(MAR). In this case, the missingness is ignorable [Rubin (1976)] so that the
missingness mechanism depends only on the observed data but not the missing
data.

In parametric problems, two approaches are common. Likelihood methods
assume a joint parametric distribution for covariates and response, and un-
der our assumptions ignore the missing data mechanism [Little and Rubin
(1987)]. Complete-case analysis assumes nothing about the distribution of
covariates, and is in this sense semiparametric. Estimation is based on the
“complete-cases,” that is, those with no missing data, with weighting inversely
proportional to the probability that the covariate is observed given the re-
sponse [Horvitz and Thompson (1952)]. We call these selection probabilities.
We use the second approach. Our methods apply as well to other semipara-
metric schemes, for example, that of Robins, Rotnitzky and Zhao (1994). In
this paper, the missing data probabilities are also modeled via a generalized
linear model. We estimate the missing data probabilities by nonparametric
regression.

In parametric problems, the Horvitz–Thompson weighting scheme has a
curious and important property. Consider two estimators: (a) the one with
known selection probabilities and weights; and (b) one where the selection
probabilities are estimated by a properly specified parametric model. The two
methods yield consistent estimates, but that with estimated weights generally
has a smaller asymptotic variance [Robins, Rotnitzky and Zhao (1994)]. A
heuristic argument of this phenomenon was given in Robins, Rotnitzky and
Zhao [(1994), Section 6.1]. However, it is a somewhat counterintuitive finding.
In the parametric case, neither estimator has an asymptotic bias problem.

One might expect the same sort of result to hold in the nonparametric
regression case with nonparametrically estimated selection probabilities, es-
pecially in view of the work of Wang, Wang, Zhao and Ou (1997). However, this
is not the case, and we show (Theorem 1) that whether weights are estimated
or not has no effect on asymptotic variance, while it does have an effect on the
bias in general.

In simulations, however, we observed repeatedly that estimating weights
was beneficial in the sense that the resulting estimator of the mean function
in the main regression model is more efficient than that using true weights for
small to moderate samples. To understand whether this numerical evidence
was at all general, we developed a second-order variance result (Theorem 2)
showing that the estimator with estimated weights can be expected to have
smaller finite-sample variance than if the weights are known. This second-
order variance result provides a reconciliation between the different first-order
results in the parametric and nonparametric cases. This phenomenon could
also be because the local regression estimation is effectively finite dimensional.

The statistical models are described in Section 2. In Section 3, we propose
the methodology and the asymptotic result for the weighted method with both
known and estimated selection probabilities. The method is demonstrated in
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Section 4 by analyzing the data from a case-control study of bladder cancer.
In Section 5, we investigate the finite-sample performance by conducting a
simulation study. We note that estimating the selection probabilities has a
finite-sample effect on the estimation of the mean function of our primary
interest. We explain the possible finite-sample efficiency gain by a second-
order variance approximation in Section 6.

The major result of Section 3 can be described as follows:

1. An unknown function π�·� is estimated nonparametrically, by π̂�·�.
2. If π�·� were known, one would use it to estimate nonparametrically a second

function µ�·�, by µ̂�·� π�.
3. The estimates µ̂�·� π� and µ̂�·� π̂� have the same asymptotic variance.

In Section 7, we sketch a result showing that this phenomenon is quite general,
and not restricted to our particular context. All detailed proofs are given in
the Appendix.

2. The models.

2.1. Full data models. We let �Y1�X1�� � � � � �Yn�Xn� be a set of indepen-
dent random variables, where Yi is a scalar response variable, and Xi is a
scalar covariate variable. In a classical generalized linear model [(Nelder and
Wedderburn (1972); McCullagh and Nelder (1989)], the conditional density
(or probability mass function) of Y given X belongs to a canonical exponen-
tial family fY�X�y�x� = � �y� exp�yθ�x�−��θ�x�	
 for known functions � and
� , where the function θ is called the canonical or natural parameter. The un-
known function µ�x� = E�Y�X = x� is modeled in X by a link function g by
g�µ�x�	 = η�x�. In a parametric generalized linear model, η�x� = c0 + c1x for
some unknown parameter c0� c1. The link function g is assumed to be known.
For example, in logistic regression g�u� = log�u/�1−u�	, and in linear regres-
sion g�u� = u. In our nonparametric setting, there is no model assumption
about η�x�.

Fan, Heckman and Wand (1995) considered quasilikelihood models, where
only the relationship between the mean and the variance is specified. If the
conditional variance is modeled as var�Y�X = x� = V�µ�x�	, for some known
positive function V, then the corresponding quasilikelihood function Q�w�y�
satisfies �∂/∂w�Q�w�y� = �y − w�/V�w� [Wedderburn (1974)]. The primary
interest is to estimate µ�x�, or equivalently η�x�, nonparametrically.

2.2. Missing data models. In a missing covariate data problem, some co-
variates may be missing and we let δi = 1 if Xi is observed, δi = 0 otherwise.
Furthermore, let

πi = pr�δi = 1�Yi�Xi� = pr�δi = 1�Yi� = π�Yi�(1)

be the selection probability which does not depend on Xi, that is, Xi is
MAR. In a two-stage design [White (1982)], often the selection probabilities
are known. In many missing data problems, however, the selection probabil-
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ities are unknown and need to be estimated. To model the selection prob-
abilities, we assume that, given Y, there is a known link function g∗ such
that g∗�π�y�	 = η∗�y�, where η∗�y� is a smooth function. Let the conditional
variance be modeled by var�δ�Y = y� = V∗�π�y�	 for some known positive
function V∗. The corresponding quasilikelihood function Q∗�w�δ� satisfies
�∂/∂w�Q∗�w�δ� = �δ − w�/V∗�w�. We say that two-stage data models occur
when the selection probabilities are known, and missing data models occur
when the selection probabilities are unknown. In the missing data models,
π�y�, or η∗�y�, is a nuisance component which needs to be estimated.

3. Methodology.

3.1. The weighted method. When �Yi�Xi� are fully observable, Fan, Heck-
man and Wand (1995) proposed the local linear kernel estimator of η�x� as
η̂�x�h� = β̂0, where h is the bandwidth of a kernel function K and β̂=
�β̂0� β̂1�t maximizes

n∑
i=1

Q�g−1�β0 + β1�Xi − x�	�Yi
Kh�Xi − x��(2)

where Kh�·� = K�·/h�. We assume that the maximizer exists, and this can
be verified for standard choices of Q. The mean function µ�x� is estimated
by µ̂�x� = g−1�β̂0�. When data are missing, a naive method is to apply (2)
by using the complete-case (CC) analysis, that is, solving (2) by restricting to
pairs in which both Y and X are observed. However, complete-case analysis
may cause considerable bias when the missingness probabilities (1) depend on
the response [Little and Rubin (1987)].

To accommodate the missingness in the observed data, we propose a
Horvitz–Thompson inverse-selection weighted method, so that the estimator
of β maximizes

n∑
i=1

Q�g−1�β0 + β1�Xi − x�	�Yi

δi

π�Yi�
Kh�Xi − x��(3)

Note that here π�Yi� is assumed to be known and strictly positive in the
support of Y. For notational purposes, we denote the solution to (3) by β̂�π�.

We now define some notation for the presentation of the asymptotic prop-
erties of β̂0 = η̂�x�π�. Suppose that K is supported on �−1�1
. For any set
� ⊂ R, and i = 0�1�2�3, let γi�� � = ∫

� ziK�z�dz, τi�� � = ∫
� ziK2�z�dz.

Define

Nh
x = �z� x− hz ∈ supp�fX�	 ∩ �−1�1
�

bx = 1
2
η�2��x��g′�µ�x�	
−1γ

2
2�Nh

x� − γ1�Nh
x�γ3�Nh

x�
γ0�Nh

x�γ2�Nh
x� − γ2

1�Nh
x�

�

σ2
x = f−1

X �x�� �x�γ
2
2�Nh

x�τ0�Nh
x� − 2γ1�Nh

x�γ2�Nh
x�τ1�Nh

x� + γ2
1�Nh

x�τ2�Nh
x�

�γ0�Nh
x�γ2�Nh

x� − γ2
1�Nh

x�	2
�
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where fX�x� is the density of X and

� �x� = E

[�Y1 − µ�x�	2

π�Y1�
∣∣∣X1 = x

]
�(4)

As we will see later, σ2
x is the asymptotic variance of µ̂�x�π�. For a bandwidth

h, x is an interior point of supp�fX� if and only if Nh
x = �−1�1
. To esti-

mate µ�x� = g−1�η�x�	, we let µ̂�x�π� = g−1�η̂�x�π�	 = g−1�β̂0�. The limit
distribution of µ̂�x�π� presented in Theorem 1 below can be obtained by cal-
culations similar to those in Fan, Heckman and Wand (1995). Theorem 1 also
indicates that the bias bx is affected by estimating the selection probabilities,
while the variance is not.

3.2. Main theorem. We now investigate the case with unknown selection
probabilities. To estimate the selection probabilities, we again apply the local
linear smoother of Fan, Heckman and Wand (1995). For a fixed point y, we
estimate π�y� by

π̂�y� = g∗−1�α̂0��(5)

where α̂ = �α̂0� α̂1� maximizes
∑n

i=1 Q
∗�g∗−1�α0 + α1�Yi − y�� δi	
Kλ�Yi − y��

where we use λ as the smoothing parameter to distinguish it from the other
smoothing parameter h used in estimating β for estimating the primary mean
function µ. Note that if the outcome Y is categorical such as the situation in
Section 4, then, as λ → 0, the estimate of π is equal to the empirical averages.

Let β̂�π̂� maximize
n∑

i=1

Q�g−1�β0 + β1�Xi − x�	�Yi

δi

π̂�Yi�
Kh�Xi − x��(6)

where π̂�y� is given in (5). Similar to the definition of µ̂�x�π�, we define
µ̂�x� π̂� = g−1�η̂�x� π̂�	 where η̂�x� π̂� = β̂0�π̂�. We now present our main
result.

Theorem 1. Suppose that Conditions (A1)–(A7) in the Appendix are sat-
isfied. Then, if h = hn → 0, nh3 → ∞ and λ = λn = c∗h for a constant
c∗ > 0, we have that, for any x ∈ supp�fX�, there exist bnj�x� = bx�1 + o�1�	,
j = 1�2, such that �nh�1/2�µ̂�x�π� − µ�x� − h2bn1�x�	 converges in distribu-
tion to a normal random variable with mean 0 and variance σ2

x . Further, if
Conditions (B1)–(B6) in the Appendix are also satisfied, then �nh�1/2�µ̂�x� π̂�−
µ�x� − h2bn2�x� − λ2fX�x�S3�x�	 converges in distribution to a normal ran-
dom variable with mean 0 and variance σ2

x , where S3�x� is given in (22) in
the Appendix, and S3�x� = 0 if either Y is a lattice random variable or π is a
constant.

One important implication of this result is that the effect on the asymptotic
variance due to estimating selection probabilities, which is nonnegligible in
the parametric or semiparametric models [Robins, Rotnitzky and Zhao (1994);
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Wang et al. (1997)], disappears in the corresponding fully nonparametric prob-
lems. The difference appears in the bias term, but it vanishes if either Y is a
lattice random variable or π is a constant. The proof of Theorem 1 is in the
Appendix.

3.3. Bandwidth selection.

Bandwidth for the selection probability estimation. Fan, Heckman
and Wand (1995) suggested a bandwidth selector based on “plugging-in” es-
timates of unknown quantities. For the rest of the paper, the notation φ�k��·�
denotes the kth derivative of a function φ�·�. Because we consider the local
linear smoother for π, an approximate asymptotic mean integrated square
error for η̂∗�λ� is

AMISE�η̂∗�λ�	 = λ4γ2
2

4

∫
�η∗�2��y�	2fY�y�dy

+ �nλ�−1τ0

∫
V∗�π�y�	�g∗′�π�y�	
2 dy�

where γ2 = γ2��−1�1
� and τ0 = τ0��−1�1
� are given in Section 3.1 and fY�y�
denotes the density of Y. This approximation excludes the boundary regions.
With respect to this criterion, by taking the derivative of AMISE with respect
to λ, we have that the optimal bandwidth for the estimate of π is then

λAMISE =
[
τ0
∫
V�π�y�	�g∗′�π�y�	
2 dy

nγ2
2

∫ �η∗�2��y�	2fY�y�dy

]1/5

�

Note that π�y� and fY�y� are unknown. An “ad hoc” plug-in bandwidth selec-
tion is to estimate η∗�y� by a third- (or higher-) degree polynomial parametric
fit to the selection probabilities and to estimate fY�y� by a usual kernel es-
timate. We also note that this criterion is an approximation which does not
consider the γ0 and τ0 as a function of λ on the boundary points. In practice,
this selector seems to perform reasonably well for a wide range of functions.

Bandwidth for the primary estimation. Now we study the bandwidth
selection for our primary estimation. As in Fan, Heckman and Wand (1995), by
excluding the boundary regions, an approximate asymptotic mean integrated
square error for η̂ is

AMISE�η̂�h�	= h4γ2
2

4

∫
�η�2��x�	2fX�x�dy+�nh�−1τ0

∫
� �x��g′�µ�x�	
2 dx�

With respect to this criterion, by taking the derivative of AMISE with respect
to h, we have that the optimal bandwidth for the estimate of µ is then

hAMISE =
[
τ0
∫
� �x��g′�µ�x�	
2 dx

nγ2
2

∫ �η�2��x�	2fX�x�dx

]1/5

�

Similar to the argument of the selection of λ, we may estimate η�x� by a
third- (or higher-) degree polynomial. In addition, we may estimate � �x� =
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E��Y1 − µ�X1�	2/π�Y1��X1 = x
 and fX�x� by nonparametric estimation
based on validation data with inverse selection weights. This gives a global
bandwidth selection. Alternatively, Schucany (1995) proposed an adaptive lo-
cal bandwidth estimator for the Nadaraya–Watson estimator, and found that
it has improvements over a global bandwidth estimator. It may be a worth-
while future project to study the local bandwidth selector in the problem of
generalized linear missing data models.

4. Data analysis. In this section, we consider an example of a case-
control study of bladder cancer conducted at the Fred Hutchinson Cancer
Research Center. Eligible subjects were residents of three counties of west-
ern Washington state who were diagnosed between January 1987 and June
1990 with invasive or noninvasive bladder cancer. This population-based case-
control study was designed to address the association between bladder cancer
and some nutrients. We use the data here for illustrative purposes. Some de-
tailed results can be found in Bruemmer, White, Vaughan and Cheney (1996).

In our demonstration, the response variable is the bladder cancer history
and the covariate X is the smoking package year. The smoking package year
of a participant is defined as the average number of cigarette packages smoked
per day multiplied by the years one has been smoking. There are a total of
262 cases and 405 controls. However, the smoking package year information of
one case and 215 controls was missing. In addition, we treated past smokers
as in the nonvalidation set since we are primarily interested in the smoking
effect of current smokers. One case with X = 200 has high leverage (X has
mean 26 and standard deviation 30) and was not included in the validation
set. As a result, there were 167 cases and 179 controls in the validation set.

To analyze the data, one may consider the complete-case logistic regres-
sion of Y on X, with and without adjustment by estimated inverse selection
weights. The estimates of the slope (s.e.) are .0276 (.0047) and .0268 (.0046),
respectively. The resulting estimates of E�Y�X�, called global estimates, are
given in Figure 1. We note that a parametric estimator is based on global
estimation. Based on this logistic regression analysis, one would argue that
the risk of developing bladder cancer increases monotonically as a function of
the average smoking year.

Alternatively, we may employ the weighted local estimation method. We
used the Epanechnikov kernel function that K�u� = �75�1 − u2� on �−1�1
.
The unweighted estimates of E�Y�X�, denoted by µ̂CC�·�, and the weighted
estimator, µ̂�·� π̂�, are given in Figure 1. Because Y is binary, π�Y� was esti-
mated by the empirical average at the corresponding Y value. Based on the
bandwidth selection criteria given in Section 3.3, we used 24.2 as the band-
width h for the weighted local smoother and 19.6 for the unweighted one.
We notice that the CC analysis has basically captured the effect of the aver-
age package year, as it is somewhat parallel to µ̂�·� π̂�. Because the missing
data are mainly from controls, the unweighted estimator thus overestimates
pr�Y = 1�X� of the case-control data (assuming no missingness). Hence, the
unweighted estimator is always above the weighted one. Based on this non-
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Fig. 1. Bladder cancer case-control data analysis.

parametric analysis, the argument is somewhat different from the previous
parametric one. For example, the curves between X = 40 and X = 95 do not
increase as much as the other two segments (X < 40 or X > 95). Although
it is true that the average package year has a significant effect on bladder
cancer, our analysis suggests that piecewise logistic regression is more proper
if parametric inference is to be made.

One small point concerns the interpretation of Figure 1. Prentice and Pyke
(1979) showed that in a case-control study with an ordinary parametric logistic
regression model, the logits of the observed case-control data differ from that
of the population only in the intercept term. The same is true in our problem.
This means that the basic monotonicities and flatness observed in Figure 1
are not affected by the case-control sampling, although the levels of estimated
disease probability of course would differ. The result of Prentice and Pyke
(1979) ignoring missingness is equivalent to that of the global unweighted
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estimate. Our estimate is the local weighted estimate. They are approximately
parallel when the smoking package year (X) is smaller than 40, but not so
elsewhere. Because in this example the selection probabilities depend mainly
on the disease status, parallelism of weighted and unweighted estimates is
expected. The reason that our estimate has a different flatness from that of
Prentice and Pyke for X ≥ 40 is due to the nonparametric estimation, which
is not restricted by the linear logit model.

5. Simulation studies. We conducted simulations to better understand
the finite-sample performance of the weighted estimator and the finite-sample
effect due to estimating the selection probabilities. Recall that µ̂CC is the un-
weighted method which applies the local linear smoother of Fan, Heckman
and Wand (1995) directly to the validation set only. We compare the biases
and variances of µ̂CC, µ̂�·� π� and µ̂�·� π̂�.

We first consider the case of continuous response Y. We generated n =
200 X’s from a uniform �−1�1
 distribution, and the response variable Y’s
follow the linear link such that Yi = µ�Xi� + �3εi, where µ�xi� = x2

i , εi �i =
1� � � � � n� is a random sample from normal �0�1� distribution and is indepen-
dent of Xi. The selection probability given Y is from the logistic model with
intercept 0.0 and slope 1.0. Approximately 42% of the data are missing under
the above selection probabilities. We ran 1,000 independent replicates in this
simulation experiment, and we applied the linear link and logit link to esti-
mate µ�·� and π�·�, respectively. In each replicate, µ̂CC�·�, µ̂�·� π� and µ̂�·� π̂�
were obtained using the Epanechnikov kernel function K�u� = �75�1−u2� on
�−1�1
 and the bandwidth selection criteria as described in Section 3.3.

The empirical biases of the estimators are shown in Figure 2 for x ∈ �−1�1�.
The curves are the averages of the bias estimates over 1,000 runs. Note that
the CC analysis has considerable bias and that µ̂�·� π� and µ̂�·� π̂� are very
close in most points. Figure 3 shows the sample variances of µ̂�x�π� and
µ̂�x� π̂�. It appears that the weighted estimator using estimated selection
probabilities is at least as efficient as the one using the true π�·�. There is
considerable gain using estimated π for a range of X values, especially when
X is around zero. The relative efficiency of µ̂�x� π̂� to µ̂�x�π� at x = 0 is 1.29
when n = 200. If we increase the sample size to n = 2�000, then the corre-
sponding relative efficiency is 1.22. In Section 6, we explain the finite-sample
efficiency gain from estimating the selection probabilities by a second-order
variance approximation.

We have also investigated the case when the response is binary, and the
findings are similar to those for continuous response. We omit the details here.

6. Second-order variance approximation. The simulations in the pre-
vious section show that there is finite-sample gain from estimating the selec-
tion probabilities. Recall that the first-order asymptotic result of Theorem 1
shows no asymptotic efficiency gain from estimating the selection probabili-
ties. To explain this, we now present the second-order variance approximation.
The proof is given in the Appendix.



LOCAL REGRESSION WITH MISSING DATA 1037

Fig. 2. Simulation study for biases from estimating µ for continuous response.

Theorem 2. Under the same conditions as in Theorem 1 and for any x ∈
supp�fX� with var�µ̂�x�π�	 < ∞, there exists µ̂∗�x� = µ̂�x� π̂�+op�h1/2n−1/2�,
such that

var�µ̂∗�x�	 = var�µ̂�x�π�	 − n−1v�x��1 + o�1�	�
for some v�x� > 0.

Theorem 2 shows that using the estimated selection probabilities improves
the efficiency at the rate of n−1. Note that the second-order efficiency gain is
valid even when Y is a lattice random variable. For a fixed point x, let the rel-
ative efficiency gain by using the estimated selection probabilities be defined
by �var�µ̂�x�π�	 − var�µ̂∗�x�	
/ var�µ̂∗�x�	. It is easy to see from Theorem 2
that the relative efficiency gain is of order O�h�, which goes to zero slowly.
This supports the results of our simulations.
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Fig. 3. Simulation study for variances from estimating µ for continuous response.

7. Generalizations. Theorem 1 is a special case of a general phenome-
non, which we outline here. Suppose that one has interest in a function η�·�. If
a nuisance function π�·� were known, one would estimate η�·� at x by solving
a local estimating equation of the form

0 = n−1
n∑

i=1

Kh�Xi − x�5�Ỹi� π�Zi�� β0 + β1�Xi − x�	�1� �Xi − x�	t�(7)

where 5 is an estimating function, Z is the covariate variable for π�·� and
Ỹ represents a vector which may or may not include Z. We note that in (7),
we are primarily interested in the estimation of β0 and β̂0 = η̂�x�. Equation
(7) includes the weighted estimating equation obtained from the derivation of
(3). In our problem, both Ỹ and Z equal the response Y.
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Now suppose that π�z� is also estimated by a local estimating equation but
with bandwidth λ, so that

0 = n−1
n∑

i=1

Kλ�Zi − z�7�Ỹi�Xi� α0 + α1�Zi − z�	�1� �Zi − z�	t�

for some function 7 such that the resulting estimate α̂0 = π̂�z�. The estimating
functions 5 and 7 are assumed to satisfy

0 = E
[
5�Ỹ� π�Z�� η�X�	]� 0 = E

[
7�Ỹ�X�π�Z�	�Z]�

Under this setup, in Appendix C we sketch a result showing that

1. the bias of η̂�x� is of order h2, is independent of the design densities of
�Z�X�, but is generally affected by the estimation of π�·�.

2. the variance of η̂�x� is asymptotically the same as if π�·� were known.

Both these conclusions are reflected in our Theorem 1.
The extension to multivariate covariates may be made by applying the mul-

tivariate kernel function as in Fan, Heckman and Wand (1995, Section 3.2).
However, the curse of dimensionality may occur. A more appealing approach
is to consider a regression model by the generalized partial linear single-index
model [Carroll, Fan, Gijbels and Wand (1997)]. Asymptotic distribution theory
in this setting requires further investigation.

APPENDIX: TECHNICAL PROOFS

A. Proof of Theorem 1. First, we present a brief proof of the limit dis-
tribution of µ̂�·� π�. The readers are referred to Fan, Heckman and Wand
(1995) for some related calculations. Recall that we use known π now. De-
fine ρ�x� = ��g′�µ�x�	
2V�µ�x�	�−1, and let qi�x�y� = �∂i/∂xi�Q�g−1�x�� y	.
Fan, Heckman and Wand (1995) noted that qi is linear in y for a fixed x and
that q1�η�x�� µ�x�	 = 0 and q2�η�x�� µ�x�	 = −ρ�x�.

Conditions. (A1) The function q2�x�y� < 0 for x ∈ R and y in the range
of the response variable.

(A2) The functions f′
X, η�3�, var�Y�X = ·�, V�2� and g�3� are continuous.

(A3) For each x ∈ supp�fX�, ρ�x�, var�Y�X = x� and g′�µ�x�	 are nonzero.
(A4) The kernel function K is a symmetric probability density with support

�−1�1
.
(A5) For each point x0 on the boundary of supp�fX�, there exists a nontriv-

ial interval � containing x0 such that inf x∈� fX�x� > 0.
(A6) The selection probability π�y� > 0 for all y ∈ supp�fY�.
(A7) E�q1�η�X1��Y1	�δ1/π1�
2+ε < ∞ for some ε > 0.
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Proof of the asymptotic distribution of µ̂�·� π�. We study the asymp-
totic properties of β̂∗ = �nh�1/2�β̂0−η�x�� h�β̂1−η′�x�	
t. Let η�x�u� = η�x�+
η′�x��u−x�, X∗

i = �1� �Xi−x�/h	t and β∗ = �nh�1/2�β0−η�x�� h�β1−η′�x�	
t.
Since β0 + β1�Xi − x� = η�x�Xi� + �nh�−1/2β∗tX∗

i , if �β̂0� β̂1� maximizes (3),
then β̂∗ maximizes

n∑
i=1

Q�g−1�η�x�Xi� + �nh�−1/2β∗tX∗
i	�Yi


δi
πi

Kh�Xi − x��(8)

as a function of β∗, where πi = π�Yi�. We consider the normalized function

ln�β∗� π�

=
n∑

i=1

(
Q�g−1�η�x�Xi� + �nh�−1/2β∗tX∗

i	�Yi


−Q�g−1�η�x�Xi�	�Yi

) δi
πi

Kh�Xi − x��

(9)

Then β̂∗ = β̂∗�π� maximizes ln�·� π�� Let

Wn�π� = �nh�−1/2
n∑

i=1

q1�η�x�Xi��Yi	
δi
πi

Kh�Xi − x�X∗
i �(10)

An�π� = �nh�−1
n∑

i=1

q2�η�x�Xi��Yi	
δi
πi

Kh�Xi − x�X∗
iX

∗t
i �(11)

Similarly to Fan, Heckman and Wand (1995), we have that

ln�β∗� π� = Wt
n�π�β∗ + 1

2β
∗tAn�π�β∗ +Op��nh�−1/2	

= Wt
n�π�β∗ − 1

2β
∗t�<x + h=x�β∗ +Op��nh�−1/2	 + op�h��

where

<x = ρ�x�fX�x�
(
γ0�Nh

x� γ1�Nh
x�

γ1�Nh
x� γ2�Nh

x�

)
�

=x = �ρfX�′�x�
(
γ1�Nh

x� γ2�Nh
x�

γ2�Nh
x� γ3�Nh

x�

)
�

(12)

By the Quadratic Approximation Lemma of Fan, Heckman and Wand (1995)
and under the bandwidth condition that nh3 → ∞, we have that

β̂∗ = <−1
x Wn�π� − h<−1

x =x<
−1
x Wn�π� + op�h��(13)
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Similarly to Fan, Heckman and Wand (1995), we can also show that

E�Wn�π�	 = 1
2
�nh5�1/2η�2��x�ρ�x�fX�x�

(
γ2�Nh

x�
γ3�Nh

x�
)
+O��nh7�1/2	

≡ n1/2h5/2Bx +O��nh7�1/2	�

var�Wn�π�	 = fX�x�� �x�
�V�µ�x�	g′�µ�x�	
2

(
τ0�Nh

x� τ1�Nh
x�

τ1�Nh
x� τ2�Nh

x�

)
+ o�h�

≡ ?x + o�h��

(14)

where � �x� is given in (4).
It can be shown by checking Lyapounov’s condition and using the Cramér–

Wold device that β̂∗ is asymptotically normally distributed. From (13), we get
the approximations

E�β̂∗� = <−1
x n1/2h5/2Bx +O��nh7�1/2	 + o�h��

var�β̂∗� = <−1
x ?x<

−1
x + o�h��

The proof of the first part of Theorem 1 thus follows since we are only
concerned with the first component of β̂∗, and µ�x� = g−1�η�x�	.

We now present some additional conditions for dealing with the asymp-
totic distribution of µ̂�·� π̂�. Define ρ∗�y� = ��g∗�1��π�y��	2V∗�π�y�	
−1, and
let q∗

i�y� z� = �∂i/∂yi�Q∗�g∗−1�y�� z�. Again, we have that

q∗
1�η∗�y�� π�y�	 = 0� q∗

2�η∗�y�� π�y�	 = −ρ∗�y��(15)

In addition to Conditions (A1)–(A7), we need the following conditions.

Conditions. (B1) The function q∗
2�y� δ� < 0 for y ∈ R and δ = 0�1.

(B2) The functions f′
Y (when Y is continuous), η∗�3�, var�δ�Y = ·�, V∗�2�,

g∗�3� and π�2� are continuous.
(B3) For each y ∈ supp�fY�, ρ∗�x�, V∗�y� and g′�π�y�	 are nonzero.
(B4) For each point y0 on the boundary of suppfY, there exists a nontrivial

interval � containing y0 such that infy∈� fY�y� > 0.
(B5) inf�π�y�� y ∈ supp�fY�	 > 0.
(B6) The conditional density of X given Y is bounded a.e.

Before proving the main part of Theorem 1, we present some lemmas which
will be used in the proof. Recall that π̂ was defined in (5).

Lemma 1. Under the same conditions as those of Theorem 1, Gn = op�h�,
where

Gn = �nh�−1
n∑

i=1

q2�η�x�Xi��Yi	Kh�Xi − x�X∗
iX

∗t
i

δi

π2
i

�π̂i − πi��
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Lemma 2. Under the same conditions as those in Theorem 1, Cn = op�h1/2�,
where

Cn = �nh�−1/2
n∑

i=1

[
δi − πi

πi

π̂i − πi

πi

q1�η�x�Xi��Yi	Kh�Xi − x�X∗
i

]
�

Lemma 3. Under the same conditions as those of Theorem 1, let

Dn = �nh�−1/2
n∑

i=1

[
π̂i − πi

πi

q1�η�x�Xi��Yi	Kh�Xi − x�X∗
i

]
�

Then there exists an S3�x� and D∗
n with E�D∗

n� = o�n1/2h5/2� and var�D∗
n� =

o�h2�, such that

Dn − n1/2h5/2�c∗�2fX�x�S3�x� = �nh�−1/2
n∑

i=1

��δi − πi�/πi	�h�Yi� +D∗
n�

where

�h�Yi� = E
[
q1�η�x�Xi��Yi	X∗

iKh�Xi − x��Yi

]
�(16)

The proofs of Lemmas 1–3 will be postponed until after the proof of the
limit distribution of µ̂�·� π̂�.

Proof of the asymptotic distribution of µ̂�·� π̂�. Recall that β̂ = β̂�π̂�
maximizes (6), and we defined ln�β∗� π� in (9). The main step here is to derive
the asymptotic expression of ln�β∗� π̂�. Note that An�π� was defined in (11).
We have

An�π̂� −An�π� =
[
�nh�−1

n∑
i=1

q2�η�x�Xi��Yi	

×Kh�Xi − x�X∗
iX

∗t
i

δi

π2
i

�π̂i − πi�
]
�1 + op�1�	

≡ Gn�1 + op�1�	�

By Lemma 1, we have An�π̂� = An�π� + op�h�. Using calculations similar to
those in the proof of the distribution of µ̂�·� π�,

ln�β∗� π̂� = Wt
n�π̂�β∗ − 1

2β
∗t�<x + h=x�β∗ +Op��nh�−1/2	 + op�h��

For simplicity in this proof, we continue to use β̂∗ = β̂∗�π̂� as the maximizer of
(8) with estimated π̂. By the quadratic approximation lemma of Fan, Heckman
and Wand (1995), we have that

β̂∗ = <−1
x Wn�π̂� − h<−1

x =x<
−1
x Wn�π� + op�h��(17)
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We now find the limit distribution of Wn�π̂�, where Wn�·� was defined in
(10). By a linearization technique as in Wang et al. (1997), we have

Wn�π̂� = �nh�−1/2
n∑

i=1

[
q1�η�x�Xi��Yi	

δi
πi

Kh�Xi − x�X∗
i

(
1 − π̂i − πi

πi

)]
+
(
�nh�−1/2

n∑
i=1

[
q1�η�x�Xi��Yi	

δi
πi

Kh�Xi − x�X∗
i

�π̂i − πi�2

πi

])
× �1 + op�1�	�

Denote the second term of the above equation by Rn. Then it can be shown to
have mean O�n1/2h9/2� and variance o�h�. Therefore, we have that

Wn�π̂� = �nh�−1/2
n∑

i=1

(
δi
πi

− π̂i − πi

πi

)
q1�η�x�Xi��Yi	Kh�Xi − x�X∗

i

− �nh�−1/2
n∑

i=1

δi − πi

πi

π̂i − πi

πi

× q1�η�x�Xi��Yi	Kh�Xi − x�X∗
i +Rn

≡ Wn�π� −Dn −Cn +Rn�

(18)

By Lemmas 2 and 3, we have that

Wn�π̂� = Wn�π� − n1/2h5/2�c∗�2fX�x�S3�x�

− �nh�−1/2
n∑

i=1

δi − πi

πi

�h�Yi� +R∗
n

(19)

for some R∗
n that has mean o�n1/2h5/2� and variance o�1�. Let fX�Y denote the

conditional density of X given Y. By direct calculations,

�h�Yj� = h�q1�η�x��Yj	fX�Y�x��γ0�Nh
x�� γ1�Nh

x�	t
�1 + op�1�	
≡ h� �Yj��1 + op�1�	�

By (14), (17) and (19), the asymptotic distribution of µ̂�·� π̂� follows because

E

{
δi − πi

πi

�h�Yi�
}
= E

[
E

{
δi − πi

πi

�h�Yi��Yi

}]
= 0�

var
{
�nh�−1/2

n∑
i=1

δi − πi

πi

�h�Yi�
}

= h−1E

{
�h�Y1�� t

h�Y1� var
(
δ1 − π1

π1
�Y1

)}
= h−1E

{
1 − π1

π1
�h�Y1�� t

h�Y1�
}

= hE

{
1 − π1

π1
� �Y1�� t�Y1�

}
�1 + o�1�	 = O�h��

The last equation holds by Conditions (B5) and (B6). ✷
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Proof of Lemma 1. First, we note that E��π̂1 − π1��Y1	 = λ2c1�Y1��1 +
op�1�	 and var��π̂1 − π1��Y1	 = �nλ�−1c2�Y1��1 + op�1�	, for some functions
c1 and c2. Let π̂i�j� denote π̂i without using subject j. Then

E�Gn� = E

[
q2�η�x�X1��Y1	

1
h
Kh�X1 − x�X∗

1X
∗t
1
δ1

π2
1

�π̂1 − π1�
]

= E

(
E

[
q2�η�x�X1��Y1	

1
h
Kh�X1 − x�X∗

1X
∗t
1

× δ1

π2
1

�π̂1�1� − π1�
∣∣X1�Y1

])
+O

(
1
nλ

)
= E

[
q2�η�x�X1��Y1	

1
h
Kh�X1 − x�X∗

1X
∗t
1

1
π1

E
{�π̂1 − π1�

∣∣Y1
}]

+O

(
1
nλ

)
= λ2E

[
q2�η�x�X1��Y1	

1
h
Kh�X1 − x�X∗

1X
∗t
1

1
π1

c1�Y1��1 + op�1�	
]

+O

(
1
nλ

)
= o�h��

The last equation holds since λ = c∗h for some c∗ > 0. Note that if we let
Si = q2�η�x�Xi��Yi	h−1 Kh�Xi − x�X∗

iX
∗t
i �δi/π2

i ��π̂i − πi�, then, following
calculations similar to those above, we obtain that cov�Si�Sj� = o�h2� when
i �= j. Therefore, the variance of the left-upper element of Gn is

var��Gn	11
 = n−1 var
[
q2�η�x�X1��Y1	

1
h
Kh�X1 − x� δ1

π2
1

�π̂1 − π1�
]
+ o�h2�

= n−1E

[
q2

2�η�x�X1��Y1	
1
h2

K2
h�X1 − x�

× 1

π4
1

var��π̂1�1� − π1�
∣∣Y1	

]
+ n−1 var

[
q2�η�x�X1��Y1	

1
h
Kh�X1 − x�

× δ1

π2
1

E��π̂1�1� − π1�
∣∣Y1	

]
+ o�h2�

= �nh�−1E

[
q2

2�η�x�X1��Y1	
1
h
K2

h�X1 − x�

× 1

π3
1

�nλ�−1c2�Y1��1 + op�1�	
]
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+ �nh�−1 var
[
q2�η�x�X1��Y1	

1√
h
Kh�X1 − x�

× δ1

π2
1

λ2c1�Y1��1 + op�1�	
]
+ o�h2�

= O��nh�−1�nλ�−1 + �nh�−1λ4	 + o�h2�
= o�h2��

The last equation holds since λ = c∗h and nh3 → ∞. Similar calculations
lead to var��Gn	12
 = o�h2� and var��Gn	22
 = o�h2�, completing the proof of
Lemma 1. ✷

Proof of Lemma 2. We assume that Y is a continuous random variable; a
similar approach can be easily applied to discrete Y. Using calculations similar
to those of Fan, Heckman and Wand (1995) and under Conditions (B1)–(B4),
we can show that, for each y, as nλ → ∞,

π̂�y� − π�y� = �nλ�−1/2�g∗�1��π�y�	
−1�<∗−1
y W∗

n	1

+ �nλ�−1/2��y� δ̃� Ỹ��
(20)

where �·	1 denotes the first component of a vector, δ̃ = �δ1� � � � � δn�, Ỹ =
�Y1� � � � �Yn�,

W∗
n = �nλ�−1/2

n∑
i=1

q∗
1�η∗�y�Yi�� δi	Kλ�Yi − y�Y∗

i �

<∗
y = ρ∗�y�fY�y�

(
γ0�Nλ

y� γ1�Nλ
y�

γ1�Nλ
y� γ2�Nλ

y�

)
�

η∗�y�u� = η∗�y� + η∗�1��u��u − y�, Y∗
i = �1� �Yi − y�/λ�t, Nλ

y = �z� y − λz ∈
supp�fY� ∩ �−1�1
	, ��y� δ̃� Ỹ� = −λ�g∗�1��π�y�	
−1�<∗�−1�

y =∗
y<

∗�−1�
y W∗

n	1�1 +
op�1�	, and =∗

y is the same as =x defined in (12) except replacing ρfX by ρ∗fY,
fY�·� being the density of Y. From (20), we have that there is a function g∗

π�y�
and a function � �δ�y� such that

π̂�y� − π�y� = λ2g∗
π�y� + �nλ�−1

n∑
i=1

Kλ�Yi − y�� �δi�Yi�

+ op�λ2� + op�n−1/2��
(21)

where E�� �δi�Yi��Yi	 = 0 and the op�λ2� term does not depend on the δ’s.
Note that as in Fan, Heckman and Wand (1995), it can be shown that the
term associated with the bias g∗

π�y� = 0 if π ′�y� = 0. Therefore,

�nh�−1/2
n∑

i=1

[
δi − πi

πi

λ2g∗
π�Yi�
πi

q1�η�x�Xi��Yi	Kh�Xi − x�X∗
i

]
= Op�λ2�
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by calculating the mean and the variance. Also,

�nh�−1/2
n∑

i=1

[
δi − πi

π2
i

��nλ�−1
n∑

j=1

Kλ�Yj −Yi�� �δj�Yj�	

× q1�η�x�Xi��Yi	Kh�Xi − x�X∗
i

]
can be shown to be op�h� because each summand has a factor �δi −πi�� �δj�
Yj� which has mean 0 if i �= j. Further,

�nh�−1/2
n∑

i=1

[
δi − πi

π2
i

q1�η�x�Xi��Yi	Kh�Xi − x�X∗
i�op�λ2� + op�n−1/2�	

]
= op�h1/2��

because the op�λ2� term above does not depend on the δ’s. Therefore, Cn =
op�h1/2�. ✷

Proof of Lemma 3. Apply (21) to Dn and write Dn = D1n + D2n + D3n.
First,

D1n = �nh�−1/2
n∑

i=1

[
λ2g∗

π�Yi�
πi

q1�η�x�Xi��Yi	Kh�Xi − x�X∗
i

]
�

Then note that

E�D1n� = n1/2h−1/2λ2
∫ g∗

π�y1�
π1

q1�η�x� x1�� y1	

×Kh�x1 − x�x∗
1fY�X�y1� x1�dy1 dx1

= n1/2h−1/2λ2
∫ g∗

π�y1�
π1

y1 − µ�x� − �g�1��µ�x�	
−1η�1��x��x1 − x�
g�1��µ�x�	V�µ�x�	

×Kh�x1 − x�x∗
1fY�X�y1� x1�dy1dx1�

Let

S1�x� = E
(
g∗
π�Y1�Y1�π�Y1�g�1��µ�x�	V�µ�x�	
−1)�

S2�x� = E
(
g∗
π�Y1��π�Y1�g�1��µ�x�	V�µ�x�	
−1)

and

S3�x� = S1�x� − µ�x�S2�x��(22)

Note that S3�x� = 0 if either Y is a lattice random variable or π ′�Y� = 0 a.e.,
because under these circumstances g∗

π�Y� = 0 a.e. Then it is easily seen that
E��D1n�1	 = n1/2h5/2�c∗�2fX�x�S3�x� + op�n1/2h5/2� and it can also be shown
that var��D1n�1	 = O�λ4�.
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Now consider

D2n = �nh�−1/2
n∑

j=1

� �δj�Yj�
(
�nλ�−1

n∑
i=1

[
q1�η�x�Xi��Yi	X∗

i

πi

Kh�Xi − x�
]

×Kλ�Yj −Yi�
)
�

To estimate D2n, we note that, by some further calculations, the � �δi�Yi� in
(21) can be written as � �δi�Yi� = �fY�y�ψ�y�	−1φ�Yi�y��δi−π�Yi�	+op�1�,
where φ�Yi�y� = γ2�Nλ

y� − γ1�Nλ
y���Yi − y�/λ	 and φ�y� = γ0�Nλ

y�γ2�Nλ
y� −

γ2
1�Nλ

y�. Therefore, by some standard calculations, we have that

D2n = �nh�−1/2
n∑

j=1

�δj − πj��h�Yj�/πj + op�n−1/2��

Finally,

D3n = �nh�−1/2
n∑

i=1

[
q1�η�x�Xi��Yi	Kh�Xi − x�X∗

i

πi

�op�h2� + op�n−1/2�	
]
�

By some standard calculations, we have that E�D3n� = o�n1/2h5/2�, var�D3n� =
o�h2�. Combining the calculations of D1n, D2n and D3n, we have that there is
a D∗

n such that E�D∗
n� = o�n1/2h5/2�, var�D∗

n� = o�h2� and

Dn − n1/2h5/2�c∗�2fX�x�S3�x� = �nh�−1/2
n∑

j=1

δj − πj

πj

�h�Yj� +D∗
n� ✷

B. Proof of Theorem 2. By (18), Wn�π̂� = Wn�π� − Dn − Cn + Rn.
As in the proof of Lemma 3, Dn = �nh�−1/2∑n

i=1��δi − πi�/πi	�h�Yi� +
n1/2h5/2�c∗�2fX�x�S3�x� +D∗

n. By some standard calculations, we have

cov�Wn�π��Dn	

= �nh�−1
n∑

i=1

cov
[
q1�η�x�Xi��Yi	

δi
πi

Kh�Xi − x�X∗
i �

δi − πi

πi

�h�Yi�
]

+ o�h�

= h−1E

[
1 − π1

π1
q1�η�x�X1��Y1	X∗

1Kh�X1 − x�� t
h�Y1�

]
+ o�h�

= h−1E

{
1 − π1

π1
�h�Y1�� t

h�Y1�
}
+ o�h�

= hE

{
1 − π1

π1
� �Y1�� t�Y1�

}
+ o�h��

The � �Y� in the above calculations was defined in the proof of Theorem 1. The
covariances due to cov�Wn�π��Cn	 and cov�Wn�π��Rn	 can be shown to be
smaller than the rate of cov�Wn�π��Dn	 since cov�Cn� = o�h�� cov�Rn� =



1048 WANG, WANG, GUTIERREZ AND CARROLL

o�h�. We may, in fact, apply (21) to get more precise rates, for example,
cov�Wn�π��Cn	 = o�h2�. Therefore, letting

B̂∗ = <−1
x �Wn�π� −Dn	 − h<−1

x =x<
−1
x Wn�π�

= β̂∗�π� − <−1
x Dn + op�h� = β̂∗�π̂� + op�h�

by (13) and (17), Theorem 2 follows since var�B̂∗	 = var�β̂∗�π�	−h<−1
x E���1−

π1�/π1	� �Y1�� t�Y1�
<−1
x + o�h�� ✷

C. Sketch of the Proof of Generalizations in Section 7. Here we
sketch the arguments of Section 7. We renormalize so that γ0 = γ2 = 1,
γ1 = γ3 = 0. Carroll, Ruppert and Welsh (1998) showed that there is a func-
tion gπ�z� which does not depend on the density fZ�·� of Z, and a function
C�·� such that

π̂�z� − π�z� = �h2/2�gπ�z� + �nλ�−1
n∑

i=1

Kλ�Zi − z�C�Ỹi�Xi�Zi�

+ op�h2� + op�n−1/2��
(23)

E�C�Ỹ�X�Z��Z	 = 0�(24)

By a Taylor series expansion of (7), it is easily seen that

−fX�x�<1�x��η̂�x� − η�x�	 ≈ Bn1 −Bn2 +Bn3�

where, if 5π = �∂/∂v�5�Ỹ� v� η�, 5η = �∂/∂v�5�Ỹ� π� v�. Then

Bn1 = �nh�−1
n∑

i=1

Kh�Xi − x�5�Ỹi� π�Zi�� η�Xi�	�

Bn2 = �nh�−1
n∑

i=1

Kh�Xi − x�[5�Ỹi� π�Zi�� η�Xi�	

−5�Ỹi� π�Zi�� η�x� + η′�x��Xi − x�	]�
Bn3 = �nh�−1

n∑
i=1

Kh�Xi − x�5π�Ỹi� π�Zi�� η�Xi�	�π̂�Zi� − π�Zi�	�

<1�x� = E�5η�Ỹ� π�Z�� η�x�	�X = x
�
It is easily seen that Bn2 = �h2/2�fX�x�<1�x�η�2��x��1+op�1�	. Writing 5πi

=
5π�Ỹi� π�Zi�, η�Xi�	, and writing Ci similarly, we note that Bn3 ≈ Bn31 +
Bn32, where, using (23),

Bn31 = �h2/2��nh�−1
n∑

i=1

Kh�Xi − x�5πi
gπ�Zi�

= �h2/2�fX�x�E�5π�·�gπ�·��X = x	�1 + op�1�	�

Bn32 = n−2�hλ�−1
n∑

i=1

n∑
j=1

Kh�Xi − x�5πi
Kλ�Zj −Zi�Cj�
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Thus, we have shown that

η̂�x� − η�x� ≈ �h2/2�[η�2��x� −E�5πgπ�·��X = x	/<1�x�
]

− �fX�x�<1�x�	−1�Bn1 +Bn32��
(25)

The first term in (25) is the bias, which is independent of the design density
but affected by estimation of π�·�, as claimed. To complete the argument,
we merely need to show that Bn32 = op��nh�−1/2	. Recalling that K�·� is
symmetric, rewrite

Bn32 = n−1
n∑

i=1

Ci

{
n−1

n∑
j=1

h−1Kh�Xj − x�λ−1Kλ�Zj −Zi�5πj

}
�(26)

Using Chebychev’s inequality, detailed algebra gives the designed result. In
the interests of space, we forego the calculations, but note that the term
in braces in (26) is a bivariate kernel regression of 5π�Ỹi� π�Zi�� η�Xi�	
on �X�Z� evaluated at X = x, Z = Zi, and hence converges to r�x�Zi�,
where r�x�Zi� = E�5π�Ỹ� π�Z�� η�X�	�X = x, Z = Zi
. Therefore, Bn32 ≈
n−1∑n

i=1 C�Ỹi� π�Zi�� η�Xi�	 r�x�Zi�, which is Op�n−1/2� from (24). ✷
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