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Motivated by recently developed threshold rules for wavelet estima-

tors, we suggest threshold methods for general kernel density estimators,
including those of classical Rosenblatt�Parzen type. Thresholding makes
kernel methods competitive in terms of their adaptivity to a wide variety
of aberrations in complex signals. It is argued that term-by-term thresh-
olding does not always produce optimal performance, since individual
coefficients cannot be estimated sufficiently accurately for reliable deci-
sions to be made. Therefore, we suggest grouping coefficients into blocks
and making simultaneous threshold decisions about all coefficients within
a given block. It is argued that block thresholding has a number of
advantages, including that it produces adaptive estimators which achieve
minimax-optimal convergence rates without the logarithmic penalty that
is sometimes associated with term-by-term thresholding. More than this,
the convergence rates are achieved over large classes of functions with
discontinuities, indeed with a number of discontinuities that diverges
polynomially fast with sample size. These results are also established for
block thresholded wavelet estimators, which, although they can be inter-
preted within the kernel framework, are often most conveniently con-
structed in a slightly different way.

1. Introduction. A major advantage of wavelet methods in curve esti-
mation is their adaptivity to erratic fluctuations in the signal. They enjoy
excellent mean squared error properties when used to estimate functions that
are only piecewise smooth and have minimax convergence rates that are close
to optimal over large function classes. By way of contrast, more traditional
linear estimators typically achieve good performance only for relatively
smooth functions.

This high degree of adaptivity is achieved through thresholding, which
typically amounts to term-by-term assessment of estimates of coefficients in
the empirical wavelet expansion of the unknown function. If an estimate of a
coefficient is sufficiently large in absolute value�that is, if it exceeds a
predetermined threshold�then the corresponding term in the empirical
wavelet expansion is retained; otherwise it is omitted. This approach is
highly adaptive, in that it allows minimax convergence rates to be attained
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Ž .up to at least a logarithmic factor without knowing the smoothness parame-
ter, and highly accurate, in that it permits optimal or near-optimal analysis
of functions of inhomogeneous smoothness. Details and extensive discussion

Ž .may be found in Donoho, Johnstone, Kerkyacharian and Picard 1995 ,
principally in the context of nonparametric regression and the white noise
model. Related work on density estimation appears in Johnstone, Kerk-

Ž .yacharian and Picard 1992 and Donoho, Johnstone, Kerkyacharian and
Ž .Picard 1993 . These contributions describe performance in terms of conver-

gence rates that are achieved uniformly over large function classes. Concise
accounts of mean squared error for single functions are also available; see for

Ž .example Hall and Patil 1995, 1996a .
Despite its virtues, the approach to thresholding employed in these papers

has drawbacks. Principal among these is the relative inaccuracy with which
individual coefficients in the wavelet expansion may be estimated. To more
clearly elucidate this point, we note that the optimal threshold is of size
n�1�2. This is implicit in the papers cited above and is discussed explicitly by

Ž .Hall and Patil 1996b . However, the stochastic error of estimators of wavelet
coefficients is also of size n�1�2, and so concise thresholding of individual
coefficients is not feasible. Usually, the threshold is set at a constant multiple

Ž �1 .1�2 �1�2of n log n , rather than n , expressing the need to control moderate
stochastic deviations in empirical approximations to true wavelet coefficients.
This typically results in extraneous factors of powers of log n in convergence
rates. These factors are sometimes interpreted as a penalty paid for the wide-
ranging adaptivity of wavelet estimators to very large classes of functions.

In the present paper we suggest that wavelet coefficients might be thresh-
olded in groups, or blocks, rather than individually. The length of each block
should increase slowly as a function of sample size. As a result, the amount of
information available from the data for estimating the ‘‘average’’ wavelet
coefficient within a block, and making a decision about retaining or discard-
ing it, would be an order of magnitude larger than in the case of a term-by-
term threshold rule. This would allow threshold decisions to be made more
accurately and permit convergence rates to be improved. Provided block
length increases at a suitable rate, we might be able to eliminate the
logarithmic penalty referred to in the previous paragraph.

We shall show that this is indeed the case. The appropriate growth rates of
block length are at least logarithmic in sample size. Block-based threshold
rules allow wavelet methods to achieve true optimality in terms of conver-
gence rates over large function classes. Additionally, and of equal importance
from a practical, statistical viewpoint, block threshold rules permit the
estimator to be truly spatially adaptive to relatively subtle local changes in
smoothness. This spatial adaptivity is in addition to adaptivity to varying
levels of regularity, which is already known to be a feature of term-by-term
thresholding and is preserved, in fact enhanced, by block thresholding. In
terms of minimax convergence rates over function classes, and first-order
mean squared error properties for single functions, there appear to be no
disadvantages to thresholding in blocks rather than term-by-term.
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To appreciate the extent of local adaptivity provided by block thresholding,
note that standard ‘‘pure thresholding’’ involves holding fixed the ‘‘primary

�resolution level’’ j in the notation of Donoho, Johnstone, Kerkyacharian and0
Ž . Ž .�Picard 1995 , and log p in the notation of Hall and Patil 1995 . There, a2

degree of spatial adaptivity is achieved through the multiresolution property
of wavelets, but the estimator is somewhat oversmoothed, with squared bias
of a larger order of magnitude than variance. There is no effective balance of
squared bias against variance at a first-order level. Such a balance may be
achieved by suitably adjusting the primary resolution level, and this ap-
proach is central to the account of wavelet methods provided by Hall and

Ž .Patil 1995, 1996a . However, it too does not achieve local adaptivity to subtle
Žspatial changes in the curvature of a target function, in the way that for

.example a kernel estimator with locally varying bandwidth does. In contrast,
the block threshold rules suggested in the present paper permit the balance
between variance and bias to be varied along the curve, resulting in spatially
adaptive smoothing in a classical sense. In particular, integrated squared
bias is of the same order as integrated variance, which is why the log-factor is
not present in convergence rates for block thresholded estimators. The log
factor in conventionally thresholded estimators results from oversmoothing,

� Ž .�giving an excess of squared bias over variance Hall and Patil 1996b .
Another significant advantage of this approach is that it can easily be

employed to modify and improve other linear methods, such as kernel meth-
ods, by ‘‘block thresholding’’ them. In the context of kernel estimators, our
block thresholding technique may be compared with nonlinear methods

Ž .introduced by Lepskii, Mammen and Spokoiny 1995 and Lepskii and
Ž .Spokoiny 1995 , using a variable bandwidth selector based on a modification

Ž .of Lepskii’s 1990, 1991, 1992 adaptive procedure. In this kernel framework
our methods provide adaptation comparable to that offered by wavelet
thresholding, but without an extraneous logarithmic ‘‘penalty,’’ again because
we have removed the oversmoothing feature of the more conventional
approach.

For the sake of brevity we shall discuss block thresholding only in the case
of density estimation. Analogues of all our methods and results may be
developed in the case of nonparametric regression. The technical arguments
are not difficult, provided the error distribution is assumed to have light tails
Ž .e.g., to be normal or essentially bounded .

Ž .The idea of block thresholding appears in Efroimovitch 1985 , in the
context of estimators based on orthogonal series, and in Kerkyacharian,

Ž .Picard and Tribouley 1994 for wavelet-based density estimation. However,
neither of these precursors develops local versions of block thresholding, and
so does not achieve the spatially adaptive performance described in the
present paper.

Section 2 introduces block thresholding in the contexts of both wavelet
methods and general kernel estimation. Section 3 describes spaces of irregu-
lar functions that will be used later. Section 4 discusses convergence rates
uniformly over large function classes, demonstrating that block thresholding
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removes unwanted logarithmic factors. A notable feature of these results is
the fact that the classes are not solely of continuous functions. They may
have many jump discontinuities, whose number may grow polynomially fast
with sample size, without affecting the convergence rate. That rate is deter-
mined by the smoothness of the functions between jumps and does not
involve any logarithmic ‘‘penalties.’’ Proofs of the main results are given in
Section 5.

2. Spatial adaptation using blocking methods.

2.1. Summary. Motivated by the special case of linear wavelet estima-
Ž .tors, Section 2.2 introduces generalized linear kernel estimators. Section 2.3

describes block thresholding in the wavelet case, and Section 2.4 extends
these ideas to the kernel setting. In the case of Haar wavelets the block
thresholded estimators defined in Section 2.3 and 2.4 are identical, although
more generally there are slight differences.

Ž .2.2. Generalized kernel estimators. Given a generalized kernel K x, y ,
Ž .that is, a function defined on � � �, and an integer i, define K x, y �i

i Ž i i . Ž .2 K 2 x, 2 y . Let K f be the integral operator given by K f x �i i
Ž . Ž .HK x, y f y dy. For independent and identically distributed random vari-i

ables X , . . . , X from the distribution with density f , consider the following1 n
linear estimator of f :

n1
K̂ x � K x , X .Ž . Ž .Ýi i mn m�1

ˆ� Ž .4 Ž .Ž .For every x, E K x � K f x , where the expectation is taken under thei i
true density.

Ž .We are primarily interested in two examples: a where K is the convolu-
Ž . Ž .tion kernel, that is, K u, v � K u � v , producing classical Rosenblatt�

Ž .Parzen density estimators; and b where K is the operator that projects Vj 0
into V in wavelet multiresolution analysis, and for whichj

K x , y � � x � k � y � k ,Ž . Ž . Ž .Ý
���k��

Ž .where � is the ‘‘father’’ wavelet; see, for example, Meyer 1990 .
We shall impose the following hypotheses on K :

Ž . � Ž . � Ž .H There exists an integrable function Q such that K x, y � Q x � y1
for all x, y, which implies that for all integers i and all 1 � p � �,

� � � � � �2.1 K f � Q f ;Ž . p 1 pi

Ž . Ž . Ž .H K x � 1, y � 1 � K x, y for all x, y.2

Ž .We shall say that K satisfies the moment condition M N if
� � N�1 Ž . Ž .Ž .k Ž .H x Q x dx � � and HK x, y y � x dy � � the Kronecker delta for0 k

k � 0, . . . , N, or equivalently, if K p � p for every polynomial p of degree0
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not greater than N. For Rosenblatt�Parzen density estimators, condition
Ž .M N is a standard assumption about the number of vanishing moments of

the kernel and determines that the ‘‘order’’ of the kernel is at least N � 1. It
plays a similar role in wavelet methods, and, for example, is satisfied if the

k Ž .wavelet � is of order N � 1 in the sense that Hx � x dx � 0 for k � 0, . . . , N.
Ž .See, for example, Kerkyacharian and Picard 1992 or Hardle, Kerkyachar-¨

Ž .ian, Picard and Tsybakov 1996 .
To simplify technical arguments we shall also impose the condition of

compact support:
� �C Q x � 0 for all x � T .Ž . Ž .

2.3. Block thresholding for wavelet estimators. First we define a general
wavelet expansion. Let � and � denote the ‘‘father’’ and ‘‘mother’’ wavelet

Ž .functions, assumed to satisfy condition C and to build an orthonormal
2Ž . Ž . Ž . Ž .multiresolution analysis of � � . Define � x � � x � j and � x �j i j

i �2Ž i .2 2 x � j , being the functions in the orthonormal basis of a wavelet
expansion. Given a square-integrable function f , define � � Hf� and � �j j i j
Hf� . The wavelet expansion of f ,i j

�

f � � � � � � ,Ý Ý Ýj j i j i j
j i�0 j

converges in �2.
Next we consider traditional term-by-term thresholded wavelet estimators.

Given our data, empirical versions of � and � are, respectively,j i j
n n

�1 �1ˆ� � n � X and � � n � X .Ž . Ž .ˆ Ý Ýj j m i j i j m
m�1 m�1

ˆ �1Ideally, noting that the variance of the estimator � is of size n and thei j
ˆsquared bias incurred by omitting the term � � from the empirical waveleti j i j

expansion is � 2, we would take the estimator to bei j

R
2 �1˜ ˆf � � � � � � I � � n c ,ˆ Ž .Ý Ý Ýj j i j i j i j

j i�0 j

where n�1c is the threshold and R is a truncation parameter.
˜The estimator f is impractical, however, since it depends on the unknown

coefficients � . Nevertheless, it serves to identify benchmarks for perfor-i j
mance, since it attains the minimax-optimal mean square convergence rate,

˜ 2 �2 s�Ž2 s�1.Ž . Ž .HE f � f � O n . Replacing � on the right-hand side by itsi j
ˆestimator � , we obtain a more practical, term-by-term thresholded estima-i j

tor of f ,
R

2 �1ˆ ˆf � � � � � � I � � n c .ˆÝ Ý Ý ž /j j i j i j i j
i�0 j

The performance of f is poor, however, and in fact its mean squared error
is generally no smaller than a constant multiple of n�� for some � �
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Ž .2 s� 2 s � 1 , no matter what the value of c in the threshold. This rate
�Ž �1 .2 s�Ž2 s�1.4may be improved to O n log n by increasing the threshold to

�1cn log n, for c sufficiently large, but the logarithmic penalty means that f
˜does not attain the minimax-optimal performance of f.

Ž 2 .To overcome these problems, we suggest estimating � or � simultane-i j i j
ously, for a range of neighboring values of j, and pooling the results into
blocks of coefficients. This approach makes use of the fact that for a smooth f ,
� is close to � if j is close to j , and so allows a greater amount ofi j i j 1 21 2

information to be used to estimate each � . Thus, the stochastic error of thei j
estimator of � may be reduced, permitting construction of an empiricali j

˜version of f. This method is also effective for ‘‘rough’’ densities f , since there
a number of neighboring � ’s are large, implying that the average value ofi j
the block of � ’s is large and ensuring that it is detected by a thresholdi j
procedure. Thus, block thresholding was shown by Hall, Kerkyacharian and

Ž .Picard 1995 to produce good performance for functions containing singulari-
ties such as chirps or Dopplers.¨

Block thresholding may be implemented as follows. Divide the set of all
Ž .integers into consecutive, nonoverlapping blocks of length l � l n , say

BB � j: k � 1 l � 	 � 1 � j � kl � 	 , �� � k � �,� 4Ž .k

Ž .where the integer 	 � 	 n may be arbitrary. It simplifies notation a little if
1Ž .we take 	 � 0, which we shall do. Then, BB is centered on k � l. Writingk 2

Ý to denote summation over j 	 BB , putŽk . k

B � l�1 � 2 ,Ýik i j
Ž .k

of which an estimator is

ˆ �1 ˆ2B � l � .Ýik i j
Ž .k

˜This leads to the following empirical version of f :
R

�1ˆ ˆ ˆf � � � � � � I B � n c ,ˆ Ž .Ý Ý Ý ÝW j j i j i j ikž /
i�0 ���k�� Ž .k

ˆwhere the subscript W is used to distinguish f from a generalized kernelW
form of block thresholded estimators, which we introduce next.

2.4. Block thresholding for generalized kernel estimators. The analogue
ˆfor generalized kernel estimators of the first, linear part of the estimator f ,W

ˆthat is, of Ý� � , is K . As a prelude to defining the nonlinear part for kernelˆj j 0
estimators we first introduce the ‘‘innovation’’ kernel,

D x , y � 2 K 2 x , 2 y � K x , y ,Ž . Ž . Ž .
noting that D � K � K and D f corresponds in the wavelet case toi i�1 i i

ˆ Ž .Ý � � . Observe too that an unbiased estimator of D f is D x �j i j i j i i
�1 n Ž .n Ý D x, X .m� 1 i m
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Next we introduce block thresholding. At each level i, consider the parti-
1�i iŽ .Ž .tion of � into intervals I of length 2 l centered on k � l�2 . Analo-ik 2

gously to B in the wavelet case, defineik

2�1A � l D f ,Ž .Hik i
Iik

of which an estimator is

ˆ �1 ˆ2A � l D dx .Hik i
Iik

This leads to a block thresholded generalized kernel estimator,

R
�1ˆ ˆ ˆ ˆf x � K x � D x I x 	 I I A � n c .Ž . Ž . Ž . Ž . Ž .Ý Ý0 i ik ik

i�0 ���k��

ŽWhen K is the kernel associated with multiresolution analysis see Section
ˆ ˆ.2.2 , f will not in general be identical to the estimator f defined in SectionW

Ž2.3, owing to overlap among the functions � . In the case of the Haari j
ˆ ˆ .wavelet system, however, f and f will be identical. Nevertheless, theW

ˆ ˆdifferences between f and f are generally small.W

3. Spaces of functions with low regularity.

3.1. Summary. In order to demonstrate the improvements offered by
nonlinear, block thresholded estimators of wavelet and generalized kernel
types, relative to their linear counterparts, it is necessary to introduce
function spaces in which to assess them. We shall start with spaces where
linear estimators achieve optimal convergence rates and enlarge them by
adjoining irregular functions for which linear estimators do not perform
particularly well.

The largest space where linear estimators with a suitable choice of smooth-
ing parameter achieve the convergence rate n�2 s�Ž1�2 s. is the set of balls

Ž . Ž .F M, L of the Besov space B defined in Section 3.2s, 2,� s, 2, �

� �� �F M , L � g 	 B : supp g 
 �L, L , g � M .� 4Ž . s , 2, �s , 2, � s , 2, �

Ž .See Kerkyacharian and Picard 1993 . We shall consider functions that may
be expressed as f � f � f , where f is in one of these Besov balls and f is1 2 1 2
an irregular function not present in any of the balls.

Section 3.2 notes properties of Besov spaces which are used in the sequel.
Sections 3.3 and 3.4 consider two different classes of f ’s, based on disconti-2
nuities and perturbations respectively.

3.2. Properties of Besov spaces. A definition of the Besov space B iss p q
Ž .given in Kerkyacharian and Picard 1993 . More generally, the reader is

Ž . Ž . Ž .referred to Peetre 1975 , Bergh and Lofstrom 1976 , Meyer 1990 , Triebel¨ ¨
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Ž . Ž .1993 , Devore and Lorentz 1993 and Hardle, Kerkyacharian, Picard and¨
Ž .Tsybakov 1996 . We recall here only properties that are needed for this

paper.
First, we define the Besov space B and relate it to wavelet expansions.s, p, q

� 4 � � Ž � � p.1� pGiven a sequence of real numbers u , �� � j � � , put u � Ý upi j i j i j�

� � � �for 1 � p � �, and u � sup u . Recall from Section 2 the definitions of�i j i j�

the wavelet coefficients � � � and � . Definej 0 j i j
1�q�

qi�s�Ž1�2.�Ž1� p.4� � � � � �f � � � 2 � ,Ž .Ýs , p , q p p0 i �� ½ 5
i�0

� � � �with the obvious change when 
 is replaced by 
 . If the wavelet ver-p �

Ž .sion of the multiresolution analysis kernel K satisfies conditions H ,1
Ž . Ž . Ž . Ž .H , M N and C see Section 2 , and if f 	 B for some s � N, then2 s p q
� �f � �. More generally, write B for the set of functions f suchs, p, q s, p, q

� �that f � �.s, p, q

Next we note an approximation property, related to the moment conditions
Ž .introduced in Section 2.2. If the kernel K satisfies M N � 1 , and if f 	 Bs, p, �

� � � � �j sfor some s � N, then f � K f � C f 2 for all integers j.p s p�j
Finally, we state inclusion properties of the spaces B :s, p, q

B 
 B for s� � s, or s� � s and q� � q ;s� , p , q � s , p , q

B 
 B for p� � p , s� � s � 1�p � 1�p�.s , p , q s� , p� , q

In particular, if s � p�1 � 0 then B is a subset of the space of bounded,s, p, 1
continuous functions. The same is true for B if s � p�1 � 0, provideds, p, q
q � 1. Proofs of these properties may be found in Chapter 9 of Hardle,¨

Ž .Kerkyacharian, Picard and Tsybakov 1996 , for example.

3.3. Discontinuities. Let P be the set of piecewise polynomials ofd, � , L
� �degree d, with support contained in �L, L , such that the number of

Ž .discontinuities is no more than � . Given g 	 P , denote by SS � SS g thed, � , L
Ž Ž ..set of singularities of such of functions, and write V F M, L for the setd� s, 2, �

of functions f that may be expressed in the form f � f � f where f 	1 2 1
Ž .F M, L and f 	 P . We shall consider the intersection of this sets, 2, � 2 d, � , L

Ž . � �with the L ball B A of all functions f such that f � A.�� �

1 �1 ˜Ž . Ž Ž ..3.4. Perturbations. Define � � s � and let V F M, L denotes s, 2, �2 1
Ž .the set of all f ’s that may be written as f � f � f where f 	 F M, L1 2 1 s, 2, �

Ž .and f 	 F M, L . Using the inclusion properties noted in Section 3.2, it2 s , � , �1

may be shown that F is included in B , but it can be a much largers , � , � s �s, 2, �1 1

space than F since for instance it contains discontinuous functionss, 2, �
1whenever s � s � .1 2

4. Convergence rates uniformly in function classes.

4.1. Main results. Let C and C be the absolute constants denoted by K1 2 1
Ž .and K in the bounds of Talagrand 1994 , and take the constant c in the2
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threshold to be

2� �6N � 2 Q 21�24.1 c � C A � .Ž . 2½ 5ž /C 1 � 2 N 0.08Ž .1

ˆFirst we treat the block thresholded kernel estimator f defined in Section 2.4.
� �Write log n for the integer part of the logarithm of n to base 2.2

THEOREM 4.1. Let � be any sequence of positive numbers such that for alln
Ž 
�1�Ž2 N�1..
 � 0, � � O n , and take the block length l to be asymptotic ton

Ž .2C log n for a sufficiently large positive constant C. If K satisfies conditions
Ž . Ž . Ž . Ž . Ž . � �H with Q 	 � � , H , M N � 1 and C , and if R � log n and1 2 2 2
1�2 � s � N, then there exists a constant D � 0 such that

2 �2 s�Ž1�2 s.ˆ4.2 sup sup E f � f � Dn .Ž . Ž .H
d�N , ��� Ž Ž .. Ž .f	V F M , L �B An d� s , 2 , � �

ˆNext we address the block thresholded wavelet estimator f , introduced inW
Section 2.3. We shall assume that

� �� and � are bounded, supported on 0, 2 N � 1 , and satisfy
4.3Ž . kx � x dx � 0 for k � 0, . . . , N � 1.Ž .H

Ž .Wavelets satisfying these conditions are discussed by Daubechies 1992 ,
Chapter 6 and may be obtained by the now classical ‘‘Daubechies construc-
tion.’’

Ž . � � Ž .2THEOREM 4.2. Assume that 4.3 holds, R � log n , l � C log n for2
1 Ž .C � 0 sufficiently large, � s � N and s � s � s� 1 � 2 s . Then there exists12

a constant D � 0 such that

2 �2 s�Ž1�2 s.ˆ4.4 sup E f � f � Dn .Ž . Ž .H W
˜ Ž Ž .. Ž .f	V F M , L �B As s, 2 , � �1

4.2. Discussion.

�REMARK 4.1. Achieving minimax convergence rates. Minimax theory see
Ž .�Kerkyacharian and Picard 1993 declares that the convergence rate over

Ž . �2 s�Ž1�2 s. Ž . Ž Ž ..F M, L is at best n . Now, F M, L 
 G 	 V F M, Ls, 2, � s, 2, � d� s, 2, �
ˆŽ .� B A for A sufficiently large, and by Theorem 4.1, f achieves the conver-�

�2 s�Ž1�2 s. ˆgence rate n over the larger set G. Therefore, f attains the minimax
lower bound exactly, without any extraneous logarithmic factors. The opera-
tion of thresholding, which renders the estimator nonlinear, is crucial to
attaining the optimal convergence rate.
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The constants C and D in the theorems depend on all the unknowns
appearing there. For example, in the case of Theorem 4.1 they depend on s,

Ž .A, K and through it, on N and Q , L, M, 
 , and the constant C� in the
bound � � C�n
�1�Ž2 N�1..n

REMARK 4.2. Minimax and supra-minimax results. An important but
Žsubtle difference between Theorems 4.1 and 4.2 is that one of them Theorem

.4.2 can be included in the stream of classical uniform minimax results over
function classes, but not the other, on account of the condition � � � .n

Ž .Precisely because of this nonuniformity with respect to n supra-minimaxity ,
the class of functions under consideration in Theorem 4.1 is larger and in
consequence more interesting from a practical viewpoint. Especially, it allows
the number of discontinuities to grow polynomially with respect to n. Because
of this, the two results are not directly comparable.

REMARK 4.3. Comparison of function classes in Theorems 4.1 and 4.2.
˜Ž Ž .. Ž . Ž Ž ..Neither of the sets V F M, L � B A and V F M, L containsd� s, 2, � � s s, 2, �n 1

the other, not least because the latter set can contain irregularities other
than discontinuities. In particular, it contains chirps and Doppler singulari-¨

Ž .ties, which have been investigated by Hall, Kerkyacharian and Picard 1995 .
ˆŽ .Result 4.4 does not hold true, in general, if f there is replaced by theW

ˆkernel estimator f. Heuristically, the reason is as follows. When using a basic
ˆconvolution kernel, K, to define f , we may adequately accommodate simple

jump discontinuities in derivatives, since K is ‘‘designed’’ to remove terms
ˆthat arise from Taylor approximations. However, the estimator f equipped

with only a convolution kernel does not adequately accommodate more subtle
high-order aberrations in f , of the type that characterize functions in

Ž .F M, L . Another reason for the greater success of wavelets in approxi-s , � , �1

mating a wide range of singularities is that in the wavelet case, the functions
D f are orthogonal. This is not true when using convolution kernels. Never-i

ˆ ˆŽ .theless, result 4.2 may be derived for f as well as f.W

REMARK 4.4. Extension of Theorem 4.2. Minor modifications of our proof
Ž .show that Theorem 4.2 remains true if the condition s � s � s� 1 � 2 s is1

˜ Ž Ž ..replaced by s � s � 0 and if, at the same time, the space V F M, L is1 s s, 2, �1˜ Ž Ž .. Ž .replaced by V F M, L � F M . Finally, we note that, to ours s, 2, � s�Ž1�2 s., 2, �1 �2 s�Ž1�2 s. Žknowledge, one of the largest spaces where the rate n augmented
.by an additional logarithmic term is attained uniformly is a weak version of

Ž Ž .. Ž . Ž .F M, L � F M . See Donoho and Johnstone 1996 .s, � , � s�Ž1�2 s., 2, �

REMARK 4.5. Adaptivity to different levels of regularity. Minimax optimal-
ity may be interpreted as an expression of adaptivity, as follows. An estima-

� Ž . 4tor f * is said to be adaptive for a class CC � , � 	 AA if for each � 	 AA there
Ž .exists C � � 0 such that

ˆR f *; CC � � C � inf R f ; CC � ,Ž . Ž . Ž .Ž . Ž .n n
f̂
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ˆ ˆ 2Ž . Ž .where R f ; FF � sup H f � f . Theorem 4.2 establishes that our estima-n f 	 FF

ˆ ˜ Ž Ž .. Ž .tor f is adaptive for the class of functions V F M, L � B A , indexeds s, 2, � �1
Ž . Ž .by vectors � � s, s , M, L satisfying 0 � s � N, s � s � s� 1 � 2 s , 0 �1 1

M � � and 0 � L � �.

REMARK 4.6. Choice of block length. The theorems remain valid, although
for a different value of D, for sequences of block lengths l which increase

Ž .2faster than log n but not too fast. One may also employ a nondecreasing
block length l depending on the level i, for example l � C i2 for a suffi-i i 1
ciently large constant C � 0. This requires one to start the thresholding1

Ž i0later, using a primary resolution level i or 2 , depending on one’s notation0
. i0 1�Ž1�2 N .for ‘‘primary threshold’’ with 2 � n , instead of using the level

i � 0 presently employed. In this case, C log n � i � C log n for i � i � R,0 2 3 0
where 0 � C � C � �. Hence, l is bounded between two constant multiples2 3 i

Ž .2of log n .

REMARK 4.7. Versions of the theorems for L risk. Theorem 4.1 remainsp
valid, albeit with different constants D, if the L norm is replaced by the L2 p
norm for 1 � p � �, if F is replaced by F , if the definitions of B ands, 2, � s, p, � ik
ˆ �1 p �1 ˆ p� � � �B are changed to l Ý � and l Ý � , respectively, and if theik Žk . i j i Žk . i j
threshold c�n is changed to c�n p�2.

REMARK 4.8. Choice of threshold. The threshold constant c depends on A,
to which it is approximately proportional for large A. This is to be expected,

ˆ � �since the supremum of the variance of f is roughly proportional to f .�

REMARK 4.9. Numerical implementation. A slightly modified form of block
thresholding for wavelet regression estimators has been implemented numer-

Ž .ically by Hall, Penev, Kerkyacharian and Picard 1997 . Aside from minor
formal changes needed to accommodate the switch to the regression setting,
the modification consists of replacing the thresholding constant c used in the

� Ž .�present paper see 4.1 by an estimate of the variance of response variables.
For density estimation the equivalent change would be to replace c by a pilot
estimator of the density f , evaluated at the center of the respective block. The

Ž .formula at 4.1 is finely tuned to the theoretical work in the present paper
and would not be appropriate for numerical work.

Assuming that the pilot estimator in the threshold has been smoothed so
that it accurately estimates the true f , numerical results obtained in the case
of density estimation have the features of those obtained by Hall, Penev,

Ž .Kerkyacharian and Picard 1997 for regression. In particular, the estimator
is less sensitive to choice of block length than to selection of the primary
resolution level, R. Good performance is obtained if the estimator is averaged
over a range of values of R. The primary resolution level, which may be
interpreted as a smoothing parameter like the bandwidth in the case of more
conventional curve estimation, may in principle be chosen by cross-validation,
although numerical properties of this approach have not been tested.
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Since block thresholded estimators have less bias than their conventionally
thresholded counterparts, they respond more rapidly to sudden changes in
the frequency of the target function. For example, they track a jump disconti-
nuity more accurately, with less tendency to locate the jump incorrectly, and
they reach more deeply into troughs, and higher into peaks than do conven-
tionally thresholded wavelet estimators. A beneficial byproduct of reduced
bias is reduced susceptibility to the spurious ‘‘wiggles’’ associated with Gibbs’
phenomenon. However, since variance is generally higher, relative to
Ž .squared bias, than for traditional thresholding, block thresholded estima-
tors tend to suffer a little from the introduction of extraneous features due to
noise.

5. Proof of the theorems.

5.1. Summary. Both theorems have similar proofs. We shall give the
proof of Theorem 4.1 in detail and note at the end of the section the principal
changes that should be made to derive Theorem 4.2. In the proof of Theorem

Ž . i s 1�Ž1�2 s.4.1 we shall use the following notation. Define i � i n by 2 � n �s s
2 i s�1 . Then i corresponds to the minimax optimal level that might be chosens
for a linear wavelet estimator if we knew the regularity s, and if there were
no singularities.

We may write
� R

ˆ ˆ ˆf � K f � D f , f � K f � f ,Ý Ý0 i 0 i
i�0 i�0

where

ˆ ˆ ˆf x � D x I x I B � c�n .Ž . Ž . Ž . Ž .Ýi i ik ik
k

Hence,
2is

2 2ˆ ˆ ˆ� � � �E f � f � 4 E K � K f � E f � D fŽ .Ý2 20 0 i i½ i�0 2

2 2R �

ˆ�E f � D f � D fŽ .Ý Ýi i i 5i�i i�R�1 2s 2

� T � T � T � T ,1 2 3 4

say. The main ingredients of our treatment of T to T will be the following:1 4

ˆ1. Moment control of the deviation of D from its mean value. This will bei
summarized in Lemma 5.1, and will be used to control stochastic error.

ˆ2. Exponential control of the deviation of A from A . Here we shall use aik ik
Ž .moderate deviation result of Talagrand Theorem 5.1 below , to prove that

the errors arising from a relatively poor estimate of A do not contributeik
significantly.
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3. Contributions of the singularities. For this purpose, some terms will be
split into two parts, being those which either include or do not include a
singularity, respectively. For the parts which do include a singularity, we
obtain the result using the fact that the singularities are of specified order.

The following Holder-type inequality will be used on several occasions:¨
22 1�2J J

2ˆ ˆ5.1 E D f � f � E D f � f .Ž . � 4Ž . Ž .Ý Ý Hi iž /
i�I i�I2

5.2. Stochastic error of the linear part. We shall require the following
lemma.

Ž . Ž . Ž .LEMMA 5.1. If G x, y is a kernel satisfying condition H with Q 	 � � ,1 2
and if II is a compact interval, then

2 2 iˆ � � � �E G x � G f x dx � f Q 2 � II �n,Ž . Ž . Ž .� 4H � 2i i
II

Ž .where � II is the length of the interval II.

This lemma will be used for either G � K or G � D, since if K satisfies
Ž . Ž .H with the function Q then D satisfies H with the function 2Q.1 1

The proof of Lemma 5.1 follows easily from the following inequalities:
n

2 2�2ˆE G x � G f x dx � n E G x , X � EG x , X dx� 4Ž . Ž . Ž . Ž .Ž . ÝH Hi i i m i m
I II m�1

� n�1 G2 x , u f u du dx ,Ž . Ž .HH i
II5.2Ž .

G2 x , u f u du � 22 iQ2 2 i x � u f u du� 4Ž . Ž . Ž . Ž .H Hi

� � � � 2 i� f Q 2 .� 2

The lemma implies that

�1 � � � � 25.3 T � 2n L f Q .Ž . � 21

5.3. Stochastic error of the nonlinear part for i � i . Observe thats

2 2ˆ ˆE f � D f � E D � D fŽ . Ž .H Hi i i i

2 �1� E D f I A � 2n cŽ . Ž .Ý H i ik
I kik5.4Ž .

2 �1 �1ˆ� E D f I A � 2n c I A � n cŽ . Ž . Ž .Ý H i ik ik
Iikk

� T � T � T ,21 22 23
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say. By Lemma 5.2,

�1 � � � � 2 i5.5 T � n f Q 2 2 L.Ž . � 221

Noting that the number of blocks at level i that intersect the support of f is
less than 2 L2 il�1, we obtain

5.6 T � 4n�1Lc2 i .Ž . 22

The term T involves large deviation behavior and will be treated in23
Section 5.6, where it will be shown that its contribution is negligible relative

Ž . Ž .to the upper bounds in 5.5 and 5.6 . Assuming that result for the time
Ž . Ž . Ž . Ž .being, we may conclude from 5.1 , 5.4 , 5.5 and 5.6 that

2is
i �1 �2 s�Ž1�2 s.sˆ5.7 E f � D f � D2 n � DnŽ . Ž .Ý i i

i�0 2

for a constant D � 0.

5.4. Stochastic error of the nonlinear part for i � i . Here we make thes
following decomposition:

2 2 �1 �1ˆ ˆ ˆE f � D f � E D � D f I A � n c�2 I A � n cŽ .Ž . Ž . Ž .ÝH Hi i i i ik ik
Iikk

2 �1 �1ˆ ˆ� E D � D f I A � n c�2 I A � n cŽ .Ž . Ž .Ý H i i ik ik
Iikk

2 �1� E D f I A � 2n cŽ . Ž .Ý H i ik
Iikk

5.8Ž .

2 �1 �1ˆ� E D f I A � 2n c I A � n cŽ . Ž . Ž .Ý H i ik ik
Iikk

� T � T � T � T ,31 32 33 34

Ž . 1�Ž1�2 N .say. Next we estimate terms on the right-hand side. Define � � a n n ,n
Ž . Ž 
 .where, in view of our assumptions, a n � O n for all 
 � 0. Put S �i

� i Ž . 4k 	 �: D I � SS 
 � , where SS denotes the set of singularities of f andT ik
i Ž� �. � �i �i �D a, b � a � T 2 , b � T 2 . Then, S is the set of block indices whereT i

Ž . Ž . 1�Ž1�2 N .a singularity occurs. Our assumptions imply that card S � 2Ta n n .i
Let also A be the complement of S in � and note that if k 	 A andi i i

Ž .x 	 I , then D f x � 0. To appreciate why, observe that in view of condi-ik i 2
Ž .tion C ,

D f x � D x , y f y dy,Ž . Ž . Ž .Hi 2 i 2
i Ž .D IT ik

i Ž .and that on the interval D I , f is a polynomial of degree less thanT ik 2
Ž .N � 1. Then apply condition M N � 1 .
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Ž .Next we bound T in 5.8 , dividing it first into two parts:31

21�1 �1ˆ ˆT � EI A � n c I A � n c D � D fŽ .Ž . Ž .Ý H31 ik ik i i2
Iikk	Ai

21�1 �1ˆ ˆ� EI A � n c I A � n c D � D fŽ .Ž . Ž .Ý Hik ik i i2
Iikk	Si

� T � T .311 312

Using Lemma 5.1 and the result noted in the previous paragraph,

2�1 ˆT � A c�2n E D � D fŽ . Ž .Ý H311 ik i i
Iikk	Ai

�1 2 i� � � �� A c�2n f Q 2 � I �nŽ . Ž .Ý � 2ik ik
k	Ai

22� � � �� 2�c f Q D fŽ . Ž .Ý� 2 H i
Iikk	Ai

5.9Ž .

22� � � �� 2�c f Q D fŽ . Ž .� 2H i 1

� � � � 2 � � �2 i s� D 2�c f Q f 2 .Ž . � 2 s , 2, �1

Ž .2Here, to bound H D f when f 	 B we have used the fact that Ki 1 1 s, 2, �

Ž .satisfies condition M N � 1 .
To bound T , observe that for some r � 0,312

r 2�1 ˆT � A c�2n E D � D fŽ .� 4 Ž .Ý H312 ik i i
Iikk	Si

r�1 2 i� � � �� A c�2n f Q 2 � I �n.Ž . Ž .� 4Ý � 2ik ik
k	Si

Ž .Using 2.1 ,
�1 � � 2 � � 2 � � 2 �i5.10 A � l � I D f � f Q 2 ,Ž . Ž . � � 1ik ik i

whence
r 2 r�1 2 r1�Ž1�2 N . r�1 �i r� � � �5.11 T � 2�c la n n n f Q 2 .Ž . Ž . Ž . � 2312

To bound T , note that33

2 2�1T � D f � I A � 2n c D fŽ . Ž .Ž .Ý ÝH H33 i ik i
I Iik ikk	A k	Si i

1�r2 �1� �� D f � 2cn �A lA .Ž .Ý2i 1 ik ik
k	Si

These two terms admit, up to constants, the same bounds as the terms T311
and T above.312
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The two remaining terms, T and T , involve large deviations. They will32 34
be treated in Section 5.6, where it will be proven that they are negligible

Ž . Ž . Ž .relative to the bounds derived above. From this result, 5.1 , 5.8 and 5.9 ,
we obtain

T � D 2�2 si s � la n nr�1�1�Ž1�2 N .2�r i s� 4Ž .3

� D 1 � la n n�
�2 r s�Ž1�2 s. n�2 s�Ž2 s�1. ,� 4Ž .
Ž .�1 Ž .�1where 
 � 1 � 2 s � 1 � 2 N � 0. So, choosing r sufficiently small we

obtain the bound

T � D�n�2 s�Ž2 s�1. .3

5.5. Term T . For i � R we denote by J the interval of length 2�i
4 i j

1 ��i iŽ . � Ž . 4centered at j � 2 and define S � j 	 �: D J � SS 
 � . This seti T i j2

corresponds to the occurrence of a singularity in D f. Let A� be the comple-i i
mentary set. First, note that

� �

� �5.12 D f � D f .Ž . Ý Ý 2i i
i�R�1 i�R�12

Repeating the arguments in Section 5.4, we obtain

2 2 22� �D f � D f � D f � D fŽ . Ž . Ž .Ý Ý Ý2 H H Hi i i i
� �J J Ji j i j i jj j	A j	Si i

� � 2 � � 2 � � 2 1�Ž1�2 N . �i� D f � Q f a n n 2 2TŽ .2 1 �i 1

5.13Ž .

� � 2 �2 i s 1�Ž1�2 N . � � 2 � � 2 �i� D f 2 � a n n Q f 4T 2 .Ž .s , 2, � 1 �1

Ž . Ž .Using 5.12 and 5.13 , we get

5.14 T � Dn�2 s�Ž1�2 s. .Ž . 4

5.6. Terms involving large deviations. The following result is from Tala-
Ž .grand 1994 .

Ž .THEOREM 5.1 Talagrand . Let U , . . . , U be independent and identically1 n
distributed random variables, let 
 , . . . , 
 be independent Rademacher vari-1 n
ables, independent also of U , . . . , U and let FF be a class of functions1 n
uniformly bounded by M. If there exist v, H � 0 such that for all n,

Ž .sup var g U � v andg 	 FF

n

E sup 
 g U � nH ,Ž .Ý m m½ 5
g	FF m�1

then there are universal constants C , C such that, defining1 2

n
�1	 g � n g U � Eg U ,Ž . Ž . Ž .Ýn m

m�1
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we have for all � � 0,

�2 �
P sup 	 g � � � C H � exp �nC � .Ž .n 2 1½ 5 ½ 5ž /v Mg	FF

This theorem will be used to derive the following result.

PROPOSITION 5.1. For all � � 0,

1�2
2 1�22ˆ � � � �P D � D f � C f Q l�n � �Ž .Ž .H � 2i i 2½ 5

Iik

2 � � � � 2 i �2 � �� exp �nC � � f Q � ��2 Q .Ž .� 4Ž .� 2 21

PROOF. Let us first observe that

1�2
2ˆ ˆD � D f � sup D � D f gŽ . Ž .H Hi i i i½ 5

I I� �ik ikg �12

n
�1� sup n g x D x , X dxŽ . Ž .Ý H i m

I� � ikg �1 m�12

� E g x D x , X dx .Ž . Ž .H i m
Iik

Hence we may apply Theorem 5.1 with

� �FF � g x D x , 
 dx : g � 1 .Ž . Ž .H 2i½ 5
Iik

Next we show that the constants M, H and v from Theorem 5.1 produce
their counterparts in Proposition 5.1. Note that

1�2
2 i �2� � � �M � sup g x D x , y dx � g D x , y dx � 2 Q ,Ž . Ž . Ž .H 2 H 2i i½ 5

I Iy ik ik

Ž .using 5.2 , and that

2

v � sup g x D x , y dx f y dyŽ . Ž . Ž .H H i½ 5
I� � ikg �12

� � � � 2 � � � � 2� sup f D g � f Q .� 2 � 2i
� �g �12



WAVELET METHODS 939

Ž .Moreover, using 2.1 ,

n

nH � E sup g x D x , X dx
Ž . Ž .Ý H i m m½ 5I� � ikg �1 m�12

1�22n

� E D x , X 
 dxŽ .ÝH i m m½ 5
Iik m�1

1�2
1�22 21�2 � � � �� n D x , u f u du dx � nl f Q ,Ž . Ž . Ž .H H � 2i½ 5

Iik

Ž .using 5.2 . Proposition 5.1 follows from these results.
The following result will be used in the sequel.

Ž .2LEMMA 5.2. If H D f � lc�2n thenI iik

2 2ˆ ˆ5.15 D � lc�n 
 D � D f � 0.08lc�n ,Ž . Ž . Ž .H Hi i i½ 5 ½ 5
I Iik ik

Ž .2if H D f � 2 lc�n thenI iik

2 2ˆ ˆ5.16 D � lc�n 
 D � D f � 0.16lc�n .Ž . Ž . Ž .H Hi i i½ 5 ½ 5
I Iik ik

The lemma may be proved by observing that

1�2 1�2 1�2
2 2 2ˆ ˆD � D f � D � D fŽ .Ž . Ž .H H Hi i i i½ 5 ½ 5 ½ 5

I I Iik ik ik

1�2 1�2� cl�2n 2 � 1Ž . Ž .
Ž .1�2Ž 1�2 .in the first case, and that the left-hand side exceeds cl�n 2 � 1 in the

second case.
Our task is to bound the terms T , T and T . For this we shall need to34 23 32

bound terms of two kinds:

2 2 2ˆ ˆ� i � E D � D f I D � lc�n I D f � lc�2n ,Ž . Ž .Ž . Ž .Ý H H H1 i i i i½ 5 ½ 5
I I Iik ik ikk

22 2ˆ� i � E D f I D � lc�n I D f � 2 lc�n .Ž . Ž . Ž .Ž .Ý H H H2 i i i½ 5 ½ 5
I I Iik ik ikk

To bound � we shall use the following lemma.1

LEMMA 5.3. If a nonnegative random variable T has the property that for
all t � 0,

5.17 P T � t � C H � exp �� t 2 � exp �� t ,Ž . Ž . Ž .Ž .2 1 2
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then for any a � C H and with a� � a � C H,2 2

1�2 12 �1 2 2E T I T � a � 2 � � C H ��� � a exp �� a�� 4Ž . Ž .� 4 Ž .1 2 1 12

12 2� a�� � 1�� � a exp �� a� .Ž . Ž .� 4Ž .2 2 22

To prove the lemma, write

�
2 2E T I T � a � a P T � a � 2uP T � u du� 4Ž . Ž . Ž .H

a

Ž . Ž .and bound the integral using the bound to P T � u at 5.17 .
Ž .Using Proposition 5.1, Lemma 5.3 and 5.15 , and defining

1�21�2 2� � � �� � 0.08c � C f Q � 0Ž . Ž .� 22

Ž .1�2and a� � � l�n we deduce that

C � 2 l C � l1�2
1 1�1 ��� i � O n exp � � exp � � DnŽ . Ž .1 2½ 5ž /� �ž / Q� � � �f Q 2� 2

i Ž .2 � �for a constant D, since 2 � n and choosing l � log n and � � � Q �C .2 1
Ž .�1Selecting � � 2 N 1 � 2 N � 2, and noting that

2J
1�2 2 J ��� i � 2 Dn ,Ž .Ý 1½ 5

i�I

we see that this makes a negligible contribution to the final result.
Ž .The bound for � i may be derived in the same way, and is even simpler2

Ž .since, instead of Lemma 5.3, we need only observe that because of 2.1 ,

2 2 �i� � � �D f � f Q 2 lŽ .H � 1i
Iik

for all i.
The proof of Theorem 4.2 is similar to that of Theorem 4.1, although it is

Ž .generally a little simpler. In view of orthogonality, inequality 5.1 becomes
the following equality:

2J J 2ˆ ˆE D f � f � E D f � f .Ž . Ž .½ 5Ý Ý Hi W i W
i�I i�I2

Lemma 5.1 and the treatment of T and T are the same as in the proof of1 2
Theorem 4.1. The early part of the treatment of T is also the same, provided3

ˆ 2 ˆ 2� Ž .4 Ž .EH D f � f is replaced by Ý E � � � and provided in the defini-I i W Žk . i j i jik i Ž .tion of S , D I is replaced by the support of � . The main change is that,i T ik i j
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Ž .instead of the argument at 5.10 ,
2ˆ ˆT � E � � � I B � c�n I B � c�2nŽ .Ž .Ý Ý ž /312 i j i j ik ik

k Ž .k

�r�22i �1 r�2� � � �� 2 f Q � I n B 2c�nŽ . Ž .Ý � 2 ik ik
k

Ž .�r�2 1� r�22 r� � � � � �� f Q 2c l�n �Ž . Ž .Ý Ý� 2 i j
k Ž .k

Ž .for r � 2. Because of the inclusion properties of Besov spaces see Section 3.2
we know that r � � and f 	 B together imply that f 	 B ,s , � , � s �Ž1�� .�Ž1� r ., r , �1 1

whence it follows that
� � r � � r �iŽ s1�s .r� � f 2 ,Ý s , � , �i j 1

j

1Ž .since s � 1�� � . Therefore, using the definition of i ,s2

i1
Ž .�r�2 1� r�22 r� � � � � �f Q 2c l�n �Ž . Ž .Ý Ý Ý� 2 i j

i�i k Ž .ks

Ž .�r�2 1� r�22 �Ž s �s.r�Ž1�2 s.1� � � �� f Q 2c l�n n .Ž . Ž .� 2

Finally, note that r can be chosen so large that
Ž .1� r�2 �Ž s �s.r�Ž1�2 s. �2 s�Ž1�2 s.1l�n n � Dn .Ž .
� �1 Ž .4�1This is equivalent to r � � � s � s , which is compatible with the1

requirements on r, that is, � � r � 2 if s � s.1
Similar modifications should be made to the argument for dealing with T .33

In the case of T ,4
�

22 �RŽ s �s.2 �2 s�Ž1�2 s.1� �T � � � f 2 � Dn ,Ý Ý s , � , �4 i j 1

i�R�1 j

Ž .since s � s � s� 1 � 2 s � 1 � ��2.1
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