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We attempt to recover an unknown function from noisy, sampled
data. Using orthonormal bases of compactly supported wavelets, we de-
velop a nonlinear method which works in the wavelet domain by simple
nonlinear shrinkage of the empirical wavelet coefficients. The shrinkage
can be tuned to be nearly minimax over any member of a wide range of
Triebel- and Besov-type smoothness constraints and asymptotically mini-
max over Besov bodies with p � q. Linear estimates cannot achieve even
the minimax rates over Triebel and Besov classes with p � 2, so the

Žmethod can significantly outperform every linear method e.g., kernel,
.smoothing spline, sieve in a minimax sense. Variants of our method based

on simple threshold nonlinear estimators are nearly minimax. Our method
possesses the interpretation of spatial adaptivity; it reconstructs using a
kernel which may vary in shape and bandwidth from point to point,
depending on the data. Least favorable distributions for certain of the
Triebel and Besov scales generate objects with sparse wavelet transforms.
Many real objects have similarly sparse transforms, which suggests that
these minimax results are relevant for practical problems. Sequels to this
paper, which was first drafted in November 1990, discuss practical imple-
mentation, spatial adaptation properties, universal near minimaxity and
applications to inverse problems.
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1. Introduction. Suppose we are given n noisy samples of a function f :
1 y � f t � � z , i � 1, . . . , n.Ž . Ž .i i i

Ž .with t � i�n, z iid N 0, 1 . Our goal is to estimate f with small mean-i i
ˆsquared-error, that is, to find an estimate f depending on y , . . . , y with1 n

ˆ ˆ 2 1 ˆ 2Ž . � � Ž Ž . Ž ..small risk R f , f � E f � f � EH f t � f t dt. In addition, we know2n 0
a priori that f belongs to a certain class FF of smooth functions, but nothing

ˆmore. We seek an estimator f attaining the minimax risk

˜ ˆ2 RR n , FF � inf sup R f , f .Ž . Ž . Ž .n
f̂ f

When FF is an L2-Sobolev class or a Holder class, such problems have been¨
� Ž . Ž .well studied e.g., Ibragimov and Khas’minskii 1982 , Stone 1982 , Nuss-

Ž . Ž .�baum 1985 , Speckman 1985 .
In this paper we consider minimax estimation where FF is a ball in one of

two large scales of function classes�the Triebel and Besov scales. These are
three-parameter scales F � and B� of function spaces to be described inp, q p, q
more detail in Section 2. The parameter � measures degree of smoothness; p
and q specify the type of norm used to measure the smoothness. These scales
contain the traditional Holder and L2-Sobolev smoothness classes, by setting¨
parameters p � q � � and p � q � 2, respectively. With other choices of
parameters, one gets interesting function classes unlike those traditional
ones.
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� Ž .As an example, consider the bump algebra Meyer 1990a , Chapter VI.6,
� Ž . Ž Ž .2 2 .pages 186�189 . Let g x � exp � x � t �2 s denote a Gaussiant, s

‘‘bump,’’ normalized to height 1 rather than area 1. The bump algebra B is
the class of all functions f : � � � which admit the decomposition

�

3 f x � � g xŽ . Ž . Ž .Ý i t , si i
i�0

Ž . � � �for some sequence of triplets � , t , s , i � 0, 1, 2, . . . , which satisfy Ý �i i i i�0 i
Ž �� �. Such a representation need not be unique. The B-norm of such a

1 Ž .function is the smallest l -norm of the coefficients � in any such represen-i
tation:

� � � �4 f � inf � such that 3 holds.Ž . Ž .ÝB i

Under this norm B is a Banach space.
This algebra possesses two properties which might spark the interest of

readers.

1. It serves as an interesting caricature of certain function classes arising in
Ž .scientific signal processing. Functions f obeying 3 with only finitely

many nonzero � are evidently models for polarized spectra, that is, theiri
Ž .graph consists of a set of ‘‘spectral lines’’ located at the t with ‘‘linei

Ž . Ž . � �widths’’ s , ‘‘polarities’’ sgn � and ‘‘amplitudes’’ � . Thus estimatingi i i
functions in B corresponds to recovery of polarized spectra with unknown
locations of the lines, unknown line widths, unknown amplitudes and
unknown polarities.

2. Banach space B contains functions with considerable spatial inhomogene-
ity. In fact, a single function in B may be extremely spiky in one part of its
domain and extremely flat or smooth in another part of its domain. This
would not be possible, for example, in a Holder class, where functions must¨
obey the same local modulus of continuity at each point.

Ž . 1 � Ž .�The bump algebra is the homogeneous Besov space B Meyer 1990a .1, 1
It is not a member of the usual Sobolev or Holder scales.¨

The Besov and Triebel scales also nearly include other function spaces of
� Ž .interest. Consider a ball FF of functions of bounded variation: FF � f : TV f

4 1� C . This is contained in a ball of the Besov space B and contains a ball of1, �
1 � Ž .� ŽB Peetre 1975 . While this particular space technically lies just outside1, 1

the range of validity of our sharpest results, the conclusions at the level of
rates of convergence match those of Theorem 1 below, and so we use it here

.for motivation.
Here FF possesses two properties which again may spark the reader’s

interest.

1. Scientific relevance. For example, the key geophysical parameter in the
acoustic theory of reflection seismology is the acoustic impedance, a func-
tion which is necessarily nonsmooth, because it has jumps at certain
changes in media; this may be modelled as an object of finite variation.
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2. Spatial inhomogeneity: Functions of bounded variation may have jumps
localized to one part of the domain and be very flat elsewhere.

Ž .The bump algebra and essentially total variation are instances of spaces
in the scale of Besov and Triebel spaces with index p � 2. Such spaces
exhibit a phenomenon which is unexpected on the basis of previous theoreti-
cal experience with linear estimation over L2-Sobolev or Holder classes. To¨

Ž . �state it, we establish notation. The parameter spaces FF C will be balls f :
� � 4 � �f � C where � denotes the norm in the Besov or Triebel space, to be
defined in Section 2 below. The relation a � b means that the ratio of then n
two sides are bounded between constants c and c , which here depend on FF,0 1
but not on n. On the other hand, a � b means, as usual, that a �b � 1 asn n n n
n � �.

Combining Theorems 4, 5, 10 and 11 below, we have the following theorem.

Ž . �THEOREM 1. Let FF � FF C be a ball of Besov space B or Triebel spacep, q
� Ž̃ .F with � � 1�p and 1 � p, q � � or a � p � q � 1. Let RR n, FF denotep, q

˜Ž . Ž .the minimax risk from observations 1 , and let RR n, FF denote the minimaxL
Ž .risk when estimators are restricted to be linear in the data y . Theni

˜ �r ˜ �r �RR n , FF � n , RR n , FF � n n � �,Ž . Ž .L

with rate exponents

2� 2� � �
r � , r � � ,

2� � 1 2� � 1 � �

Ž .where � � 2�p � 2�max p, 2 � 0 whenever p � 2.
In the Besov case, when p � q, we have the sharper conclusion

2Ž1�r . �r˜ '5 RR n , FF C � � C n �� C n ,Ž . Ž .Ž . Ž .
'Ž . Ž .where � � is a continuous, positive, periodic function of log C n �� .2

Hence, in the Besov and Triebel scales, whenever p � 2, traditional linear
methods are unable to compete effectively with nonlinear estimates,

Ž . Ž .RR n, FF �RR n, FF � �. For example, with both the bump algebra and totalL
variation, we have r � 2�3 while r � � 1�2.

Our interpretation: this phenomenon is due to the spatial variability of
functions in spaces p � 2. Linear estimators are based in some sense on the
idea of spatial homogeneity of the estimand f ; this is most apparent for fixed
bandwidth kernel estimates, but may be seen for trigonometric series and for
least-squares smoothing splines by examining the equivalent kernels. Spa-
tially variable functions contain spiky�jump parts and smooth parts. Linear
estimates are unable to behave optimally in spatially inhomogeneous set-
tings; either they will oversmooth the spiky part or they will undersmooth
the flat part�or both. Our slogan: to be minimax in such spatially variable
cases, one must be spatially adaptive.
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We feel confident in proposing such interpretations because our proof of
Theorem 1 derives from a machinery which solves the minimax problem

Ž . Ž .precisely in a certain sense . The theory of wavelets see Section 2 provides
an orthogonal decomposition for L2 which is an alternative to the usual
orthogonal decompositions based on Fourier analysis or orthogonal polynomi-
als. In this paper we use recent results about the wavelet transform to map
the problem of minimax estimation of functions known to lie in certain Besov
Ž .or Triebel balls isomorphically to a sequence-space problem of estimating

Ž .sequences known to lie in certain convex sets which we call Besov Triebel
bodies. By applying earlier work of the authors on certain minimax Bayes

� Ž . � ��problems Donoho and Johnstone 1994b , hereafter DJ94 , we are able to
give an asymptotically minimax solution to this sequence space problem

Ž .which translates to 5 in the original setting.
In the Besov case, the minimax nonlinear estimators derive from a scalar

� � � �minimax Bayes problem studied in DJ94 . However, DJ94 also has the
consequence that crude thresholding nonlinear estimators, which simply set
to zero coefficients below some multiple of the noise level, are also reasonable.
By applying Theorem 7 below and the results that go to make up Theorem 1
above, we get the following corollary.

COROLLARY 1. A nearly minimax estimate can be constructed for any of
the FF covered by Theorem 1 by appropriate thresholding of the noisy empirical
wavelet coefficients of the function and inverting the wavelet transform.

In other words, a simple new ‘‘universal’’ type of nonlinear estimator
conveniently subsumes new and existing results on minimax rates of conver-
gence. For example, wavelet thresholding can achieve the minimax rate in
cases p 	 2 where linear methods could, and it can also achieve the minimax
rate in cases p � 2 where linear methods cannot.

Our minimax solutions furnish two interesting interpretations. First, as
discussed above, wavelet shrinkage methods have representations as adap-
tive kernel estimators which change locally� in both shape and
bandwidth�in response to the data. Hence they are spatially adaptive. In a

� Ž .� Ž � �.separate article Donoho and Johnstone 1994a hereafter DJ94a we
develop a theory of ideal spatial adaptation, relate it to efforts mentioned
above and show that, when properly tuned, nonlinear wavelet shrinkage
provides near-ideal spatial adaptation.

Second, the solutions give implicit expressions for least favorable priors.
� �Using DJ94 , we can see that least favorable distributions in the case p � 2

have sparse random wavelet transforms: only a few randomly scattered
Žwavelet coefficients are nonzero at fine scales of resolution. This sparsity is of

.course the reason that a good estimator must be spatially adaptive. Much
informal experimentation with wavelet transforms reveals that real objects
Žone-dimensional wavelet transforms of NMR spectra, two-dimensional

.wavelet transforms of digitized images have this type of randomly scattered
nonzero structure. In contrast, least favorable distributions in the p 	 2 case,
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which contains the cases of L2-Sobolev and Holder classes where minimaxity¨
has previously been studied, do not have this character. Thus practical
evidence points to the relevance of the new theory.

�Of course, theory alone is of limited value. In a separate article Donoho
Ž .� Ž � �.and Johnstone 1995 hereafter DJ95 , we discuss the computer implemen-

tation of wavelet shrinkage on data. The development of practical algorithms
requires that one choose the thresholding of wavelet coefficients empirically.
Wavelet methods allow one to automatically choose the thresholding simply
and naturally, using decision-theoretic criteria based on Stein’s unbiased

� �estimate of risk. The algorithm SureShrink proposed in DJ95 runs fully
Ž .automatically in order n log n time, where n is the dataset size, and

achieves the optimal speed of estimation for the object under consideration.
The paper to follow gives, in Sections 2 and 3, a discussion of wavelet

orthonormal bases and how they connect minimax estimation over Besov and
Triebel spaces with a sequence-space estimation problem. The sequence-space
problem is solved in Sections 4�7 by minimax Bayes techniques. In Section 8
the sequence space results are applied to the function estimation problem.
Sections 9 and 10 provide interpretations of our estimator and of the least
favorable prior that result. Section 11 provides a discussion of possible
refinements, and of the relation of our results to important work of Pinsker,
Efroimovich and Nussbaum in exact asymptotic minimaxity; of Nemirovskii,
Polyak and Tsybakov in improving on linear methods by nonlinear ones and

Ž .of Kerkyacharian and Picard and Johnstone in density estimation over the
Besov scale.

Note. This paper was written September 1990�June 1992 with the excep-
�tion of Section 8 and its accompanying technical report Donoho and John-

Ž .�stone 1997 . Given the volume of subsequent work by many authors, we
have not attempted to fully update the manuscript. Much of this work is
discussed or referenced in the discussion paper by Donoho, Johnstone, Kerky-

Ž .acharian and Picard 1995 .

2. Wavelets and function spaces. The theory of wavelets has been
developed in recent years by a large number of authors. The books of Meyer
Ž .1990a, b synthesize a large body of superficially different work, in fields
ranging from Fourier analysis to operator theory to image compression, and
develop the idea of multiresolution analysis and its use in the study of
function spaces and integral operators. The research articles of Daubechies
Ž . Ž .1988 , Mallat 1989a, b, c and the monograph of Frazier, Jawerth and Weiss
Ž . Ž .1991 are also extremely helpful. The important book of Daubechies 1992
provides a detailed introduction including the fast cascade algorithms and
connections to the engineering literature on subband coding. We wish also to

Ž . Ž . Ž .mention here the books by Chui 1992 , Kaiser 1994 and Walter 1994 .
� �First, notation: a dyadic subinterval of 0, 1 is an interval of the form

� j Ž . j � jI � k�2 , k � 1 �2 where j 	 0 and k � 0, 1, . . . , 2 � 1. We include inj, k
� .our index set an extra interval I , nominally equal to 0, 2 , but in fact also�1, 0

� �corresponding to 0, 1 . We let II denote the collection of all such intervals;
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� 4thus II � I , I , I , I , I , . . . . It will be convenient at times to�1, 0 0, 0 1, 0 1, 1 2, 0
� j4break this down into ‘‘resolution levels’’ II � I , 0 � k � 2 consisting ofj j, k

the collection of 2 j intervals of length 2�j. When combining all resolution
levels up to j, we will sometimes write II j0 for � II . Henceforth j and kj� j j0

will always refer to these parameters of dyadic subintervals; such subinter-
vals will be denoted I, I�, I and so on.j, k

2� �The Haar basis is an orthonormal basis of L 0, 1 . Let 	 � 1 , and�0, 1�
Ž . Ž . j�2 Ž j .
 t � 1 � 1 . Define 
 t � 2 
 2 t � k , I 
 II. Note that 
 is�1�2, 1� �0, 1�2� I I

� j Ž . j � 2� �supported in the dyadic interval I � k�2 , k � 1 �2 . Let f 
 L 0, 1 and
put

� � 
 f ,HI I

where we make the convention that the exceptional interval I indexes�1, 0
the ‘‘father’’ wavelet 
 � 	. Then�1, 0

f � � 
Ý I I
I
II

Ž 2 .convergence in L . Moreover there is the extremely useful Parseval relation:
ˆ 2� �if f and f are two functions in L 0, 1 then

22ˆ ˆ2� �f � f � � � � .Ž .ÝL �0, 1� I I
I

This basis suffers, however, from the defect that its elements are not
smooth. Wavelet bases preserve the dyadic structure and use smooth func-

2� �tions in place of � and 
 . We describe a particular wavelet basis for L 0, 1
Ž .developed by Cohen, Daubechies, Jawerth and Vial 1993 and Cohen,

Ž . Ž .Daubechies and Vial 1993 , building on work of Meyer 1991 which is closely
2Ž . Ž .connected with the wavelet bases of L � created by Daubechies 1988 .

For parameters N � 0 and l � 0, the construction furnishes a finite set
Ž .2 l l j� of 2 functions, and for each level j 	 l, 2 functions 
 , I 
 II . Thel, k k�1 I j
collection of these functions forms a complete orthonormal system on the

� �interval 0, 1 . Let TT denote the collection of all dyadic intervals of length
� � �l 2� �I � 2 . With this notation, the L 0, 1 reconstruction formula is

f � 
 � � � 
 ,Ý Ýl , k l , k I I
k
K I
TT

1 Ž . Ž .where, naturally, the coefficients are given by 
 � H f t � t dt andl, k 0 l, k
1 Ž . Ž . � l4� � H f t 
 t dt. Here K � 1 � k � 2 .I 0 I

At an intuitive level, the � denote ‘‘gross structure terms’’ while the 
l, k I
denote smooth wiggly functions almost localized to the interval I.

These new functions derive from Daubechies wavelets at the interior of the
interval and are boundary-corrected wavelets at the ‘‘edges.’’ For 1 � k � 2 l

l�2 Ž l .� 2 N, � is the dilation and translation 2 � 2 t � k of a ‘‘father wavelet’’l, k
Ž . � �� t . This father has unit integral and compact support lying in 0, 2 N � 1 .

The remaining 2 N functions fall into two sets of boundary scaling functions
� j�2 l, iŽ j . j�2 r , iŽ jŽ ..4at each edge 2 	 2 t , 2 	 2 t � 1 .0 � i� N�1
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j j�2 Ž j .For 1 � k � 2 � 2 N, 
 is a simple dilation and translation 2 
 2 t � kI
Ž . � �of a ‘‘mother wavelet’’ 
 t also supported on 0, 2 N � 1 . This mother

wavelet has zero integral and, in fact, N vanishing moments. The mother
and father have a degree of regularity that increases with N, as does the
support width. The remaining 2 N functions fall into two sets of boundary

� j�2 l, iŽ j . j�2 r , iŽ jŽ ..4wavelets at each edge 2 
 2 t , 2 
 2 t � 1 . These0 � i� N�1
wavelets have the same regularity and the same number of vanishing mo-
ments as the standard wavelet 
 on the interior.

We say that such a wavelet analysis has regularity r if the functions used
in the analysis are of compact support and all have r continuous derivatives.
By selecting the parameter N large, and using the most regular wavelets
from Daubechies’ construction for that N, one gets analyses of high regular-
ity. The existence of such regular wavelet bases is a nontrivial matter; we
urge the reader to learn the complete story and consult the cited books and
articles.

Coefficients from a regular wavelet analysis can be used to measure quite
precisely the smoothness properties of a function. Consider first the local
smoothness properties. Suppose we have an r-regular wavelet analysis,

Ž .r � 1. Jaffard 1989 shows that if f is locally Holderian at x , with exponent¨ 0
Ž �Ž1 �2�� . j. Ž . � �� , then � � O 2 for every sequence I with I � 0, x 
 I. MeyerI 0

Ž . Ž �3 j�2 .1990a points out that if f is differentiable at x then � � o 2 for0 I
Ž . � �every sequence I with I � 0, x 
 I. Moreover, both results have near0

converses.
Wavelet coefficients can also measure global smoothness. Let �Žr . f denoteh

r r kŽ . Ž .the r th difference Ý �1 f t � kh . The r th modulus of smoothness ofž /k�0 k
p� �f in L 0, 1 is

� Žr . � pw f ; h � � f .Ž . L �0, 1�rh �r , p h

Ž .The Besov seminorm of index � , p, q is defined for r � � by
1�qq

w f ; h dhŽ .1 r , p
�� �f �B Hp , q �ž /ž /h h0

if q � � and by

w f ; hŽ .r , p
�� �f � supBp , � �h0�h�1

� � �if q � �. The Besov space B is the set of all functions f : 0, 1 � � withp, q
p � � � � Ž . �f 
 L and f � �. See DeVore and Popov 1988 . For information aboutBp, q

Ž . Ž .Besov spaces on the line, see Peetre 1975 , Bergh and Lofstrom 1976 ,¨ ¨
Ž . Ž .Triebel 1983 and Frazier and Jawerth 1985 .

Ž .This measure of smoothness includes, for various settings � , p, q , other
commonly used measures. For example let C� denote the Holder class of¨

� Ž . Ž . � � � �functions f with f s � f t � c s � t for some c � 0. Then f has for a
given m � 0, 1, . . . a distributional derivative f Žm. satisfying f Žm. 
 C�, 0 � �

� � m� �� 1, if and only if f � �. Similarly, f has a distributional derivativeB�, �
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Žm. 2 � � mf 
 L , iff f � �. Finally, f belongs to B, the bump algebra, iffB2, 2

� � 1 Ž .f � �. See Meyer 1990a , Chapter VI. In view of these equivalences, it isB1, 1

a significant fact that the Besov seminorm is essentially a functional of the
Ž .wavelet coefficients � . Definej, k

1�qq
1�p�

pja
�� � � �6 � � 2 � ,Ž . Ý Ýb Ip , q ž /ž /
 0j IIj

Ž .where a � � � 1�2 � 1�p. When p or q � �, l resp. l norms are replacedp q
by l ; for example,�

� � �
ja � �� � sup 2 sup � .b I� , �

j I
IIj

THEOREM 2. Let a wavelet analysis of regularity r � � be given and let
Ž .1 � p, q � �. Then with � � � f we have

� � � � � � � �f � f � �Ž .p B bp , q p , q

p� �for every f 
 L 0, 1 ; the relation � means that the ratios of the two sides
Ž .are bounded between constants c and C, which here depend on 
 , 	, p, q, r, �

but not f.

Ž .Compare Meyer 1991 . The essential point is that the wavelet basis forms
an unconditional basis of the corresponding space of interest. Similar results

Žfor Besov spaces on the line which are logically and chronologically an-
. Ž . Žtecedent can be found in Lemarie and Meyer 1986 , Meyer 1990a, Proposi-´

. Ž . �tion 4, page 197 and Frazier, Jawerth and Weiss 1991 . For closely related
Ž . Ž .results see Frazier and Jawerth 1985 , Frazier and Jawerth 1986 , Grochenig¨

Ž . Ž . Ž .1988 , DeVore and Popov 1988 and Feichtinger and Grochenig 1989 ; in¨
some sense these papers work with wavelet-like expansions without the strict

�orthogonality properties needed in this article.
� � �We shall use Theorem 2 to justify use of the sequence norm � tob p, q

define the norm balls FF which we use in our minimax theory. Thus we set
� � � �7 FF � FF C � f : � � C .Ž . Ž . � 4bp , q p , q

Ž 2 .Thus FF is just the image under an l , L isometry of the ball of coefficients2

� � �8 � C � � : � � C .Ž . Ž . � 4b p , q

In sum, wavelet analysis gives us a transformation from continuous function
space into a sequence space with two fundamental properties.

ˆ� �ISO1 If f and f are two functions,
22ˆ ˆ� �9 f � f � � � �Ž . Ž .Ý I I

II

so there is an exact isometry of the L2 errors. This, of course, follows
from the orthonormality of the wavelet basis.
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� �ISO2 Function classes consisting of functions with smoothness measured by
the scale of Besov norms can be described, indeed even defined, in

� Ž . Ž . Ž .terms of the sequence norm balls � C defined in 6 and 8 .p, q

3. Estimation in sequence space. We begin our discussion with a
Gaussian white noise model in sequence space. Suppose we observe sequence
data
10 y � � � z , I 
 II .Ž . I I I

Ž 2 . Ž .where z are iid N 0, � and � � � is unknown. We wish to estimate �I I I 
 II

ˆ 2 ˆ 2� � Ž .with small squared error loss � � � � Ý � � � . We use this Gaussian2 I I
white noise model since it presents fundamental issues in nonparametric
estimation in simplest form, unobscured by important, but complicating,

Žfactors such as discrete sampling and heteroscedasticity as in density esti-
.mation . We employ the sequence space form since it permits reduction of a

number of minimax questions to simpler univariate and exchangeable multi-
variate normal decision problems. For further discussion of the advantages of
unconditional bases and sequence space forms, see Donoho, Johnstone,

Ž . � �Kerkyacharian and Picard 1995 DJKP95 .
Although � is in detail unknown, we will assume that it is known that

� � �� � C. Thus we have a problem of estimating � when it is observed in ab p, q

Gaussian white noise and is known a priori to lie in a certain convex set
� Ž . � � � � 4� C � � : � � C . We will call such a set a Besov body. We oftenbp, q p , q

� � Ž .abbreviate � � � C .p, q p, q
The difficulty of estimation in this setting is measured by the minimax risk

� ˆ 2� �11 RR � ; � � inf sup E � � �Ž . Ž . 2p , q
��̂ �p , q

and by the minimax linear risk
� ˆ 2� �12 RR � , � � inf sup E � � � ,Ž . Ž . 2L p , q

��̂ �p , qlinear

where estimates are restricted to be linear.

REMARKS.

Ž .i The traditional ‘‘white noise model,’’ as championed by Ibragimov and
Ž .Khas’minskii 1981 , takes the form

� �13 dY t � f t dt � � dW t , t 
 0, 1 ,Ž . Ž . Ž . Ž .�

where � � 0 is the noise level, assumed small, f is an unknown smooth
Ž . Ž .function and W t is a standard Wiener process, so that W dt is white noise.

The minimax mean-squared-error in this white noise model is

ˆ 2
2� �14 RR � , FF � inf sup E f � f ,Ž . Ž . L �0, 1�

f̂ f
FF

Ž̂ .Ž .where the infimum is taken over measurable procedures f Y � and FF is a�

suitable function class.
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The wavelet transform creates an isometric correspondence between the
Ž . Ž .traditional Gaussian white noise model 13 � 14 and the sequence space

Ž . Ž .form 10 � 11 . Indeed, we simply set

y � 
 dY , � � 
 f , z � � 
 dW .H H HI I � I I I I

2 � � 2
2Note, for example, by the usual stochastic integral formula Var z � � 
 LI I

2 Ž . Ž .� � . The correspondence between minimax risks 14 and 11 follows from
Ž .the Parseval relation 9 and the fact that we have defined our Besov function

classes through the norms on wavelet coefficients.
Ž .ii A connection between minimax estimation in this Gaussian white

Ž .noise model and the regression model 1 will be developed in Section 8 below.
Let FF be a class of functions on the interval and let � denote the set in
sequence space consisting of all wavelet coefficients of functions in FF. The

� � � �properties ISO1 and ISO2 will have the following consequence: the mini-
max risk from sampled data is asymptotically equivalent to the minimax risk
in the sequence space

˜ 'RR n , FF � RR �� n , � , n � �,Ž . Ž .
˜ 'RR n , FF � RR �� n , � , n � �.Ž . Ž .L L

Moreover, given good estimators in the sequence model, we can construct
good estimators in the nonparametric regression model.

Due to this correspondence, a complete knowledge of minimax estimation
in the sequence space model will allow us to understand minimax estimation
in the function space model. We now turn to a thorough treatment of the
sequence model; we will return to the function space model, and its corre-
spondence with sequence space, in Section 8.

4. Minimax estimation over Besov bodies. In this section, we give a
Ž .description of the minimax risk 11 and the structure of asymptotically

minimax rules. The discussion is broken into a sequence of steps.

Ž .1. Replace the minimax risk problem 11 by an upper bound, the minimax
Ž . Ž .Bayes problem 16 with value BB, and state the main results Section 4.1 .

2. Recall some properties of a basic univariate minimax Bayes risk problem
Ž .with constraint on the pth moment of the prior Section 4.2 .

Ž . Ž .3. Apply the minimax theorem to 16 to cast 16 as a constrained maximiza-
Ž .tion problem, namely optimization of Bayes risks B � over priors �,

certain of whose moments are constrained to lie in the original set ��
p, q

Ž .Section 4.3 .
Ž4. Use the structure of Besov bodies to show that the optimizing ‘‘least

.favorable’’ priors �* necessarily have independent coordinates that are iid
within each resolution level. This implies that the Bayes minimax rules in

�̂ �Ž . Ž . Ž .16 are separable: � � � y , I 
 II Theorem 3 and Section 4.3 .I j I
Ž .5. Express BB � as a compound of univariate minimax Bayes problems with

Ž . � � Žbounded pth moment 33 in order to exploit results from DJ94 Section
.4.3 .
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6. Use a renormalization argument across resolution scales to derive the
Ž . Ž .small � risk asymptotics of BB � Theorem 4 and Section 4.4 .

7. Finally, use asymptotic concentration properties of the least favorable
Ž .priors for BB � to establish, under conditions on p, q, the asymptotic

Ž .equivalence of the original minimax risk problem 11 with the upper
Ž . Ž .bound Bayes minimax quantity 16 Theorem 5 and Section 4.5 .

4.1. Minimax Bayes estimation. Consider the following minimax Bayes
Ž .estimation problem. We observe data according to the sequence model 10 ,

Ž .only now � is a random variable, which may be arbitrary except for theI
single constraint that

� � �15 � � C ,Ž . b p , q

where � is a moment sequence defined by
1�p�qp � q� �� � E � , I 
 II .Ž .I I

Ž � � .if p � q � � we put � � ess sup � . In short, we replace the ‘‘hard’’ con-I I
� � � � � �straint that � � C by the ‘‘in mean’’ constraint � � C. We defineb bp, q p, q

the minimax Bayes risk

� ˆ 2� �16 BB � ; � � inf sup E � � � .Ž . Ž .p , q
�� �
�p , q

As ‘‘hard’’ constraints are more stringent than ‘‘in mean’’ constraints, BB 	 RR.
In this section, we develop three main results. First, we show that mini-

max estimators for BB are separable.

Ž .THEOREM 3. A minimax estimator for BB � has the form
�̂ �� � � y , I 
 II ,Ž .I j I

� Ž .where � y is a scalar nonlinear function of the scalar y. In fact there is aj
three-parameter family � of nonlinear functions of y from which theŽ� , � , p.
minimax estimator is built:

�� � � � , j � 0, 1, . . .j Ž t , � , p � q .j

Ž � .�for a sequence t which depends on � , p, q, C and � .j j�0

Second, we develop the exact asymptotics of BB.

Ž . Ž .THEOREM 4. Let p, q � 0 and � � 1�2 � 1� 2 � p � q ; then BB � � �
and

17 BB � ; �� C � � C�� C 2Ž1�r .� 2 r , � � 0,Ž . Ž . Ž .Ž .p , q

where
2�

r � ,
2� � 1
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Ž . Ž .and � � � � �; � � 1�2, p � q, q is a continuous, positive, periodic function
Ž .of log C�� .2

Third, we establish asymptotic equivalence of RR and BB.

THEOREM 5. For � � 0, a, p, q � 0,

18 RR � ; �� 	 � C�� C 2Ž1�r .� 2 r � � 2 , � � 0,Ž . Ž .˜Ž .p , q

Ž . Ž .where r is as above, and � � � � �; � � 1�2,�, q is a continuous, positive,˜
Ž .periodic function of log C�� . If q 	 p, then2

19 RR � ; �� C � BB � ; �� C 1 � o 1 , � � 0.Ž . Ž . Ž . Ž .Ž .Ž . Ž .p , q p , q

ˆCombining Theorems 3�5, we have in the case p � q that the estimator �*
is asymptotically minimax for RR as � � 0. In short, a separable nonlinear
rule is asymptotically minimax. In the case p � q, the Bayes minimax
estimator is within a constant factor of minimax.

Notice that the rate of convergence � 2 r depends only on � and not on
Ž .p, q . This permits conclusions concerning rates of convergence to be drawn
for spaces not strictly belonging to the Besov scale. For example, the total

Ž . �variation norm is sandwiched between two Besov norms: if TV C � f :
Ž . 4 1 Ž . Ž . 1 Ž .TV f � C , then � C � TV C � � C for some constants C , C .1, 1 0 1, � 1 0 1

Ž . Ž . Ž Ž .. 2Ž1�r . 2 rCombining 17 and 18 , we conclude that RR � , TV C � C � , where
r � 2�3.

The proof of these results is not primarily a technical matter; instead, it
relies on a variety of concepts which we introduce and develop in the
subsections below.

4.2. Minimax Bayes risk with bounded pth moment. Consider now a very
special problem. We observe

20 v � � � z ,Ž .
where � is a random variable, and z is independent of � with distribution
Ž 2 .N 0, � . We do not know the distribution � of � , but we do know that �

Ž � � p.1� psatisfies E � � � . We wish to estimate � with small squared-error�

loss. Define the minimax Bayes risk
221 � � , � � inf sup E E � v � � .Ž . Ž . Ž .Ž .p � �

� p 1� pŽ � � .E � ���

� �This quantity has been analyzed in DJ94 . There we find that � satisfiesp
the invariance

22 � � , � � � 2� ��� , 1 ,Ž . Ž . Ž .p p

the bound

23 � a� , � � a2� � , � , a � 1,Ž . Ž . Ž .p p
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and the asymptotic relation as � � 0,

� 2 , p 	 2,
24 � � , 1 �Ž . Ž .p 2�p�2p �p½ � 2 log � , p � 2.Ž .Ž .

The function � is continuous, is strictly monotone increasing in � , is concavep
p Ž . 2in � and has � � , � � � as ��� � �. In particular,p

25 � � , � � � 2 � � .Ž . Ž .p

Ž .There exists a rule � which is minimax for � � , � ; it is odd,Ž� , � , p. p
Ž . Ž .monotone and satisfies the invariance � y � �� y�� . Thus theŽ� , � , p. Ž� �� , 1, p.

three-parameter family mentioned in Theorem 3 in fact reduces to a two-
parameter family.

4.3. Separable rules are minimax. In this subsection, we prove Theorem
3. First we record two structural facts about Besov bodies, proved in the
Appendix.

� � � Ž . � � q
�BB1 For q � �, J � � � is a convex functional of the momentbp, q p, q

p � q Ž p � q. � Ž . � � �sequence � � � . For q � �, the functional J � � � bI p, � p, �

has nested level sets that are convex in � p � q.
p � q� � Ž .BB2 If � is an arbitrary positive sequence, and we set � �I I

Ž p � q.Ave � , thenI 
 II Ij

� �� � � �26 � � � .Ž . b bp , q p , q

ŽNote that these convexity results hold for p, q � 0 because they refer to
convexity in terms of the p � qth moments of the underlying random vari-

.ables.
Our proof of Theorem 3 amounts to working out the statistical implications

� � � Ž Ž .. q4of these facts. Let MM � �: J � � � C denote the set of prior mea-p, q p, q
Ž .sures � which are feasible for the Bayes minimax problem 16 . By property

� � �BB1 of Besov bodies, MM is a convex set of measures; it is weakly compactp, q
for weak convergence of probability measures; the l 2 loss yields lower-semi-
continuous risk functions. Hence the minimax theorem of statistical decision

� Ž .�theory e.g., Le Cam 1986 implies that the Bayes rule of a least favorable
prior is a minimax rule. Thus, we begin by searching for a least favorable
prior.

Ž . Ž .Let B � denote the Bayes risk of prior � for estimating � with squaredI
2 Ž .l loss from data 10 . A least favorable prior �* satisfies

27 B �* � sup B � : � 
 MM � .Ž . Ž . Ž .� 4p , q

� �Property BB2 allows us to show that a least favorable distribution makes
the coordinates independent. Suppose that � is an arbitrary prior distribu-

Ž .tion for the vector � and let � denote the prior distribution of the scalarI I
component � . We derive from this prior another prior distribution � whichI

Ž .makes the coordinates � independent random variables, the distribution ofI
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Ž .� being the average � � Ave � . This prior makes the � iid within oneI j II I Ij

resolution level, with j fixed.
The derived prior � is less favorable than �. Indeed, the Bayes risk of � is

the sum of coordinatewise risks

2
�B � � E E � y � � ,Ž . Ž .Ž .Ž .Ý � I I� II�
 II

l
II

but it is no easier to estimate the parameter � using just information aboutI
Ž .y than using information about all the y , soI I� I�
 II

2 2
� �28 E E � y � � � E E � y � � .Ž . Ž . Ž .Ž . Ž .Ž .� I I� I � I I II�
 II

Ž .Let b � denote the Bayes risk in the scalar problem of estimating � from
Ž 2 . Ž .data v � � � z with z � N 0, � and � � � . Then the right side of 28 is

Ž .just b � and we conclude thatI

29 B � � b � .Ž . Ž . Ž .Ý I
I
 II

Bayes risk is concave, so

Ave b � � b Ave � .Ž . Ž .Ž . Ž .I 
 II I I 
 II Ij j

We conclude that

j30 B � � 2 b � � B � ,Ž . Ž . Ž .Ž .Ý j
j

that is, � is less favorable than �.
Now the moment sequence of � is given by

p � q p � q� � � �E � � Ave E �ž /� I I 
 II � Ij j , k j I

p � q p � q� Ave � � � .Ž .I 
 II I Ij

Ž .Hence, 26 applies and
� �31 � 
 MM � � 
 MM .Ž . p , q p , q

Hence from any candidate � for a least favorable prior, we derive � which is
Ž . � �less favorable but still feasible for the problem 27 . In short, BB2 implies

that a least favorable measure may be found within the subclass of measures
having independent coordinates that are iid within each resolution level.

� � p � q p � q Ž .For any prior � on the scalar � obeying E � � � , we have by 21�

that

b � � � � , � ,Ž . Ž .p � q

Ž .and so by 29 ,

32 B � � � � , � .Ž . Ž . Ž .Ý p � q I
I
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Hence no prior in MM � can obtain a larger Bayes risk thanp, q

33 sup � � , � subject to � 
 �� .Ž . Ž .Ý p � q I p , q
I

Ž .�1The supremum is finite when � � 1�2 � a � 1�p � 2 � p � q ; it is at-
Ž .tained by a sequence which we call �* see Lemma 1 in Section 4.4 below .

Ž .Equality is attained in 32 if the prior on coordinate I is chosen to be least
Ž .favorable for � � , � . Choosing coordinate priors in this way from thep � q I

sequence �* yields a sequence prior �* which is least favorable.
The Bayes rule for �* is

�̂
�� � � y , I 
 II .Ž .I Ž� , � , p � q . II

Ž . Ž . �Because of 30 and 31 , all the � are equal within one resolution level. ThisI
has exactly the form required by Theorem 3, whose proof is complete.

Ž .4.4. Dyadic renormalization. We now derive the risk asymptotics 17 of
Ž . Ž � . Ž . Ž .Theorem 4. By formula 33 we have BB � , � � val P where Pp, q � , C � , C

denotes the optimization problem
� � q1�pj a j j p qP sup 2 � t , � subject to 2 2 t � C ,Ž . Ž . Ž .Ý Ý� , C j jž /

j�0 j�0

with obvious reformulation if p � � or q � �. Here � � � .p � q
At first glance, solution of this problem would appear to be beyond reach,

Ž .because we have no closed form expression for � � , � when p � 2. However,p
a certain ‘‘renormalizability’’ of the problem provides a tool to get qualitative
insights.

Ž .Define the following optimization problem Q on the space of bilateral� , C
�Ž .� 4sequences T � t :j j���

� � q
j 
 j q34 Q sup 2 � t , � subject to 2 t � C .Ž . Ž . Ž . Ž .Ý Ý� , C j j

j��� j���

Ž .Setting 
 � a � 1�p, this problem is very closely related to P . If the� , C
Ž .� Ž .unilateral sequence t is feasible for the unilateral problem P , thenj j�0 � , C

Ž .˜ ˜the extension to a bilateral sequence t defined by setting t � 0, j � 0 andj j
Ž .t̃ � t , j � 0, is feasible for the bilateral problem Q . We conclude thatj j � , C

val P � val Q � � � 0,C � 0.Ž . Ž .� , C � , C

Ž . Ž .On the other hand, if the bilateral sequence t is feasible for Q then thej � , C
Ž .˜unilateral sequence t formed by dropping the j � 0 portion from t isj j

Ž .feasible for P . Moreover, the part of the objective function which is lost in� , C
2 Ž . 2 � Ž .�dropping the negative indices is at most � , since � t , � � � cf. 25p j

j Ž . 2implies Ý 2 � t , � � � . Hencej� 0 j

val Q � val P � � 2 � � � 0, C � 0.Ž . Ž .� , C � , C

Of course a discrepancy of order � 2 between the value of the two problems is
Ž . Ž .asymptotically negligible. Hence val P � val Q , as � � 0.� , C � , C
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Ž . Ž .Asymptotics of val P , and 17 therefore follow immediately from the� , C
following theorem.

Ž .THEOREM 6. If 
 � � � 1�2 � 1� 2 � p � q , then

35 val Q � � 
�1 log C�� C 2Ž1�r .� 2 r , � � 0,Ž . Ž . Ž .Ž .� , C 2

Ž . Ž . Ž .where r � 1 � 1�2
 � 2�� 2� � 1 and � � is a continuous, positive,
periodic function of period one.

To prove this, set
�

2 jJ t � � 2 � t �� , 1 ,Ž . Ž .Ý� , � j
��

1�q�
j
q qJ t � 2 t .Ž . Ýq , 
 jž /

��

Ž .Then recalling the invariance 22 we have

V � , C 	 val Q � sup J t subject to J t � C.Ž . Ž . Ž . Ž .� , C � , � q , 


Theorem 6 follows from a certain homogeneity with respect to scaling and
Ž .translation of the functionals involved. Let UU t � � t . Then by a simple� , h j j�h

change of variables,

36 J UU t � � 2 2 hJ t .Ž . Ž . Ž .� , � � , h � , 1

Also
37 J UU t � �2 
hJ t .Ž . Ž . Ž .q , 
 � , h q , 


These scaling relations imply at once that if � is of the special form
�
 h Ž .� � 2 for h an integer, and if t is a solution to the noise-level 1h j

Ž . ˜problem Q then the renormalized sequence t � UU t is a solution to the1, C � , h
Ž .noise-level � problem Q , and that� , C

r2 h 2˜val Q � J t � � 2 J t � � val QŽ . Ž . Ž .Ž . Ž .� , C � , � h � , 1 h 1, Ch

� 2 h Ž 2 .r �note that � 2 � � . More generally, for any choice of � � 0 and inte-h h
ger h,

38 V � , C � � 2 2 hV 1, C�� 2�
 hŽ . Ž . Ž .Ž .
Ž . Ž . Ž .and note in particular that v C 	 V 1, C satisfies the periodicity v C �

�1 Ž 
 . 
 Žh�� . � .2 v C2 . Now write C�� � 2 for h integer and � 
 0, 1 . This turns
Ž .38 into

1�
2 �� 
�V � , C � � C�� 2 v 2Ž . Ž . Ž .
� � 2 rC 2Ž1�r .� 
�1 log C�� ,Ž .Ž .2

Ž . ��u4 Ž 
�u4. � 4where � u � 2 v 2 is periodic with period one and u denotes the
fractional part of u. Finiteness and continuity of � follow from Lemma 1,
proved in the Appendix.
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Ž .LEMMA 1. Let T denote the class of bilateral sequences t such thatC j
Ž . Ž . �Ž j Ž .. 4J t � C. If 
 2 � p � q � 1, then the class of sequences 2 � t : t 
 Tq, 
 j C

� j Ž .is a compact subset of l ; the maximum Ý 2 � t over t 
 T is finite, and1 �� j C
the maximum is attained by some t 
 T . The maximum value of J over TC � , 1 C
is continuous in C.

4.5. Asymptotic equivalence. Now we prove Theorem 5. By the minimax
Ž � .theorem, the minimax risk RR � ; � is the supremum of Bayes risks forp, q

priors supported in �� . Let � 
 �� and consider the prior with indepen-p, q p, q
dent coordinates having law in coordinate I given by the prior which attains

Ž .the minimax risk � � , � in the scalar bounded normal mean problem. This� I
� Ž .prior is supported in � , and it has Bayes risk Ý � � , � . This risk is ap, q I � I

lower bound on the minimax risk. The best bound of this form is given by
solving the optimization problem

sup � � , � : � 
 �� .Ž .Ý � I p , q½ 5
I

Ž .Except for the substitution of � for � , this is the same as 33 . Hence this� p � q
Ž .optimization problem is of the same type as P , and its renormalizable� , C

Ž .version satisfies the same invariances. The risk bound 18 follows, by the
same arguments as in the last subsection.

Ž .We now turn to 19 . By the minimax theorem, this amounts to the
assertion that there exist priors supported in �� which are almost leastp, q
favorable for the enlarged minimax Bayes problem. We will show in the
Appendix that for each � � 0 we may construct a sequence of priors � Žh.,
h � 1, 2, . . . such that along special dyadically generated sequences

� � 2�h Ža�1� p. , h � 1, 2, . . . ,h

we have, for large enough h,

39 B � Žh. 	 BB � ; C 1 � � .Ž . Ž . Ž . Ž .h
� Ž Ž ..Moreover, the prior is supported in � C 1 � � . We can conclude thatp, q

RR � ; C 1 � � 	 BB � ; C 1 � � , h � �.Ž . Ž . Ž .Ž .h h

Because of the asymptotics for BB established above, this will imply

RR � ; C 	 BB � ; C 1 � o 1 , h � �.Ž . Ž . Ž .Ž .h h

The argument for other dyadic sequences c2�h Ža�1� p., c � 1, is similar.
Theorem 5 follows.

5. Near-minimax threshold estimates. We have derived an asymptot-
ically minimax estimator for �� built out of coordinatewise nonlinearp, q
estimators from the family � . Unfortunately, these nonlinear estimatorsŽ� , � , p.
are not available to us in closed form. We now show that simple ‘‘threshold’’
nonlinear estimators provide near-minimax behavior. We consider two possi-
bilities: first, the ‘‘soft’’ nonlinear estimator,

� �� y � sgn y y � � ,Ž . Ž . Ž .��
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which is continuous and Lipschitz; second, the ‘‘hard’’ nonlinear estimator
Ž . �� y � y1 , which is discontinuous. We adopt the convention that �� � � y � 	 � 4

refers to a scalar nonlinear estimator whose type depends on the lexicography
Ž . �of the subscript: � , � , p , � and � referring to different nonlinear estimators.

Suppose we are in the minimax Bayes model of Section 4.1, so our data are
y � � � z with � random variables satisfying the moment constraintI I I I
� 
 �� . Consider the use of separable estimators built out of thresholds,p, q

Ž .that is, set � � � andI

ˆ�� � � y , I 
 II .Ž .I � II

Ž . Ž .We use � and � to denote both a scalar and a sequence � �the usage willI
be clear from the context. The minimax risk among soft threshold estimates
is defined

ˆ� 2� �BB � , � � inf sup E � � � .Ž . 2S
Ž .� �
�I

ˆ� Ž . Ž .For hard thresholds � � � y , the minimax risk BB � , � is definedI � I HI

similarly. In this section, we establish the following theorem.

Ž . Ž .THEOREM 7. There are constants � p , K p , both finite, with

BB � , �� � � p � q BB � , �� ,Ž .Ž . Ž .S p , q p , q

BB � , �� � K p � q BB � , �� .Ž .Ž . Ž .H p , q p , q

There exist thresholds which attain these performances; they have the form

� � � l t S , � , p , I 
 IIŽ .I j

and

� � �k t H , � , p , I 
 IIŽ .I j

for certain functions l and k and certain sequences t S and t H. As before, I
corresponds to the interval I .jk

In short, with optimal choice of threshold, we obtain nearly Bayes minimax
Ž .behavior. Here � 1 � 1.6, so the near minimaxity is numerically effective.

Ž . Ž . �Finally, if p � q, by 19 , these estimates are within a factor � p resp.
Ž .� Ž .K p of being asymptotically minimax for the frequentist criterion RR � .

This leads to a more precise statement of Corollary 1. Let

ˆ� 2� �RR � , � � inf sup E � � �Ž .S
Ž .� �I

be the frequentist minimax risk for soft threshold estimators over �.

Ž .COROLLARY 2. If p � q and thresholds � are chosen as in Theorem 7,I
then

RR � , �� � � p RR � ; �� 1 � o 1 as � � 0.Ž . Ž .Ž .Ž . Ž .S p , q p , q
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The obvious parallel statement holds for hard thresholding, with constant
Ž .K p .

5.1. Minimax theorem for thresholds. Return now to the sequence experi-
ment: the problem of estimating � when the measure � is known to lie in

� Ž . Ž .MM . Suppose that we use thresholds � � � . Let r �,� denote the riskp,q I
Ž Ž . .2E � v � � of the estimator � in the scalar problem y � � � z with� � �

Ž 2 .� � � and z � N 0, � . Then the risk of the threshold estimator is

L �, � � r � , � ,Ž . Ž .Ý I I
I

where the Ith component depends only on the univariate marginal �I
because the thresholds operate coordinatewise. The minimax threshold risk is
then

BB � ; �� � inf sup L �, � .Ž .Ž .S p , q
�� �
 MMp , q

To calculate this, we need the following minimax theorem, proved in the
Appendix.

THEOREM 8.
40 inf sup L �, � � sup inf L �, � .Ž . Ž . Ž .

� �� ��
 MM �
 MMp , q p , q

Ž . Ž .Let �
 � � inf r �,� . There exists a least favorable prior �* for threshold�

estimates, and
41 BB � ; �� � �
 �� .Ž . Ž .Ž . ÝS p , q I

I

Ž .5.2. Minimax Bayes, bounded pth moment encore . Return briefly to the
Ž .scalar situation 20 . To measure the performance of thresholds in this

situation, we define
242 � � , � � inf sup E � y � �Ž . Ž . Ž .Ž .S , p �

� � p�
 0, � 1� pŽ � � .E � ��

and
2

� � , � � inf sup E � y � � ;Ž . Ž .Ž .H , p �
� � p�
 0, � 1� pŽ � � .E � ��

Ž .under our typograpical convention, these are worst case risks for soft � and
Ž .hard � thresholds, respectively.

To compare these performances with the Bayes minimax estimates we
define

� � , � � � , �Ž . Ž .S , p H , p
43 � p � sup , K p � sup .Ž . Ž . Ž .

� � , � � � , �Ž . Ž .� , � � , �p p

� � Ž � Ž . Ž .DJ94 shows that for p 
 0,� , � p � � and K p � �. In short, the
Ž .minimax � is within a factor � p of minimax, and the minimax � is� �

Ž .within a factor K p of minimax.



MINIMAX ESTIMATION VIA WAVELET SHRINKAGE 899

Ž . Ž .In fact, � p and K p are both smaller than 2.22 for all p 	 2, and
Ž . Ž .computational experiments indicate � 1 � 1.6. Quantitatively, � p tends to

Ž .be somewhat smaller than K p , which says that ‘‘soft’’ thresholding offers a
� Ž .quantitative superiority. Compare the conclusions of Bickel 1983 in a

�different Bayes minimax problem.
Introduce the notation

2r �, � ; � � sup E � y � � .Ž . Ž .Ž .S , p �
p p� �E � ��

This denotes the worst case risk of using threshold � when the parameter
p 2 � �has pth mean less than � and the noise variance is � . DJ94 shows the

Ž . pfunction r �, � , � to be concave in � for each fixed � and � . Also, letS, p

l � , � , p � arg min r �, � ; �Ž . Ž .S , p
�

stand for the minimax threshold in this problem.
Ž .The quantities r and k � , � ; p are defined similarly.H , p

5.3. Near minimaxity among all estimates. Combining the last two sec-
tions we can now derive the near minimaxity of thresholds among all

Ž � .estimates. Let �* � � be the moment sequence associated with �*. AsI
� � Ž � .�* 
 MM , �* 
 � . By definition of � , and since the components �p, q p, q S, p I

Ž � . Ž � .are coordinatewise least favorable, �
 � � � � , � . HenceI S, p � q I

BB � , �� � �
 �� by 41Ž . Ž .Ž . ÝS p , q I
I

� � �� , �Ž .Ý S , p � q I
I

� � p � q � �� , � by 43Ž . Ž . Ž .Ý p � q I
I

� � p � q BB � ; �� by 33 .Ž . Ž .Ž .p , q

An additional argument shows that �� � t S does not depend on k.I j
This proves the part of Theorem 7 dealing with soft thresholds. The part

for hard thresholds is similar.

6. Minimax linear risk. We now show that thresholds and other non-
linear procedures cannot generally be replaced by linear procedures. More
precisely, in cases where p � 2, linear methods cannot achieve the minimax
rate of convergence described above. In such cases, nonlinear methods must
be used.

We need the notion of quadratic hull introduced in Donoho, Liu and
Ž . � � 2MacGibbon 1990 , hereafter DLM90 . Let � be a set of sequences. Let ��

2 Ž 2 .be the set of sequences � � � arising from � 
 �. ThenI I 
 II

Q Hull � � � : � 2 
 Hull �2 .Ž . � 4Ž .�
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For the case at hand, one can show that

44 Q Hull �� � ��� ,Ž . Ž .p , q p� , q �

where

45 p� � max p , 2 , q� � max q , 2 and � � � � � 1�p� � 1�p.Ž . Ž . Ž .
� �We omit the proof for reasons of space. DLM90 showed that

46 RR � ; � � RR � ; Q Hull �Ž . Ž . Ž .Ž .L L

and
547 RR � ; Q Hull � � RR � ; Q Hull � � RR � ; Q Hull �Ž . Ž . Ž . Ž .Ž . Ž . Ž .L 4

for a general class of sets �; their class may be seen to include the Besov and
Triebel bodies.

Ž . Ž .Equations 44 � 46 show that linear methods can only attain suboptimal
rates of convergence when p � 2. For example, suppose that p � q � 2. Then
we have

RR � , �� � RR � , Q Hull ��Ž . Ž .Ž .L p , q L p , q

� RR � , ���Ž .L 2, 2

� RR � , ���Ž .2, 2

r �2� Const � , � � 0.Ž .
Ž . Ž . Ž . Ž .Here r � � r � � , p, q � r � �, 2, 2 . As r � �, 2, 2 � r � , p, q for p � 2, linear

estimators cannot attain the optimal rate of convergence. Thus, for example,
over �1 , we have the optimal rate r � 2�3, but the minimax linear rate1, 1
r � � 1�2.

7. Minimaxity over Triebel bodies. Wavelet analysis is also connected
�with a second scale of functional spaces, the Triebel�Lizorkin spaces Triebel

Ž .�1983 . These spaces may be defined in terms of wavelet coefficients as
� Ž .�follows Frazier and Jawerth 1990 : let � denote the indicator function ofj, k

� j Ž . j � � � �k�2 , k � 1 �2 . Let � denote the normf p , q

1�q
qja

�� � � �� � 2 � � ,Ž .Ýf I Ip , q ž /
p� �L 0, 1II

� �where now a � � � 1�2. Note that at any point t 
 0, 1 , the sum contains
Ž .terms from all intervals I j 	 0 containing t. Define a norm on functions fjk

Ž .with wavelet coefficients � � � f via

� � � � � �f � � .F fp , q p , q

The norm for f � coincides with that of b� along the diagonal p � q, but offp, q p, q
the diagonal there are new possibilities. The case F m corresponds to thep, 2

� Žm. � p � � pSobolev smoothness measures f � f , which, except for p �L �0, 1� L �0, 1�
2, lie outside the Besov scale. These smoothness measures have previously

Ž .played an important role in nonparametric estimation: Nemirovskii 1985
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Ž .and Nemirovskii, Polak and Tsybakov 1985 used them to uncover the
phenomenon of nonlinear estimators achieving faster minimax rates of con-
vergence than any linear estimator.

THEOREM 9. Let a wavelet analysis of regularity r � m be given and let
1 � p � �. Then we have the equivalence

� � � Žm. � � � mf � f � � ,Ž .p p f p , 2

p� �valid for every f 
 L 0, 1 .

For such results with wavelet expansions on the line, see Lemarie and´
Ž . Ž . Ž .Meyer 1986 , Frazier and Jawerth 1986, 1990 , Meyer 1990a , Frazier,

Ž . � �Jawerth and Weiss 1991 . Thus, we have analogs of the properties ISO1
� �and ISO2 of Section 2. Let FF denote the ball of functions satisfying

� � � �48 FF � FF C � f : � � CŽ . Ž . � 4fp , q p , q

and let � denote the collection of corresponding wavelet expansions.
As the Sobolev spaces are among the most important of the traditional

function classes, we think it worthwhile to indicate briefly the extension of
our results to these spaces. Thus in the sequence model we assume that one

Ž . � � Ž .observes data 10 where the vector � lies in the convex set � � � Cp, q p, q
defined by

� � �� � C.f p , q

We call the set �� a Triebel body and measure difficulty of estimation inp, q
Ž � . Ž � .this problem by the minimax risks RR � , � and RR � , � .p, q L p, q

To study the minimax risk over Triebel bodies �� , we again use thep, q
Ž � .Minimax Bayes model. So, we let BB � , � stand for the minimax Bayesp, q

risk over the family MM � of priors satisfying � 
 �� , where again � is thep, q p, q
p � q � � p � qmoment sequence defined by � � E � .j, k j, k

The results are so similar in statement and in proof to the Besov case that
we mention only the differences in what follows. Details are in the Appendix.

Ž � .Separability. Theorem 3 holds for minimax estimators for BB � , � .p, q
Risk asymptotics. Theorem 4 holds, again under the assumption that

Ž . Ž .� � 1�2 � 1� 2 � p � q , and with r � 2�� 2� � 1 .
Ž . Ž .Asymptotic near equivalence. Formula 18 of Theorem 5 holds for

Ž � . Ž .RR � ; � , assuming again � � 0 and setting again r � 2�� 2� � 1 . How-p, q
Ž . Ž .ever, except when q � p so that � � � , we do not have a proof of 19 .

Minimax threshold risk. Theorem 7 holds for the Triebel bodies �� inp, q
place of �� . The proof is the same except that in one place it uses thep, q

� � Ž . � �convexity property TB1 see Appendix for definition rather than BB1 .
Minimax linear risk. One can show that

49 Q Hull �� � ��� ,Ž . Ž .p , q p� , q �
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Ž .where � �, p�, q� are given in 45 . The immediate implication is
r �� 2RR � , � � � , r � � 2� � � � 2� � 1 � � ,Ž . Ž . Ž .Ž .L p , q

where, as in Theorem 1, � � 2�p � 2�p�. This is again smaller than the
minimax rate in case p � 2.

8. Asymptotic equivalence with sampling model. Our initial discus-
Ž .sion in Section 1 related to sampling model 1 . Our main results were

established in the sequence model of Section 3. In this section we describe
how to transfer results from the sequence model to the sampling model.

It is already well established that one may prove results in the sampled-
Ž . Ž . Ž . Ž .data model 1 � 2 by first proving them in the white noise model 13 � 14

and then arguing that this implies parallel results for sampled data. Exam-
Ž .ples where this has been done in detail include Donoho and Nussbaum 1990

Ž . �and Donoho 1994 . There is a general equivalence result Brown and Low
Ž .� Ž .1996 which shows that for bounded loss function l � and for collections FF

which are bounded subsets of Holder classes C1�2��, � � 0, we have under¨
'the calibration � � �� n ,

ˆ 2 ˆ 2
2 2� � � �50 inf sup E l f � f � inf sup E l f � f ,Ž . Ž . Ž .L �0, 1� L �0, 1�Y ỹ�ˆ ˆf ff
FF f
FF

the expectation on the left-hand side being with respect to white noise
observations Y and on the right-hand side being with respect to y �˜�

Ž .y , . . . , y . Hence there is considerable tradition to support our approach.0 n
Ž . Ž .Our goal now is to establish, for the sequence model 10 � 11 , as explicitly as

possible, for as wide a scale of FF as possible, for the unbounded loss function
ˆ 2

2� �f � f , that our minimax results for the white noise model implyL �0, 1�
corresponding results for the sampled-data model.

The approach has two parts. First, we establish lower bounds showing that
the sampled-data problem is not easier than the white noise problem. Second,
we establish upper bounds showing that the sampled-data problem is not
harder than the white noise problem. We describe here only an outline of the

Ž . Žarguments�details are given in Donoho and Johnstone 1997 hereafter
� �.DJ97 .

8.1. Sampling is not easier.

THEOREM 10. Let � � 1�p and 1 � p, q � � or else � � p � q � 1. Let
� Ž . Ž .FF � FF C be a norm ball in either a Besov or Triebel space; compare 7 orp, q 'Ž .48 . Then, with � � �� n , we haven

˜51 RR n , FF 	 RR � , FF 1 � o 1 , n � �.Ž . Ž . Ž . Ž .Ž .n

In words, there is no measurable estimator giving a worst case performance
Ž .in the sampled-data problem 1 which is substantially better than what we

can get for the worst case performance of measurable procedures in the white
Ž .noise problem 10 .
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For a given �, the essence of the minimax risk behavior in the sequence
Ž . Ž .model 10 � 11 can be captured by a finite-dimensional initial segment using

Ž . j0Žn.�1the first m � m n � 2 coordinates

y � � � � z , I 
 II j0
I I I

and corresponding l 2 norm for estimation errorm

22ˆ ˆ2� �� � � � � � � .Ž .Ýl I Im

j�j0

Ž . Ž .The cutoff scale j n , depending on � , p, q , is such that the contribution of0
Ž . � �finer scales is asymptotically negligible. One may choose j n � � log n for0 2

� slightly larger than

1

, p 	 2,

2� � 1�52 � �Ž . 1 �
, p � 2.�2� � 1 � � 1�2 � 1�p

Let �Ž� n. be an asymptotically least favorable prior for the sequence model
� � � n � mat noise level � . DJ97 shows that the prior � on R obtained byn

considering only these first 2 j0 components of �Ž� n. has an equivalent Bayes
risk

B �� n � , � � RR � , � , n � �.Ž .Ž .n n

Ž .The sampling model 1 can be represented as a multivariate normal mean
n�1 Ž .t Ž .nestimation problem in R . Setting y � y , . . . , y and similarly z � z˜ ˜0 n i 0

˜ nŽ Ž ..and f � f t , we havei 0

˜53 y � f � � z .Ž . ˜ ˜
Ž .We make the further restriction that f t be constructed from the initial

segment of wavelet coefficients

f t � � 
 t .Ž . Ž .Ý I I
j�j0

� n � m n�1 Ž . Ž Ž ..nThen the sampling operator T : R � R maps � into f t , soI i i�0
˜ � n � mthat f � T � . We think of R as an initial segment of sequence space with
� � 2

2
m 2 n�1 � �norm � � Ý � , but since R corresponds to a discretization of 0, 1 , itl 1 im

� � 2 Ž . n 2is naturally normed by � � 1�n Ý � .n 0 i
� n � � n � ˜ n�1Ž .The sampling operator T induces a prior � df on R from the˜

� n �Ž . m � n �sequence space prior � d� on R . The Bayes risk of � in the sampling˜
2 ˜ � n �Ž . � � Ž .model 53 with loss function � will be denoted B � , � . By the mini-˜n

˜max theorem, it is a lower bound for the minimax risk for estimation of f
� n � � n � Ž .over T �. If T were a partial isometry from sequence space to sampling

˜ � n � � n � � n �Ž . Ž .space, then we would have B � , � � B � , � , and so � would make˜ ˜n
the sampling problem at least as hard as the sequence problem. In fact, T � n �

is close to a partial isometry. Indeed, if I � n �: Rn�1 � Rm denotes the coarse
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scale components of the inverse of a suitable orthogonal discrete wavelet
� n � � �transform, then I is a partial isometry, and it is shown in DJ97 that

2 � � n � � n � � 2 �r� � sup T � I � � o n ,Ž . Ž . Ž .nn
�
�

� � n � � n � �� � T *T � 1 � o 1 .Ž .2n

� � � n �DJ97 also shows that T connects the sampling and sequence Bayes risks
via the inequality

� n � � n �'˜ 'B � , � 	 B � , � � � � 1 � � ,Ž .Ž .˜ Ž .n n n

˜ � n � � n �Ž . Ž .Ž Ž .. Ž .so that B � , � 	 B � , � 1 � o 1 � RR � , � . After a final step to˜ n n
2� � Ž .relate the L 0, 1 norm used for the minimax risk in 1 to the discrete norm

2 ˜ � n �� � Ž . Ž .� used in the Bayes risk B � , � , one obtains the lower bound 51 .˜n

8.2. Sampling is not harder. For the upper bound, we specialize to esti-
mators derived by applying coordinatewise mappings of various classes to the
noisy wavelet coefficients. We will use the notation EE to denote such a class
and will consider simultaneously four examples that we have discussed in
earlier sections: general scalar nonlinear functions, soft and hard threshold-
ing and linear functions. The corresponding classes are denoted

˜EE , EE , EE , EE . We use RR and RR to denote minimax risks when estimatorsN S H L EE EE

are restricted to come from class EE. With this notation we have the following
theorem.

THEOREM 11. Let � � 1�p and 1 � p, q � � or � � p � q � 1. For each
� Ž .of the four classes EE of coordinatewise estimators and FF � FF C a normp, q

ball in either a Besov or Triebel space,

˜54 RR n , FF � RR � , FF 1 � o 1 , n � �.Ž . Ž . Ž . Ž .Ž .EE EE n

Our approach is to make an explicit construction transforming a sampled-
data problem into a quasi-white-noise problem in which estimates from the
white noise model can be employed. We then show that these estimates on
the quasi-white-noise model data behave nearly as well as on the truly
white-noise model data.

Ž . Ž .Dubuc 1986 and Deslauriers and Dubuc 1987, 1989 have proposed a
Ž .method of interpolating sampled data f i�n , i � 0, . . . , n to produce a smooth

˜ Ž . � �function P f t , t 
 0, 1 . The method is based on the use of local polynomialn
interpolation applied in a recursive multiscale fashion. They define a funda-

Ž .mental function 	 with H	 � 1 satisfying the interpolation conditions 	 i �˜ ˜ ˜
� . The degree of local polynomial interpolation can be adjusted so that 	̃i0

˜has R � � continuous derivatives. The scaled fundamental functions 	 �˜i
Ž .	 nt � i , i � 0, . . . , n satisfy interpolation conditions˜

	 j�n � 1 , 0 � i , j � n.Ž .˜i �i�j4
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� Ž .4n � 4The smooth Deslauriers�Dubuc interpolant to f i�n and to data ỹi�0 i
Ž .from model 1 are given, respectively, by

n n
Žn.P̃ f t � f i�n 	 t and y t � y 	 t .Ž . Ž . Ž . Ž . Ž .˜ ˜ ˜ ˜Ý Ýn i i i

i�0 i�0

Žn.Ž .The wavelet coefficients of y t are not quite homoscedastic:˜
² Žn. : 2 2 � � Ž .Var y , 
 � � � , but it can be shown DJ97 that if j � j n is as˜ I In n 0 0

Ž .defined earlier before 52 ,

55 �Žn. � sup� � 1, n � �.Ž . In
j	j0

Ž .We may create homoscedastic data by introducing additional iid N 0, 1
� j04 � 4Gaussian noise z , I 
 II that is independent of y :˜ ˜I i

2Žn. Žn. Žn. 2 j0² : 'y � y , 
 � � � � � z , I 
 II ,Ž .˜ ˜I I n In I

˜ Žn. Žn.� � � � z ,I I

where � Žn. � �Žn.� and z Žn. are zero mean and jointly normally distributedn I
Ž .with common unit variance but are in general correlated . The coefficients

˜ ˜² :� � P f , 
 are the wavelet coefficients of the Deslauriers�Dubuc inter-I n I
n ˜Žn.� Ž .4polant to f i�n . We use � to denote the infinite sequence formed byi�0

˜the coefficients � up to and including level j and zeros for finer scales. LetI 0
Ž̃ .f t denote the corresponding function; since its wavelet coefficients vanish

� Ž .4for j � j � j , it may be thought of as an approximate interpolant to f i�n .0 1
The key step in studying estimators based on the augmented data yŽn. is

˜Žn.to see how the interpolant wavelet coefficient sequence � approximates the
Ž ² :.true wavelet coefficients � � � � 
 , f . Two properties may be estab-I I

Ž � �. Ž .lished see DJ97 : first, l approximation which includes tail negligibility2

˜Žn. 2 �r
2� �56 sup � � � � o n ,Ž . Ž .l

�
�

and, crucially, nonexpansivity of Deslauriers�Dubuc interpolation for Besov
and Triebel sequence norms. If � � 1�p, 1 � p, q � � or � � p � q � 1 and
f � b� or f � , thenp, q p, q

˜Žn.� � � �57 � � � 1 � � � , p , q , � ,Ž . Ž .Ž .f f n

where � does not depend on � and � � 0. This implies thatn n

Žn. ˜Žn.� �C � sup � � C , n � �.f
Ž .�
� C

Our strategy is to apply optimal estimators of class EE for the white noise
Ž . Žn.model 10 to the variance-equalized sample data y . Thus, we apply, to all

Ž Ž Žn .. .I with j � j , the minimax-EE family � �; EE , � , � � � �0 I n I n
Ž Žn..� � , p, q, C , defining

� yŽn. , j � j ,Ž .I I 0� n ��̂ �I ½ 0, j � j ,0
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which in the original domain leads to the reconstruction

ˆ �̂ n �f t � � 
 .Ž . Ý I I
j�j0

Finally, minimax risks for slightly inflated noise levels and norm bounds
� �are controlled by the following bound DJ97 : if � 	 � and C 	 C , then1 0 1 0

2 258 RR � , C � � �� C �C RR � , C .Ž . Ž . Ž . Ž . Ž .EE 1 1 1 0 1 0 EE 0 0

ˆThe risk properties of f can be deduced from a chain of inequalities and
equivalences, which we explain below,

ˆ 2 ˆ ˜ 2
2 2� � � �59 sup E f � f � sup E f � fŽ . L �0, 1� L �0, 1�

f
FF f
FF

�̂ n � ˜Žn. 2
2� �60 � sup E � � �Ž . l

�
�

61 � RR � Žn. , C Žn.Ž . Ž .EE

2 2Žn. Žn.62 � � �� C �C RR � , CŽ . Ž .Ž .Ž .n EE n

63 � RR � , CŽ . Ž .EE n

64 � RR � , FF C .Ž . Ž .Ž .EE n

Ž .Equivalence 59 follows from the l approximation properties of the2
˜ Ž .approximate Deslauriers�Dubuc interpolant f expressed in 66 . Equality

Ž . Ž . Ž .60 is just the isometry property of the wavelet transform while 60 � 61
˜Žn. Žn.Ž . Ž .makes use of the fact that � : � 
 � � , p, q; C � � � , p, q; C and that

all the estimators in question are constructed coordinatewise and are EE-
Ž Žn.. Ž . Ž . Ž . Ž . Ž .minimax for � � , p, q; C . Then 61 � 62 uses 58 and 62 � 63 uses

Ž . Ž . Ž . Ž .the crucial results 55 and 57 . Finally, 63 � 64 is just the risk equiva-
lence of white noise with sequence space.

8.3. Implications. Several conclusions follow immediately from these
bounds.

The first is asymptotic minimaxity of scalar nonlinearities. By combining
Theorems 3 and 5, we have for Besov balls FF with p � q,

65 RR � , FF � RR � , FF as � � 0,Ž . Ž . Ž .N

that is, appropriate scalar nonlinearities of the wavelet coefficients are
asymptotically minimax among all measurable procedures. Combining Theo-
rems 10 and 11 yields the corollary.

COROLLARY 3. Let � � 1�p and 1 � p � q � � or let � � p � q � 1. For
Ž .FF a ball 6 in the Besov scale,

˜ ˜66 RR n , FF � RR n , FF , n � �.Ž . Ž . Ž .N
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The second is near-asymptotic minimaxity of hard�soft thresholding. By
combining Theorem 11, Corollary 2 and then Theorem 10, we obtain the next
corollary.

COROLLARY 4. Let � � 1�p and 1 � p � q � � or let � � p � q � 1. Then

˜ S ˜67 RR n , FF � � p , q RR n , FF 1 � o 1 , n � �;Ž . Ž . Ž . Ž . Ž .Ž .S

˜ H ˜68 RR n , FF � � p , q RR n , FF 1 � o 1 , n � �.Ž . Ž . Ž . Ž . Ž .Ž .H

The third is near-asymptotic minimaxity of linear estimates. Combining
Ž . Ž . Ž .Theorem 11, 44 , 46 , 47 and then Theorem 10, we obtain

COROLLARY 5. Let � � 1�p and 2 � p, q � �. Then

˜ ˜RR n , FF � 1.25 � RR n , FF 1 � o 1 , n � �.Ž . Ž . Ž .Ž .L

This completes the demonstration of Theorem 1 and Corollary 1 in the
introduction.

9. The estimator is spatially adaptive. In the remaining sections, we
make a variety of remarks on issues raised by the wavelet shrinkage ap-
proach to the minimax estimation problem over Besov and Triebel function
classes. In this section, we look at spatial adaptivity aspects of wavelet
shrinkage; for this it is convenient to revert to the continuous white noise

Ž .model 13 .
Suppose that we apply thresholding or some other nonlinearity � toj

wavelet coefficients at scales finer than a particular coarse level l. We may
then represent the estimator

ˆ ˆf � 
 	 � � 
 ,ˆÝ Ýk l , k I I
k j	l

ˆ Ž .where 
 � H	 dY and � � � y where y � H
 dY .ˆl, k � I j I I I �

The reconstruction method developed so far represents two different as-
pects of the smoothing problem. Symbolically, we have

ˆ ˆ ˆf � f � fGROSS DETAIL

where

ˆ ˆ ˆf � 
 	 , f � � 
 .ˆÝ ÝGROSS k l , k DETAIL I I
k j	l

ˆHere f is a traditional estimate of the orthogonal series type. ItGROSS
involves a reconstruction using the empirical series coefficients corresponding
to the low-resolution or gross-structure terms in a certain series expansion.

ˆAlso f is linear in the data.GROSS
ˆ ˆThe term f is a detail correction for f . It is formed by aDETAIL GROSS

nonlinear processing of the high-resolution wavelet coefficients. We now give
an interpretation of the methods as spatially adaptive.
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9.1. A locally adaptive kernel estimate. Note that the ‘‘gross structure’’
term in the wavelet reconstruction is obtained by a kernel estimate

ˆ ˆf s � 
 	 s � 	 s 	 t Y dtŽ . Ž . Ž . Ž . Ž .Ý Ý HGROSS k l , k l , k l , k �
k
K

� 	 s 	 t Y dtŽ . Ž . Ž .ÝH l , k l , k �

� K s, t Y dt ,Ž . Ž .H G �

Ž . Ž . Ž .where K s, t � Ý 	 s 	 t and Y � Y is the observation processG k 
 K l, k l, k �

Ž .13 .
Ž . Ž .Turning to ‘‘detail structure,’’ define w y so that the identity � y �j j

Ž . Ž . Ž . Ž .yw y holds. Then � � w y H
 t Y dt andˆj I j I I �

f̂ s � � 
 sŽ . Ž .ˆÝDETAIL I I
II

� w y 
 s yŽ . Ž .Ý Ý j I I I
j IIj

� w y 
 s 
 t Y dtŽ . Ž . Ž . Ž .Ý ÝH j I I I �
j IIj

� K s, t Y dt say.Ž . Ž .H D �

We have symbolically

f̂ � K � K s, t Y dt ,Ž . Ž . Ž .H G D �

where the ‘‘pieces’’ are orthogonal

K s, t K s, t ds dt � 0.Ž . Ž .HH G D

Ž .However, K depends on y, through the w y weights. Consequently, K isD j I D
an adaptively designed kernel; it is constructed by adaptively summing

Ž . Ž .kernels 
 s 
 t of different bandwidths, using weights based on the appar-I I
ent need for inclusion of structure at level j and spatial position k.

Ž . � 4In detail, put Q I � supp 
 . For a constant S depending on the specificI
Ž . � �jŽ . �jŽ .� �jwavelet basis, Q I � 2 k � S , 2 k � S , so it has width of order 2 .

Ž . Ž . Ž .Also, set W s, t � 
 s 
 t . ThenI I I

K s, t � w y W s, t ,Ž . Ž . Ž .ÝD j I I
Ž .I : s
Q I

Ž . Ž .a sum of kernels W with weights. The kernel W is supported in Q I 
 Q I ;I I
consequently its bandwidth is � 2�j.
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Suppose now that � is chosen from the family of soft thresholds. Thej
Ž . � � � �weights w y are then 0 if y � � ; as y � �, they tend to 1. Hence, aj I I j I

small empirical coefficient y leads to omission of the term W from the detailI I
kernel; a large empirical coefficient leads to inclusion, with full weight 1.

� � Ž . Ž . Ž . Ž .Consequently, if y � � , then for s, t 
 Q I 
 Q I the kernel K s, tI j D
contains terms of bandwidth less than or equal to 2�j. In short, our proposal

Žrepresents a method of adaptive local selection of bandwidth and, indeed,
.kernel shape .

Parallel comments apply when the nonlinear estimators � are chosenj
from the other families.

9.2. Overfitted least squares with backwards deletion. The coefficients yI
represent the orthogonal projection of Y on the basis functions 
 . Thus theyI
represent the ‘‘least-squares estimated regression coefficients’’ in the ‘‘linear
model’’

f � 
 	 � � 
 .Ý Ýk l , k I I
k
K j	l

ˆHowever, to build an estimate f using all the 
 terms with least-squaresI
coefficients involves serious ‘‘overfitting’’ with the result that the reconstruc-
tion is extremely noisy. In fact the ‘‘formula’’


̂ 	 � y 
Ý Ýk l , k I I
k
K j	l

defines an object so erratic that it can only be interpreted as a distribution,
namely dY, not a function.

�The spatially adaptive CART method Breiman, Friedman, Olshen and
Ž .�Stone 1983 fits large complete models based on recursive partitioning and

then removes from consideration those terms with ‘‘statistically insignificant’’
Ž .coefficients. Our method has a parallel interpretation if hard thresholds ��

are employed for the nonlinear estimator. The standard error of y is � andI
Ž � .� � m t �� , 1, p � � m � , say, soj j j

� �y , y 	 m � ,I I j
� �ˆI ½ � �0, y � m � .I j

Hence the reconstruction

f̂ � � 
ˆÝDETAIL I I
j	l

includes only those terms y with ‘‘Z-scores’’ y �� exceeding m in absoluteI I j
value. Thus m is a ‘‘significance threshold.’’ However, observe that ourj
significance thresholds are determined by a minimax criterion, and not, for

Ž .example, by some conventional statistical criterion e.g., P � 0.05 . In fact,
Ž� � .m � � as j � � DJ94 , Proposition 13 , which means that extreme statisti-j

cal significance must be attached to a coefficient at high resolution index j
before that term is included in the reconstruction.
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9.3. Interpretation. There has been considerable interest in variable
� Ž .�bandwidth kernel estimation e.g., Muller and Stadtmuller 1987 , and in¨

overfitting of dyadically partitioned estimators combined with backwards
� Ž .�deletion Breiman, Friedman, Olshen and Stone 1983 . Our results show

that such efforts might perhaps ultimately be found to have a minimax
� Ž . �justification see also Donoho and Johnstone 1994a . We have shown that

the minimax principle, applied to different scales of spaces than the usual
ones, leads directly to estimates which have similar structure. Indeed, since
this paper was first written, such results have been obtained for variable

Ž .bandwidth kernels by Lepski, Mammen and Spokoiny 1997 .

10. The least favorable prior is sparse if p � 2. The results of Sec-
tions 4�7 allow us to describe least favorable distributions for estimation over
Besov and Triebel bodies. We briefly describe the situation for soft thresholds.

An asymptotically least favorable distribution derives in the Besov case
from renormalization of the optimization problem

� �
S j j
q q qQ sup � t 2 subject to 2 t � C ,Ž .Ž . Ý Ý1, C S , p j j

j��� j���

Ž . Ž .where 
 � a � 1�p � � � 1�2 and � is defined at 42 . To fix ideas, weS, p
study the Bump algebra, so that a � 1�2, p � q � 1. By simple variational

Ž S .calculations, at an extremum of Q we have1, C

� t � c2 j�2 , j 
 Z˙Ž .j
Ž . Ž . � �where � � � and � � d�d� � � . Now from DJ94 , we know that � is˙S, 1

Ž .2 Ž �1 . Ž .concave, that � � � 2 log � , � � 0, and that � � � 0, � � �. Hence � is˙ ˙ ˙
Ž . Ž .�1one-to-one on 0,� and has a well-defined inverse function � . The˙

S Ž S .solution t of Q must obey1, C

�1S j�2t � � c2 , j 
 ZŽ . Ž .˙j

for some constant c chosen so that
� q

j
q S q2 t � C .Ž .Ý j
j���

From this we can read off that t S � � as j � �� and t S � 0 as j � �.j j
Ž . Ž .Donoho and Johnstone 1989 show that the minimax threshold risk � �

Ž .is attained by some threshold � � and some prior distribution concentrated
Ž . Ž . Ž .on at most three points: � � 1 � � � � � � � � �2, where � � � � ,0 �� �

Ž .� � � � satisfy �� � � and � � Dirac mass at � . In symbols,�

� � � E r �, � ,Ž . Ž .�

Ž . Ž Ž . .2for this � and this �, where r �, � � E � v � � . They explore the risk� �

Ž .function � � r �, � , and show that there is a � � 0 such that for � � � ,0 0
Ž . Ž . Ž . Ž .� � � 1, � � � � , while for 0 � � � � , � � � 1, � � � � . In fact, as � � 0,0
Ž . Ž .� � � 0 and � � � �.
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We interpret this as follows. Suppose we take a large random sample
Ž .� , . . . , � from the prior � attaining � � . If � � � , this sample is dense; all1 k 0

the � are of the same amplitude � , with randomly chosen signs. On the otheri
hand, if � � � , then this sample is sparse; very few of the � are nonzero,0 i
and those few are relatively large in size.

We now apply these observations to the least favorable prior over �1 .1, 1
Ž S .This coincides asymptotically with renormalization from the solution to Q1, C

Ž .above. As a result, we see that there is an index j � j � , s, p, q, C with the0 0
following property. For coarse resolution levels j � j , the corresponding t S

0 j
exceeds � � , the prior distribution is dense at such levels and all the wavelet0
coefficients are of the same size. For fine resolution levels j � j , the corre-0
sponding t S � � � , and the prior distribution is sparse, with a few waveletj 0
coefficients carrying all the energy. In fact, the wavelet coefficients at sparsely
populated high resolution levels can be individually much larger than those
at the densely populated low resolution levels. These points are illustrated in

Ž .Johnstone 1994 , in which sample paths from approximately least favorable
paths are simulated along the corresponding wavelet decompositions.

These results show that the least favorable distribution generates objects
with statistical properties that resemble those of signals analyzed by wavelet
methods. Experience with wavelet transforms of signals and images suggests
that real objects often have wavelet transforms that are dense at low resolu-

� � � �tion and sparse at high resolution. See figures in DJ95 , DJ94b and in
Ž .Mallat 1989b, c . Thus wavelet minimax estimators for the case p � 2 are

optimized for a least favorable situation which is qualitatively quite reason-
able and empirically motivated.

11. Discussion.

11.1. Refinements. We briefly mention several avenues for refinement of
the results given above.

11.1.1. Precise constants. Our approach, via minimax Bayes, has given
the exact asymptotics of the risk only for the Besov case with p � q. It
actually requires a different minimax Bayes problem to get the exact asymp-
totics for the Besov case q � p and for the Triebel case p � q. Johnstone
Ž .1994 gives an exact asymptotic minimax result in the Triebel case for a
restricted class of nonlinear estimators satisfying a ‘‘locality’’ constraint.

The results given here could be used to numerically determine minimax
Ž .choices of threshold. However, Donoho and Johnstone 1995 shows that one

can behave in a near-minimax way without this numerical information. That
paper implements a threshold estimate on noisy, sampled data, with thresh-
olding chosen empirically by Stein’s unbiased risk estimate. This gives worst
case risks which are asymptotically just as good as if the minimax thresholds
were used.

11.1.2. Other problems. The theory presented here extends, at least as far
as Sections 2�7 are concerned, without any difficulty to dimensions d � 1.
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Whether the results of Section 8 continue to hold is more involved and
requires more study. However, one expects that the smoothness condition will
become � � d�p.

Ž .Johnstone, Kerkyacharian and Picard 1992 and Donoho, Johnstone,
Ž .Kerkyacharian and Picard 1996 have studied wavelet thresholding esti-

mates in density estimation problems. They showed that such estimates
attain the minimax rate of convergence for a wide variety of losses and the
entire scale of Besov spaces. Their arguments are somewhat different from
those used here. Improved results have more recently been obtained by Birgé

Ž .and Massart 1997 .
Ž .Donoho 1995 shows how wavelet thresholding ideas may be adapted to

various ill-posed inverse problems.
This paper considers minimax estimation when the parameters describing

Ž . Ž .the function class � , p, q, C . . . are considered known. Donoho 1992 and
� �DJKP95 exploit a connection with deterministic optimal recovery to obtain
broad adaptivity results: wavelet shrinkage estimators based on a fixed
threshold are within logarithmic factors of minimax simultaneously over a
range of function classes and error measures drawn from the Besov and

� �Triebel scales. The text and discussion of DJKP95 also contain a much more
comprehensive collection of references to work on wavelet methods for non-
parametric function estimation and denoising than was available at the time
of first writing of this manuscript.

11.2. Relation to other work. The idea of studying minimax estimation in
Ž .the scale of Besov spaces first arose in Kerkyacharian and Picard 1992 , who

studied the use of linear estimators of wavelet coefficients and showed that
linear damping of wavelet coefficients can achieve optimal rates of conver-
gence for certain combinations of loss and Besov space. After hearing of their

´ ´results at the Ecole d’Ete de Probabilites in Saint Flour, July 1990, Donoho´ ´
suggested to Kerkyacharian and Picard that the thresholding results of
� � � �DLM90 and DJ94 , applied in a wavelet setting, might lead to minimax
estimators in those cases where linear estimators failed to achieve optimal

Ž .rates. Johnstone, Kerkyacharian and Picard 1992 and Donoho, Johnstone,
Ž .Kerkycharian and Picard 1996 settled many issues of minimax rates of

convergence of density estimates in the Besov scale by applying wavelet
thresholding techniques. The present article provides an understanding of
why wavelet thresholding ought to work in such cases, since the white noise
model has close connections with density estimation.

The phenomenon of nonlinear estimates achieving rates of convergence
faster than any linear estimates was discovered in two important cases by

Ž . mNemirovskii, Polyak and Tsybakov 1985 and extended to the scale W ofp
Ž . m mSobolev spaces with p � 2 by Nemirovskii 1985 . As W � F , our resultsp p, 2

constitute a generalization to a broader class of cases and provide a more
extensive understanding of the phenomenon and how to exploit it.

The first precise evaluation of asymptotic minimax risks in an infinite-di-
Ž .mensional setting was obtained by Pinsker 1980 . Pinsker’s seminal work
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found asymptotically least favorable priors for the signal-plus-noise model in
sequence space, when the signal was known to belong to an ellipsoidal body
in l 2. This work implicitly inaugurated the minimax Bayes method for
evaluating minimax risks. It initiated a long sequence of developments in
nonparametric estimation by finding asymptotically least favorable priors for
the signal-plus-noise model in sequence space, when the signal was known to
belong to an ellipsoidal body in l 2. Implications of Pinsker’s work were
developed in density and spectral density estimation by Efroimovich and

Ž . Ž .Pinsker 1981, 1982 and in nonparametric regression by Nussbaum 1985 .
Pinsker’s asymptotically least favorable priors are Gaussian; the asymptot-

ically minimax rules are linear. Our results reduce to Pinsker’s in the special
case p � q � 2, where Besov and Triebel bodies become ellipsoidal. The case
where p and q are not both 2 yields non-Gaussian priors and nonlinear

� Ž . �estimates see also Johnstone 1994 . Our results may therefore be consid-
ered a nonlinear, non-Gaussian generalization of Pinsker’s theorem.

APPENDIX

[ ] [ ]Verification of BB1 , BB2 .

� � p � q Ž .BB1 . Set � � � and � � � , I 
 II . If r � p�p � q and r � �I I j I j
q�p � q, then

r �� a jq � �69 J � � J � � 2 � ,Ž . Ž . Ž . Ý rp , q j
j

� � Ž � � r .1� rwhere v � Ý v is an l norm for r 	 1, and hence convex. Sincer k k r
Ž .r � 	 1, J � is also convex, as required. Since

� � � p � q �a jŽ p � q .70 LL C � � : J � � C � � : � � C 2 � jŽ . Ž . Ž .� 4 � 4rp , � j

Ž . p � qit is clear that the level set LL C is convex in � � � .

� � � � �j � rBB2 . Using the same notation as above, along with Ave � � � 2rjk j
Ž .by Holder’s inequality shows that¨

1�p1�prj r� � � �� � 2 Ave � � � � � .Ž . Ýp pj II I I jj ž /
IIj

� � q
�

a jq � � q� p � �Since � � Ý 2 � , this establishes BB2 .b pj jp, q

Ž . Ž . Ž .PROOF OF LEMMA 1. From 38 it suffices to study v C � V 1, C . Writing
Ž . Ž . 
 j� t for � t, 1 and making the change of variables u � 2 t �C, we thenp � q j j

have
q

j 
 j qv C � sup 2 � t : 2 t � CŽ . Ž . Ž .Ý Ý½ 5j j

� sup 2 j� 2�
 ju C : uq � 1 .½ 5Ž .Ý Ýj j
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Ž . Ž . Ž .Clearly v C is monotone increasing, and from 23 , for C � C , v C �0
Ž .2 Ž .C�C v C , so that v is continuous whenever it is finite.0 0

For finiteness, we use a crude bound: since all u � 1 and � � 1, we havej

�
j �
 jv C � 1 � 2 � 2 C .Ž . Ž .Ý

0

Ž .Write � � p � q and note that 24 implies that

Ž .1���2 �� � 2 �171 � � � c � max 1, log � , � � 0,Ž . Ž . Ž .½ 5� � 2

so that

�
Ž .1���2� � 2 �1�
 Ž� � 2.� j �v C � 1 � c C 2 max 
 j � log C , 1 ,Ž . Ž .½ 5Ý� 2

0

Ž .which is finite if 
 � � 2 � 1, as claimed.
�Ž j Ž . 4Finally, compactness of the class of sequences 2 � t : t 
 T in lj C 1

Ž . Ž .follows from the fact that � t � 1 applied to negative j and the facts that
�
 j Ž . Ž .t � C2 and 71 applied to positive j .j

COMPLETION OF PROOF OF THEOREM 5. We know already that

r272 val Q � val Q � .Ž . Ž .Ž . Ž .� , C 1, C hh

Ž . Ž .Consider now the optimization problem Q . Section 4.4 implicitly defines1, C
� j Ž .a countable sequence of prior distributions � which satisfy Ý 2 b � �j �� 1 j

Ž .val Q , where b stands for the Bayes risk in the ‘‘� � 1’’ scalar problem1, C 1
v � � � z with z standard normal. By renormalization we get a prior distri-

Ž .bution which attains Q for h � 1, 2, . . . .� , Ch
Ž .For � � 0, we can find a near-solution to Q with certain additional1, C

support properties. Specifically, we can find finite positive integers J and M
so that:

� �Q1 For �J � j � J, there is a prior distribution � for a scalar randomj
variable � .

� � � �Q2 Each � is supported in �M, M .j
� � p � q � � p � q J j
q q qQ3 The moment sequence t � E � obeys Ý 2 t � C .j � �J jj

� � J j Ž . Ž .Ž .Q4 The coordinatewise Bayes risks obey Ý 2 b � 	 val Q 1 � � .�J 1 j 1, C

Ž .�Define, for �J � j � J an infinite sequence of random variables Xj, k k�0
Ž .with X iid � . Suppose that h � J and define random variables � byj, k j I

� � � X , I 
 III h j, k j�h

for �J � j � J, and � � 0 otherwise. Let �Žh. denote the distribution of theI
Ž .sequence � just defined.I
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Ž . Ž .For estimating � from sequence data 10 , the joint independence of �I I
and z makes the Bayes risk add coordinatewise, and soI

J
Žh. 2 j�hB � � � 2 b � ,Ž .Ž . Ýh 1 j

�J

J
r2 j� � 2 b � ,Ž .Ž . Ýh 1 j

�J

73Ž .

r2	 � val Q 1 � � ,Ž . Ž .Ž .h 1, C

2 h Ž 2 .r � �where we used � 2 � � and Q4 . By comparison with the renormaliza-h h
Ž .tion equations 72 , we see that this prior for � is almost least favorable.

� Ž Ž ..On the other hand, this prior is almost supported in � C 1 � � .p, q

LEMMA 2. Define the event

� � �A � � � C 1 � � .Ž .� 4b� p , q

Then

74 �Žh. A � 1, h � �.Ž . Ž .�

This lemma will be proved later. First we show that it implies our theorem.
Ž . Ž � . Ž c.Essentially the idea is that if � � � � � A then, provided � A is small, �

and � have almost the same Bayes risks.
For the remainder of this subsection, let � be a prior distribution for the

Ž . Ž .vector parameter � � � , � , . . . , and let 
 � denote the Bayes risk for the0 1
problem of estimating � with squared error loss from data v � � � z ,0 i i i

Ž .i � 0, 1, 2, 3, . . . , where z � N 0, 1 .i iid

� �LEMMA 3. Let � be a bounded random variable � � M. Let � be the0 0
conditioned prior distribution

�� � � � � A ,Ž . Ž .

where A is an event. Then

� � 2 c
 � � 
 � � 8 M � A .Ž . Ž . Ž .

The lemma is proved by noting that the Bayes rules are bounded a.e. by M,
Ž .2and their squared errors are bounded a.e. by 2 M . The Bayes risks are thus

Ž .2 1expectations of squared errors that are bounded a.e. by 2 M ; the L
Ž c.distance between � and � is 2 P A . The expectation of an a.e. bounded

random variable under two different measures has a difference that is
controlled by L1 distance between the measures, times the bound on the
random variable.
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Žh. Žh.Ž � . Žh.To apply the lemma, let � be the conditional prior � � A . Then �n
� Ž Ž ..is supported in � C 1 � � . The Bayes risk isp, q

J 2 j�h

Žh. ˜B � � b ,Ž . Ý Ý j , k
�J k�0

where
2

˜ ˆŽh.b � inf E � y � � .Ž .ž /j , k � Ij , k
�̂

Ž .Let J i , i � 0, 1, 2, . . . be an enumeration of the dyadic intervals begin-j, k
Ž .ning with J 0 � I . Let � � � �� and � � � �� . Let � be thej, k j, k 0 I i J Ž i. j, kj, k j, k

prior induced on � by the prior �Žh. on � and let � be the prior induced onj, k
� by � Žh.. Then chasing definitions,

˜ 2b � � 
 � .Ž .j , k h j , k

We have
�� � � � � � 
 A .Ž . Ž .j , k j , k �

Applying Lemma 3,

� � 2 Žh. c
 � � 
 � � 8 M � A .Ž . Ž . Ž .j , k j , k �

Now, since the coordinates are independent and iid within one level of the
prior �,


 � � b � , 0 � k � 2 j�h .Ž . Ž .j , k 1 j

It follows immediately from Lemma 2 that


 � � b � , h � �,Ž . Ž .j , k 1 j

j�h 2 h Ž 2 .runiformly in 0 � k � 2 . Combining the above with � 2 � � andh h
Ž .� � 0, 73 givesh

J
Žh. 2 j�hB � 	 � 2 b � 1 � o 1Ž . Ž . Ž .Ž .Ýh 1 j

�J

J
r2 j� � 2 b � 1 � o 1Ž . Ž .Ž .Ž . Ýh 1 j

�J
r2	 � val Q 1 � � 1 � o 1 .Ž . Ž . Ž .Ž .Ž .Ž .h 1, C

Ž .As this is true for each � � 0, we get 39 and its various implications.
It remains to prove Lemma 2. We give the argument for the case p, q � �

only; the other cases are the same or simpler. Define random variables
Ž j�h.aŽ 2 j�h�1 � � p.1� p �Ž q .1� qL � 2 Ý � . The event A is equivalent to Ý Lj, h k�0 j�h, k � j j, h

Ž .4 h ha �h � p jŽa�1� p. p� C 1 � � . Because � 2 � 2 , L � 2 V where V �j, h j, h j, h
� � p

Ž j�h.Ave X . As the X are bounded random variables, and V is0 � k � 2 j, k j, k j, h
therefore the mean of iid bounded random variables,

Prob V p � E V p � � � 0, h � �� 4Ž .j , h j , h j
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Ž p . � � p Ž .for any positive constant � � 0. Now E V � E X , and � is definedj j, h � j, k jjJ jŽa�1� p.qŽ � � p.q� p q Žso that Ý 2 E X � C . It is here that the assumptionj��J � j, kj � �.p � q is used to set p � q � p in Q3 . We conclude, by setting � sufficientlyj
small, that

1�q
qProb L � C 1 � � � 1, h � �.Ž .Ý j , hž /½ 5

j

This completes the proof of Theorems 3�5. �

PROOF OF MINIMAX THEOREM 8 FOR THRESHOLDS. We give the formalities of
Ž .the proof, assuming that certain objects e.g., differentials exist and are

continuous but without stopping to explain why.
Ž . Ž . Ž .To begin, set �
 � � inf r �,� , and let �
 � denote the minimizing �.�

Ž . Ž . Ž .Hence inf L �, � � Ý �
 � . Hence the right-hand side of 40 is equal to� I I

sup �
 � : � 
 MM � .Ž .Ý I p , q½ 5
I

By a semicontinuity and weak compactness argument, the indicated supre-
mum is attained, by some measure �*. This is a least favorable prior for
threshold estimates.

Ž Ž � ..There is a corresponding sequence �* � �
 � of thresholds which areI
Ž .optimal in case �* is nature’s strategy. We claim that �*, �* is a saddlepoint

Ž .of L. Consider a path � � 1 � t �* � t� away from �* towards a givent
� Ž� 
 MM . Since �* is least favorable, we have with all derivatives evaluatedp, q
.at t � 0

d d
0 	 �
 � � r �
 � , �Ž . Ž .Ž .Ý ÝI t I t I tdt dtI I

  
� �� r �
 � , � � r �
 � , � .Ž . Ž .Ž . Ž .Ý I t I I I t t  tI

Ž Ž � . � . Ž � .On the other hand, since r � � , � � r �, � for all � by definition, itI I I
Ž .follows that the first term in the summation is nonnegative. Since r �, � �I t

Ž . Ž . Ž .1 � t r �, �* � tr �, � is linear in t, the second term is trivially calculated,
so we obtain

0 	 r �
 �� , � � r �
 �� , �* ,Ž . Ž .Ž . Ž .Ý I I
I

or, in other words,
L �*, � � L �*, �*Ž . Ž .

Ž .for all �, so that �*, �* is indeed a saddlepoint of L, which completes the
formal aspects of the proof.

PROOFS FOR SECTION 7. The proof depends on the following two properties
of Triebel bodies. The proof follows word-by-word the proof in Section 4.3,
only substituting these properties for those of Besov bodies.
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� � � Ž . � � p
�TB1 J � � � is a convex functional of the moment sequencefp, q p, q

Ž p � q.Ž .� p, q � � .I
p � q� � Ž .TB2 If � is an arbitrary positive sequence, and we set � �j, k I

Ž p � q.Ave � , thenI 
 II Ij

� �� � � �75 � � � .Ž . f fp , q p , q

� �As with BB1 , the first property is evident by inspection. The second
property may be proved by considering the cases p � q and p 	 q separately.

In the case p � q, define f � Ý 2 ja p� p� . Then, with r � q�p 	 1, wej II I Ij

have
1�r

1p r
�� �76 � � f dt .Ž . Ýf H jp , q ž /

0 j	0

As f 	 0 and the l norm is convex,j r

1�rr1�r
1 1r

f t dt 	 f t dtŽ . Ž .Ý ÝH Hj jž / ž /ž /0 0j	0 j	0

Now
1 pja p ja p p� �f t dt � 2 Ave � � 2 t ,Ž . Ž .H j I 
 II I jj

0

say. The average measure � as in Section 4.3 has moment sequence � � t ,I j
so

1�r
rp ja p p

�� �� � 2 tŽ .Ýf jp , q ž /
j	0

� �and property TB2 follows by combining the above chain of inequalities.
In the case q � p, define f � Ý 2 jaq� q� and set r � p�q 	 1. Thenj II I Ij

r
1p

�� �77 � � f dt .Ž . Ýf H jp , q ž /
0 j	0

As f 	 0 and t r is convex, Jensen’s inequality givesj
rr

1 1
f t dt 	 f t dt .Ž . Ž .Ý ÝH Hj jž / ž /0 0j	0 j	0

Now
1 qjaq jaq q� �f t dt � 2 Ave � � 2 t ,Ž . Ž .H j I 
 II I jj

0

say. The average measure � as in Section 5.2 has moment sequence � � t ,I j
so

r
p jaq q
�� �� � 2 tÝf jp , q ž /

j	0

� �and property TB2 follows by combining the above chain of inequalities.
The remainder of the proof runs entirely as in Section 4.3.
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