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NEAREST NEIGHBOR INVERSE REGRESSION

By Tailen Hsing

Texas A&M University and National University of Singapore

Sliced inverse regression (SIR), formally introduced by Li, is a very
general procedure for performing dimension reduction in nonparametric
regression. This paper considers a version of SIR in which the “slices” are
determined by nearest neighbors and the response variable takes value
possibly in a multidimensional space. It is shown, under general conditions,
that the “effective dimension reduction space” can be estimated with rate
n−1/2 where n is the sample size.

1. Introduction. In nonparametric regression, the presence of a large
number of potential predictors renders model fitting ineffective. This, known
as the curse of dimensionality, is caused in large part by the sparseness of
the data scattered in a relatively high-dimensional space. As a result, it is a
standard practice to consider reducing the dimension of the predictor variable
at some stage. The quality of this reduction step is crucial to the success of
the model fitting. To handle this important problem there are many proposals.
With no intention of being complete, we mention here Friedman and Stuetzle
(1981), Brieman, Friedman, Olshen and Stone (1984), Huber (1985), Hastie
and Tibshirani (1986), Hall (1989), Härdle and Stoker (1989), Chen (1991),
Li (1991) and Samorov (1993). In this paper we focus on the procedure sliced
inverse regression, or SIR, formally introduced in Li (1991).

Throughout this paper let �Xi�Yi�, 1 ≤ i ≤ n� be iid random vectors where
Xi ∈ R

dx is the predictor variable and Yi ∈ R
dy the response variable. Both

dx and dy may be bigger than 1. For convenience �X�Y� will be a generic
variable having the same distribution as �X1�Y1�. We first briefly introduce
the essential elements of SIR for which the details can be found in Li (1991).
There are a number of basic assumptions in SIR.

(SIRa) The distribution of Y given X depends only on K linear combinations
of X, say �′1X� � � � ��′KX.

(SIRb) For any b ∈ R
dx , the conditional expectation E�b′X��′1X� � � � ��′KX� is

linear in �′1X� � � � � �′KX.

Clearly, the �k in (a) and (b) are not identifiable. However, the linear space �
spanned by the �k is. The space � is called the effective dimension reduction
(e.d.r.) space. SIR achieves dimension reduction by identifying the e.d.r. space.
The assumption (b) is implied by but not equivalent to spherical symmetry
of the distribution of X. Hall and Li (1993) contains an interesting justifi-
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cation of the assumption. Assume also that var�X� is nonsingular to avoid
complication. It is easier to work with the standardized version of X and � .
Let

X̃i = �−1/2�Xi − ��(1)

where � is the mean of X and �1/2 is any square root of var�X�. Define

��y� = E�X̃�Y = y�
and

� = var�ν�Y�� = E
ν�Y�ν�Y�′��
Also define the standardized e.d.r. space [cf. Li (1991)]

˜� = �1/2�� � = ��1/2v
 v ∈ � ��
Under (a) and (b), it is shown as in Theorem 3.1 and Corollary 3.1 of Li (1991)
that

��y�′v = 0 for all v ∈ ˜� ⊥ and all y�(2)

where ˜� ⊥ is the linear space orthogonal to ˜� . That is, the standardized inverse
regression curve ���y�
 all y� is contained in ˜� . This implies that

�v = 0 for all v ∈ ˜� ⊥�

from which it follows readily (using symmetry) that

� ��� ⊂ ˜� �(3)

where � �A� denotes the column space (or range space) of the matrix A. We
will assume throughout that

(SIRc) ˜� = � ���.
This is of course sometimes violated and modifications would be required to
make SIR work. See Li (1992) and Cook (1998).

In Li (1991), the e.d.r. space is estimated in the following manner in the
setting where Y is one-dimensional.

1. Divide the observed Y values into, say, r “slices” where slice i has ni obser-
vations. For example, the smallest n1 of the Y form the first slice, the next
n2 form the second slice and so on.

2. Within the ith slice, compute the average, X̄�i�, of the corresponding X
values. Let

�̂ =
r∑
i=1

�ni/n��̂
−1/2
n �X̄�i� − X̄n��X̄�i� − X̄n�′��̂

−1/2
n �′�

where X̄n is the overall sample mean and �̂n is the sample covariance
matrix.
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3. Estimate ˜� with the basis comprising the eigenvectors that correspond
to the K largest eigenvalues of �̂. Finally, estimate � by performing the

transformation �̂
−1/2
n .

The present work is motivated by the following two issues. First it is pointed
out in Li (1991) that the choice of slices is flexible. However, it is not clear how
to characterize what constitutes a configuration that will lead to a good es-
timate. Second, when Y is multidimensional, to generalize the way in which
the slices are defined from the one-dimensional setting is not entirely straight-
forward. See Cook (1995) and Li, Aragon and Thomas-Agnan (1994). In this
paper, we consider a simple variation of the above procedure that is free of
the problems mentioned.

Assume that Y has a continuous distribution to avoid ties. Unless otherwise
noted, throughout this paper for each i ∈ �1� � � � � n�, let i∗ ∈ �1� � � � � n� − �i�
be the index for which

d�Yi�Yi∗� = min
1≤j≤n
j �=i

d�Yi�Yj��

where d�·� ·� is some metric. That is, Yi∗ is the nearest neighbor of Yi. To
simplify notation we will assume that this metric d�·� ·� is Euclidean, although,
in sofar as proofs go, d�·� ·� only has to be a metric generated by some norm.

Let �1/2 be any nonsingular matrix such that �1/2��1/2�′ = var�X�. Let �̂
−1/2
n

be a root-n consistent estimate of �−1/2 and

X̂i = �̂
−1/2
n �Xi − X̄n��

Define

�n = �2n�−1
n∑
i=1

(
X̂iX̂

′
i∗ + X̂i∗X̂

′
i

)
�(4)

Intuitions suggest that �n estimates � and hence the e.d.r. space can be esti-
mated following the steps in (3) above.

This paper focuses on the asymptotic properties of the above procedure. We
will show that �n−E�n = OP�n−1/2� and that �n is asymptotically normally
distributed if the estimated mean and variance in �n are replaced by the
corresponding population versions. To address the rate of convergence of the
e.d.r. space estimate, it seems that one could just conclude from the above-
mentioned asymptotic results that the eigenvectors of �n estimate those of �
at rate n−1/2. Unfortunately, while the differences between the eigenvectors of
�n and the matching eigenvectors of E�n are OP�n−1/2�, one cannot readily
conclude that the same holds for E�n and � for a general dimension dy.
Indeed, for a sample of size n, the “typical distance” between an observation
and its nearest neighbor in the d-dimensional space is n−1/d. Hence one could
expect the bias in our problem to be of rate O�n−1/dy�, implying that root-
n consistency could not be achieved if dy > 2. Fortunately, estimating the
eigenvectors of � is not the goal. Estimating the e.d.r. space is. To address the
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rate of convergence of an estimated space to a target space, it is only fitting to
consider a proper distance between the spaces. Li (1991) addresses this by an
R2 statistic. Here we consider a distance which is somewhat different. We will
show that the procedure outlined above is root-n consistent in this sense. The
main results are formulated and stated in Section 2. The proofs are lengthy
and are presented in the remaining sections.

It is interesting to mention the connection between the problem considered
in this paper and certain problems in geometric probability. Recently there
has been some considerable interest on limit theories for random graphs con-
structed according to different optimization algorithms. See Aldous and Steele
(1992) and Avram and Bertsimas (1993) for some recent results and refer-
ences. The way of grouping in (4) corresponds to the nearest neighbor graph.
Other possibilities in that regard include the k-nearest neighbor graph, mini-
mal spanning tree, sphere of influence graph, and so on. It is plausible to try
to adapt those algorithms to the slicing step in SIR. On the other hand, the
techniques developed in this paper to tackle the asymptotic theory of near-
est neighbor inverse regression may be beneficial for some of the unresolved
problems in the context of such random graphs.

2. Main results. Throughout, let

F�·� = P��X̃�Y� ∈ ·�� F̄�·� = P��X̃�Y� �∈ ·�� G�·� = P�Y ∈ ·�� Ḡ�·� = P�Y �∈ ·�
and, where applicable, let f be the joint density of �X̃�Y�, g the marginal
density of Y and f�·�y� be the conditional density of X̃ given Y = y. For con-
venience of notation we denote Zi = �X̃i�Yi� and Z = �X̃�Y�. Unless otherwise
stated, vector and matrix norms will be Euclidean and denoted by � · �. Finally,
denote the sphere in R

dy which is centered at u with radius r by

S�u� r� 
= �v ∈ R
dy 
 �u − v� ≤ r��

As explained in Section 1, the standardized e.d.r. space ˜� is estimated with
the basis composed of the eigenvectors that correspond to the largestK eigen-
values of �n where K is the dimension of ˜� . Hence it would be convenient
to have a notation describing this operation. For a symmetric matrix A of di-
mension p × p, let λ1�A� ≥ · · · ≥ λp�A� be the ordered eigenvalues of A and
�1�A�� � � � ��p�A� be a corresponding set of unit eigenvectors. Let 1 ≤ j < p.
Define

�j�A� = the linear space spanned by �1�A�� � � � ��j�A��
Note that if λj�A� > λj+1�A� then �j�A� doesn’t depend on the particular
choice of eigenvectors.

With this, our estimates for ˜� and � are �K��n� and �̂
−1/2
n 
�K��n��, re-

spectively. We wish to address the issue of the speed of convergence of these
estimates to ˜� and � . In order to do so, we must first come up with a notion of
distance between linear spaces. The following notion is reasonable although
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not unique. Let �1 and �2 be two Euclidean spaces. Define

���1��2� = sup
a∈�1� �a�=1

�a − ��2
�a�� + sup

b∈�2� �b�=1
�b− ��1

�b���(5)

where ��1
and ��2

denote the projections on �1 and �2, respectively. It is
straightforward to verify that � satisfies the triangle inequality. When this
notion of distance is applied to the problem on hand, it is related to that of
R2 in Li (1991).

The first theorem states that our procedures give root-n rates of convergence
in � under very general conditions.

Theorem 1. Assume that E�X�4+ε <∞ for some ε > 0 and that

lim
δ→0
E
[

sup
�Y−y�<δ

���Y� − ��y��2
]
= 0�(6)

Then both ���K��n�� ˜� � and ���̂−1/2
n 
�K��n���� � are of rate OP�n−1/2�.

The smoothness condition (6) is very weak indeed, which is satisfied for
most situations. The proof of Theorem 1 will be given in Section 3. The proof
is partially based on the idea that �n can be approximated by the following
quantity which is easier to analyze:

�̃n 
= �2n�−1
n∑
i=1

(
X̃iX̃

′
i∗ + X̃i∗X̃

′
i

)
�

where X̃i is defined in (1). The following result concerning the variance of �̃n
is therefore instrumental.

Theorem 2. Suppose that E�X�4+ε < ∞ for some ε > 0. Then for any con-
stants a1�b1� � � � �aS�bS in R

dx , there exists a bounded function γ such that for
any Borel sets A�A∗ ⊂ R

dx+dy and any n,

n−1 var
( n∑
i=1

S∑
s=1

a′sX̃iX̃
′
i∗bsI�Zi ∈ A� Zi∗ ∈ A∗�

)
≤ γ�A�A∗��(7)

where γ has the continuity property that γ�Am�Am∗� → 0 for any sequence of
Borel sets �Am�Am∗� for which F�Am� ∧F�Am∗� → 0. In particular,

n var
( S∑
s=1

a′s�̃nbs

)
< γ�Rdx+dy�Rdx+dy� <∞�

The proof of Theorem 2 will be given in Section 4. The strength of this
result is its generality. Note that the distributions are not even required to
have densities for the result to be valid.

Alternatively to Theorem 2, the following central limit theorem can also be
used to establish Theorem 1. While Theorem 1 does not give the precise asymp-
totic distribution of ���K��n�� ˜� �, this central limit theorem offers some in-
sight into how to go about that.
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Theorem 3. Assume that g is continuous on �0 < g < ∞� and for almost
every x, f�x�y� is continuous in y on �0 < g <∞�. Also assume that E�X�4+ε <
∞ for some ε > 0. Then n1/2��̃n − E�̃n� converges in distribution to some
random matrix W where for any S = 1�2 � � � and constants a1�b1� � � � �aS�bS
in R

dx ,
∑S
s=1 a′sWbs is distributed as Normal �0� σ2� with σ2 = ∑4

i=1 κiωi; the
κi are finite constants depending only on dy while the ωi are determined by f
and the ai�bi as

ω1 =
∫
ψ2�x1�x2�f�x1�y�f�x2�y�g�y�dx1 dx2 dy�

ω2 =
∫ (∫

ψ�x1�x2�f�x2�y�dx2

)2

f�x1�y�g�y�dx1 dy�

ω3 =
∫ (∫

ψ�x1�x2�f�x1�y�f�x2�y�dx1 dx2

)2

g�y�dy�

ω4 =
(∫
ψ�x1�x2�f�x1�y�f�x2�y�g�y�dx1 dx2 dy

)2

�

where ψ�x1�x2� = �1/2�∑Ss=1 a′s�x1x′2 + x2x′1�bs�

Note that the precise expressions of the constants κi are delayed until Sec-
tion 4 in (35)–(38) since they contribute little insight at this point. The proof
of Theorem 3 is contained in Section 5.

We end this section with the remark that both Theorems 2 and 3 are easily
extended to cover the partial sums of a class of functions of �Xi�Yi�� �Xi∗�Yi∗�.

3. The speed of convergence of the e.d.r. space estimate. We need
some lemmas first.

Lemma 4. Let A�B be two symmetric matrices of dimension p × p, each
having k nonzero eigenvalues. Assume that �A −B� ≤ δ for some δ where � · �
denotes the sup norm. Let �A (respectively, �B) be the linear spaces spanned
by the eigenvectors of A (respectively, B) that correspond to λ1�A�� � � � � λk�A�
[respectively, λ1�B�� � � � � λk�B�]. Then

���A��B� ≤ k3/2δ��λk�A��−1 + �λk�B��−1��

Proof. Let u1� � � � �up and v1� � � � �vp be two orthonormal bases of R
p for

which u1� � � � �uk are the eigenvectors that correspond to λ1�A�� � � � � λk�A� for
A and v1� � � � �vk the eigenvectors that correspond to λ1�B�� � � � � λk�B� for B.
First focus on supa∈�A� �a�=1 �a − ��B

�a��. Write

U1 = 
u1� � � � �uk�� U2 = 
uk+1� � � � �up�
and

V1 = 
v1� � � � �vk�� V2 = 
vk+1� � � � �vp��



NEAREST NEIGHBOR INVERSE REGRESSION 703

Since

��B
�a� = V1V′

1a�

we obtain

sup
a∈�A� �a�=1

�a − ��B
�a�� = sup

a∈�A� �a�=1
��Ip −V1V′

1�a�

=
(

sup
a∈�A� �a�=1

a′�Ip −V1V′
1�a

)1/2
�

where Ip is the identity matrix of dimension p. Using the fact that

V1V′
1 +V2V′

2 = Ip�

we get

sup
a∈�A� �a�=1

�a − ��B
�a�� =

(
sup

a∈�A� �a�=1
a′V2V′

2a
)1/2

By the fact that every unit vector in �A can be written as U1x for some unit
vector x ∈ R

k, we conclude that

supa∈�A� �a�=1 �a − ��B
�a�� =

(
sup

x∈R
k��x�=1

x′U′
1V2V′

2U1x
)1/2

= (
largest eigenvalue of U′

1V2V′
2U1

)1/2
�

(8)

Express A and B by the spectral decompositions

A =
k∑
i=1

λi�A�uiu′
i and B =

k∑
i=1

λi�B�viv′i�

For 1 ≤ i ≤ k and k+ 1 ≤ j ≤ p, it is clear that

�v′jui� = �v′j�A −B�ui�/�λi�A�� ≤ δ/�λi�A���
Hence

�U′
1V2V′

2U1� ≤ k3δ2/λ2
k�A��

Consequently, for each nonzero eigenvalue ν of U′
1V2V′

2U1 and a corresponding
unit eigenvector w,

�ν� = �U′
1V2V′

2U1w� ≤ k3δ2/λ2
k�A��

In view of (8), we have shown that

sup
a∈�A� �a�=1

�a − ��B
�a�� ≤ k3/2δ/�λk�A���

By symmetry, we also have

sup
b∈�B� �b�=1

�b− ��A
�b�� ≤ k3/2δ/�λk�B��� ✷
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Lemma 5. Under the assumptions of Theorem 1, E�̃n→ � as n→∞.

Proof. Assume for convenience that Y has a density g. It is clear that the
pdf of Y∗ is

g�y∗�
∫

y
�n− 1�Ḡn−2�S�y� �y − y∗���dG�y��

which is bounded by

g�y∗�
∫

y
�n− 1� exp�−�n− 2�G�S�y� �y − y∗����dG�y��

By Theorem A.1 of Bickel and Breiman (1983),

P�G�S�Y� �Y − y��� ≤ u� ≤ bu(9)

for any y ∈ R
dy and u ∈ 
0�1� where b is a constant depending only on dy.

Hence for any y∗,∫
y

exp�−�n− 2�G�S�y� �y − y∗����dG�y�

=
∫ 1

u=0
P�exp�−�n− 2�G�S�Y� �Y − y∗���� > u�du

≤
∫ 1

u=0
P�G�S�Y� �Y − y∗��� < −�log u�/�n− 2��du

≤ b/�n− 2�
∫ 1

u=0
�− log u�du = b/�n− 2��

As a result, the pdf of Y∗ is bounded by a constant multiple C of that of Y.
Hence

E
���Y∗��4� < CE
���Y��4� <∞�(10)

Note that we assumed the existence of a density for convenience and that this
argument will go through in general if we replace g�y� by G�dy�. Now

E�̃n −� = �E
��Y���Y∗�′� −E
��Y���Y�′��/2
+ �E
��Y∗���Y�′� −E
��Y���Y�′��/2�

It suffices to deal with the first term. By the Cauchy–Schwarz inequality,

�E
��Y���Y∗�′� −E
��Y���Y�′�� ≤ E1/2
���Y��2�E1/2
���Y∗� − ��Y��2��
Now write

E
���Y∗� − ��Y��2� = An�δ� +Bn�δ��
where δ > 0,

An�δ� = E
���Y∗� − ��Y��2I��Y∗ − Y� > δ��
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and

Bn�δ� = E
���Y∗� − ��Y��2I��Y∗ − Y� ≤ δ���
It is easy to show that An�δ� → 0 for each fixed δ by (10) and the Cauchy–
Schwarz inequality and that

lim
δ→0

sup
n
Bn�δ� = 0

by (6). This completes the proof. ✷

Proof of Theorem 1. We focus on ���K��n��� �, the other one being sim-
ilar. By the triangle inequality,

���K��n��� � ≤ ���K��n���K��̃n�� + ���K��̃n��� ��
Our task is therefore to show that both terms on the right are OP�n−1/2�. By

the root-n rate of convergence of X̄n and �̂
−1/2
n , we conclude that

�n − �̃n = OP�n−1/2��(11)

Clearly, �n and �̃n both converge in probability to � and hence the conver-
gence of the eigenvalues follows. As a result, for any ε ∈ �0� λK����, we have

P�λK��n� > ε > λK+1��n�� → 1(12)

and the same can be said for �̃n. It follows simply [cf. Lemma 3.1 of Bai, Miao
and Radhakrishna (1991)] from (11) and (12) that

K∑
i=1

λi��n��i��n��i��n�′ −
K∑
i=1

λi��̃n��i��̃n��i��̃n�′ = OP�n−1/2��

where �i was defined in the beginning of Section 2. Hence (12) and Lemma 4
imply that

���K��n���K��̃n�� = OP�n−1/2��
It follows from (2) that

E��̃n�v = 0 for all v ∈ � ⊥�

Conclude as in (3) using symmetry that

� �E��̃n�� ⊂ � �(13)

The question is whether the left-hand side of (13) can be a strict subset of � .
In view of (SIRc), this can happen only if

E��̃n�v = 0(14)

for some eigenvector v corresponding to a nonzero eigenvalue of �. Note that

E��̃n�v = �v +Rnv�
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where Rn → 0 by Lemma 5. Hence the scenario in (14) cannot happen for
large n. Consequently, we conclude that for all large n,

� �E��̃n�� = �K�E��̃n�� = �

and as a result,

���K��̃n��� � = ���K��̃n���K�E��̃n����
That the last quantity is OP�n−1/2� now follows straightforwardly from Theo-
rem 2. This concludes the proof. ✷

4. Derivation of variance. This section contains the proof of Theorem 2.
Throughout we will assume without loss of generality that the Xi are already
standardized to have mean 0 and variance equal to the identity matrix. Below
let γ denote a generic function with the continuity property described in the
theorem but which may take various forms in different inequalities. In the end,
the maximum of these γ functions will be the one in (7). Also for convenience
of notation, write

ω�z1� z2� 
= ω�z1� z2�A�A∗� 
=
S∑
s=1

a′sx1x′2bs I�z1 ∈ A� z2 ∈ A∗�

for z1 = �x1�y1�� z2 = �x2�y2� ∈ R
dx+dy and Borel sets A�A∗ of R

dx+dy . Thus,

n∑
i=1

S∑
s=1

a′sXiX
′
i∗bsI��Xi�Yi� ∈ A� �Xi∗�Yi∗� ∈ A∗� =

n∑
i=1

ω�Zi�Zi∗��

By symmetry,

E

( n∑
i=1

ω�Zi�Zi∗�
)2

=
n∑
i=1

n∑
j=1

E
ω�Zi�Zi∗�ω�Zj�Zj∗��

= nE
ω2�Z1�Z1∗�� + n�n− 1�E
ω�Z1�Z1∗�ω�Z2�Z2∗��
and so

var
( n∑
i=1

ω�Zi�Zi∗�
)
=M�2�

1 �n� +M�2�
2 �n� +M�2�

3 �n� +M�2�
4 �n� +M�2�

5 �n�

+
(
M

�2�
6 �n� −E2

( n∑
i=1

ω�Zi�Zi∗�
))
�

where

M
�2�
1 �n� = n�n− 1�E
ω2�Z1�Z2�I�1∗ = 2���

M
�2�
2 �n� = n�n− 1�E
ω2�Z1�Z2�I�1∗ = 2�2∗ = 1���

M
�2�
3 �n� = n�n− 1��n− 2�E
ω�Z1�Z3�ω�Z2�Z3�I�1∗ = 3� 2∗ = 3���

M
�2�
4 �n� = n�n− 1��n− 2�E
ω�Z1�Z2�ω�Z2�Z3�I�1∗ = 2� 2∗ = 3���
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M
�2�
5 �n� = n�n− 1��n− 2�E
ω�Z1�Z3�ω�Z2�Z1�I�1∗ = 3� 2∗ = 1���

M
�2�
6 �n� = n�n− 1��n− 2��n− 3�E
ω�Z1�Z2�ω�Z3�Z4�I�1∗ = 2� 3∗ = 4���

It follows from Cauchy–Schwarz and the triangle inequalities that

S∑
s=1

a′sx1x′2 bs ≤
S∑
s=1

�as��bs��x1��x2� ≤ C��x1�2 + �x2�2�(15)

for some constant C <∞. Below C will denote a generic constant whose value
changes from line to line. By (15), the arguments that led to (10) and Hölder’s
inequality,

M
�2�
1 �n� ≤ CnE
��X1�4 + �X1∗�4�I�Z1 ∈ A�Z1∗ ∈ A∗��

≤ CnE4/�4+ε�
�X1�4+ε�Pε/�4+ε��Z1 ∈ A�Z1∗ ∈ A∗��

Consequently,

n−1M
�2�
1 �n� ≤ γ�A�A∗��(16)

and, since M�2�
2 �n� ≤M�2�

1 �n�,

n−1M
�2�
2 �n� ≤ γ�A�A∗��(17)

Now consider M�3�
2 �n�. Again, by (15),

M
�2�
3 �n� ≤ Cn�n− 1��n− 2�

×E[��X1�2 + �X3�2���X2�2 + �X3�2�
× I�1∗ = 3� 2∗ = 3� Z1�Z2 ∈ A� Z3 ∈ A∗�

]
= Cn�n− 1��n− 2�
× (
E
�X1�2�X2�2I�1∗ = 3� 2∗ = 3� Z1�Z2 ∈ A� Z3 ∈ A∗��
+ 2E
�X1�2�X3�2I�1∗ = 3� 2∗ = 3� Z1�Z2 ∈ A� Z3 ∈ A∗��

+E
�X3�4I�1∗ = 3� 2∗ = 3� Z1�Z2 ∈ A� Z3 ∈ A∗��
)
�

(18)

First consider the leading term on the right of (18). By the Cauchy–Schwarz
inequality and symmetry,

E
�X1�2�X2�2I�1∗ = 3� 2∗ = 3� Z1�Z2 ∈ A� Z3 ∈ A∗��
≤ E
�X1�4I�1∗ = 3� 2∗ = 3� Z1 ∈ A� Z3 ∈ A∗��
≤ E4/�4+ε�
�X1�4+εI�1∗ = 3� 2∗ = 3� Z1 ∈ A��
×Pε/�4+ε��1∗ = 3� 2∗ = 3� Z3 ∈ A∗��

(19)



708 T. HSING

The two terms in the product on the right-hand side are bounded slightly
differently, depending on the order in which the variables are to be averaged.
By the inequalities

1− x ≤ e−x� x > 0 and P�A ∪B� ≥ �1/2��P�A� +P�B���(20)

E
�X1�4+εI�1∗ = 3� 2∗ = 3� Z1 ∈ A��

=
∫

z1∈A

∫
y3

∫
y2

�x1�4+εḠn−3(S�y1� �y1 − y3�� ∪S�y2� �y2 − y3���

× dG�y2�dG�y3�dF�z1�

≤
∫

z1∈A

∫
y3

∫
y2

�x1�4+ε exp
(−nG�S�y1� �y1 − y3�� ∪S�y2� �y2 − y3���

)

× dG�y2�dG�y3�dF�z1�

≤
∫

z1∈A

∫
y3

∫
y2

�x1�4+ε exp�−�n/2�G�S�y1� �y1 − y3����

× exp�−�n/2�G�S�y2� �y2 − y3����dG�y2�dG�y3�dF�z1��

By (9) and the derivations that immediately follow,

∫
y2

exp�−�n/2�G�S�y2� �y2 − y3����dG�y2� ≤ �2b/n��

Consequently,

E
�X1�4+εI�1∗ = 3� 2∗ = 3�Z1 ∈ A��

≤ �2b/n�
∫

z1∈A

∫
y3

�x1�4+ε exp�−�n/2�G�S�y1� �y1 − y3����dG�y3�dF�z1��

Clearly,

∫
y3

exp�−�n/2�G�S�y1� �y1 − y3����dG�y3�

=
∫ ∞
r=0

exp�−�n/2�G�S�y1� r���drG�S�y1� r��

=
∫ 1

u=0
exp�−�n/2�u�du = 2/n�

Thus,

E
�X1�4+εI�1∗ = 3� 2∗ = 3� Z1 ∈ A�� ≤ �4b/n2�E
�X1�4+εI�Z1 ∈ A���(21)
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By (9) and (20),

P�1∗ = 3� 2∗ = 3� Z3 ∈ A∗�
≤

∫
z3∈A∗

∫
y1

∫
y2

exp�−�n/2�G�S�y1� �y1 − y3����
× exp�−�n/2�G�S�y2� �y2 − y3����dG�y2�dG�y1�dF�z3�

=
∫

z3∈A∗

(∫
y

exp�−�n/2�G�S�y� �y − y3����dG�y�
)2

dF�z3�
≤ �2b/n�2F�A∗��

(22)

The first term on the right of (18) is taken care of by (19), (21) and (22). It is
clear that the other two terms on the right of (18) can be dealt with similarly,
giving

n−1M
�2�
3 �n� ≤ γ�A�A∗��(23)

Next we consider M�2�
4 �n� and M�2�

5 �n�, which are the same, and we use the
notation of the former. By (15),

M
�2�
4 �n� ≤ Cn�n− 1��n− 2�E
��X1�2 + �X2�2���X2�2 + �X3�2�

× I�1∗ = 2� 2∗ = 3� Z1 ∈ A� Z2 ∈ A ∩A∗� Z3 ∈ A∗���

Repeated applications of the techniques used in the previous step give

n−1�M�2�
4 �n� +M�2�

5 �n�� ≤ γ�A�A∗��(24)

Finally we consider the interplay between M�2�
6 �n� and E2
∑ni=1ω�Zi�Zi∗��,

which is the most crucial part of the computation of the variance. Define

ξ�y1�y2� = E
ω�Z1�Z2���Y1�Y2� = �y1�y2���

Then

M
�2�
6 �n� = n�n− 1��n− 2��n− 3�

×
∫
ξ�y1�y2�ξ�y3�y4�

× I�y1�y2 �∈ S�y3� �y3 − y4���I�y3�y4 �∈ S�y1� �y1 − y2���
× Ḡn−4�S�y1� �y1 − y2�� ∪S�y3� �y3 − y4���
× dG�y1�dG�y2�dG�y3�dG�y4�

≤ n2�n− 1�2

×
∫
ξ�y1�y2�ξ�y3�y4�

× Ḡn−4�S�y1� �y1 − y2�� ∪S�y3� �y3 − y4���
× dG�y1�dG�y2�dG�y3�dG�y4��
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On the other hand,

E2
( n∑
i=1

ω�Zi�Zi∗�
)

= n2�n− 1�2
∫
ξ�y1�y2�ξ�y3�y4�
× Ḡn−2�S�y1� �y1 − y2���Ḡn−2�S�y3� �y3 − y4���
× dG�y1�dG�y2�dG�y3�dG�y4��

Hence

M
�2�
6 �n� −E2

( n∑
i=1

ω�Zi�Zi∗�
)

≤ n2�n− 1�2

×
∫
ξ�y1�y2�ξ�y3�y4�
× (
Ḡn−4�S�y1� �y1 − y2�� ∪S�y3� �y3 − y4���
− Ḡn−2�S�y1� �y1 − y2���Ḡn−2�S�y1� �y1 − y2���

)
× dG�y1�dG�y2�dG�y3�dG�y4��

(25)

If Ḡ�S�y1� �y1 − y2��� + Ḡ�S�y3� �y3 − y4��� < 1 then clearly,

Ḡn−2�S�y1� �y1 − y2���Ḡn−2�S�y1� �y1 − y2���
≥ (

1−G�S�y1� �y1 − y2��� −G�S�y3� �y3 − y4���
)n−2
�

while the integral in (25) has an exponential rate, say e−cnγ�A�A∗� for some
c > 0 and some γ, when restricted to the set Ḡ�S�y1� �y1−y2���+Ḡ�S�y3� �y3−
y4��� ≥ 1 . Hence,

M
�2�
6 �n� −E2

( n∑
i=1

ω�Zi�Zi∗�
)

≤ e−cnγ�A�A∗� + n2�n− 1�2

×
∫
ξ�y1�y2�ξ�y3�y4�
× I(G�S�y1� �y1 − y2��� + Ḡ�S�y3� �y3 − y4��� < 1

)
× (
Ḡn−4�S�y1� �y1 − y2�� ∪S�y3� �y3 − y4���
− �1−G�S�y1� �y1 − y2��� −G�S�y3� �y3 − y4����n−2)

× dG�y1�dG�y2�dG�y3�dG�y4��

Since we also have

Ḡn−4�S�y1� �y1 − y2�� ∪S�y3� �y3 − y4���
≥ (

1−G�S�y1� �y1 − y2��� −G�S�y3� �y3 − y4���
)n−2
�
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upon applying the Cauchy–Schwarz inequality and symmetry,

M
�2�
6 �n� −E2

( n∑
i=1

ω�Zi�Zi∗�
)

≤ e−cnγ�A�A∗� + n2�n− 1�2
An�1 + �An�2 −Bn���
(26)

where

An�1 =
∫
ξ2�y1�y2�I�y4 ∈ S�y1� �y1 − y2���
× Ḡn−4�S�y1� �y1 − y2�� ∪S�y3� �y3 − y4���
× dG�y1�dG�y2�dG�y3�dG�y4��

An�2 =
∫
ξ2�y1�y2�I�y4 �∈ S�y1� �y1 − y2���
× Ḡn−4�S�y1� �y1 − y2�� ∪S�y3� �y3 − y4���
× dG�y1�dG�y2�dG�y3�dG�y4�

and

Bn =
∫
ξ2�y1�y2�I

(
G�S�y1� �y1 − y2��� + Ḡ�S�y3� �y3 − y4��� < 1

)

× (
1−G�S�y1� �y1 − y2��� −G�S�y3� �y3 − y4���

)n−2

× dG�y1�dG�y2�dG�y3�dG�y4��
Using (9) and (20) as before, we obtain

An�1 ≤
∫

y1�y2�y4

ξ2�y1�y2�I�y4 ∈ S�y1� �y1 − y2���

× exp
(
−n− 4

2
G�S�y1� �y1 − y2���

)

×
( ∫

y3

exp
(
−n− 4

2
G�S�y3� �y3 − y4���

)
dG�y3�

)

× dG�y1�dG�y2�dG�y4�

≤ 2b
n− 4

∫
y1�y2

ξ2�y1�y2�G�S�y1� �y1 − y2���

× exp
(
−n− 4

2
G�S�y1� �y1 − y2���

)
dG�y1�dG�y2�

≤ 2b
n− 4

∫
y1�y2

η1�y1�A�η2�y2�A∗�G�S�y1� �y1 − y2���

× exp
(
−n− 4

2
G�S�y1� �y1 − y2���

)
dG�y1�dG�y2�

+ 2b
n− 4

∫
y1�y2

η2�y1�A�η1�y2�A∗�G�S�y1� �y1 − y2���

× exp
(
−n− 4

2
G�S�y1� �y1 − y2���

)
dG�y1�dG�y2��

(27)
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where

η1�y�B� = E
�X�4I�Z ∈ B��Y = y�� η2�y�B� = P�Z ∈ B�Y = y��
For any ε > 0, by the Cauchy–Schwarz inequality∫

y1�y2

η1�y1�A�η2�y2�A∗�G�S�y1� �y1 − y2���

× exp
(
−n− 4

2
G�S�y1� �y1 − y2���

)
dG�y1�dG�y2�

≤
( ∫

y1�y2

η1+ε
1 �y1�A�G�S�y1� �y1 − y2���

× exp
(
−n− 4

2
G�S�y1� �y1 − y2���

)
dG�y1�dG�y2�

)1/�1+ε�

×
( ∫

y1�y2

η
�1+ε�/ε
2 �y2�A∗�G�S�y1� �y1 − y2���

× exp
(
−n− 4

2
G�S�y1� �y1 − y2���

)
dG�y1�dG�y2�

)ε/�1+ε�
�

Clearly, ∫
y1�y2

η1+ε
1 �y1�A�G�S�y1� �y1 − y2���

× exp
(
−n− 4

2
G�S�y1� �y1 − y2���

)
dG�y1�dG�y2�

=
∫

y1

η1+ε
1 �y1�A�

[∫ 1

u=0
u exp

(
−n− 4

2
u

)
du

]
dG�y1�

= O�n−2�E
η1+ε
1 �Y�A���

Similarly, for any p�q > 0, p+ q = 1,∫
y1�y2

η
p�1+ε�/ε
2 �y2�A∗�G�S�y1� �y1 − y2���

× exp
(
−n− 4

2
G�S�y1� �y1 − y2���

)
dG�y1�dG�y2�

≤
( ∫

y1�y2

η
p�1+ε�/ε
2 �y2�A∗�

× exp
(
−n− 4

2
G�S�y1� �y1 − y2���

)
dG�y1�dG�y2�

)1/p

×
( ∫

y1�y2

Gq�S�y1� �y1 − y2���

× exp
(
−n− 4

2
G�S�y1� �y1 − y2���

)
dG�y1�dG�y2�

)1/q

= O�n−2�E1/p
ηp�1+ε�/ε2 �Y�A∗���
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This together with the previous estimate give a bound of the first term in (27).
The second term there is bounded by the same principle. Hence we obtain

n3An�1 ≤ γ�A�A∗��(28)

Next, straightforward computations show that

Bn =
1
n− 1

∫
y1�y2

ξ2�y1�y2�Ḡn−1�S�y1� �y1 − y2���dG�y1�dG�y2��(29)

Next note that

An�2 =
∫

y1�y2�y3

ξ2�y1�y2�

×
( ∫

y4

I�y4 �∈ S�y1� �y1 − y2���

× Ḡn−4�S�y1� �y1 − y2�� ∪S�y3� �y3 − y4���dG�y4�
)

× dG�y1�dG�y2�dG�y3�

=
∫

y1�y2�y3

ξ2�y1�y2�
( ∫ ∞
r=0
Ḡn−4�S�y1� �y1 − y2�� ∪S�y3� r��

× drG�S�y1� �y1 − y2�� ∪S�y3� r��
)

× dG�y1�dG�y2�dG�y3�

=
∫

y1�y2�y3

ξ2�y1�y2�
( ∫ Ḡ�S�y1��y1−y2���

u=0
un−4 du

)

× dG�y1�dG�y2�dG�y3�

= 1
n− 3

∫
y1�y2

ξ2�y1�y2�Ḡn−3�S�y1� �y1 − y2���dG�y1�dG�y2��

(30)

Now by (29), (30) and the techniques leading to (28),

n3�An�2 −Bn� ≤ γ�A�A∗��(31)

By (26), (28) and (31), we obtain

n−1
(
M

�2�
6 �n� −E2

( n∑
i=1

ω�Zi�Zi∗�
))

≤ γ�A�A∗��(32)

Hence (7) follows from (16), (17), (23), (24) and (32). This concludes the proof
of Theorem 2. ✷
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5. Central limit theorem. The rest of this paper is devoted to prov-
ing Theorem 3. This section gives the outline of the proof and the remaining
sections contain the various technical details. The complete proof is rather
lengthy and is best broken into a number of components as is done below. To
facilitate the proof it is crucial to have a set of clear and flexible notation. First
it is obvious that we can assume without loss of generality that X is already
standardized. Thus, Zi = �Xi�Yi�, Z = �X�Y� and F and G are the probability
measures corresponding to Z and Y, respectively. Let zi = �xi�yi�, 1 ≤ i ≤m,
be vectors where xi and yi are of dimensions dx and dy, respectively, and the
distances �yi − yj�, 1 ≤ i �= j ≤ m, are all distinct. From now on, fix a set
of constants a1�b1� � � � �aS�bS in R

dx . For measurable sets A�A∗ ⊂ R
dx+dy ,

define

� �A�A∗� �zi�1 ≤ i ≤m�� = 1
2

m∑
i=1

S∑
s=1

a′s�xix′i∗ + xi∗x
′
i�bsI�zi ∈ A� zi∗ ∈ A∗��

where i∗ is the index for which yi∗ is the nearest neighbor of yi, that is, for
which

�yi − yi∗� = min
1≤j≤m
j �=i

�yi − yj��

Also define

�n = �Zi�1 ≤ i ≤ n�
so that we can write

S∑
s=1

a′s�̃nbs =
1
n
� �Rdx+dy�Rdx+dy ��n��

As the notation will become rather complicated, let us make a minor simplifi-
cation by assuming that the density f of Z is bounded. It will be clear that if
this is not the case, we can do a truncation by attaching an indicator to every
relevant expectation and then the proof will go through in more or less the
same way as for the case where f is bounded. Since

1 = G��y
 g�y� > 0�� = lim
ε→0
G��y
 ε < g�y� < ε−1���

it follows that for each δ > 0 there exists some ε ∈ �0�1� such that

Ḡ��y
 ε < g�y� < ε−1�� < δ/4�
Since �y
 ε < g�y� < ε−1� is open, it can be written as a countable union of
bounded open rectangles, sets of the form �e1� f1� × · · · × �edy

� fdy
� for finite

ei� fi. Then for any δ > 0 it can be selected from these a finite set of bounded
open rectangles whose union we denote by C such that

0 ≤ Ḡ�C� − Ḡ��y
 ε < g�y� < ε−1�� < δ/4�
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As a consequence, for every δ > 0 there exists a set C which is the union of a
finite number of bounded rectangles in R

dy such that

Ḡ�C� < δ/2 and 0 < inf
y∈C
g�y� ≤ sup

y∈C
g�y� <∞�

Now take a bounded Borel set B ∈ R
dx so that P�X �∈ B� < δ/2 and write

A = B×C. Clearly,

F̄�A� = P�Z �∈ B×C� ≤ P�X �∈ B� +P�Y �∈ C� < δ�(33)

Write

n1/2
S∑
s=1

a′s�̃nbs =
1
n1/2

[
� �A�A��n� +� �Ac�A��n�

+� �A�Ac��n� +� �Ac�Ac��n�
]
�

By Theorem 2 and (33), the variance of

n−1/2
[
� �Ac�A��n� +� �A�Ac��n� +� �Ac�Ac��n�

]

can be made as small as desired by choosing a small enough δ. Thus, the
central limit theorem follows if we show

n−1/2(� �A�A��n� −E� �A�A��n�
) −→d Normal �0� σ2��(34)

where

σ2 =
4∑
i=1

κiωi�A�

and where, with

S�y1�y2� r1� r2� 
= S�y1� r1� ∪S�y2� r2�� y1�y2 ∈ R
dy � r1� r2 > 0�

�S� 
= ∫
S dy� S ⊂ R

dy

and ψ as defined in Theorem 3, the κi and ωi�A� are given by

κ1 = 1+
∫

exp�−�S�0��� ���� ������d��(35)

κ2 =
∫
I���13 − �23� > ��13� ∨ ��23��
× exp�−�S��13��23� ��13�� ��23����d�13 d�23

+ 2
∫
I���12 − �23� > ��12� > ��23��
× exp�−�S�0��12� ��12�� ��23����d�12 d�23�

(36)
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κ3 = −
∫
�12

∫
�13

∫
�24

I
(��13� > ��12� ∧ ��12 − �24�

or ��24� > ��12� ∧ ��12 − �13�
or ��12� < ��13� + ��24�

)
× exp�−�S�0� ��13��� − �S�0� ��24����d�12 d�13 d�24

+
∫
�12

∫
�13

∫
�24

I
(��13� < ��12� ∧ ��12 − �24��

��24� < ��12� ∧ ��12 − �13��
��12� ≤ ��13� + ��24�

)
× exp�−�S�0��12� ��13�� ��24����d�12 d�13 d�24�

(37)

κ4 = −1(38)

and

ω1�A� =
∫
ψ2�x1�x2�f�x1�y�f�x2�y�
× I�x1�x2 ∈ B� y ∈ C�g�y�dx1 dx2 dy�

ω2�A� =
∫
ψ�x1�x2�ψ�x1�x3�I�x1�x2�x3 ∈ B� y ∈ C�
× f�x1�y�f�x2�y�f�x3�y�g�y�dx1 dx2 dx3 dy�

ω3�A� =
∫ (∫

ψ�x1�x2�I�x1�x2 ∈ B� y ∈ C�

× f�x1�y�f�x2�y�dx1 dx2

)2

g�y�dy�

ω4�A� =
(∫
ψ�x1�x2�I�x1�x2 ∈ B� y ∈ C�

× f�x1�y�f�x2�y�g�y�dx1 dx2 dy
)2

�

Here the ωi�A� are truncated versions of the ωi in Theorem 3. Also note that
in the κi, the purpose for the particular subscripts for the dummy variables
�’s is to keep track of how the various κi arise in the proof.

The proof of (34) goes as follows. One of the novelties here is a coupling
argument which simplifies the proof. For each n ≥ 1, let Pn be a Poisson
random variable with mean n and independent of all the Zi. Define

�n = �Pn = �Z1� � � � �ZPn��
Thus, �n is a Poisson process with intensity measure n

∫
• f�z�dz. Also let

τ�m� = E� �A�A��m��
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Define

σ2
1 = κ1ω1�A� + κ2ω2�A� + �κ3 − 1�ω3�A��
σ2

2 = ω3�A� and σ2
3 = ω4�A��

(39)

Note that

σ2 = σ2
1 + σ2

2 − σ2
3 �

Write

� �A�A��n� −E� �A�A��n�√
n

+ τ�Pn� − τ�n�√
n

= � �A�A��n� −E� �A�A��n�√
n

− � �A�A��n� −� �A�A��n� − �τ�Pn� − τ�n��√
n

+ E� �A�A��n� −E� �A�A��n�√
n

�

(40)

The first term on the right-hand side of (40) converges in distribution to Nor-
mal �0� σ2

1 +σ2
2 � by Proposition 6. The second term on the right converges to 0

in probability by Proposition 9 and the fact that Pn−n = Op�n1/2�. The third
term on the right converges to 0 by a straightforward computation (cf. Lemma
8). Note that the l.h.s. of (40) is the sum of two independent random variables
by the definition of Pn. Since Proposition 10 shows that 
τ�Pn� − τ�n��/

√
n

converges in distribution to Normal �0� σ2
3 �, the proof of (34) follows.

6. Blocking. The main purpose of this section is to prove a central limit
theorem for the first term on the right of (40). Therefore we continue to work
in that setting and use the notation defined there.

Proposition 6. Suppose that A = B × C ∈ R
dx+dy where B is a bounded

Borel set in R
dx and C ∈ R

dy is a finite union of bounded rectangles. Assume
that f and g satisfy the assumptions of Theorem 3 and also 0 < inf y∈C g�y� ≤
supy∈C g�y� <∞ and supz∈A f�z� <∞. Then

n−1/2(� �A�A��n� −E� �A�A��n�
) −→d Normal �0� σ2

1 + σ2
2 �(41)

where σ2
1 and σ2

2 are given by (39).

Proof. A blocking method is created for the purpose of proving (41) and
is described as follows. For each n, partition C into disjoint equal-sized cubes
C1� � � � � Cp. A cube is a rectangle of the form �e1� e1 + δ� × · · · × �edy

� edy
+ δ�

for some δ > 0 and e1� � � � � edy
∈ R. Call these Ci “blocks.” Such a partition is

possible if we choose the rectangles that form C in such a way that the ratio
of the lengths of any pair of sides is a rational number. This can clearly be
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Fig. 1. Two adjacent blocks for dy = 2.

done without sacrificing generality. Within each Ci, place a “big” cube Ĉi in
the center and fill the remaining space with l layers of equal-sized “small”
cubes where d1/2

y < l ≤ d1/2
y +1. Assume that the sizes of the big (small) cubes

in all the Ci are the same. This way, every pair of big cubes Ĉi and Ĉj are
buffered by at least 2l layers of small cubes. Figure 1 illustrates two adjacent
blocks in dimension 2 with l = 2. Denote by C̃i�1� � � � � C̃i� q the small cubes
that touch Ĉi (i.e., the first layer of small cubes outside of Ĉi). The motivation
for this scheme of blocking is the following. Clearly, if y ∈ Ĉi, it follows from
the choice of l that

inf ��y − y′�
 y′ �∈ Ci� − min
1≤k≤q

sup��y − y′�
 y′ ∈ C̃i� k�

≥ �l− d1/2
y � × length of the side of a small cube > 0

(42)

Suppose that Yj ∈ Ĉi and there is at least a Ym in each of the C̃i� k, then (42)
shows that the nearest neighbor of Yj must be in Ci. We will make use of this
shortly. First, control the sizes of the big and small cubes by choosing

∫
Ĉ1

dy ∼ n−β and
∫
C̃1�1

dy ∼ n−β′ where 1/2 < β < β′ < 1�(43)

It is then easily verified that the small cubes are asymptotically negligible
and in fact ∫

C1

dy ∼ n−β� p = O�nβ� and q = O�n�β′−β��dy−1�/dy��(44)

Note that we suppressed n at various places to streamline notation and fur-
thermore write

� � · � · � =� �B× · �A� ·��
Since the big and small cubes are all disjoint,

� �C��n� =�

( p⋃
i=1

Ĉi��n
)
+�

( p⋃
i=1

�Ci − Ĉi���n
)
�
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By (43), (44) and the fact that the Xi are finitely truncated, it is easy to check
that

n−1/2�

( p⋃
i=1

�Ci − Ĉi���n
)
→ 0 uniformly almost surely

and hence

n−1/2
(
�

( p⋃
i=1

�Ci − Ĉi���n
)
−E�

( p⋃
i=1

�Ci − Ĉi���n
))

−→ 0 a.s.

So (41) will follow if we prove

n−1/2
(
�

( p⋃
i=1

Ĉi��n
)
−E�

( p⋃
i=1

Ĉi��n
))

−→d Normal �0� σ2
1 + σ2

2 ��(45)

Let

�n�E� = ��X�Y� ∈ �n
 Y ∈ E� and Nn�E� = #��n�E��� E ⊂ R
dy �

Define the following events:

E
�1�
i =

q1⋂
k=1

�Nn�C̃i� k� �= 0��

E
�2�
i = ��Nn�Ci�/ENn�Ci� − 1� ≤ ζn�� 1 ≤ i ≤ p�

where ζn tends to 0 slowly enough so that

P
�E�1�
i �c� and P
�E�2�

i �c� tend to 0 exponentially as n→∞
uniformly in i

(46)

and hence
p∑
i=1

(
P
�E�1�

i �c� +P
�E�2�
i �c�

) = 0�(47)

This is possible by (43), (44) and the assumption inf y∈C g�y� > 0.
Consider the characteristic function

φn�t� = E exp
(
itn−1/2

[
�

( p⋃
i=1

Ĉi��n
)
−E�

( p⋃
i=1

Ĉi��n
)])

� t ∈ R�

Write

φn�t� = φn�1�t� +φn�2�t��
where

φn�1�t�=E
[
I⋂p

i=1�E
�1�
i ∩E�2�i � exp

(
itn−1/2

[
�

( p⋃
i=1

Ĉi��n
)
−E�

( p⋃
i=1

Ĉi��n
)])]

�

φn�2�t�=E
[
I⋃p

i=1
�E
�1�
i �c∪�E�2�i �c� exp

(
itn−1/2

[
�

( p⋃
i=1

Ĉi��n
)
−E�

( p⋃
i=1

Ĉi��n
)])]

�
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By (47), φn�2�t� → 0 and we only have to deal with φn�1�t�. Take any i =
1� � � � � p. If E�1�

i holds, then by (42) and the explanation there, � �Ĉi��n� is
completely determined by the set �n�Ci�, namely those points in �n whose
y-coordinates are in Ci. As a result,

� �Ĉi��n� =� �Ĉi��n�Ci�� on E�1�
i

and as a consequence,

φn�1�t� = E
{
I⋂p

i=1�E
�1�
i ∩E�2�i � exp

(
itn−1/2
� �Ĉi��n�Ci�� −E� �Ĉi��n��

)}
�

Now write

φn�1�t� = E
{
I⋂p

i=1E
�2�
i

(
exp

[
itn−1/2

p∑
i=1

Vn� i

])( p∏
i=1

I
E
�1�
i

exp�itn−1/2Un� i�
)

× exp
[
itn−1/2

p∑
i=1

Wn�i

]}
�

where

Un� i =� �Ĉi��n�Ci�� −E
� �Ĉi��n�Ci���Nn�Ci���
Vn� i = E
� �Ĉi��n�Ci���Nn�Ci�� −E
� �Ĉi��n�Ci����
Wn� i = E
� �Ĉi��n�Ci��� −E
� �Ĉi��n���

By (46),
∑p
i=1Wn�i → 0 exponentially fast and so we focus on the remaining

terms. Clearly the random quantities I
E
�1�
i

exp�itn−1/2Un� i�, 1 ≤ i ≤ p, are con-

ditionally independent given theNn�Ci� and I⋂p
i=1E

�2�
i

exp�itn−1/2 ∑p
i=1Vn� i� is

measurable with respect to Nn�Ci�, 1 ≤ i ≤ p. Consequently, we have

φn�1�t� = E
{
I⋂p

i=1E
�2�
i

exp
[
itn−1/2

p∑
i=1

Vn� i

] p∏
i=1

γn� i�t�
}
+ o�1��(48)

where

γn� i�t� = E
(
I
E
�1�
i

exp�itn−1/2Un� i��Nn�Ci�
)
�

Similar to the derivation of (47), it can be shown that on the event
⋂p
i=1E

�2�
i ,

lim
n→∞

p∑
i=1

P
�E�1�
i �c�Nn�Ci�� = 0 uniformly�

Hence, to obtain the limit of
∏p
i=1 γn� i�t�, we can focus on

p∏
i=1

E
(

exp�itn−1/2Un� i��Nn�Ci�
)
�

which is the characteristic function of the sum of p independent random vari-
ables. On the event

⋂p
i=1E

�2�
i , these random variables have zero means and the
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sum of the variances converges to a constant σ2
1 uniformly by Lemma 7. Since

we have restricted the Xi to be in a bounded set B and n−1/2×n× ∫
C1
dy → 0

by (44), it is easy to see that on the event
⋂p
i=1E

�2�
i , n−1/2Un� i tends to 0

uniformly in i and ω. Then it follows from the elementary inequality,
∣∣∣∣EeitX−

2∑
m=0

E
�itX�m
m!

∣∣∣∣≤
∣∣∣∣E�itX�

3

3!

∣∣∣∣≤ t
3 sup �X�

6
EX2 for any bounded r.v. X

that

lim
n→∞

p∏
i=1

E
(

exp�itn−1/2Un� i��Nn�Ci�
) = exp�−σ2

1 t
2/2� uniformly on

p⋂
i=1

E
�2�
i �

It then follows from (48) and (46) that

φn�1�t� = exp�−σ2
1 t

2/2�E
{
I⋂p

i=1E
�2�
i

exp
[
itn−1/2

p∑
i=1

Vn� i

]}
+ o�1�

= exp�−σ2
1 t

2/2�E
{

exp
[
itn−1/2

p∑
i=1

Vn� i

]}
+ o�1��

The same approach as before works as Vn�1� � � � �Vn�p are independent (by
the independent increment property of the Poisson process). It follows from
Lemma 8 that the variance of

∑p
i=1Vn� i converges to σ2

2 . In view of (46), it is
an easy exercise to verify the Lindeberg condition for the Vn� i and hence (45)
follows from these steps. ✷

We continue to use the notation defined in Proposition 6. Write

fi�z� =
f�z�I
y ∈ Ci�
G�Ci�

and let Zi� j = �Xi� j�Yi� j�, j ≥ 1, be iid random variables with distribution

P�Zi�1 ∈ ·� =
∫

z∈·
fi�z�dz�

Accordingly, define gi�y�, Gi and fi�x�y�.

Lemma 7. Under the conditions of Proposition 6,

n−1
p∑
i=1

var�Un� i�Nn�Ci�� → σ2
1

as n→∞ uniformly on the event
p⋂
i=1

E
�2�
i �

(49)

where σ2
1 is defined by (39).
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Proof. First fix 1 ≤ i ≤ p andm ≥ 4 and let Yi� j∗ be the nearest neighbor
of Yi� j for 1 ≤ j ≤ m. For convenience, in this proof and that of Lemma 8 we
will write

ζ�x1�x2� = 1
2

S∑
s=1

a′s�x1x′2 + x2x′1�bsI�x1�x2 ∈ B��

Then, by symmetry,

var�Un� i�Nn�Ci� =m�
= E
� 2�Ĉi� �Zi� j� 1 ≤ j ≤m��� −E2
� �Ĉi� �Zi� j� 1 ≤ j ≤m���

=
m∑
j=1

m∑
k=1

E
ζ�Xi� j�Xi� j∗�ζ�Xi� k�Xi� k∗�I�Yi� j�Yi� k ∈ Ĉi��

− (
mE
ζ�Xi�1�Xi�1∗� I�Yi�1 ∈ Ĉi��

)2

=mE
ζ2�Xi�1�Xi�1∗�I�Yi�1 ∈ Ĉi��
+m�m− 1�E
ζ�Xi�1�Xi�1∗�ζ�Xi�2�Xi�2∗�I�Yi�1�Yi�2 ∈ Ĉi��
− (
mE
ζ�Xi�1�Xi�1∗� I�Yi�1 ∈ Ĉi��

)2

=
M�2�
i�1�m� +M�2�

i�2�m� +M�2�
i�3�m� +M�2�

i�4�m�
+M�2�

i�5�m� +M�2�
i�6�m� −M�1�

i �m��

(50)

where

M
�2�
i�1�m� =mE
ζ2�Xi�1�Xi�1∗�I�Yi�1 ∈ Ĉi��

=m�m− 1�E
ζ2�Xi�1�Xi�2�I�1∗ = 2� Yi�1 ∈ Ĉi���

M
�2�
i�2�m� =m�m− 1�E
ζ2�Xi�1�Xi�2�I�1∗ = 2� 2∗ = 1� Yi�1�Yi�2 ∈ Ĉi���

M
�2�
i�3�m� =m�m− 1��m− 2�E[ζ�Xi�1�Xi�3�ζ�Xi�2�Xi�3�

× I�1∗ = 3� 2∗ = 3� Yi�1�Yi�2 ∈ Ĉi�
]
�

M
�2�
i�4�m� =m�m− 1��m− 2�E[ζ�Xi�1�Xi�2�ζ�Xi�2�Xi�3�

× I�1∗ = 2� 2∗ = 3� Yi�1�Yi�2 ∈ Ĉi�
]
�

M
�2�
i�5�m� =m�m− 1��m− 2�E[ζ�Xi�1�Xi�3�ζ�Xi�2�Xi�1�

× I�1∗ = 3� 2∗ = 1� Yi�1�Yi�2 ∈ Ĉi�
]
�

M
�2�
i�6�m� =m�m− 1��m− 2��m− 3�E[ζ�Xi�1�Xi�3�ζ�Xi�2�Xi�4�

× I�1∗ = 3� 2∗ = 4� Yi�1�Yi�2 ∈ Ĉi�
]
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and

M
�1�
i �m� =

(
m�m− 1�E
ζ�Xi�1�Xi�2�I�1∗ = 2� Yi�1 ∈ Ĉi��

)2
�

Clearly,

M
�2�
i�1�m� =m�m− 1�

∫
ζ2�x1�x2�I�y1 ∈ Ĉi�fi�z1�fi�z2�

× Ḡm−2
i �S�y1� �y1 − y2���dz1 dz2�

Changing variables from �y1�y2� to �y1��� where � = �mgi�y1��1/dy�y2 − y1�,
the above becomes

M
�2�
i�1�m� = �m− 1�

∫
ζ2�x1�x2�I�y1 ∈ Ĉi�fi�x1�y1�

× fi�x2�y1 + �/�mgi�y1��1/dy�
× Ḡm−2

i �S�y1� ���/�mgi�y1��1/dy��dx1 dy1 dx2 d�

= m− 1
G�Ci�

∫
I�y1 ∈ Ĉi�y1 + �/�mgi�y1��1/dy ∈ Ci�

× ζ2�x1�x2�f�x1�y1�f�x2�y1 + �/�mgi�y1��1/dy�
× Ḡm−2

i �S�y1� ���/�mgi�y1��1/dy��dx1 dy1 dx2 d��

Since g is bounded away from 0 and ∞ on C = ⋃
i Ci, we have

sup
1≤i≤p�m≥1�y∈C

Ḡm−2
i �S�y� ���/�mgi�y��1/dy�� ≤ exp�−δ���2��(51)

where

δ 
= inf y∈C g�y�
supy∈C g�y�

> 0�

Now replace m by Nn�Ci� in M�2�
i�1�m� and sum M

�2�
i�1�Nn�Ci�� over i =

1� � � � � p. Taking account of the event
⋂p
i=1E

�2�
i , it follows from (51) and

dominated convergence that
p∑
i=1

M
�2�
i�1�Nn�Ci�� ∼ nω1�A�

∫
exp�−��S�0� ������d� = nω1�A�(52)

as n→∞ uniformly on
⋂p
i=1E

�2�
i . Similarly, uniformly on

⋂p
i=1E

�2�
i , we have,

as n→∞,
p∑
i=1

M
�2�
i�2�Nn�Ci�� ∼ nω1�A�

∫
exp�−�S�0��� ���� ������d��(53)

p∑
i=1

M
�2�
i�3�Nn�Ci��

∼ nω2�A�
∫
I���13 − �23� > ��13� ∨ ��23��
× exp�−�S��13��23� ��13�� ��23����d�13 d�23

(54)
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and
p∑
i=1

M
�2�
i�4�Nn�Ci�� =

p∑
i=1

M
�2�
i�5�Nn�Ci��

∼ nω2�A�
∫
I���12 − �23� > ��12� > ��23��
× exp�−�S�0��12� ��12�� ��23����d�12 d�23�

(55)

Now let’s consider the most crucial term, M�2�
i�6. Observe that

M
�2�
i�6�m� =m�m− 1��m− 2��m− 3�

×
∫
ζ�x1�x2�ζ�x3�x4�I�y1�y2 ∈ Ĉi�fi�z1�fi�z2�fi�z3�fi�z4�
× I(�y1 − y3� < �y1 − y2� ∧ �y1 − y4��

�y2 − y4� < �y2 − y1� ∧ �y2 − y3�
)

× Ḡm−4
i

(
S�y1� �y1 − y3�� ∪S�y2� �y2 − y4��

)
dz1 dz2 dz3 dz4

=M�2�
i�6�1�m� +M�2�

i�6�2�m��
where

M
�2�
i�6�1�m� =m�m− 1��m− 2��m− 3�

×
∫
ζ�x1�x2�ζ�x3�x4�I�y1�y2 ∈ Ĉi�

×
[
I
(�y1 − y3� < �y1 − y2� ∧ �y1 − y4��
�y2 − y4� < �y2 − y1� ∧ �y2 − y3��
�y1 − y2� > �y1 − y3� + �y2 − y4�

)− 1
]

× fi�z1�fi�z2�fi�z3�fi�z4�
(
1−Gi�S�y1� �y1 − y3���

−Gi�S�y2� �y2 − y4���
)m−4

dz1 dz2 dz3 dz4

+m�m− 1��m− 2��m− 3�
∫
ζ�x1�x2�ζ�x3�x4�I�y1�y2 ∈ Ĉi�

× I(�y1 − y3� < �y1 − y2� ∧ �y1 − y4���y2 − y4� < �y2 − y1� ∧ �y2 − y3��
�y1 − y2� ≤ �y1 − y3� + �y2 − y4�

)
fi�z1�fi�z2�fi�z3�fi�z4�

× Ḡm−4
i

(
S�y1� �y1 − y3�� ∪S�y2� �y2 − y4��

)
dz1 dz2 dz3 dz4

and

M
�2�
i�6�2�m� =m�m− 1��m− 2��m− 3�

×
∫
ζ�x1�x2�ζ�x3�x4�I�y1�y2 ∈ Ĉi�fi�z1�fi�z2�fi�z3�fi�z4�

×
(
1−Gi�S�y1� �y1 − y3��� −Gi�S�y2� �y2 − y4���

)m−4

× dz1 dz2 dz3 dz4�
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As before, it is straightforward to show that

p∑
i=1

M
�2�
i�6�1�Nn�Ci��

∼ nω3�A�
[
−

∫
�12

∫
�13

∫
�24

I
(��13� > ��12� ∧ ��12 − �24�

or ��24� > ��12� ∧ ��12 − �13� or ��12� < ��13� + ��24�
)

× exp�−�S�0� ��13��� − �S�0� ��24����d�12 d�13 d�24

+
∫
�12

∫
�13

∫
�24

I
(��13� < ��12� ∧ ��12 − �24��

��24� < ��12� ∧ ��12 − �13��
��12� ≤ ��13� + ��24�

)

× exp�−�S�0��12� ��13�� ��24����d�12 d�13 d�24

]
�

(56)

So it remains to show how M�2�
i�6�2�m� interacts with M�1�

i �m�. Write

M
�2�
i�6�2�m� =m4

∫
ζ�x1�x2�ζ�x3�x4�I�y1�y2 ∈ Ĉi�

× exp
[−mGi�S�y1� �y1 − y3��� −mGi�S�y2� �y2 − y4���

]
× fi�z1�fi�z2�fi�z3�fi�z4�dz1 dz2 dz3 dz4 +R�2�

i �m��
where

R
�2�
i �m� =m�m− 1��m− 2��m− 3�

×
∫
ζ�x1�x2�ζ�x3�x4�I�y1�y2 ∈ Ĉi�

× (
1−Gi�S�y1� �y1 − y3��� −Gi�S�y2� �y2 − y4���

)m−4

× fi�z1�fi�z2�fi�z3�fi�z4�dz1 dz2 dz3 dz4

−m4
∫
ζ�x1�x2�ζ�x3�x4�I�y1�y2 ∈ Ĉi�

× exp
[−mGi�S�y1� �y1 − y3��� −mGi�S�y2� �y2 − y4���

]
× fi�z1�fi�z2�fi�z3�fi�z4�dz1 dz2 dz3 dz4�

Also write

M
�1�
i �m� =m4

∫
ζ�x1�x2�ζ�x3�x4�I�y1�y2 ∈ Ĉi�

× exp
[−mGi�S�y1� �y1 − y3��� −mGi�S�y2� �y2 − y4���

]
× fi�z1�fi�z2�fi�z3�fi�z4�dz1 dz2 dz3 dz4 +R�1�

i �m��
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where

R
�1�
i �m� =

(
m�m− 1�

∫
ζ�x1�x2�I�y1 ∈ Ĉi�fi�z1�fi�z2�

× Ḡm−2
i �S�y1� �y2 − y1���dz1 dz2

)2

−m4
∫
ζ�x1�x2�ζ�x3�x4�I�y1�y2 ∈ Ĉi�

× exp
[−mGi�S�y1� �y1 − y3��� −mGi�S�y2� �y2 − y4���

]
× fi�z1�fi�z2�fi�z3�fi�z4�dz1 dz2 dz3 dz4�

Hence

M
�2�
i�6�2�m� −M�1�

i �m� = R�2�
i �m� −R�1�

i �m��
Treating this with a similar approach to before yields

p∑
i=1

M
�2�
i�6�2�Nn�Ci�� −

p∑
i=1

M
�1�
i �Nn�Ci�� ∼ −nω3�A��(57)

The proof of (49) follows from (52)–(57). ✷

Lemma 8. Under the conditions of Proposition 6,

lim
n→∞n

−1
p∑
i=1

var�Vn� i� = σ2
2 �

where σ2
2 is defined by (39).

Proof. For convenience, denote Nn�Ci� by Nn�i and use the notation in
Proposition 6 and Lemma 7. Thus,

E
� �Ĉi��n��Nn�i� =Nn�i�Nn�i − 1�
∫
ζ�x1�x2�I�y1 ∈ Ĉi�fi�z1�fi�z2�

× ḠNn� i−2
i �S�y1� �y2 − y1���dz1 dz2�

Let N be a Poisson random variable with mean λ and let

φ�s� = EsN = eλ�s−1�� s > 0�

Then for any s > 0,

E�N2�N− 1�2sN−2� = s2E�N�N− 1��N− 2��N− 3�sN−4�
+ 4sE�N�N− 2��N− 2�sN−3� + 2E�N�N− 1�sN−2�

= s2φ�4��s� + 4sφ�3��s� + 2φ�2��s�
= eλ�s−1��s2λ4 + 4sλ3 + 2λ2�
=
 γ�s� λ��
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Hence,

E�E2
� �Ĉi��n��Nn�i��

=
∫
ζ�x1�x2�ζ�x3�x4�I�y1�y3 ∈ Ĉi�fi�z1�fi�z2�fi�z3�fi�z4�

×E[N2
n� i�Nn�i − 1�2�Ḡi�S�y1� �y2 − y1���Ḡi�S�y3� �y3 − y4����Nn�i−2]

×dz1 dz2 dz3 dz4

=
∫
ζ�x1�x2�ζ�x3�x4�I�y1�y3 ∈ Ĉi�fi�z1�fi�z2�fi�z3�fi�z4�

×γ�Ḡi�S�y1� �y2 − y1���Ḡi�S�y3� �y3 − y4���� nG�Ci��dz1 dz2 dz3 dz4�

Now,

γ�Ḡi�S�y1� �y2 − y1���Ḡi�S�y3� �y3 − y4���� nG�Ci��
= �nG�Ci��4 exp

(−nG�Ci�[Gi�S�y1� �y2 − y1���
+Gi�S�y3� �y3 − y4���

])
×

(
1− 2Gi�S�y1� �y2 − y1��� − 2Gi�S�y3� �y3 − y4���

+ nG�Ci�Gi�S�y1� �y2 − y1���Gi�S�y3� �y3 − y4���
)

+ 4�nG�Ci��3 exp
(−nG�Ci�[Gi�S�y1� �y2 − y1���

+Gi�S�y3� �y3 − y4���
])

+ smaller order terms�

(58)

Similarly,

E�N�N− 1�sN−2� = λ2eλ�s−1� 
= δ�s� λ�

and hence

E2�E
� �Ĉi��n��Nn�i��

=
∫
ζ�x1�x2�ζ�x3�x4�I�y1�y3 ∈ Ĉi�fi�z1�fi�z2�fi�z3�fi�z4�

×E
[
Nn�i�Nn�i − 1�ḠNn� i−2

i �S�y1� �y2 − y1���
]

×E
[
Nn�i�Nn�i − 1�ḠNn� i−2

i �S�y3� �y3 − y4���
]
dz1 dz2 dz3 dz4

=
∫
ζ�x1�x2�ζ�x3�x4�I�y1�y3 ∈ Ĉi�fi�z1�fi�z2�fi�z3�fi�z4�

× δ�Ḡi�S�y1� �y2 − y1���� nG�Ci��
× δ�Ḡi�S�y3� �y3 − y4���� nG�Ci��dz1 dz2 dz3 dz4�
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where

δ�Ḡi�S�y1� �y2 − y1���� nG�Ci��δ�Ḡi�S�y3� �y3 − y4���� nG�Ci��
= �nG�Ci��4 exp�−nG�Ci�
Gi�S�y1� �y2 − y1��� +Gi�S�y3� �y3 − y4������

Note that this cancels the first term in (58). By an approach similar to that
in the proof of Lemma 7, it is now easy to show from (58) that

var
( p∑
i=1

Vn� i

)
=

p∑
i=1

{
E�E2
� �Ĉi��n��Nn�i�� −E2�E
� �Ĉi��n��Nn�i��

}

∼ nω3�A�
[
− 4

∫
exp�−�S�0� ������d�

×
∫
�S�0� ����� exp�−�S�0� ������d�

+
( ∫

�S�0� ����� exp�−�S�0� ������d�

)2

+ 4
( ∫

exp�−�S�0� ������d�

)2]

= nω3�A�� ✷

7. Other technical details.

Proposition 9. Under the conditions of Proposition 6, there exists some
finite constant M such that for all m�n,

var
(
� �A�A��n+m� −� �A�A��n�

) ≤Mm�
Proof. For i = 1� � � � �m+n, let i∗ be the index for which Yi∗ is the nearest

neighbor of Yi in �n+m and for 1 ≤ i ≤ n, let i� be the index for which Yi� is
the nearest neighbor of Yi in �n. Write

� �A�A��n+m� −� �A�A��n� =
 E1 +E2�

where, with ψ defined in Theorem 3,

R1 =
n+m∑
i=n+1

ψ�Xi�Xi∗�I�Zi�Zi∗ ∈ A��

R2 =
n∑
i=1


ψ�Xi�Xi∗�I�Zi�Zi∗ ∈ A� − ψ�Xi�Xi��I�Zi�Zi� ∈ A���

The first of these can be handled in a way that is very similar to what is in
the proof of Theorem 2 or Lemma 7 to give

var�R1� ≤Mm�
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Now write

Di = ψ�Xi�Xi∗�I�Zi�Zi∗ ∈ A� − ψ�Xi�Xi��I�Zi�Zi� ∈ A�
and hence by symmetry,

var�R2� = nED2
1 + n�n− 1�ED1D2 − n2E2D1�

First,

nED2
1 = nED2

1I�1∗ �= 1�� ≤MnP�1∗ �= 1�� =Mn m

n− 1
�

Next,

n�n− 1�ED1D2 = n�n− 1�ED1D2I�1∗ �= 1��2∗ �= 2��
= n�n− 1�(ED1D2I
�1∗ �= 1��2∗ �= 2�� ∩F�

+ED1D2I
�1∗ �= 1�� 2∗ �= 2�� ∩Fc�)�
where

F = �1� �= 2� 1� �= 2�� 2� �= 1� 1∗ �= 2∗��
Keep in mind that the Di are bounded. Hence, taking an event in Fc, say
�1� = 2�, the contribution of it to n�n− 1�ED1D2 is

n�n− 1�E�D1D2�I�1∗ �= 1�� 2∗ �= 2�� 1� = 2�
≤Mn�n− 1�P�1∗ �= 1�� 1� = 2�

=Mn�n− 1�m
∫
I��y1 − y2� > �y1 − yn+1��Ḡn−1�S�y1
 �y1 − y2���

× Ḡm−1�S�y1
 �y1 − yn+1���dG�y1�dG�y2�dG�yn+1�

=Mn�n− 1�m
n

1
n+m�

The contribution of other events in Fc to n�n − 1�ED1D2 can be dealt
with using the same principle to give O�m�. So it remains to consider
n�n− 1�ED1D2I
�1∗ �= 1�� 2∗ �= 2�� ∩Fc� − n2E2D1. Clearly,

n�n− 1�ED1D2I
�1∗ �= 1�� 2∗ �= 2�� ∩F�
= n�n− 1��n− 2��n− 3�m�m− 1�ED1D2

× I�1� = 3� 2� = 4� 1∗ = n+ 1� 2∗ = n+ 2��
whereas

n2E2D1 = �n�n− 1�mED1I�1∗ = n+ 1� 1� = 2��2

As in the proof of Lemma 7, the two leading terms here cancel and the re-
mainders are of O�m�. This concludes the proof. ✷
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Proposition 10. Under the conditions of Proposition 6,

n−1/2�τ�Pn� − τ�n�� −→d Normal �0� σ2
3 �

where σ2
3 is defined by (39).

Proof. The proof is based on an application of the “delta-method,” as fol-
lows. Clearly,

τ�m� =m�m− 1�
∫
ψ�x1�x2�I�z1� z2 ∈ A�

× Ḡm−2�S�y1� �y1 − y2���dF�z1�dF�z2��

Now define

ρ�x� = τ�nx��

Then

ρ′�x� = n�2nx− 1�
∫
ψ�x1�x2�I�z1� z2 ∈ A�

× Ḡnx−2�S�y1� �y1 − y2���dF�z1�dF�z2�

+ nx�nx− 1�
∫
ψ�x1�x2�I�z1� z2 ∈ A�Ḡnx−2�S�y1� �y1 − y2���
× log�Gn�S�y1� �y1 − y2����dF�z1�dF�z2�

By dominated convergence,

ρ′�1� ∼ n
∫
ψ�x1�x2�I�x1�x2 ∈ B� y ∈ C�f�x1�y�f�x2�y�f�y�dx1 dx2 dy�

By the “delta-method” based on the fact that �Pn − n�/
√
n→d Normal �0�1�,

we obtain

τ�Pn� − τ�n�√
n

= ρ�Pn/n� − ρ�1�√
n

= ρ′�1��Pn/n� − 1√
n

+ oP�1� −→d Normal �0�ω4�A��� ✷
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