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TESTING UNIFORMITY VERSUS A MONOTONE DENSITY1

By Michael Woodroofe and Jiayang Sun

University of Michigan and Case Western Reserve University

The paper is concerned with testing uniformity versus a monotone den-
sity. This problem arises in two important contexts, after transformations,
testing whether a sample is a simple random sample or a biased sample,
and testing whether the intensity function of a nonhomogeneous Poisson
process is constant against monotone alternatives. A penalized likelihood
ratio test (P-test) and a Dip likelihood test (D-test) are developed. The
D-test is analogous to Hartigan and Hartigan’s (1985) Dip test for bump
hunting problems. While nonparametric, both the P- and D-tests are quite
efficient in comparison to the most powerful (MP) tests for some simple al-
ternatives and also the Laplace test developed for nonhomogeneous Poisson
process. The P- and D-tests have higher power than the above MP tests
under different sets of monotone alternatives and so have greater applica-
bility. Moderate sample size performance and applications of our tests are
illustrated via simulations and examination of an air-conditioning equip-
ment data set.

1. Introduction. Let f denote a density on the unit interval �0�1�, taken
to be continuous from the left, and suppose that a sampleX1� � � � �Xn ∼ind f is
available. The problem considered here is that of testing the null hypothesis
H0� f = 1� that f is the standard uniform density, against the alternative
H1� that f is nonincreasing on �0�1�. Two tests of this hypothesis are derived
and studied through asymptotic analysis and simulation experiments. The
problem arises in two important contexts, after transformations. After a prob-
ability integral transformation, the problem of testing whether a sample from
a population is a simple random sample against alternatives that involve a
monotone selection effect is of the form considered. Also, the problem of testing
whether the intensity function of a possibly nonhomogeneous Poisson process
is constant against monotone alternatives can be transformed into the form
considered here.

The two potential applications are described in more detail in Section 2. A
penalized likelihood ratio test (P-test) and a Dip likelihood test (D-test) of the
hypotheses are derived in Section 3. The D-test is similar to Hartigan and
Hartigan’s (1985) Dip test for bump hunting problems, and reduces to a one-
sided Kolmogorov–Smirnov test with an optional smoothing parameter in the
present context. The P-test starts with a penalized nonparametric maximum
likelihood estimator (PNPMLE), f̂ say, of f (assumed to be nonincreasing) and
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then compares the penalized likelihood at f = f̂ to the penalized likelihood
at f = 1. The properties of these two tests are examined in Section 4 through
a heuristic derivation of the asymptotic distributions and simulations of the
null distribution. Examples and power studies of the two tests and some most
powerful (MP) tests are presented in Section 5. The P- and D-tests are com-
petitive with the MP-tests under the alternatives for which the MP-tests are
optimal, and do better than the MP-tests under different alternatives. An ap-
plication to the air-conditioning equipment data from Moeller (1976) is also
provided. The mathematical development is informal in Sections 1–5. Proofs
are completed in an Appendix. Some familiarity with Robertson, Wright and
Dykstra (1988) [RWD hereafter] is assumed in the mathematical development.

The role of the penalty terms deserves comment. The reader may be fa-
miliar with Grenander’s (1956) nonparametric maximum likelihood estimator
(NPMLE) of a nonincreasing density function. If not, it is briefly described in
the Appendix and admirably described by RWD, Section 7.2. Unfortunately,
Grenander’s estimator is inconsistent at the endpoints and so is not appro-
priate for some applications, including the present one. The inconsistency is
sometimes called the “spiking problem,” because the estimator is too big at the
left endpoint. It is also too small at the right one. This problem was addressed
by Woodroofe and Sun (1993) [hereafter WS], who were especially interested in
f�0+� = limx↓0 f�x�. They showed that a suitable PNPMLE had the same form
as Grenander’s estimator, but with a deformed x-axis. They further showed
that the PNPMLE is consistent at the left endpoint and obtained an asymp-
totic distribution for rescaled estimation error. Here both endpoints are impor-
tant, and it is necessary to treat the penalty terms differently from WS. See
Section 3 and the Appendix for the details. The inclusion of the penalty term
in the likelihood is essential for the P-test. Without it, the contributions from
the endpoints dominate, and the unpenalized log-likelihood ratio test statistic
is unbounded for large n under the null hypothesis [cf. Groeneboom and Pyke
(1983)]. Also the power of the P-test was higher than that of the unpenalized
likelihood ratio test in the cases studied in Section 5. The penalty term plays a
much smaller role in the D-test, though it does not appear to harm the power
and may improve it in some cases.

Testing homogeneity of parameters versus monotonicity of parameters, a
related testing problem, has been studied by Cohen, Perlman and Sackrowitz
(1990), Wang (1994) and others. See also RWD, Chapter 5. There appears to
be little work on nonparametric versions of the problem. In effect, Boswell
(1966) proposes an unpenalized likelihood ratio test in the context of testing
the rate of a Poisson process. Similarly, Barlow (1968) considers an unpenal-
ized likelihood ratio test of a constant failure rate versus a nondecreasing, or
nondecreasing on the average failure rate. The focus here on penalized like-
lihood and large sample properties is quite different from those of the early
authors, however. Cohen and Sackrowitz (1993) compare several methods for
testing the rate of a nonhomogeneous Poisson process and provide a good en-
try into the literature on this question. The application to biased sampling
models is motivated by Sun and Woodroofe (1997).
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2. Examples. More detail on the two applications is provided in this sec-
tion.

Example 1. Nonhomogeneous Poisson processes. Let Nt, 0 ≤ t < ∞, be a
possibly nonhomogeneous Poisson process (NHPP) with intensity function λ.
Thus, Nt, 0 ≤ t <∞, has independent increments and Nt−Ns has a Poisson
distribution with mean ��t�−��s� for 0 ≤ s < t <∞, where ��t� = ∫ t

0 λ�u�du.
In quality control models, for example, Nt might represent the number of
defective items produced by time t. In such models, a constant λ represents a
stable process, an increasing λ represents system deterioration, and there is
interest in testing the two hypotheses. See Ascher and Feingold (1984) for a
survey on applications of NHPP’s and Misra (1983) for applications in software
reliability analysis. Suppose that the process is observed over a time interval
0 ≤ t ≤ T, and let Y1 < Y2 < · · · < Yn denote the times at which events occur.
Then the conditional joint density of Y1� � � � �Yn given NT = n� is

n!
λ�y1� × · · · × λ�yn�

��T�n � 0 ≤ y1 ≤ · · · ≤ yn ≤ T�

Thus, the conditional joint distribution of Y1/T� � � � �Yn/T is the same as the
joint distribution of the order statistics of a sample from the density f�x� =
Tλ�Tx�/��T�, 0 ≤ x ≤ 1, and the problem becomes testing f = 1 against
the alternative that f is nondecreasing. This is equivalent to the problem
considered, as it is easy to adapt our tests for nonincreasing alternatives to
ones for nondecreasing alternatives. See also Remark 1 in the next section.

Of course, one might ask how our tests compare with those using the infor-
mation that the data are from a NHPP. Bain, Engelhardt and Wright (1985)
compared, via Monte Carlo simulation, the power functions of six different
tests for a constant intensity against the alternative of an increasing intensity
function in a NHPP. They suggested using the L-, Z- and W-tests, described
below. Cohen and Sackrowitz (1993) have the same conclusion and explain
further why these three tests are recommended. They concluded, “� � � there is
essentially no reasonable test based on ranks [of interfailure times] that can
have an acceptable power function.” Our P- and D-tests are based on a pe-
nalized maximum likelihood estimator of a monotone density. If the penalty
parameters are zero, the P-test is the same as the W-test, and the D-test is
the one-sided Kolmogorov–Smirnov test. It is well known and shown by WS
that the unpenalized estimator suffers a spiking problem. So, our P-test with
nonzero penalty should work better than the W-test. Indeed, Boswell (1966),
the author of the W test, applies a bound (which is often unknown) on the in-
tensity function to control the spiking problem. Our tests are nonparametric
since the alternative hypothesis H1 only specifies that the density be nonin-
creasing. In the context of a NHPP, the P- and D-tests are based on the order
statistics (not ranks) of failure times (not interfailure times), so their competi-
tive performance shown in Section 5 (in comparison to L and Z tests) does not
contradict Cohen and Sackrowitz’s (1993) conclusion. In Section 5, we show
that the P- and D-tests are efficient; that is, they do not lose much power
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in comparison to the L- and Z-tests under the two specific alternatives for
which L and Z are uniformly most powerful unbiased tests, and the P- and
D-tests (especially P) do better than L- and Z-tests under other alternatives,
for example, some step functions.

Example 2 Testing a sample for bias. Consider a population with a
known, continuous distribution functionF. If a simple random sample is taken
from the population, then the result is of the form Y1� � � � �Yn ∼ind F. On the
other hand, if subjects with large values of y are selected with lower proba-
bility, then Y1� � � � �Yn ∼ind F

#, where

dF#�y� = w�y�dF�y�
κ

� y ∈ R�

w is a nonnegative, nonincreasing function, and κ denotes a normalizing con-
stant. If F is the standard uniform distribution, then the problem is of the
form considered in Section 1. If F is not uniform, a probability integral trans-
formation may be used to transform it to the uniform. A difficulty may arise
if F is unknown or partially unknown. We leave this case to future studies. It
is encouraging as shown in Section 5 that our P- and D-tests are comparable
to the most powerful tests for simple alternatives that require the selection
function w�x� to be length biased and power biased.

3. The test statistics.

A Penalized MLE. Let X1� � � � �Xn be independent and identically dis-
tributed with common density f and suppose that f is known to be nonin-
creasing and left continuous on �0�1�. Denote the order statistics by 0 < x1 <
· · · < xn < 1, and let x0 = 0, xn+1 = 1 and

lα�β�f� =
n∑
i=1

log�f�xi�� − nαf�0+� + nβ log�f�xn���

where α, β > 0. Then lα�β is called the penalized log-likelihood function. The
penalty terms nαf�0+� and nβ log�f�xn�� are included to suppress the spik-
ing problem, as in WS. The important difference between the penalty here
and that in WS is that both endpoints (rather than one) are penalized here
and the two points are penalized in different ways. Of course, there is some
subjectivity in the choice of the penalty terms. The choice made here leads
to a mathematically tractable problem and performed well in extensive sim-
ulations (not reported here) when compared to competitors, like nβf�xn� or
nβ log�f�1��. See also Remark 2 below.

The next step is to find the penalized maximum likelihood estimator. For
this the penalized log-likelihood function must be maximized subject to the
constraint that f be a nonincreasing, left-continuous density. It is easily seen
that the penalized log-likelihood function is maximized when f is a step func-
tion, say f�x� = fk for xk−1 < x ≤ xk and k = 1� � � � � n and f�x� = 0 for
x > xn. The maximizing values of fk, k = 1� � � � � n, may be found in WS, who
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analyzed the special case β = 0. Let ci = 1/n for i = 1� � � � � n−1, cn = 1/n+β,
w1 = α+ γx1, wi = γ�xi − xi−1�, i = 2� � � � � n, and

fk�γ� = min
i≤k

max
j≥k

ci + · · · + cj
wi + · · · +wj

(1)

for k = 1� � � � � n and γ > 0. The following may be proved as in WS. See the
Appendix.

Proposition 1. If xn > α/�1 + β�, then the equation γ = 1 + β − αf1�γ�
has a unique positive solution γ̂, and lα�β�f� is maximized by f̂�x� = f̂k,

xk−1 < x ≤ xk, k = 1� � � � � n+ 1, where f̂k = fk�γ̂�, k = 1� � � � � n and f̂n+1 = 0.

The proof is outlined in the Appendix.
In Sections 4 and 5, α = αn → 0 as n → ∞, so that xn > α/�1 + β� with

probability approaching 1 (rapidly). It is convenient to let γ̂ = 1/n (or other
small positive constant) and define f̂ as in the proposition when xn ≤ α/�1+β�.

The P-test. The first test statistic to be studied is a penalized likelihood
ratio test (P-test),

� = lα�β�f̂� − lα�β�1� =
n∑
k=1

log�f̂�xk�� − nα�f̂�x1� − 1� + nβ log�f̂�xn���(2)

This � has an alternative expression (3) below which is easier for analysis.
Write Ŵ0 = 0 = t0, Ŵk = ŵ1 + · · · + ŵk = α + γ̂xk, and tk = Ŵk/Ŵn = �α +
γ̂xk�/�α + γ̂xn� for k = 1� � � � � n. Next let G� �0�1� → R be a right-continuous
step function for which

G�tk� =
{
k/�n�α+ γ̂xn��� if k ≤ n− 1,

�1+ β�/�α+ γ̂xn�� if k = n.

Let G̃ be the least concave majorant of G and let g̃ be the left-hand derivative
of G̃. Then

f̂�xk� = f̂k = min
0≤i<k

max
k≤j≤n

G�tj� −G�ti�
tj − ti

= g̃�tk�

for k = 1� � � � � n, using Theorem 1.4.4 from RWD, page 23. So, the log-likelihood
ratio statistic is

� = n�α+ γ̂xn�
∫ 1

0
log�g̃�x��dG�x� − nα�g̃�t1� − 1��

= n�α+ γ̂xn�
∫ 1

0
log�g̃�x��dG̃�x� − nα�g̃�t1� − 1��

(3)

where the final equality follows since G̃ and G are equal at the points where
g̃ jumps. This can be derived from RWD, Theorems 1.3.3 and 1.3.5, page 17.
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It is useful to relate G to the empirical distribution function

F∗�x� = #�k ≤ n� xk ≤ x�
n

�

Let U� �0�1� → �0�1� be a continuous piecewise linear function for which
U�tk� = xk for all k = 0� � � � � n. Then

G�t� = 1
α+ γ̂xn

[
F∗ ◦U�t� + βδ1�t�

]
for all 0 ≤ t ≤ 1, where ◦ denotes composition, F ◦ U�t� = F�U�t�� and δb
denotes the point mass at b; that is, δb�t� = 0 for t < b and δb�t� = 1 for t ≥ b.

The D-test. The second test statistic is an analogue of Hartigan and Har-
tigan’s (1985) Dip test for testing unimodality versus nonunimodality, a bump
hunting problem. The idea of the Dip test is to measure the distance of the
sample distribution of a sample to the class of all unimodal distributions with
support on �0�1�, � say, by

Dip = inf
G∈�

sup
t∈�0�1�

∣∣F∗�t� −G�t�∣∣�
where F∗ is the empirical distribution function of the data. Our Dip likelihood
test (D-test) statistic is

D �= √n sup
t∈�0�1�

∣∣F̂�t� − t∣∣�(4)

where F̂ is the cumulative distribution function corresponding to the penalized
maximum likelihood estimator f̂ (as in Proposition 1). It is easy to see that
supt∈�0�1� �F̂�t� − t� = supt∈�0�1��F̂�t� − t� when the alternative consists of non-
increasing densities; if the penalty parameters are zero, then supt∈�0�1��F̂�t�−
t� = supt∈�0�1��F∗�t� − t�� So, the D-test is the one-sided Kolmogorov–Smirnov
test when α = β = 0.

4. Limiting distributions and critical values.

Preliminaries. For the asymptotics, it is convenient to subscript the esti-
mators by n. Thus, write γ̂n for γ̂, f̂n� k for f̂k, f̂n�x� for f̂�x�, Dn for D and so
forth. Consider local alternatives in which the common density of X1� � � � �Xn

is of the form

fn�x� = 1+ 1√
n
ϕ�x�� 0 < x ≤ 1�

where ϕ is a bounded, left-continuous, nonincreasing function on �0�1� for
which

∫ 1
0 ϕ�x�dx = 0. Then the distribution function of X1� � � � �Xn is

Fn�x� = x+
1√
n
+�x�� 0 ≤ x ≤ 1�(5)
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where +�x� = ∫x0 ϕ�y�dy for 0 < x ≤ 1. Of course, H0 is a special case with
ϕ = 0.

For the remainder of the paper, suppose that

αn = βn =
c√
n

(6)

for all n ≥ 1, where 0 < c < ∞. Then the following results hold, again as
in WS.

Proposition 2. Suppose f̂n�0+� → 1 in probability as n→∞.

Corollary. Then γ̂n = 1+ op�1/
√
n�, in probability as n→∞.

Proofs. For αn = c/
√
n, βn = 0 and ϕ = 0, Proposition 2 is a special case

of Theorem 2 of WS, and the proof given there extends to βn = c/
√
n without

essential change. The general case in which ϕ �= 0 may then be obtained
by showing that the distributions of X1� � � � �Xn under local alternatives are
contiguous to their joint distribution under the null hypothesis (ϕ = 0) and
using Le Cam’s second lemma in [Bickel, Klaassen, Ritov and Wellner (1993),
page 500]. Alternatively, Proposition 2 may be proved by retracing the steps
in WS. The details have been omitted.

The Corollary follows easily from the Proposition since

1− γ̂n = αn�f̂n�x1� − 1�� ✷

Asymptotic distributions. An heuristic derivation of the asymptotic distri-
bution of �n is described next. A proof may be found in the Appendix. Write
F∗
n, Gn, and so on for F∗, G, and so on and let

Fn�t� =
√
n�F∗

n�t� −Fn�t��
for 0 ≤ t ≤ 1 and n ≥ 1. Then there is a sequence Bn, n ≥ 1, of Brownian
bridges for which

sup
0≤t≤1

∣∣Fn�t� − Bn�t�
∣∣ = Op[n−1/4 log�n�](7)

as n→∞, by the Skorohod embedding theorem and Levy’s modulus of conti-
nuity for Brownian motion. See, for example, Breiman [(1992), pages 257 and
293] or Csörgő and Revesz (1981). Then

Gn�t� − t =
1

αn + γ̂nxnn
[
F∗
n ◦Un�t� + βnδ1�t�

]− t
= 1
αn + γ̂nxnn
×

[
Fn ◦Un�t� − �αn + γ̂nxnn�t+

1√
n

Fn ◦Un�t� +
c√
n
δ1�t�

]
�

(8)
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Let

Hn�t� �=
√
n�Gn�t� − t�� 0 ≤ t ≤ 1�

and

B
ϕ
c�n�t� = Bn�t� ++�t� − cδ̄0�t� + cδ1�t�� 0 ≤ t ≤ 1

for n ≥ 1, where δ̄0�t� = 0 for t ≤ 0 and δ̄0�t� = 1 for t > 0. Then the least
concave majorants of Gn and Hn are related by H̃n�t� �=

√
n�G̃n�t� − t� for

0 ≤ t ≤ 1 and n ≥ 1, since Hn and
√
nGn differ by a linear function of t. Now

Un�tnk� = xnk = αn + γ̂nxnk −
[
αn + �γ̂n − 1�xnk

]
= �αn + γ̂nxnn�tnk − αn − �γ̂n − 1�xnk
≈ �αn + γ̂nxnn�tnk − αn�

(9)

for 1 ≤ k ≤ n. Using (7), (8) and (9), it may be shown that Hn�t� ≈ B
ϕ
c�n�t� and,

therefore, that H̃n�t� ≈ B̃
ϕ

c�n�t�. Denoting derivatives by lower case letters, it
then follows that

√
n�g̃n�t� − 1� = h̃n�t� ≈ b̃ϕc� n�t�. Combining these observa-

tions with a Taylor series expansion of g̃�t� log�g̃�t�� about g̃�t� = 1 suggests
that

�n ⇒ 1
2

∫ 1

0
b̃ϕc �t�2 dt+W�(10)

where B
ϕ
c �t� = B�t� + +�t� − cδ̄0�t� + cδ1�t�, 0 ≤ t ≤ 1, B denotes a standard

Brownian bridge, W denotes a standard exponential random variable which
is independent of B

ϕ
c � and ⇒ denotes convergence in distribution. Of course,

the null limiting distribution is a special case with ϕ = 0. See the Appendix
for a proof of (10).

Similarly, we can show that the limiting distribution of Dn, the D-test
statistic in (4), is

Dn =
√
n sup
t∈�0�1�

�F̂n�t� − t� ⇒ sup
t∈�0�1�

B̃
ϕ

c �t��(11)

The proof for c > 0 is essentially the same as that for c = 0, and the latter is
well known.

Remark 1. It is easy to see that in the nondecreasing case, all the results
for f̂ above and P- andD- tests below are valid after replacing xi by x′i = 1−xi
for i = 1� � � � � n.

Remark 2. There is an alternative formulation of the problem with a dif-
ferent limiting distribution of �n. If the penalty term nβ log f�xn� is replaced
by nβ log f�1� in the equation (2), and if α + γ̂xn is replaced by α + γ̂ in the
definitions of tk and G, then

�n ⇒ 1
2

∫ 1

0
b̃ϕc �t�2 dt�
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We have chosen to analyze form (2) because it is slightly more challenging
and the convergence appeared to be faster in our simulation studies.

Remark 3. Under the null hypothesis (ϕ = 0), B̃
ϕ

c and B
ϕ
c are denoted

by B̃c and Bc. Using the relationship sup0≤t≤1 B̃c�t� = sup0≤t≤1 Bc�t�, and the
known boundary crossing probability of a Brownian bridge [cf. Breiman (1992),
page 290], it is easily seen that

P
{

sup
0≤t≤1

B̃c�t� > λ
}
= exp�−2�c+ λ�2�

for all λ > 0. This provides the limiting null distribution of Dn in (11).
We do not know the analytical from for the asymptotic null distribution of

�n. Results of Groeneboom (1983) may be relevant here. He gives an analytic
form for the density of b̃0

0�t� for fixed t.

Remark 4. In principle, the power of the P- and D-tests against local al-
ternatives is determined by (10) and (11) (but see Remark 3 above). Both
tests are consistent against any fixed alternative. In fact, The D-tests are
consistent against any alternative distribution function F that is stochasti-
cally smaller than the uniform [that is, F�x� ≥ x for 0 ≤ x ≤ 1 with strict
inequality for some x], and the P tests are consistent against any continuous
distribution function that is stochastically smaller than the uniform. This is
well known for the KS-test, easily seen for the D-test with c > 0. For the
P-tests, consistency may be established by showing that f̂n�x� → f̃�x� w.p.1
for 0 ≤ x < 1, where f̃ is the derivative of the least concave majorant of F.
(The latter may be established as in Theorem 2 of WS.) It then follows that
lim infn→∞�n ≥

∫ 1
0 f̃�x� log�f̃�x��dx� which is positive if F is stochastically

smaller than the uniform, and this implies consistency.

Critical values. As noted above, the limiting null distributions in (10) do
not admit simple analytical descriptions (to the best of the authors’ knowl-
edge). The null distribution of �n may be approximated by simulations, how-
ever. We have done extensive simulations for computing Monte Carlo esti-
mates of the 95 percentiles of the null distributions of �n (P-test statistic)
and Dn (D-test statistic) for n = 20, 30� � � � �90, 100, 150� � � � �450�500�∞ and
various values of penalty parameter c. The simulation size is 10,000 through-
out. Values for n = ∞ were computed from the limiting distribution for Dn

and by simulating Brownian motion on a grid of width 0�001 for the P-test.
The 95 percentiles of Dn stabilize at around n = 200, considering their esti-
mated standard deviations. The percentiles of theP-statistic �n stabilize more
slowly, especially for small c. This is to be expected, since there is no limiting
distribution for the P-test when c = 0. The P-test with c = 0 is the unpenal-
ized likelihood ratio test or theW test named by Bain, Englehardt and Wright
(1985), and appears to have a logarithmic growth in �n when c = 0. This is
consistent with a limit theorem by Groeneboom and Pyke (1983). Standard
deviations of the estimated percentiles in the range from 0.008 to 0.012 were
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common for the D-tests, and estimates from 0.036 to 0.065 for the P-tests. We
have also examined the means, medians, standard deviations and quartiles,
and they all admit similar patterns. Those for the D-test stablize at about
n = 200, and those for the P test stablize more slowly. The null distributions
of P- and D-test statistics are skewed to the right. As expected and shown
by the power studies in the next section, the D-test is relatively insensitive to
the value of c. The P-test with c = 0�2 seems to produce the best power. We
suggest using c = 0�2 for both P- and D-tests and provide level 0�05 critical
values for c = 0�2�0�25 and 0�3 in Table 1. Critical values for other n and α,
needed in the air-conditioning equipment data described in Section 5, were
computed similarly.

5. Power studies and comparisons. Power studies of our two tests and
other competing tests and an application are provided in this section. Since
the alternative is a very large space, no one test can be universally best. The
P- and D-tests performed well, however, for a variety of alternatives in the
simulations below.

Biased Sampling. Consider comparisons of the P- and D-tests with the
most powerful (MP) tests for two simple alternatives. The first alternative is
that f�x� ∼ x� which corresponds to the popular length-biased sampling with

Table 1
Level 0�05 critical values

D-tests P-tests

n c � 0.2 0.25 0.3 c � 0.2 0.25 0.3

10 0.960 0.918 0.892 3.44 3.30 3.120
20 0.929 0.882 0.841 3.73 3.55 3.41
30 0.943 0.888 0.840 3.85 3.64 3.51
40 0.945 0.893 0.839 4.03 3.84 3.68
50 0.956 0.903 0.849 4.04 3.83 3.65
60 0.952 0.898 0.847 4.19 3.95 3.76
70 0.968 0.912 0.857 4.20 3.97 3.74
80 0.964 0.910 0.857 4.27 4.00 3.78
90 0.984 0.929 0.878 4.25 4.09 3.76

100 0.979 0.926 0.873 4.29 3.982 3.78
150 0.992 0.937 0.886 4.44 4.16 3.98
200 0.998 0.945 0.893 4.45 4.15 3.93
250 0.991 0.940 0.887 4.49 4.20 3.97
300 0.990 0.940 0.888 4.51 4.22 3.96
350 0.995 0.942 0.889 4.53 4.21 3.94
400 0.999 0.946 0.893 4.52 4.20 3.95
450 0.994 0.942 0.891 4.62 4.28 4.01
500 0.999 0.948 0.895 4.57 4.25 3.99
∞ 1.024 0.974 0.924 4.87 4.52 4.23
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w�x� = x, and the second is that f�x� ∼ ex� which corresponds to the power-
biased sampling with w�x� = ex/e. These are increasing alternatives rather
than H1. See Remark 1 in Section 3. It is easy to see that the most powerful
tests are

φZ�x� = 1 if Z = 1
n

n∑
i=1

logXi > cZ and φZ�x� = 0 otherwise�(12)

φL�x� = 1 if L = 1
n

n∑
i=1

Xi > cL and φL�x� = 0 otherwise�(13)

for f�x� ∼ x and f�x� ∼ ex, respectively. Here 1 indicates rejection and 0
nonrejection. Both normalized L and Z statistics have normal limiting distri-
butions. The approximate level α critical values for the L- and Z-tests are

cL =
1
2
+ zα

1√
12n

and cZ = −1+ zα
1√
n
�(14)

where zα is the upper α quantile of the standard normal distribution. In fact,
the exact critical value of the Z-test can be read off from a Gamma table or
a χ2 table after a rescaling. In our power studies, we use simulated critical
values from the same random samples as those for P- and D-tests.

Figures 1 and 2 present power comparisons of the L- and Z-tests, D-tests
and P-tests with c = 0, 0.2, 0.25, 0.3, 0.4 (total 12 tests) for selected values
of n, based on the critical values from Table 1. Clearly, power increases as
n increases for all 12 tests. Among P-tests, c = 0�2 appears to be best, and
among D-tests, there is not much difference as c varies, for most values of n.
This relative insensitivity of the D-test to the value of c is expected, since
the main effect of the penalty terms is only on the two end points of the
density estimate. Note that P-test with c = 0�2 is better than the D-tests
when w�x� = x, while the D-test is better than the P-test, with c = 0�2, when
w�x� = ex/e, especially for smaller sample size n.

Overall, Figures 1 and 2 show that the P- and D-tests (with c = 0�2) are
competitive with theZ- andL-tests on the latter’s home ground, for length and
power alternatives. For other alternatives, the Z- and L-tests are no longer
most powerful. One important type of alternative is that a proportion of the
population is either missed entirely or included with a much lower probabil-
ity. Powers of the four tests for such alternatives are presented in Table 2,
where

w1�x� = 0 or 1 if 0 ≤ x < b or b ≤ x ≤ 1�

w2�x� = 0�1 or 1 if 0 ≤ x < b or b ≤ x ≤ 1�

w3�x� = 0 or 1/2 or 1 if 0 ≤ x < b or b ≤ x < 1/2 or 1/2 ≤ x ≤ 1�
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Fig. 1. Power comparisons, Case 1: w�x� = x. D1–D5 (P1–P5) correspond to D-test (P-test) with
c = 0� 0�2� 0�25� 0�3� 0�4� respectively. The L- and Z-tests are as in �13� while Z is MP in this
case. Power is 1 for all tests for n ≥ 50.
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Fig. 2. Power comparisons, Case 2: w�x� = ex/e. The left picture is for n = 50� the middle is for
n = 300� and the right is for n = 20� 30� � � � �100� 150� � � � �450� 500. The L-test is MP in this case.
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Table 2
Powers of various tests when w�x� is a step function �c = 0�2�

b � 1/3 b � 0.2 b � 0.1

n Z L D P Z L D P Z L D P

w1�x�
10 0.838 0.612 1.000 1.000 0.368 0.249 0.297 0.383 0.144 0.112 0.114 0.134
20 0.998 0.915 1.000 1.000 0.749 0.448 0.860 1.000 0.261 0.159 0.171 0.315
30 1.000 0.989 1.000 1.000 0.941 0.618 1.000 1.000 0.426 0.219 0.216 0.686
40 1.000 0.999 1.000 1.000 0.988 0.757 1.000 1.000 0.555 0.269 0.287 1.000
50 1.000 1.000 1.000 1.000 0.998 0.824 1.000 1.000 0.660 0.312 0.351 1.000

w2�x�
10 0.609 0.464 0.684 0.684 0.302 0.220 0.251 0.313 0.132 0.108 0.104 0.123
20 0.882 0.778 0.914 0.856 0.575 0.362 0.605 0.715 0.233 0.148 0.156 0.273
30 0.968 0.920 0.986 0.965 0.788 0.521 0.718 0.786 0.358 0.187 0.190 0.527
40 0.990 0.977 0.999 0.994 0.892 0.646 0.839 0.878 0.455 0.240 0.238 0.718
50 0.997 0.991 1.000 0.999 0.943 0.716 0.927 0.949 0.546 0.268 0.280 0.737
60 0.999 0.998 1.000 1.000 0.977 0.798 0.979 0.980 0.629 0.306 0.335 0.746

w3�x�
10 0.963 0.833 1.000 1.000 0.703 0.558 0.574 0.650 0.436 0.372 0.354 0.369
20 1.000 0.992 1.000 1.000 0.973 0.859 0.963 1.000 0.744 0.613 0.606 0.703
30 1.000 1.000 1.000 1.000 1.000 0.962 1.000 1.000 0.916 0.789 0.764 0.951
40 1.000 1.000 1.000 1.000 1.000 0.993 1.000 1.000 0.974 0.888 0.872 1.000
50 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.992 0.931 0.927 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.969 0.967 1.000

Notes: Due to space limit, the results for larger n values are omitted. They all showed that the
P-tests appear superior. For example, when the alternative is w1�x�, powers of these tests are 1
(except L-test for b = 0�2 and Z-, L,- and D-tests for b = 0�1) for n = 60� � � � �100�

The P- and D-tests have higher power than the Z- and L-tests for most of
the cases considered, and the P-test has higher power than the D-test except
when b = 1/3, when all powers are very high.

Nonhomogeneous Poisson process. In this part, we replace Xi by Yi/T
where Yi and T are failure times and the last observation time described
in Section 2. Then the so-called Laplace test and Crow’s (1974) test, recom-
mended by Bain, Englehardt and Wright (1985) and Cohen and Sackrowitz
(1993), are the L-test and Z-test in (13). They are uniformly most power-
ful unbiased tests for alternatives that λ�t� = aebt and λ�t� = �β/θ��t/θ�β−1,
respectively, under the NHPP. The W-test (which happens to be the P-test
with c = 0) is the third test these two papers suggested. However, as il-
lustrated in Figure 2, the W-test is affected by the spiking problem in the
unpenalized maximum likelihood estimator of the density and is dominated
by our P-test with c = 0�2 (see Figures 1 and 2). Thus we shall mainly com-
pare our P- and D-tests with the L- and Z-tests. Our setup is similar to
that of Bain, Englehardt and Wright (1985). The results are presented in
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Table 3
Estimated powers for testing H0: λ�t� = constant versus various H1

n L Z D P L Z D P

H1: λ�t� = bet

T = 1 T = 2

10 0.223 0.214 0.188 0.190 0.545 0.503 0.444 0.457
20 0.346 0.306 0.310 0.279 0.805 0.728 0.731 0.704
40 0.569 0.483 0.503 0.437 0.974 0.933 0.947 0.926
60 0.708 0.619 0.647 0.579 0.997 0.983 0.991 0.986
80 0.823 0.723 0.755 0.688 1.000 0.996 0.998 0.998

100 0.848 0.747 0.838 0.787 1.000 0.998 1.000 0.999

H1: λ�t� = btb−1

b = 2 b = 4

10 0.599 0.654 0.542 0.588 0.995 0.992 0.987 0.994
20 0.870 0.917 0.835 0.871 1.000 1.000 1.000 1.000
40 0.992 0.998 0.984 0.992 1.000 1.000 1.000 1.000

H1: λ�t� is in (15)

T = 4, b = 1/3 T = 6, b = 1/3

10 0.191 0.271 0.217 0.272 0.130 0.152 0.128 0.15
20 0.332 0.580 0.479 0.959 0.193 0.319 0.211 0.39
40 0.604 0.936 1.00 1.00 0.319 0.636 0.361 1.0
60 0.764 0.994 1.00 1.00 0.424 0.837 0.642 1.0

T = 4, b = 1/2 T = 6, b = 1/2

10 0.357 0.539 0.532 0.679 0.193 0.271 0.216 0.273
20 0.649 0.923 1.0 1.0 0.335 0.586 0.483 0.964
40 0.931 1.0 1.0 1.0 0.597 0.933 1.0 1.0
60 0.988 1.0 1.0 1.0 0.756 0.994 1.0 1.0

T = 4, b = 2/3 T = 6, b = 2/3

10 0.608 0.834 1.0 1.0 0.301 0.440 0.394 0.504
20 0.920 0.999 1.0 1.0 0.540 0.842 1.0 1.0
40 0.999 1.0 1.0 1.0 0.851 0.998 1.0 1.0

Notes: Under the first set of alternatives: λ�t� = bet� b cancels out in the sampling density
f�x� = Tλ�Tx�/��T�; while under the next set of alternatives, T cancels out in the density.
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the first two blocks of Table 3, where our figures for L- and Z-tests are con-
sistent with those of Bain, Englehardt and Wright (1985). Our simulation
size is 10,000 and the critical values are from 10,000 Monte Carlo simula-
tions rather than normal approximations in (14). The results in these two
blocks again show that our P- and D-tests are comparable to the Laplace
and Crow tests under the alternative for which the Laplace or Crow’s test is
optimal.

Next we shall compare our tests with the L- and Z-tests under other mono-
tone alternatives. For simplicity, the following step functions are considered:

λ�t� = 0 if 0 ≤ t ≤ b� and 1 if t > b�(15)

where b are chosen to be 1/3, 1/2 and 2/3. The results are presented in the
last three blocks of Table 3. Clearly, the P-test appears to be best, and the
D-test is quite good.

Failure of air-conditioning equipment in 13 Boeing 720 aircraft. Finally,
we apply our procedures to the air-conditioning equipment data from Cox and
Lewis (1966) and compare our results with Moeller’s (1976) analysis. Moeller
fitted a Rasch–Weibull Process to the data set. The Rasch–Weibull process is a
nonhomogeneous Poisson process with intensity function λ�t� = λγtγ−1. Here
γ = 1 corresponds to a constant intensity function, γ > 1 indicates that the
intensity function is increasing (or the system deteriorates as it ages), and
γ < 1 indicates that the intensity function is decreasing. When an estimate
of γ is close to 1, how do we know if it is significantly different from 1? Ta-
ble 4 lists Moeller’s estimates γ̂ of γ for 12 sets of air-conditioning equipment
and our test results at selected significance levels. The original eleventh set
of equipment is not considered in this study as there was only one failure
time.

It is clear that for the cases that Moeller’s γ̂−1 > 1, our tests do not reject
H0. At the significance level 0.05, most tests indicate that those with γ̂−1 <
0�65 are significant. At the significance level 0.3, which is commonly used
for quality control problems, most tests conclude that those with γ̂−1 < 0�9
are significant. In summary, our results are consistent with Moeller’s, who
assumed the Rasch–Weibull process.

Conclusion. We developed two tests for testing uniformity versus a mono-
tone density and recommend P-test and D-test with c = 0�2. They are quite
efficient in comparison to the MP tests developed for special alternatives. The
P- and D-tests do not lose much power under the length-biased or power-
biased alternatives (for which the Z- or L-test is optimal) and the P-test or
D-test (mostly the P-test) is much better than the L- and Z-tests under the
step function alternatives. Our tests have greater applicability, as they use no
parametric or known form of the alternative density other than saying that
the density is monotone. The computer code for computing P- and D-tests and
critical values is available upon request.
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Table 4
Comparison with Moeller’s results

Number 1 2 3 4 5 6 7 8 9 10 2 13
n 5 22 28 14 13 29 26 23 8 5 11 15

�̂−1 0.699 0.601 1.15 1.148 0.823 0.687 1.051 0.959 0.882 0.823 0.549 0.826

Tests Significance level α = 0�05

L ∗ S ∗ ∗ ∗ S ∗ ∗ ∗ ∗ ∗ ∗
Z ∗ S ∗ ∗ ∗ S ∗ ∗ ∗ ∗ S ∗
D ∗ S ∗ ∗ ∗ S ∗ ∗ ∗ ∗ S ∗
P ∗ S ∗ ∗ ∗ S ∗ ∗ ∗ ∗ S ∗

Significance level α = 0�1

L ∗ S ∗ ∗ ∗ S ∗ ∗ ∗ ∗ ∗ ∗
Z ∗ S ∗ ∗ ∗ S ∗ ∗ ∗ ∗ S ∗
D S S ∗ ∗ ∗ S ∗ ∗ ∗ ∗ S ∗
P ∗ S ∗ ∗ ∗ S ∗ ∗ ∗ ∗ S ∗

Significance level α = 0�2

L ∗ S ∗ ∗ S S ∗ ∗ ∗ ∗ S ∗
Z ∗ S ∗ ∗ ∗ S ∗ ∗ ∗ ∗ S ∗
D S S ∗ ∗ ∗ S ∗ ∗ ∗ ∗ S ∗
P S S ∗ ∗ ∗ S ∗ ∗ ∗ ∗ S ∗

Significance level α = 0�3

L ∗ S ∗ ∗ S S ∗ ∗ ∗ S S ∗
Z S S ∗ ∗ S S ∗ ∗ ∗ ∗ S S
D S S ∗ ∗ ∗ S ∗ ∗ S ∗ S ∗
P S S ∗ ∗ ∗ S ∗ ∗ S ∗ S ∗

Notes: Here n is the number of failure times; γ̂ is Moeller’s estimate under the Rasch–Weibull
process; S indicates “significant” (i.e., reject H0 in favor of H1: λ�t� is nondecreasing), and ∗
indicates “not significant.” Equipment 11 is not included as there was only one failure time.
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APPENDIX

Proofs.

Outline of the proof of Proposition 1. Letting fk = eθk and introduc-
ing a Lagrange multiplier nγ leads to consideration of

l∗�θ� = lα�β�f� − nγ
n∑
i=1

�xi − xi−1�fi�

Clearly, ∂l∗�θ�/∂θk = n�ck − wkfk� for k = 1� � � � � n, where ck and wk are as
in (1). A necessary and sufficient condition that θ maximize l∗ is that

n∑
k=1

�ck −wkfk��ξk − θk� ≤ 0

for all −∞ < ξn ≤ · · · ≤ ξ1 < ∞. By Theorems 1.32 and 1.44 of RWD,
the solution to this problem is given by (1) for a given γ. To satisfy the
constraint, γ must be so chosen that

∑n
i=1�xi − xi−1�fi�γ� = 1. Using the

relations
∑n
i=1wifi�γ� =

∑n
i=1 ci = 1 + β from Theorem 1.36 of RWD and∑n

i=1wifi�γ� = γ
∑n
i=1�xi−xi−1�fi�γ�+αf1�γ�, the constraint may be written

γ = 1+β− αf1�γ�. The right side is a bounded, nondecreasing, concave func-
tion of γ. It vanishes at γ = 0 and its derivative there is �1 + β�xn/α. Thus
the equation γ = 1+ β− αf1�γ� has a unique solution γ̂ if xn > α/�1+ β�.

When α = 0 = β, Grenander’s estimator is obtained. ✷

Least concave majorants. Let � denote the class of all bounded functions
H� �0�1� →  . Then � is a Banach space with pointwise linear operations
and the supremum norm, !H! = sup0≤t≤1 �H�t��. For H ∈ � , let H̃ denote
the least concave majorant of H. Then !H̃ − K̃! ≤ !H −K!, by Marshall’s
lemma. The following properties of least concave majorants are needed.

Lemma 1. Let G�H ∈ � , let B ⊆ �0�1� and let ε > 0. If �G�t� −H�t�� ≤ ε
for all t ∈ B and �G̃�t� − H̃�t�� ≤ ε for all t ∈ B′, then !G̃− H̃! ≤ ε.

Proof. If t ∈ B, then G�t� ≤ H�t� + ε ≤ H̃�t� + ε� and if t ∈ B′, then
G�t� ≤ G̃�t� ≤ H̃�t� + ε. So, G�t� ≤ H̃�t� + ε for all 0 ≤ t ≤ 1. Since H̃ + ε
is concave, G̃ ≤ H̃+ ε. The lemma then follows from this observation and its
dual, in which the roles of G and H are reversed. ✷

Lemma 2. LetG�H ∈ � and suppose that G̃�0� = H̃�0� and G̃�1� = H̃�1�.
Let g̃ and h̃ denote the left-hand derivatives of G̃ and H̃. If −∞ < g̃�1� ≤
g̃�0+� <∞, and −∞ < h̃�1� ≤ h̃�0+� <∞, then

∫ 1

0
�g̃�t� − h̃�t��2 dt ≤ !G̃− H̃![g̃�0+� − g̃�1� + h̃�0+� − h̃�1�]�
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Proof. Integrating by parts from ε to 1− ε and then letting ε→ 0, yields∫ 1

0
�g̃�t� − h̃�t��2 dt =

∣∣∣∣
∫ 1

0

[
G̃�t� − H̃�t�][dg̃�t� − dh̃�t�]∣∣∣∣

≤ !G̃− H̃![g̃�0+� − g̃�1� + h̃�0+� − h̃�1�]
as asserted. ✷

Lemma 3. If H is upper semicontinuous at 0, respectively 1, then H̃�0� =
H�0�, respectively H̃�1� =H�1�.

The easy proof is left to the reader.

Proof of (10). The proof of (10) is described next.

Lemma 4.

sup
tn1≤t≤1

∣∣Un�t� − �αn + γ̂nxnn�t+ αn
∣∣ = op

(
1√
n

)

and

sup
0≤t≤1

�Un�t� − t� = Op
(

1√
n

)
�

Proof. The first assertion follows easily from (9) and the fact that Un�t�−
�αn + γ̂nxnn�t+ αn is piecewise linear on �tn1�1�. The second assertion follows
similarly since αn + tn1 = Op�1/

√
n� in probability. ✷

In the next lemma, let !G!ε = supε≤t≤1 �G�t�� for G ∈ � and 0 < ε < 1.

Lemma 5.

lim
n→∞

∥∥Hn − B
ϕ
c�n

∥∥
tn1
= 0

in probability.

Proof. From (8),

Hn�t� − B
ϕ
c�n�t� =

√
n

αn + γ̂nxnn

{
Un�t� − �αn + γ̂nxnn�t+

1√
n
+ ◦Un�t�

+ 1√
n

Fn ◦Un�t� + βnδ1�t�
}

− [
Bn�t� ++�t� − c+ cδ1�t��

=
√
n

αn + γ̂nxnn
[
Un�t� − �αn + γ̂nxnn�t+ αn

]
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+ 1
αn + γ̂nxnn

[
+ ◦Un�t� −+�t�

]

+ 1
αn + γ̂nxnn

[
Fn ◦Un�t� − Bn ◦Un�t�

]

+ 1
αn + γ̂nxnn

[
Bn ◦Un�t� − Bn�t�

]

+
(

1
αn + γ̂nxnn

− 1
)[

Bn�t� ++�t� − c+ cδ1�t�
]

for tn1 ≤ t ≤ 1. So,

!Hn − B
ϕ
c�n!tn1

≤ sup
tn1≤t≤1

√
n

αn + γ̂nxnn
∣∣Un�t� − �αn + γ̂nxnn�t+ αn

∣∣
+ 1
αn + γ̂nxnn

(!+ ◦Un −+! + !Fn − Bn! + !Bn ◦Un − Bn!
)

+
∣∣∣∣ 1
αn + γ̂nxnn

− 1
∣∣∣∣(!Bn! + !+! + 2c

)
= op�1�

as n→∞, by Lemma 4 and (7). ✷

Lemma 6. For any Brownian bridge B, −∞ < b̃
ϕ
c �1+� ≤ b̃

ϕ
c �0+� < ∞

w�p�1� and

lim
n→∞

[�h̃n�0+� − b̃ϕc� n�0+�� + �h̃n�1� − b̃ϕc� n�1��] = 0

in probability.

Proof. First, it is clear that

0 ≤ b̃ϕc �0+� = sup
0<t<1

B�t� ++�t� − c
t

∨ 0 <∞

w.p.1 for any Brownian bridge B. Next, let εn > 0, n ≥ 1, be a sequence for
which εn → 0 and

√
nεn →∞ as n→∞. Then f̂n�0+� = supt≥εn F

∗
n�t�/�αn +

γ̂nt� with probability approaching 1, since f̂n�0+� ≥ 1 w.p.1 and

P

{
sup
t≤εn

F∗
n�t�

αn + γ̂nt
≥ 1

}
≤ P

{
sup
t≤εn

√
n�F∗

n�t� − t� ≥ c−
√
n�γ̂n − 1�

}

→ 0

as n → ∞, by elementary properties of empirical processes. Observe that
εn > tn1 with probability approaching 1, since

√
nεn →∞ as n→∞. So, with

probability approaching 1,

∣∣h̃n�0+� − b̃ϕc� n�0+�∣∣ ≤ sup
t≥εn

∣∣∣∣Hn�t� − B
ϕ
c�n�t�

t

∣∣∣∣ ≤ ε−1
n sup

t≥tn1

∣∣Hn�t� − B
ϕ
c�n�t�

∣∣$
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and the right side approaches zero in probability if εn → 0 sufficiently slowly
as n→∞. This establishes the two assertions made about the left endpoint,
and the right endpoint may be handled similarly. ✷

Lemma 7. ∥∥H̃n − B̃
ϕ

c�n

∥∥→ 0

in probability as n→∞.

Proof. By Lemmas 1 and 5, it suffices to show that sup0≤t≤tn1
�H̃n�t� −

B̃
ϕ

c�n�t�� → 0 in probability. To see this, first observe that H̃n�0� = 0 = B̃
ϕ

c�n�0�,
since Hn�0� = 0 = B

ϕ
c�n�t� and both processes are upper semicontinuous

at 0. So,

�H̃n�t�� ≤
[
h̃n�0� − h̃n�1�

]
tn1�

�B̃ϕc� n�t�� ≤
[
b̃ϕc� n�0� − b̃ϕc� n�1�

]
tn1�

for 0 ≤ t ≤ tn1, and the right sides approach 0 in probability as n→∞. ✷

Recall

�n = �αn + γ̂nxnn�n
∫ 1

0
log�g̃n�t��dG̃n�t� − nαn

[
f̂n�xn1� − 1

]
�

Theorem 1.

lim
n→∞

∣∣∣∣�n − 1
2

∫ 1

0
b̃ϕc� n�t�2 dt− n�1− xnn�

∣∣∣∣ = 0

in probability.

Proof. Let 0 < εn → 0 as n→∞ in such a manner that
√
nεn →∞, and

let An be the event An = �1− εn ≤ g̃n�1� ≤ g̃n�0+� ≤ 1+ εn� for each n ≥ 1.
Then P�An� → 1 as n→∞ and each An implies

2�g̃n�t� − 1� + 1
�1+ εn�

�g̃n�t� − 1�2 ≤ 2g̃n�t� log�g̃n�t��

≤ 2�g̃n�t� − 1� + 1
�1− εn�

[
g̃n�t� − 1

]2

for all 0 ≤ t ≤ 1. So, An implies

�A�1�
�n ≤ �αn + γ̂nxnn�n

∫ 1

0
�g̃n�t� − 1�dt− c√n[f̂n�xn1� − 1

]
+ αn + γ̂nxnn

2�1− εn�
n
∫ 1

0
�g̃n�t� − 1�2 dt
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and a similar lower bound. To estimate the two integrals on the right, observe
that

�A�2�

�A�3�

∫ 1

0
�g̃n�t� − 1�dt = 1+ βn

αn + γ̂nxnn
− 1

= 1− γ̂nxnn
αn + γ̂nxnn

= αn�f̂n�xn1� − 1�
αn + γ̂nxnn

+ γ̂n�1− xnn�
αn + γ̂nxnn

and

�A�4�

∫ 1

0

[
h̃n�t� − b̃ϕc� n�t�

]2
dt

≥ ∣∣Hn − B
ϕ
c�n

∣∣[h̃n�0+� − h̃n�1� + b̃ϕc� n�0+� − b̃ϕc� n�1�]
→ 0

in probability as n → ∞, by Lemmas 2, 5 and 6. So, combining (A.1)–(A.4),
An implies

�n ≤ γ̂nn�1− xnn� +
αn + γ̂nxnn
2�1− εn�

∫ 1

0
h̃n�t�2 dt

and a similar lower bound. It follows that with probability approaching 1,∣∣∣∣�n − 1
2

∫ 1

0
b̃ϕc� n�t�2 dt− n�1− xnn�

∣∣∣∣ ≤ �γ̂n − 1�n�1− xnn�

+
∣∣∣∣1+ εn1− εn

∫ 1

0
h̃n�t�2 dt−

∫ 1

0
b̃ϕc� n�t�2 dt

∣∣∣∣�
which approaches zero as n→∞ by Lemmas 2 and 7. ✷

For equation (10), it remains to show that n�1 − xnn� has a limiting expo-
nential distribution and is asymptotically independent of B

ϕ
n� c. The first part is

clear. The asymptotic independence is implied by asymptotic independence of
F∗
n and xnn, which may be shown easily by conditioning on xnn. See a related

calculation for a more complicated situation in McCormick and Sun (1993).

Acknowledgment. Thanks to Bob Keener for helpful comments on Ex-
ample 1.
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