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DISCONTINUOUS VERSUS SMOOTH REGRESSION1

BY HANS-GEORG MULLER AND ULRICH STADTMULLER¨ ¨
University of California, Davis and Universitat Ulm¨

Ž .Given measurements x , y , i � 1, . . . , n, we discuss methods toi i
Žassess whether an underlying regression function is smooth continuous

.or differentiable or whether it has discontinuities. The variance of the
measurements is assumed to be unknown, and is estimated simultane-
ously. By regressing squared differences of the data formed with various
span sizes on the span size itself, we obtain an asymptotic linear model
with dependent errors. The parameters of this asymptotic linear model
include the sum of the squared jump sizes as well as the variance of the
measurements. Both parameters can be consistently estimated, with mean
squared error rates of convergence of n�2�3 for the sum of squared jump
sizes and n�1 for the error variance. We derive the asymptotic constants

Ž .of the mean squared error MSE and discuss the dependence of MSE on
the maximum span size L. The test for the existence of jumps is formu-
lated for the null hypothesis that the sum of squared jump sizes is 0. The
asymptotic distribution of the test statistic is obtained essentially via a
central limit theorem for U-statistics. We motivate and illustrate the
methods with data surrounded by a scientific controversy concerning the
question whether the growth of children occurs smoothly or rather in
jumps.

1. Introduction.

1.1. Background. It is customary in applications of nonparametric re-
gression analysis to assume that the function to be estimated is smooth; in
fact, this assumption provides the basic motivation as well as technical
justification for using smoothing methods. However, as was learned in recent
years, in a number of important applications, the underlying function is
smooth everywhere except at a critical number of points where jump disconti-
nuities may occur. Examples from various scientific fields are the Nile data
� Ž .� � Ž .�Cobb 1978 , the coal mining disaster data Jarrett 1979 , single channel

� Ž .�patch clamp recordings Fredkin and Rice 1992 , the segmentation of DNA
� Ž .� � Ž .�sequences Churchill 1992 , stock market data Wang 1995 and the

Ž .crown-heel lengths growth data of Lampl, Veldhuis and Johnson 1992 .
Some methods that have been proposed for nonparametric regression analy-

�sis like wavelet implementations with coefficient shrinkage see, for instance,
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Ž .�Donoho, Johnstone, Kerkyacharian and Picard 1995 in fact regularly turn
out curve estimates with nonsmooth features.

If discontinuities or change-points are indeed present within an otherwise
smooth regression function, their locations can be estimated efficiently with
methods that have been developed recently; compare the proposals by Muller¨
Ž . Ž . Ž . Ž .1992 , Wu and Chu 1993 , Eubank and Speckman 1994 and Wang 1995 .
Once the locations have been obtained, one can then adapt common smooth-
ing techniques to the presence of jump discontinuities by treating the
change-point locations as endpoints of the support; this can be achieved with
boundary kernels if one uses convolution-type kernel estimators or with

� Ž .�modified locally weighted least squares-type kernel estimators Muller 1993 .¨
For further work on the intersection between smoothing and change-points as

Ž .well as on inference for change-points compare, for instance, Hinkley 1970 ,
Ž . Ž .Bhattacharya and Brockwell 1976 , Hall and Titterington 1992 , Carlstein,

Ž . Ž .Muller and Siegmund 1994 and Muller and Song 1997 .¨ ¨
An important motivation for the work reported here is that if one does

assume that the function of interest contains discontinuities, then the result-
ing curve estimates with discontinuities are not only quantitatively but also
qualitatively different from smooth curve estimates, which one desires to
obtain if the underlying curve is indeed smooth. The appearance of estimated
curves when discontinuities are assumed to be present is strikingly different
from estimated curves under global smoothness assumptions, paving the way
for substantially different conclusions. A case in point is the application to
growth data, to be discussed in more detail in Sections 2 and 5.

Application of common smoothing methods like smoothing splines, kernel
Žand locally weighted least squares estimates with the possible exception of

.wavelets invariably will lead to smooth curve estimates, whether discontinu-
ities are present or not. If discontinuities are present, they will be over-
smoothed and will not be visible in resulting curve estimates.

It is therefore of interest to gather as much knowledge as possible regard-
ing the question whether such jumps really exist in the data. For curve
estimates based on wavelets, jumps may appear but could be artifacts of the
method. If indeed no jumps or sharp cusps exist, smooth curve estimates
should be used. However, if jumps exist, modified smoothing methods which
allow for the inclusion of nonsmooth parts must be used. Essentially, this is a
problem of model selection, where the choice is between a class of smooth
regression functions and a larger class of functions which include discontinu-
ities.

It is, then, an important data-analytic problem to develop tools for diagnos-
tic assessment and inference with the aim of aiding the statistician in the
decision whether an unknown function, which cannot be parametrically
specified, should be modelled as a globally smooth function or as a function
which is smooth but contains isolated discontinuities. The statistics proposed
in this paper are designed to provide relevant information for this decision.
Furthermore, they may also be of general interest as diagnostic tools in
applied regression analysis.
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1.2. Proposed model. We describe now the basic modelling framework
within which we discuss diagnostics and tests for discontinuities. Consider
the following classes of functions. For given constants M, � � 0, let

� �S M � f : 0, 1 � R, f is continuously differentiable,Ž . ½C
1.1Ž . � �sup f � x � M ,Ž . 5

0�x�1

m�1

� �1.2 S � � f : 0, 1 � R, f x � c 1 x ,Ž . Ž . Ž . Ž .ÝD i Ii½
i�0

� 4where m � 1, 2, 3, . . . is an arbitrary integer, c , c , . . . , c is an arbitrary0 1 m�1
sequence of reals, and

� �I � � , � , 0 � i � m � 2, I � � , 1 ,.i i i�1 m�1 m�1

for an arbitrary sequence � withi

� � 0 � � � � � ��� � � � 1 and min � � � 	 � .Ž . 50 1 2 m i i�1
1�i�m

Ž .Here, S M denotes a class of continuously differentiable functions,C
Ž .whereas S � is the class of discontinuous step functions with an arbitraryD

but finite number of steps and a minimum distance � between successive
� �jump points. We note that the restriction to functions with support 0, 1 is

made only for ease of notation.
The class of regression functions to be considered in our statistical model

then draws on S and S as follows: the underlying regression function isC D
Ž .assumed to be composed as a sum of a function from S M and a functionC

Ž .from S � . In particular, we do not wish to limit the possible number ofD
jumps which occur in the discontinuous part; the development in the follow-
ing will include the case where the number of jumps is not fixed but may
increase as the sample size n increases. This reflects the expectation that one
should be able to detect more and more finely grained discontinuities for
larger and larger sample sizes. It is therefore natural to assume that the
regression function for which we wish to ascertain whether it is continuous or
not is allowed to depend on n.

One quantity which needs to remain fixed for varying sample sizes n and
indeed emerges as our natural measure of the amount of discontinuity in the
data is

m�2
21.3 � � c � c ,Ž . Ž .Ý i�1 i

i�0

which is defined for any h � S . Here and in all of the following we adopt theD
convention that Ýi2 � � 0 if i � i , so that � � 0 if m � 1.i�i i 2 11

A second quantity of auxiliary nature which also needs to remain fixed
throughout and measures the ‘‘interaction’’ between continuous and discon-
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tinuous parts is obtained given a continuous function g � S and a stepC
function h � S ,D

m�2
1 2

� � g � t dt � 2 g � � c � cŽ . Ž . Ž .ÝH i�1 i�1 i
0 i�01.4Ž .
1 12� g � t dt � 2 g � t dh t .Ž . Ž . Ž .H H

0 0

We now define for � 	 0, � � R the class of functions

S M , �Ž .� , �

� �� f : 0, 1 � R, f x � g x � h x , g � S M , h � S � ,Ž . Ž . Ž . Ž . Ž .C D½1.5Ž .
m�2

1 12 2c � c � � , g � t dt � 2 g � t dh t � � .Ž . Ž . Ž . Ž .Ý H Hi�1 i 50 0i�0

It is assumed that the data are recorded according to the fixed design
regression model

1.6 y � f x � 	 , i � 1, . . . , n ,Ž . Ž .i , n n i , n i , n

Ž . Ž .where x � i�n equidistant design and f � S M, � , for a fixed largei, n n � , �

Ž .M and a sequence � � � to be specified in A1 below. The errors 	 aren i, n
i.i.d. and are assumed to satisfy

1.7 E	 � 0, E	 2 � 
 2 and E	 4 � � � �.Ž . i , n i , n i , n 4

Note that the regression function f is allowed to depend on n. Within then
Ž .class of functions S M, � , � � 0 defines the subclass of ‘‘smooth’’ func-� , �

tions, whereas � � 0 guarantees that the functions have jump discontinuities.
The null hypothesis of a smooth regression function thus corresponds to
� � 0, while the case of a discontinuous regression function corresponds to

Ž .� � 0. We note that in particular, the number of jumps m � m n may
depend on and grow with n, and also that the sizes of individual jumps
Ž .c � c may depend on n. In the following, we omit subscripts ni�1, n i, n
whenever feasible.

Ž . m� 1 Ž .The estimation of pure step functions f x � Ý c 1 x for a fixedi�0 i Ii
Ž .number of jumps was thoroughly investigated in Yao 1984 and Yao and Au

Ž . Ž .1989 . We note that for a given function f � S M, � , the decomposition� , �

Ž . Ž .f � g � h with h � S � , g � S M , is unique up to a constant which canD C
be shifted between h and g. This does not matter for our purposes.

1.3. Aims and overview. Our aims are to estimate the two parameters
2 2 m�1Ž .2
 � E	 and � � Ý c � c and to test the null hypothesis H : � � 0i i�0 i�1 i 0

of a smooth function. We note that there is an extensive literature on the
estimation of the error variance 
 2 when the regression function f is

Ž .‘‘smooth,’’ say, f � S M . These estimates work by using squared differencesC
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� Ž .of the data of various orders see, for example, Rice 1984 , Gasser, Sroka and
Ž . Ž .�Jennen�Steinmetz 1989 , Hall, Kay and Titterington 1990 . A simple ex-

ample is the estimate

n�11 22
 � y � y ,Ž .˜ Ý i�1 i2n i�1

Ž .which was proposed in Rice 1984 .
If f � S with � � 0, these difference scheme estimates are disturbed by� , �

the jumps, which inflate the finite variance estimates; however, this inflation
effect disappears asymptotically for a fixed finite number of jumps. It will not
disappear, however, on sets S with � � 0, where the number of jumps is� , �

potentially unlimited. It is therefore of considerable interest to estimate the
error variance 
 2 simultaneously with � , in the presence of jumps. These
two parameters are complementary in the sense that seemingly erratic data
y could be caused by either a high level of noise variance or by the presencei
of jump discontinuities. Discrimination between these two opposite causes is
a fairly difficult task, and this paper will provide some relevant tools to attack
this problem.

The paper is organized as follows: a controversy on the existence of
saltatory growth serves as data-analytic motivation for the comparison of
discontinuous versus smooth regression. This controversy is introduced in the
following Section 2 and its discussion is resumed in Section 6. The proposed
statistics and test procedures as well as the asymptotic linear model which
forms the backbone for our approach are described in Section 3. The main
asymptotic results on consistency, rates of convergence and asymptotic nor-
mality are in Section 4. Results of simulations and finite sample aspects are
discussed in Section 5. The main proofs are compiled in Section 7. Predomi-
nantly technical calculations are deferred to Appendix A.1, while Appen-
dix A.2 provides more details on a preliminary study of fitting multiple
change-points in a nonparametric regression setting.

2. A Controversy on saltatory growth.

2.1. The ‘‘saltation and stasis’’ hypothesis. In 1992, Lampl, Veldhuis and
Johnson published a study on the growth of infants in the journal Science.
They claimed that their study confirmed the ‘‘saltatory growth’’ or ‘‘saltation
and stasis’’ hypothesis: this hypothesis refers to the existence of jump discon-
tinuities in the growth of infants. The authors claimed that the existence of
jump discontinuities can be inferred from daily measurements of crown-heel
length. This finding was supported by anecdotal accounts of rapid overnight
growth of children who were reported to have gained more than one inch in

Ž .height during a single night. Lampl, Veldhuis and Johnson 1992 also added
a ‘‘stasis’’ component, periods between saltations during which very little
growth was supposed to occur.
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Ž .The findings of Lampl, Veldhuis and Johnson 1992 were disputed in a
1995 Science article by Heinrichs, Munson, Counts, Cutler and Baron. In

Ž .their response, Lampl, Cameron, Veldhuis and Johnson 1995 upheld their
original findings. Whereas Lampl et al. argued on the basis of their growth
measurements, Heinrichs et al. reported their own crown-heel lengths mea-
surements and interpreted their data as not containing any evidence for the
saltation and stasis hypothesis. They also pointed out that the biological
requirements for saltatory growth not only violate the dogma ‘‘Natura non
facit saltus’’ but are genuinely daunting. To initiate a saltatory growth spurt,
all cells in the growth zones of the bones, the epiphyses, would have to
synchronize their cell cycle in order to achieve a noticeable overall height
gain by dividing simultaneously. All this activity would have to be squeezed
into a very brief time interval.

In the following, we discuss the data on crown-heel lengths of a single
Ž .infant as reported in Figure 1 of Heinrichs et al. 1995 . These data are 30

daily height measurements from approximately 67 to 97 days of age, and
Ž .were also used by Lampl et al. 1995 ; see their Figure 1, in an attempt to

refute the interpretation of Heinrichs et al. Lampl et al. claimed to demon-
strate that these data do contain evidence for saltatory growth. We are aware
of the limitations of inference that can be drawn from data of one infant only,
and any conclusions are at best tentative. Nevertheless, this auxologic debate
provides additional motivation for the procedures proposed in Section 3
below.

ŽA scatterplot of these data crown-heel length measurements versus age in
.days appears in the panels of Figure 1. The simplest approach to modelling

is to fit a straight line, assuming that infant growth over a limited time
period of 30 days is approximately linear. Alternatively, one could assume

Ž .that the data are generated from an underlying smooth nonparametric
growth curve, allowing for smooth deviations from a linear trajectory. One
would then apply any one of a variety of smoothing methods. A smooth fit

�using the method of local linear fitting by locally weighted least squares see,
Ž .�e.g., Fan and Gijbels 1996 with appropriate bandwidth choice is shown in

Ž .Figure 1 upper left panel , together with the simple linear least squares
regression fit.

2.2. Preliminary change-point analysis of infant growth data. An alterna-
tive to the smooth fits in the upper left panel of Figure 1 is to apply

�nonparametric regression with change-points see, e.g., Hall and Titterington
Ž . Ž . Ž . Ž .�1992 , Muller 1992 , Wu and Chu 1993 , Loader 1996 . In such methods,¨
one typically first assumes a fixed number 
 of jump discontinuities in an
otherwise smooth regression function. Then the 
 change-points are located
according to a local criterion, searching for maximal jump sizes. In a last step,

Ž .a smooth fit is obtained on the 
 � 1 segments defined by the 
 estimated
change-point locations. This produces smooth curve estimates on the seg-
ments, with discontinuities where segments adjoin. An application of this
idea with local linear fitting to the infant growth data for 
 � 0, 1, 2, 3 is
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� �FIG. 1. Crown-heel lengths data from Heinrichs, Munson, Counts, Cutler and Baron, 1995 for
Ž .one infant boy, length measured daily in cm, from age 68 to 97 days n � 30 . Superimposed are
Ž .several regression fits: Upper left: simple least squares regression line dashed and smooth fit by

Ž .weighted least squares fitting of local lines solid . Upper right: monotone smooth fit with one
jump discontinuity, using local line fitting. Lower left: monotone smooth fit with two jump
discontinuities. Lower right: monotone smooth fit with three jump discontinuities.
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FIG. 2. Cross-validation sum of squares as function of the number of jump points for the
crown-heel lengths data.

Ž . Ždemonstrated in Figure 1. The fits with one upper right panel or two lower
.left panel change-points appear quite plausible.

One point of particular interest is a comparison of the quality of the
smooth fits with 
 change-points, where 
 	 0. One straightforward method
is minimization of the cross-validation sum of squares

n
2Ž�i.CVSS 
 � y � y xŽ . Ž .ˆŽ .Ý i 
 i

i�1

Ž . Ž�i.Ž .for given scatterplot data x , y , i � 1, . . . , n. Here, y x is the fitˆi i 
 i
obtained at x , assuming 
 change-points and excluding the data pointi
Ž . Ž .x , y when constructing the fit. The resulting plot for CVSS 
 for thei i
infant growth data is in Figure 2. Taken together, Figures 1 and 2 support
the idea that inclusion of some degree of saltation provides the best explana-
tion for the data. We continue this discussion in Section 6, applying the new
methods which are developed below. It is clear from Figure 1 that a major

Ž . Ž .distinction exists between smooth 
 � 0 and nonsmooth 
 � 0 models,
demonstrating that the model selection issues which are addressed next are
of interest beyond this particular example.
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Additional pertinent details on this preliminary change-point approach can
be found in Appendix A.2.

3. Asymptotic linear model and proposed estimators. As outlined
in the introduction, we assume that the regression function is in S . We� , �

then consider the null hypothesis H : � � 0, that the function is smooth,0
which is to be tested against the alternative H : � � 0, that the functionA
contains jump discontinuities.

The inference procedures which we propose are based on sums of squared
differences of the data. These differences are formed with various span sizes.
Specifically, we consider the statistics

n�L
23.1 Z � y � y � n � L , 1 � k � L.Ž . Ž . Ž .Ýk j�k j

j�1

Ž .Here, L � L n 	 1 is a sequence of integers depending on n. Theoretical and
practical choice of L is discussed in Sections 4 and 5.2.

As will be shown, the statistics Z can be interpreted as dependentk
variables within the following asymptotic simple linear model, which con-
tains the parameters of interest 
 2 and � as intercept and slope parameters:

3.2 Z � 2
 2 � k� n � L � � � , 1 � k � L.Ž . Ž .Ž .k k

Ž .The asymptotic linear model 3.2 is characterized by the behavior of the
residual errors

3.3 � � Z � 2
 2 � k� n � L � , 1 � k � L.Ž . Ž .Ž .k k

Ž .TWe write � � � , . . . , � , 1 for a L � L-matrix with all entries being 1,1 L L
and I for the L � L identity matrix, and list the following additionalL
assumptions:

A1 min � � � 	 � � 2 L�n,Ž . Ž .j j�1 n
1�j�m

Ž .where � and m are as in 1.2 . This condition ensures that different change-j
points and their associated jumps do not get too close asymptotically so that
they can be separated by the proposed method. Furthermore, as n � �,

A2 L�n � 0,Ž .
A3 L2�n � �.Ž .

Ž . Ž .For all of the following, we assume that A1 and A2 hold. We obtain

3.4 E� � O k 2�n2 ,Ž . Ž .k

and setting � � 1 if l � k and � � 0 otherwise,l, k l, k

4 L
4 4cov � , � � � � 
 � 
 � � OŽ . Ž .Ž .k l 4 k , l 2ž /3.5 n nŽ .

uniformly in 1 � k , l � L.
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Hence one may identify a leading covariance matrix for �,

4 4
4 43.6 C � � � 
 1 � 
 I � C ,Ž . Ž .Ž .n 4 L L 0n n

where C is seen to be a nonsingular L � L matrix.0
Ž . Ž .For a proof of 3.4 , 3.5 , we refer to the proof of Theorem 4.1 in Section 7;

compare also the remark after Theorem 4.1. Note that in the case of normal
Ž 2 . 4 4 Ž . Ž 4 .�errors, 	 � NN 0, 
 , � � 
 � 2
 and therefore cov � � 4
 �n 2 �i 4 L

4I , ignoring terms of smaller order.L
2 Ž .Setting � � 2
 , we may rewrite the linear regression model 3.2 as

k
3.7 Z � � � � � � , 1 � k � L,Ž . k kn � L

with the design matrix

1, if j � 1,
3.8 A � a � 1 � i � L.Ž . Ž .i j ½ i� n � L , if j � 2,Ž .

One finds immediately

L L � 1Ž .
L

2 n � LŽ .
T3.9 A A �Ž . L L � 1 L L � 1 2 L � 1Ž . Ž . Ž .� 022 n � LŽ . 6 n � LŽ .

and

212 n � LŽ .�1TA A �Ž . 2L L � 1Ž .
3.10Ž . 2L � 1 2 L � 1 � 6 n � L � L � 1 � 2 n � LŽ . Ž . Ž . Ž . Ž .Ž . Ž .

� .ž /� L � 1 � 2 n � L 1Ž . Ž .Ž .

�Ž .The least squares estimator for is then given by�

L2
2 L � 1 � 3k ZŽ .Ý kL L � 1Ž .�̂ k�1�1T T3.11 � A A A Z �Ž . Ž . Lž / 6 n � LŽ .�̂1 2k � L � 1 ZŽ .Ž .� 0Ý k2L L � 1Ž . k�1


 2Ž .and for by
�

2 ˆ
̂ � 1�2 013.12 � B with B � .Ž . ž /ž / ž / 0 1� �ˆ ˆ1 1
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Ž .Since the data are not i.i.d., but have covariance structure 3.5 , one should
actually benefit from using the weighted least squares estimator with weights
determined by the asymptotic covariance matrix of Z, which is given by Cn
Ž . Ž . Ž .3.6 . However, according to a result of McElroy 1967 , matrices C 3.6n
happen to be of a type where the weighted and ordinary least squares

Ž . Ž .estimators coincide. Therefore, 3.11 and 3.12 simultaneously provide
weighted and unweighted least squares estimators.


 2ˆ1Ž .The covariance matrix of is given by
�̂1


 2ˆ �11 T T T T˜3.13 Cov � B A A A C A A AB ,Ž . Ž . Ž .nž /�̂1

˜ Ž . Ž .where C � Cov Z � Cov � .n

4. Asymptotic results and testing for jumps. Our first result pro-
Ž .vides the asymptotic behavior of the first two moments of estimator 3.12 .

Ž . Ž .THEOREM 4.1. Under A1 � A3 , we have that


 2 2 2 2O L �nˆ Ž .1 
4.1 E � �Ž . ž /� ž /ž /� O L�nˆ Ž .1

and

1 02'n 
̂1 4 124.2 Cov � � � 
 as n � �,Ž . Ž .4 0'ž /L � � 0ˆ1 5

provided that � � 0. If E	 3 � 0, then we have for arbitrary � 	 0 that1

4� � 
 02 4'n 
̂1 12 484.3 Cov � as n � �.Ž .
4 2'ž /L � 0 � � 
 � �
ˆ Ž .� 01 45 5

The proof is in Section 7. Observe that this result does not follow directly
Ž . Ž .from 3.11 � 3.13 , by combining the usual variance formula for a linear

Ž . Ž . Ž .regression estimator such as 3.13 with the leading term 4�n C in Cov Z0
Ž .� Cov � . That this intuition does not work has two reasons: first the

�dimension of the sequence of L � 2 matrices A � A increases with n asn

 2ˆ1Ž .� Ž .L � L n , that is, the estimates are obtained from a sequence of linear
�̂1

models with changing dimensions. Second, there are cancellation effects due
to the fact that the sum of the weights in � is zero; see the first twoˆ1
paragraphs of Section 7.1 and Lemma A1 in the Appendix.
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It is an immediate consequence that both 
 2, � are consistent. The meanˆ ˆ1 1
ŽŽ . Ž 4 4.. 2squared error rates of convergence are seen to be O 1�n � L �n for 
̂1

ŽŽ . Ž 2 2 ..and O 1�L � L �n for � . On sets S with � � 0, our proofs show thatˆ1 � , �

Ž . 2 2 � Ž .these rates cannot be improved. To verify this, use E � � � k �n see 4.11k
Ž .�below and Lemma A1 vi to obtain

4.4 E � � � � � L�n 1 � o 1 .Ž . Ž . Ž .Ž .Ž .ˆ1

Therefore, the optimal mean squared error rates are n�1 for 
 2 and n�2�3ˆ1
for � . The asymptotically optimal choice for L with respect to mean squaredˆ1

Ž . Ž . � Ž .�2error according to 4.3 , 4.4 is obtained by minimizing � L�n � ��L
with respect to L, which yields

1�32 24.5 L* � ��2� n ,Ž . Ž .Ž .

Ž 4. 2where � � 12 � � 
 �5 � 48�
 �5.4
Ž 2 .TWe next discuss the asymptotic limit distribution for the estimates 
 , �ˆ ˆ1 1

� Ž .�see 3.12 . Note that throughout this paper the case that the errors 	 � 	i i, n
come from a triangular array is included. This assumption is often more
realistic to describe how the designs vary with n. For the following result, we

Ž . Ž .need in addition to A1 � A3 ,

A4 L3�n2 � 0 as n � �.Ž .

Ž . Ž . 3 4THEOREM 4.2. Under the assumptions A1 � A4 , E	 � 0 and � � 
 ,1 4
we have

1 02 2'n 
 � 
ˆŽ .1 0 4 124.6 � NN , � � 
 .Ž . Ž .d 2 4ž /0 0'ž /L � � � � 0Ž .ˆ � 01 5

For the proof see Section 7. We note that for the degenerate case � � 
 4
4

Ž Ž .i.e., 	 � 
 B � 1 , where B denotes a Bernoulli random variable1 1, 1�2 1, 1�2
.with p � 1�2 , one can also derive asymptotic normality with, however,

�different rates and variance. We will not pursue this case here further for
Ž .� Ž .more details, see Dubowik 1996 . We note that if we use the optimal L* 4.5

which is of order n2�3, a bias term must be included in the limit distribution.
A similar effect is known to occur in curve estimation when optimal smooth-
ing parameters are inserted.

One important application is the construction of an asymptotic level � test
for the null hypothesis of no change,

H : � � 0 versus H : � � 0,o a
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when we assume that � � 
 4 � 0. The test statistic4

'L �̂1
4.7 � � ,Ž . 1�2412�5 � � 
Ž . ˜ ˜Ž .Ž .4

Ž .targets a standardized version of � 3.12 . It is asymptotically normal byˆ1
Slutsky’s theorem, if we insert consistent estimators � , 
 2 for � , 
 2. We˜ ˜4 4
suggest applying the following consistent estimators: 
 2 � 
 2 as defined by˜ ˆ1
Ž . 23.12 and � � 3
 in case the errors can be assumed to be approximately˜ ˜4
normally distributed.

If the errors are not normal and � must be estimated independently of˜4

 2, asymptotically consistent estimators for � can still be found in the case˜ 4
where the regression function f has only a fixed finite number of jump
discontinuities, irrespective of the sample size n. This restriction is not
necessary for our other results, where the number of discontinuities may
change with n and could diverge. One then may show that

n�11 4 44.8 � � y � y � 3
Ž . Ž .˜ ˜Ý4 j�1 j2n j�1

provides such an estimate with � � � as n � �. The reason is that the˜4 p 4
Ž �1 .bias induced by the jumps is O n if there are only finitely many jumps. In

a finite sample situation, however, this bias may be nonnegligible.
Analogously, as an alternative estimate of 
 2, one could consider the

� Ž .�difference-based estimate compare Rice 1984

n�11 224.9 
 � y � y ,Ž . Ž .˜ ÝD j�1 j2n j�1

which is also consistent for 
 2 if there are only finitely many jumps. For both
Ž . Ž .estimates 4.8 and 4.9 , improved versions for practical applications are

possible after locating the change-points as illustrated in the growth example
Ž . Ž .below. One then would omit differences of y ’s in 4.8 , 4.9 which cut across a

jump.
Then, if � � 0, we have asymptotically,

4.10 � � NN 0, 1Ž . Ž .

from which level �-tests for H : � � 0 can be derived. We note that by a moreo
refined analysis using Riemann sum approximation and Taylor expansion, we
can write

2k k
24.11 Z � 2
 � � � � � � ,Ž . ˜k kž /n � L n � L

L1 2 1 2Ž Ž . Ž . Ž .. Ž . ŽŽ . .where � � H g � t dt � 2H g � t dh t and E � � o . This˜0 0 k n
motivates a three-parameter asymptotic linear model with parameters �, � ,



¨ ¨H.-G. MULLER AND U. STADTMULLER312

� . Similar arguments as before lead to the following least squares estimates
for 
 2 and � :

3
2
 �ˆ2 2 L L � 1 L � 2Ž . Ž .

L
2 2� 3L � 3L � 2 � 6 2 L � 1 j � 10 j Z ,Ž .Ž .Ý j

j�1

6 n � LŽ .
� �ˆ2 2 2L L � 1 L � 4Ž . Ž .

4.12Ž .

L

� �3 L � 1 L � 2 2 L � 1Ž . Ž . Ž .ŽÝ
j�1

�2 8 L � 11 2 L � 1 j � 30 L � 1 j2 Z .Ž . Ž . Ž . . j

Ž . Ž .Plugging estimates 4.12 into model 4.11 , we obtain


 2 2 2 2o L �nˆ Ž .
24.13 E � � ,Ž . 2ž / ž /ž / �� o L�nˆ Ž .2

Ž .an improvement over 4.1 . Furthermore, one can show that

4� � 
 0Ž .2 2 4'n 
 � 
ˆŽ . d2 04.14 � NN , ,384Ž . ž / 40'ž /L � � � 0 � � 
Ž .ˆ Ž .� 0� 02 435
3 2 Ž . Ž .provided that L �n � O 1 and � � 0. A basic result for the proof of 4.13

Ž .and 4.14 is Lemma A5 in the Appendix and further calculations can be
Ž .found in Dubowik 1996 .

Ž .Note that the bias of � is o L�n rather than being asymptotically L�nˆ2
as is the bias of � . This stems from the fact that while � is based on theˆ ˆ1 2

Ž .second-order Taylor expansion 4.11 , � is based on the first-order Taylorˆ1
Ž . 2�3expansion 3.7 . Therefore, we can let L increase up to order L � n

Ž .without incurring an asymptotic bias. In place of assumption A4 , we then
only need
A5 L2�n3 � C � �;Ž .

Ž .also compare the discussion after 4.6 .
Ž .Note that 4.14 implies that the asymptotic variances of � and of �ˆ ˆ2 1

Žobtained from the two-parameter or asymptotic simple linear regression
. Ž . Ž . Ž .Ž .model are related by var � �var � � 5�12 384�35 � 32�7. Thus theˆ ˆ2 1

estimate � is more variable when compared to � . Still we recommend usingˆ ˆ2 1
this asymptotic quadratic model in particular for the cases where � � 0, that
is, where the smooth part of the function cannot be neglected. In such cases,
for sizable � � 0, � is contaminated by nonnegligible bias in particular forˆ1

Ž .large L, whereas � is less affected by such bias; compare 4.13 . See Sectionˆ2
5 for simulation comparisons of � and � .ˆ ˆ1 2
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5. Finite sample behavior. The proposed tests and estimates depend
on the choice of the maximal span size L, which assumes a role similar to
that of a smoothing parameter in smoothing methods. The asymptotic vari-
ances of these estimates become smaller if L is increased, according to

Ž .Theorem 4.1. However, large choices of L may lead to violation of A1
Ž . Ž .whenever the regression function has several jumps. Conditions A4 and A5

effectively place an upper bound on L. If L is too large, this may lead to
biases in � . Thus L must be chosen to negotiate a compromise betweenˆ
variance and bias; theoretically the mean squared error provided by Theorem

Ž .4.1 can be minimized by using L* 4.5 . However, this is not feasible in
practice and a data-based ‘‘plateau’’ method is proposed in Section 5.2. We
first report the results of simulation studies regarding the behavior of the
estimates of � and 
 2 when varying L.

5.1. Monte Carlo results. In order to study the behavior of estimates � ,ˆ1
2 Ž .
 3.12 obtained by fitting the asymptotic simple linear regression model toˆ1

Ž . 2 Ž .the data k�n, Z and of estimates � , 
 4.12 obtained by fitting theˆ ˆk 2 2
asymptotic quadratic model, we looked at various simulated settings. For the
summands g � S and h � S of the function f � S , where f � g � h, weC D � , �

� �chose the following functions, all on support 0, 1 . For the step function h,

5.1 h x � c 1 � c 1 � c 1 .Ž . Ž . 0 �0, 0 .25� 1 �0 .25, 0 .5� 2 �0 .5, 1�

The constants c , c , c in h were chosen to achieve the following values for0 1 2
Ž .2 Ž .2 Ž .the sum of squared jump sizes � � c � c � c � c : 1 � � 0, with the1 0 2 1

Ž . Ž .choice c � c � c � 0 no jump ; 2 � � 1.0, choosing c � 0, c � c � 10 1 2 0 1 2
Ž . Ž . Ž .one jump and 3 � � 3.25, choosing c � 0, c � 1, c � �0.5 two jumps .0 1 2

Ž . Ž . Ž .For the smooth part g, the three functions g x � 0, g x � x and g x �1 2 3
Ž .4 x 1 � x were investigated. The error variance in the basic model was

chosen to be either 
 2 � 0.25 or 
 2 � 1.0, and the errors 	 were generatedi
as normal random variables.

By varying the parameters, we obtained various scatterplots of data
Ž .generated from model 1.6 . A variety of examples are shown in Figures 3 and

4 for n � 100 and 
 2 � 0.25 and in Figures 5 and 6 for n � 1000 and

 2 � 1.0. The upper two panels display the scatterplots, and the lower panels

Ž . 2the estimates � , respectively, � of � solid lines as well as 
 , respectively,ˆ ˆ ˆ1 2 1
2 2 Ž .
 of 
 dashed lines in dependency on the auxiliary parameter L. The leftˆ2

panels are for the case of no jumps, � � 0, and the right panels for � � 3.25
Ž .two jumps .

The main findings are as follows: for all examples, the estimates 
 2,ˆ1
respectively, 
 2 are quite stable, that is, do not vary much with L and areˆ2
also quite accurate. This indicates that the estimation of 
 2 is relatively easy
and does not require any sophisticated choice of L. Some exceptions to this
rule do exist, though, as exemplified in Figure 4, right panels, where for the

Ž . 2 2case n � 100, � � 3.25, g � g � 4 x 1 � x and 
 � 0.25, the estimates 
̂3 2
turn negative for larger values of L.
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FIG. 3. Simulated examples. The upper panels show scatterplots for n � 100 data, generated
with smooth functions g � 0 and error variance 
 2 � 0.25. The lower panels display estimates1

Ž . 2 Ž . Ž .� solid and 
 dashed 3.12 , obtained by fitting the asymptotic simple linear model, inˆ ˆ1 1
dependency on L. The two left panels are for the case of no jumps, � � 0, and the two right panels

Ž .are for the case � � 3.25, with superimposed step function h 5.1 .
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FIG. 4. Simulated examples. The upper panels show scatterplots for n � 100 data, generated
Ž . 2with smooth functions g � 4 x 1 � x and error variance 
 � 0.25. The lower panels display3

Ž . 2 Ž . Ž .estimates � solid and 
 dashed 4.12 , obtained by fitting the asymptotic quadratic model,ˆ ˆ2 2
in dependency on L. The two left panels are for the case of no jumps, � � 0, and the two right

Ž .panels are for the case � � 3.25, with superimposed step function h 5.1 .
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FIG. 5. Simulated examples. The upper panels show scatterplots for n � 1000 data, generated
with smooth functions g � 0 and error variance 
 2 � 1.0. The lower panels display estimates �̂1 1
Ž . 2 Ž . Ž .solid and 
 dashed 3.12 , obtained by fitting the asymptotic simple linear model, inˆ1
dependency on L. The two left panels are for the case of no jumps, � � 0, and the two right panels

Ž .are for the case � � 3.25, with superimposed step function h 5.1 .
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FIG. 6. Simulated examples. The upper panels show scatterplots for n � 1000 data, generated
Ž . 2with smooth functions g � 4 x 1 � x and error variance 
 � 1.0. The lower panels display3

Ž . 2 Ž . Ž .estimates � solid and 
 dashed 4.12 , obtained by fitting the asymptotic quadratic model,ˆ ˆ2 2
in dependency on L. The two left panels are for the case of no jumps, � � 0, and the two right

Ž .panels are for the case � � 3.25, with superimposed step function h 5.1 .
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The estimation of � is seen to be far less stable, especially for the cases
Ž .with sample size n � 100 Figures 3 and 4 . These and other examples

Ž .indicate that for small values of L, the functions � L typically displayˆ
oscillatory behavior whereas for very large values of L, the estimates are
trailing off, and become biased. In nearly all situations, a value for L which
leads to reasonably good estimates lies in between these two extremes.

These findings are corroborated when looking at mean estimates for �̂2
and 
 2 obtained from 500 simulations as shown in Figure 7. The left panelsˆ2
are always for � � 0, the right panels for � � 1, and the estimates for � in
dependency on L are solid curves, while the estimates for 
 2 are dashed

Ž .curves. The top two panels in a are for n � 100; all the others are for
n � 1000. These average estimates are seen to be well on target irrespective
of the value of L for 
 2 and in middle ranges of L for � as well. Similar
observations can be made for the mean squared error of � , � as functions ofˆ ˆ1 2

Ž .L results not reported .

5.2. Choice of L. The simulations indicate that the choice of the span size
L is critical for the estimation of � in most cases, while it does not matter
much for the estimation of 
 2. For the applications, an empirical, data-de-
pendent method for the choice of L is needed. We propose the plateau method
which is inspired by the simulation results, in particular, Figure 7. The best

Ž .results are obtained in a range of L’s where the estimates � L are relativelyˆ
stable. This ‘‘plateau’’ is reached in most cases after an initial period of rapid
oscillations for small L and prior to a trend which sets in for large values of
L and which is biasing the estimates upward from the target values.

The plateau method can be implemented in a variety of ways. We found
the following version to be particularly successful: First define a function

L�L0

� L � i � L � i ,Ž . Ž . Ž .ˆÝ
i�L�L0

Ž� � . Ž . Ž .where L � max n�50 , 2 for a sample size n, and � i stands for � i orˆ ˆ0 1
Ž .� i , choosing i as the span size. This can be interpreted as a derivativeˆ2

Ž . � �estimate of � � at L, using a window smoother with window L � L , L � L ,ˆ 0 0
and ignoring normalizing constants. Then obtain

ˆ5.2 L � min L: � L � i � 0 for 0 � i � L .� 4Ž . Ž . 0

Similar criteria which are also useful but in our simulations came out
somewhat inferior are

ˆ � �5.3 L � min L: � L � i � 0 for 0 � i � L� 4Ž . Ž . 0

and

2L�L L�L0 01 12ˆ5.4 L � arg min � i � � i ,Ž . Ž . Ž .ˆ ˆÝ Ý½ 52 L � 1 2 L � 1L 0 0i�L�L i�L�L0 0
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TABLE 1
2 2Simulation results for MSE’s of estimates � , � , 
 , 
 *ˆ ˆ ˆ ˆ1 2 1 2

ˆSelected L
3 4( )Case with std. dev. for MSE � 10 for MSE � 10 for

Parameter Function
2 2� g � � � � � �ˆ ˆ ˆ ˆ ˆ ˆ1 2 1 2 1 2

Ž . Ž .0 1 196 70 187 52 2.45 17.9 1.58 1.51
Ž . Ž .0 2 156 22 187 54 16.9 16.3 1.37 1.72
Ž . Ž .0 3 157 45 177 41 242 19.2 2.10 1.55

Ž . Ž .1.0 1 235 128 180 41 65.4 75.7 9.61 18.3
Ž . Ž .1.0 2 148 20 180 40 195 74.8 2.04 1.85
Ž . Ž .1.0 3 145 19 180 39 1172 78.2 3.93 1.68

Ž . Ž .3.25 1 223 121 185 42 688 221 88.6 2.24
Ž . Ž .3.25 2 252 137 183 41 1682 210 2.00 2.06
Ž . Ž .3.25 3 146 63 182 40 1225 207 4.03 2.06

Ž .*In various situations with auxiliary parameter L selected by the plateau method 5.2 .
Error variance 
 2 � 0.25, sample size n � 1000. Results are for 1000 simulations. Parameter �
is the sum of squared jump sizes, and the smooth part of the regression function was selected as

Ž .g � 0, g � x and g � 4 x 1 � x .1 2 3
ˆBesides MSE’s, the table also contains means and standard deviations for the selected values L

Ž .5.2 for both � and � .ˆ ˆ1 2

Ž .the latter choosing L in such a way as to minimize the variance of � � in theˆ
� � Ž . Ž . Ž .local window L � L , L � L . The idea behind criteria 5.2 , 5.3 is that 10 0

ˆ Ž .L will not be chosen from within the early oscillation period too small L’s ,
as there the derivative will change sign over a span of size L and therefore0

Ž .� will not satisfy � L � i � 0 for 0 � i � L for L’s chosen from a region0
ˆŽ .where oscillations occur; 2 L will also not be chosen from within the

Ž .right-hand region where a monotone upward or downward trend and there-
ˆŽ .fore bias occurs too large L’s . Instead, it is likely that L will be chosen from

somewhere in the area of the plateau, where flat but sustained upward
trends occur fairly regularly.

This approach worked well in simulations; the resulting fully data-based
estimates for � and 
 2 yielded mean squared errors as listed in Table 1. It is
clear from this table that data-based estimation of the error variance 
 2 in
the presence of jump discontinuities works well with this method in almost
all cases. Regarding the estimation of � , a more mixed picture emerges. As a

Ž .rule, estimates � 4.12 based on the asymptotic quadratic model haveˆ2
smaller bias but in some cases substantially larger variance than estimates

Ž .� 3.12 , which are based on the asymptotic simple linear model. The overallˆ1
results for mean squared errors show that the estimates 
 2 for the errorˆ2
variance 
 2 are mostly better than estimates 
 2. Also, with the exception ofˆ1
the cases where g � g � 0, � � 0 and g � g � 0, � � 1.0, � is better thanˆ1 1 2
� in terms of MSE. For the cases where n was small or 
 2 was large, theˆ1
comparison between the two estimators was not as clear-cut. Nevertheless,
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FIG. 8. Empirical power for the asymptotic level � test H : � � 0 versus H : � � 0, � � 0.1,0 a
2 Ž .computed from 1000 simulations, in dependency on � � 0 and based on estimates � , 
 4.12 .ˆ ˆ2 2

Ž . Ž . Ž .Sample sizes n � 30 short dashed , n � 100 solid and n � 1000 long dashed . The parame-
ters for the panels are upper left: g � 0, 
 2 � 0.025, upper right: g � x, 
 2 � 0.025, lower left:1 2
g � 0, 
 2 � 0.25, lower right: g � x, 
 2 � 0.25.1 2
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we recommend using the estimates � and 
 2. We also note the remarkableˆ ˆ2 2
stability of the average chosen L by means of the plateau method for � .ˆ2

It is also of interest to investigate the empirical power of the test for H :0
� � 0 as a function of � , using the plateau method of choosing L and thus a
completely data-driven procedure. The results are shown in Figure 8 for
asymptotic level � tests with � � 0.1, n � 30, 100 and 1000 and four
different situations, including different smooth functions and error variances.
These results indicate that the test has good power for n � 1000 but rela-
tively low power when n � 30 or n � 100 and the error variance is high.

Ž . Ž .The code implementing estimators 3.12 and 4.12 and the plateau method
Ž .5.2 has been written in Fortran and is available from the authors, along
with the infant growth data discussed in the next section.

6. Further analysis of infant growth data. A preliminary analysis
with nonparametric regression methods incorporating jump discontinuities
was presented in Section 2. The methods described there provide a variety of
fits, but cannot resolve the model selection problem, namely whether a
smooth or rather a discontinuous model is appropriate for these data. This
model selection problem is at the heart of the scientific controversy on the

Ž . 2Ž .existence of saltatory growth. The estimates � L and 
 L , using theˆ ˆ2 2
asymptotic quadratic model for these data, are shown in Figure 9; we note
that the asymptotic simple linear model did not provide reasonable estimates
for this case.

Figure 9 shows a weakly expressed plateau. We choose L � 10 and obtain
estimates � � 0.70 and 
 2 � 0.024. Assuming normal errors, and under theˆ ˆ2 2
null hypothesis � � 0, the corresponding estimated variances according to� �

�3 2 �4Ž . Ž . Ž .4.14 are var � � 1.2 � 10 , var 
 � 1.5 � 10 . This provides for a highlyˆ ˆ2 2
significant z-value of z � 20.08 in the test statistic, and thus the smooth
model would be rejected in favor of a model containing discontinuities. These
results have to be viewed with a grain of salt, as they rely on asymptotic
approximations and the normality and independence assumptions for the
errors. One needs to keep in mind that the sample size of n � 30 available
here is quite small.

Nevertheless, this analysis in conjunction with the findings in Section 2
points toward the existence of periods of fast growth which occurs in a
relatively short time. The fast growth can be modelled as a discontinuity
when the analysis is based on daily measurements. This does not mean that a
mathematical jump discontinuity exists in reality, and a much finer grid of
measurements is likely to resolve the apparent discontinuity into a short
period of fast growth. Furthermore, one cannot draw broad conclusions based
on limited data from one subject.

The smooth and discontinuous fits in Figure 2 have been monotonized as
growth curves of course must be monotone; see Appendix A.2. Sum of squared
jump sizes as well as error variances were calculated for both unrestricted
Ž .not necessarily monotone as well as monotonized versions. Error variances
were estimated by the average squared residuals according to the formula
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Ž . 2 Ž .FIG. 9. Estimates � solid and 10
 dashed for the crown-heel lengths data as a functionˆ ˆ2 2
of L.

Ž .A.2 given in Appendix A.2. These values and also individual jump sizes for
nonmonotone and monotone fits are listed in Table 2.

Since the simulations have shown that even for modest sample sizes the
error variance estimate 
 2 is quite stable and has low variance, we canˆ2
compare 
 2 � 0.024 with the error variances produced from the residuals ofˆ2
the various models. As it happens, 
 2 falls in between the values obtainedˆ2
for the smooth fit 
 2 � 0.030 and for the smooth fit with one discontinuityˆ
Ž 2 .
 � 0.019 . The estimate � � 0.70 is somewhat larger than the estimatedˆ ˆ2

Ž .sum of squared jump sizes with three discontinuities � � 0.62 . We cau-ˆ
tiously conclude from this and the test results rejecting H : � � 0 that these0
data are better represented by models containing jump discontinuities rather
than models assuming a smooth or linear function. We note that Figure 8
indicates that for 
 2 � 0.025 and n � 30 the power of the proposed test is
reasonable.
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TABLE 2
2 ˆEstimated error variances 
 and jump sizes � for the crown-heel lengths data*ˆ

ˆ ˆ� �
2 2( )� �10 Nonmonotone at Monotone atˆ � non- �ˆ ˆ

Nonmono- Mono- mono- mono-
Fit tone tone 72.5 77.5 86.5 72.5 77.5 86.5 tone tone

Linear 4.2 4.2 0 0 0 0 0 0 0 0
Smooth 3.0 3.0 0 0 0 0 0 0 0 0
Smooth with 1.9 1.9 0 0 0.70 0 0 0.57 0.49 0.32

one jump
Smooth with 1.8 1.8 0 0.28 0.70 0 0.28 0.57 0.57 0.40

two jumps
Smooth with 1.6 1.7 0.22 0.28 0.70 0.21 0.28 0.57 0.62 0.44

three jumps
Asymptotic 2.4 0.70

quadratic
2model � , 
ˆ ˆ2 2

*Based on various monotone and nonmonotone fits.
Here, � denotes the estimated sum of squared jump sizes.ˆ

7. Proofs of the main results.

7.1. Proof of Theorem 4.1. In order to calculate the first two moments of
our estimator, we define for 1 � j � L and �, � � R the quantities

2
� � 2 L � 1 � 3 j ,Ž .j L L � 1Ž .

7.1Ž . 6 n � LŽ .
� � 2 j � L � 1 , w � �� � �� ,Ž .Ž .j j j j2L L � 1Ž .

and obtain
L L

�̂ � � Z , � � � Z .ˆÝ Ýj j 1 j j
j�1 j�1

Ž .Furthermore we find from 3.3 ,
n�L1 2 2� � 	 � 	 � 2
Ž .Ý ½ 5k j�k jn � L j�1

n�L2 j � k j
� f � f 	 � 	Ž .Ý j�k jž / ž /ž /n � L n nj�1

2n�L1 j � k j
� g � gÝ ž / ž /ž /n � L n nj�1

7.2Ž .

n�L2 j � k j j � k j
� g � g h � h ,Ý ž / ž / ž / ž /ž / ž /n � L n n n nj�1
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Ž .where g is the smooth and h the nonsmooth part of f. Obviously, E � �k
Ž 2 2 . Ž .O k �n , which is 3.4 .

ˆIn order to find the expectations of � and � , observe that by Lemma A1ˆ1
� � 2 Ž 2 .below, Ý� � 1, Ý� k � 0 and Ý� � 0, Ý� k � n � L, Ý � k � O L ,k k k k k

� � 2 Ž .Ý � k � O Ln . Hencek

L
2 2ˆ � �E � � � � O � E � � � � O L �n ,Ž . Ž .Ž . Ý k kž /

k�1

L

� �E � � � � O � E � � � � O L�n ,Ž . Ž .Ž .ˆ Ý1 k kž /
k�1

which had to be shown.
To obtain the covariance matrix, we calculate for arbitrary �, � � R the

ˆŽ .variance of �� � �� ,ˆ1

L L L
2S � var � � Z � � � Z � var w Z ,Ý Ý Ýj j j j k kž /ž /j�1 j�1 k�1

and obtain
L L

2S � var w � � w w cov � , � .Ž .Ý Ýk k k l k lž /
k�1 k , l�1

Furthermore, for 1 � k, l � L,

cov � , �Ž .k l

n�L1
4� � � 
 
 � � � � � �Ž .Ž .Ý 4 j�k , i�l j , i�l j�k , i j , i2n � LŽ . i , j�1

4�4
 � �i , j k , l

2 n�L4
 j � k j i � l i
� f � f f � fÝ2 ž / ž / ž / ž /ž / ž /n n n nn � LŽ . i , j�1

� � � � � � � �Ž .j�k , i�l j�k , i j , i�l i , j

4
 4 � � 
 4
4

� �� � � 4 n � L � k � l � k � lŽ . Ž .k , l 2n � L n � LŽ .
8 L3�2

2 � 4� �
 min k , l � O .2 5�2ž /nn � LŽ .
Ž .Here we used the fact that f � g � h and, observing A1 ,

n�L j � k j i � l i
h � h h � hÝ ž / ž / ž / ž /ž / ž /n n n ni , j�1

� 4� � � � � � � � � 2� min k , l .Ž .j�k , i�l j�k , i j , i�l j , i
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For instance,
n�L j � k j j � k j

h � h g � gÝ ž / ž / ž / ž /ž / ž /n n n nj�1

1�22 2 2n�L n�Lj � k j j k
� c h � h g �Ý Ýž / ž / ž / ž /ž / ž /ž /n n n nj�1 j�1

3L
� O , 1 � k � L,(ž /n

and similarly for the other terms.
Ž .Thus we obtain 3.5 and

L
2S � w w cov � , �Ž .Ý k l k l

k , l�1

24 4L L4
 4 � � 
Ž .42� w � wÝ Ýj jž /n � L n � Lj�1 j�1

4 L L L� � 
4 2� 4 w kw � 2 w jÝ Ý Ýj k j2 ½ 5n � LŽ . j�1 k�j�1 j�1

23�2L k L L16� 8� L
2 � �� w w l � w k � O w .Ý Ý Ý Ýk l k k2 2 5�2ž / ž /nn � L n � LŽ . Ž .k�1 l�1 k�1 k�1

Now using Lemma A1, we conclude that

4�2 � � 
 4Ž .42S � 1 � o 1Ž .Ž .
n

4
 4 n 1 � � 
 4 4 �
 2Ž .42� 12 � � � 1 � o 1 .Ž .Ž .3½ 55 L 5 LL
12 ˆ Ž .From 
 � � and A3 we find thatˆ1 2

�2 12 � 2
2 4var �
 � �� � � � 
 1 � o 1 � 1 � o 1Ž . Ž .Ž . Ž .ˆ ˆ Ž .Ž .1 1 4 ž /n 5 L

48� 2�
 2

� 1 � o 1Ž .Ž .
5L

for any �, � � R, which yields Theorem 4.1. �

7.2. Proof of Theorem 4.2. We start by showing the asymptotic normality
Ž 2 .Tof 
 , � for the case � � 0 in detail. This will follow from the asymptoticˆ ˆ1 1

ˆ T �1 2 TŽ . Ž .normality of �, � � B 
 , � whereˆ ˆ ˆ1 1 1

1�2 0
B � .ž /0 1
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Ž . 2By the Cramer-Wold device it is sufficient to show for any pair �, � � R´
that

ˆ ˆ' 'X � � n � L � � E � � � L � � E �Ž .ˆ ˆŽ .Ž .Ž .n 1 1

is asymptotically normal. We will show that

12
2 4 2 47.3 X � NN 0, 4� � � 
 � � � � 
 ,Ž . Ž . Ž .n d 4 4ž /5

that is,

44 � � 
 0Ž .4ˆ'n � � �Ž . 0� NN , .12d ž / 40'ž / 0 � � 
L � � �Ž .ˆ Ž .� 0� 041 5

The strategy for the proof is now as follows. After identifying the leading
˜terms of � and thus X we are left with X , which is essentially a weightedn n

˜Ž .U-statistic as discussed, for example, in Lee 1990 . However, X does notn
�conform to the usual assumptions. Adopting the projection method see, e.g.,

˜Ž . �Serfling 1980 , Section 5.3 , we therefore project X onto the 	 , obtaining inn i
the process a weighted sum of independent random variables which is shown
to be asymptotically normal in Lemma A3. In a last step, it is shown that this

˜ Ž .projection is sufficiently close to X Lemma A4 .n
Now, as in the previous proof,

L � 1
��� 2 L � 1 � 3k ���Ž .2 212 n � L 6 n � Lˆ Ž . Ž .� � � � � .2ž / 2k � L � 1L L � 1� � � Ž .Ž .ˆ1
��� ���� 0

2 n � LŽ .

Therefore,
n

X � � � ,Ýn k , n k
k�1

Ž .with weights observe these are the suitably normalized w from abovek

'2� n � L
� � 2 L � 1 � 3kŽ .k , n L L � 1Ž .

7.4Ž . '6� L n � LŽ .
� 2k � L � 1 , 1 � k � L.Ž .Ž .2L L � 1Ž .

Defining
n�L

2 2� � 	 � 	 � 2
 n � L ,Ž . Ž .� 4Ýk , n k�
 


�1
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Ž .we decompose r.v.’s � 7.2 ,k

7.5 � � � � r .Ž . k k , n k , n

By calculations as in the proof of Theorem 4.1, we find

L
3�2E � r � O L �n � 0,Ž .Ý k , n k , nž /

k�1

Ž .using assumption A4 . Furthermore we observe in the proof of Theorem 4.1
Ž L . Ž . Ž .that var Ý � r � o 1 note that � � 0 , hence this is a remainder termk�1 k k , n

and it is sufficient to investigate the term

L
˜7.6 X � � � .Ž . Ýn k , n k , n

k�1

Now consider the projection
n

�1ˆ ˜ �7.7 T � n E X 	 .Ž . Ý ž /n n �
��1

ˆ ˆŽLemmas A3 and A4 demonstrate asymptotic normality of T and E T �n n
˜ 2. Ž .X � 0 as n � �, and thus imply 7.3 . �n

APPENDIX

A.1. Technical lemmas. In the following, we use the notation


�1
2 2 2 �1A.1 s � 	 � 
 , c � n �Ž . Ý� � 
 , n k , n

k�1

for indices 
 	 2.
Ž .Using the notation of 7.1 , somewhat tedious but simple algebra yields the

following lemma.

LEMMA A1.

L L 2 L4 12n 6n
2 2i � � , � � , � � � � ,Ž . Ý Ý Ýj j j j3 2L L Lj�1 j�1 j�1

and hence

L 2 2 24� 12n � 12��n
2ii w � 1� o 1 � 1 � o 1 � 1� o 1 ;Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ý j 3 2L L Lj�1

L L 2 L6n 2n
2 2iii � j � 1, � j � , � � j � � ,Ž . Ý Ý Ýj j j j2 LLj�1 j�1 j�1
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and hence

L 2 26� n 4��n
2 2iv w j � � 1 � o 1 � 1 � o 1 � 1 � o 1 ;Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ý j 2 LLj�1

L L

v w � �, w j � � n � L ;Ž . Ž .Ý Ýj j
j�1 j�1

L L 2� L
w w k � � 1 � o 1Ž .Ž .Ý Ýj k 15j�1 k�j�1viŽ .

2 211��n 3� n
� 1 � o 1 � 1 � o 1 ;Ž . Ž .Ž . Ž .

10 5L

j 2L � L
w w k � 1 � o 1Ž .Ž .Ý Ýj k 15j�1 k�1viiŽ .

��n 3� 2 n2

� 1 � o 1 � 1 � o 1 ;Ž . Ž .Ž . Ž .
10 5L

L 1
2 2viii w k � ��L �6 � �nL 1 � O ;Ž . Ž .Ý k ž /ž /Lk�1

L n
� �ix w � O .Ž . Ý k ž /Lk�1

Ž .LEMMA A2. For the quantities c , 1 � 
 � L, defined in A.1 , we have
 , n

' 'i c � � N � L �n � �� n ;Ž . L�1, n

'n � L � 
 � 1Ž .
c � 4L � 3
 � 2Ž .
 , n n L L � 1Ž .

iiŽ .
'n � L 6� L 
 � 1Ž .

� 
 � L � 1 ;Ž .Ž .2n L L � 1Ž .
L �L 'iii c � 1 � o 1 � � L 1 � o 1 ;Ž . Ž . Ž .Ž . Ž .Ý 
 , n 'n
�1

L 6
2 2iv c � � 1 � o 1 ;Ž . Ž .Ž .Ý 
 , n 5
�1

1�2L
2 �1�2� �v max c c � O L .� 4Ž . Ž .Ý
 , n 
 , nž /1�
�L 
�1
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Ž .PROOF. From 7.4 ,
L ' '2� n � L 6� L n � LŽ .

nc � 2 L� 1 � 3k � 2k� L � 1Ž . Ž .Ž .ÝL�1, n 2ž /L L � 1 L L � 1Ž . Ž .k�1

'� � n � L ;

�1 ' '2� n � L 6� L n � LŽ .

nc � 2 L� 1 � 3k � 2k� L � 1Ž . Ž .Ž .Ý
 , n 2ž /L L � 1 L L � 1Ž . Ž .k�1

'� n � L 
 � 1Ž .
� 4L � 2 � 3
Ž .

L L � 1Ž .
'6� L n � L 
 � 1Ž . Ž .

� 
 � L � 1 ;Ž .Ž .2L L � 1Ž .
L L'� n � L

2c � 4L � 2 
 � 1 � 3
 � 3
Ž . Ž .Ž .Ý Ý
 , n nL L � 1Ž .
�1 
�1

L'6� L n � LŽ .
2� 
 � 
 � L � 1 
 � 1Ž . Ž .Ž .Ý2nL L � 1Ž . 
�1

3 3'�L � L L
� 1 � o 1 � 1 � o 1Ž . Ž .Ž . Ž .32' Ln L

�L '� 1 � o 1 � � L 1 � o 1 ;Ž . Ž .Ž . Ž .'n

and
L 2 L� n � LŽ . 2 22c � 
 � 1 4L � 3
 � 2Ž . Ž .Ý Ý
 , n 22 2n L L � 1Ž .
�1 
�1

22 L36� L n � LŽ . 22� 
 � 1 
 � L � 1Ž . Ž .Ž .Ý22 2 2n L L � 1Ž . 
�1

3�2 L'12 �� L n � LŽ . 2� 4L � 3
 � 2 
 � L � 1 
 � 1Ž . Ž . Ž .Ž .Ý2 2 2n L L � 1 L � 1Ž . Ž . 
�1

2 5L 36� L 1 1 1 L
� O � � � � O (5ž / ž / ž /n 5 2 3 nL

6
2� � .

5
Ž . Ž . Ž .Then v is obvious from ii and iv .

ˆ Ž .LEMMA A3. For T as in 7.7 ,n

122 4 2 4T̂ � NN 0, 4� � � 
 � � � � 
 .Ž . Ž .Ž .n d 4 45
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PROOF. By the independence of the residuals we obtain
n n�L L

2�1 2ˆ �T � n � E 	 � 	 � 2
 	Ž .Ý Ý Ý ž /n k , n k�
 
 �
��1 
�1 k�1

n n�L L
�1 2� n � � � � sŽ .Ý Ý Ý k , n k�
 , � 
 , � �

��1 
�1 k�1

��1n�L L L
�1 2 2� n � s � � sÝ Ý Ý Ýk , n � k , n �½

��L�1 k�1 ��1 k�1

n L n�L L
2 2� � s � � sÝ Ý Ý Ýk , n � k , n � 5

��n�L�1 k���n�L ��1 k�1

n�L L L
2 2 2� 2c s � c s � c � c sŽ .Ý Ý ÝL�1, n � � , n � L�1, n � , n ��n�Lž /

��L�1 ��1 ��1

L
2� c sÝL�1, n �ž /

��1

� I � II � III say.n n n

' Ž .From Lemma A2, c � �� n from which we conclude that var III �L�1, n n
Ž .O L�n and thus III � 0. Since I and II are independent for each n, wen p n n

ˆobtain that T is asymptotically normal if I , II are asymptotically normal.n n n
Obviously we have by the usual CLT that

I � NN 0, 4�2 � � 
 4 .Ž .Ž .n d 4

From Lemma A2,
1�2L

2 �1�2� �max c c � O L � 0Ž .� 4 Ý� , n � , nž /1���L ��1

and
L

2 2c � 6� �5.Ý � , n
��1

This implies asymptotic normality for a weighted sum of i.i.d. random vari-
� Ž . �ables see, e.g., Billingsley 1986 , page 380 , and therefore

L
2 2 4c s � NN 0, 6� � � 
 �5 .Ž .Ž .Ý � , n � d 4

��1

Observing that c ÝL s2 � 0, we concludeL�1, n ��1 ��n�L p

II � NN 0, 12 � 2 � � 
 4 �5 ,Ž .Ž .n d 4

and this implies the result for the case � � 0. For the case � � 0, we have to
n�L Ž ŽŽ . . ŽŽ ..Ž .replace � by � � � � 2Ý h j � k �n � h j�n 	 � 	 �ˆk , n k , n k , n j�1 j�k j
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ˆŽ .n � L in the proof above and exercise more care in the partitioning of T .n
We omit the details.

˜ ˆŽ . Ž .LEMMA A4. For X as in 7.6 and T as in 7.7 ,n n

2ˆ ˜E T � X � 0 as n � �.ž /n n

ˆ ˜Ž . Ž .PROOF. From the proof of Lemma A3, it follows that var T � var X �n n
ˆ ˜ ˆŽ . Ž . Ž .O 1 and hence it suffices to prove that cov T , X � var T . Using then n n

ˆabove representations for T , Lemma A2, and noting thatn

n L L L L

� � � � c � c ,Ž .Ý Ý Ý Ý Ýk , n k , n L�1, n � , n
��n�L�1 k���n�L ��1 k�� ��1

we find

�14 ˆ ˜� � 
 cov T , XŽ . ž /4 n n

n�L L'2� n � L�14 2 2� � � 
 E s � c sŽ . Ý Ý4 � � , n �ž n ��1 ��1

L L'� n � L
2 2� c � c s � sŽ .Ý ÝL�1, n � , n n�L�� � /n��1 ��1

L n�L
2

� 	 � 	 �Ž .Ý Ý k�
 
 k , nž /
k�1 
�1

n�L n�L L'2� n � L
� � � � �Ž .Ý Ý Ý k , n k�
 , � 
 , �n ��1 
�1 k�1

L n�L L

� c � � � �Ž .Ý Ý Ý� , n k , n k�
 , � 
 , �
��1 
�1 k�1

L n�L L

� c � c � � � �Ž . Ž .Ý Ý ÝL�1, n � , n k , n k�
 , n�L�� 
 , n�L��
��1 
�1 k�1

n�L n�L L'� n � L
� � � � �Ž .Ý Ý Ý k , n k�
 , � 
 , �n ��1 
�1 k�1

n�L L L'2� n � L
� c � c � c � c � ncŽ .Ý Ý ÝL�1, n � , n L�1, n � , n L�1, nž /n ��L�1 ��1 ��1
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L L L
2� c � c c � c c � cŽ .Ý Ý Ý� , n � , n L�1, n L�1, n L�1, n � , n

��1 ��1 ��1

L L L'� n � L
� c c � c � c � cŽ .Ý Ý Ý� , n L�1, n � , n � , n L�1, nž /n��1 ��1 ��1

1�2L L L
2 2� 4� 1 � o 1 � 2 c � O � OŽ .Ž . Ý � , n ž / ž /ž /n n��1

ˆ� var T .Ž .n

2 �Considering now the more complicated case of estimators 
 , � seeˆ ˆ2 2
Ž .� Ž .4.12 , we define in analogy to 7.1 the quantities

3
2 2� � 3L � 3L � 2 � 6 2 L � 1 j � 10 j ,Ž .˜ Ž .j 2 L L � 1 L � 2Ž . Ž .

6 n � LŽ .
�̃ � �3 L � 1 L � 2 2 L � 1Ž . Ž . Ž .Žj 2 2L L � 1 L � 4Ž . Ž .

�2 8 L � 11 2 L � 1 j � 30 L � 1 j2 .Ž . Ž . Ž . .
Lemma A1 is replaced by the following result, which we state without proof.
Analogous developments to those given in Section 7, then lead to results
Ž . Ž .4.13 and 4.14 .

Ž . Ž .LEMMA A5. Under A1 � A3 we have
L L1 ˜i � � , � � 0;Ž . ˜Ý Ýj j2j�1 j�1

L L n˜� � � �ii � � O 1 , � � O ;Ž . Ž .˜Ý Ýj j ž /Lj�1 j�1

L L 2 L9 n n
2 2˜ ˜iii � � , � � 172 , � � � �108 ;Ž . ˜ ˜Ý Ý Ýj j j j3 24L L Lj�1 j�1 j�1

L L
˜iv � j � O 1 ; � j � n;Ž . Ž .˜Ý Ýj j

j�1 j�1

L L 23 n
2 2˜v � j � , � j � 312 ;Ž . ˜Ý Ýj j 38 Lj�1 j�1

j j 2L L 96n˜ ˜vi � � 
 � O L � � 
 � .Ž . Ž .˜ ˜Ý Ý Ý Ýj 
 j 
 35Lj�1 
�1 j�1 
�1

A.2. More on the preliminary change-point analysis. We provide
here a brief description of some further details of the method used in Section
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Ž .2; compare also Braun and Muller 1998 , Sections 3.4 and 3.5.¨
� �Let I � a , a denote the domain of the data x , let � � 0 be a small1 2 i

� �constant and let I � a � � , a � � . For t � I , local lines are fitted on the� 1 2 �

Ž . Ž � Ž . � .segments S t � ��, t 
 I and S t � ��, t 
 I. These fits are ob-� �
� Ž .�tained by locally weighted least squares compare Fan and Gijbels 1996 .

Ž . Ž .The fit at a point x � S t is given by the estimated intercept � x of theˆ	 	

Ž .local fitted line, centered at x and taking into account only data x , yi i
˜Ž .where x � S t . Obtaining the minimizers � , � of the weighted least˜i 	 	 	

squares criterion
x � x2 i

y � � � � x � x K� 4Ž .Ž .Ý i i ž /bŽ .x �S ti 	

Ž .with respect to � and �, we find � x � � . Here, b � b is a sequence ofˆ ˜	 	 n
Ž .bandwidths and K is a nonnegative weight kernel function, often chosen as

Ž . Ž 2 .K z � 1 � z . We then define�

�̂ t � � t � � t .Ž . Ž . Ž .ˆ ˆ� �

Fixing the number 
 of change-points and choosing a small constant � � 0,
Ž . � � � 4denoting N x � z � I: x � z � � , we then obtain the estimated change-�

point locations

ˆ� � arg max � t ,Ž .ˆ1
t�I�

j�1

ˆ� � arg max � t , 1 � j � 
 where I � I � N � .Ž . Ž .ˆ ˆ�j j � � i
t�I i�1j

Setting � � a , � � a , and denoting the ordered sample of � ’s byˆ ˆ ˆŽ0. 1 Ž
�1. 2 i
Ž . 
�1� , � , . . . , � , the � induce a partition I � � S , where S �ˆ ˆ ˆ ˆŽ1. Ž2. Ž
 . i i�1 i i
� �� , � , i � 1, . . . , 
 � 1.ˆ ˆŽ i�1. Ž i.

In a next step, we fit smooth functions on the segments S , by choosingj
Ž .x � S and using only data x , y for which x � S , leading to the fittedj i i i j

Ž .values y x . The automatic boundary adjustment feature of local polynomialˆ i
fitting coupled with fast rates for the estimated change-points then ensures

p � Ž .consistent estimation in the L sense extending results of Muller 1992 to¨
�the situation of multiple change-points .

For various values of 
 , this procedure produces results as those shown in
ŽFigure 1. For the two applications of the smoothing method first to deter-

.mine � , . . . , � , then to smooth the data on the induced segments , band-ˆ ˆ1 


widths need to be selected. The bandwidth choice for estimating the function
�̂ can be taken from a global bandwidth choice for smoothing the data.
Alternatively, this choice could be incorporated into the cross-validation

Ž .criterion as in Braun and Muller 1998 . For the bandwidth choices for¨
�smoothing on the segments, we adopted a version of a pilot method analo-

Ž .�gous to Muller 1985 . This method estimates and minimizes the finite¨
integrated mean squared error of a linear smoother by substituting separate
estimates for variance and bias.
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Another special feature for the growth application is that we included a
simple monotonization step for the estimated curves on the segments, in
order to ensure that the estimated growth curve would be monotone increas-

� Ž .�ing using a method proposed by Friedman and Tibshirani 1984 . This
Ž .monotonization has the effect of possibly altering in general, reducing

ˆŽ .estimated jump size estimates given by � � , j � 1, . . . , 
 . These effects canĵ
ˆŽ .be seen in Table 2, where the estimated jump sizes � � are indeed found toĵ

be smaller for the monotonized estimates as compared to the unrestricted
estimates. Also, not unexpectedly, the fits under monotony occasionally lead
to higher residual error variances, which are determined by


�11 22A.2 
 � y � y x .Ž . Ž .Ž .ˆ ˆÝ Ý
 i in i�1 x �Si i
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