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ON RESIDUAL EMPIRICAL PROCESSES OF STOCHASTIC
REGRESSION MODELS WITH APPLICATIONS TO

TIME SERIES

By Sangyeol Lee and Ching-Zong Wei

Seoul National University and Academia Sinica

Motivated by Gaussian tests for a time series, we are led to investigate
the asymptotic behavior of the residual empirical processes of stochastic
regression models. These models cover the fixed design regression models
as well as general AR(q) models. Since the number of the regression coeffi-
cients is allowed to grow as the sample size increases, the obtained results
are also applicable to nonlinear regression and stationary AR(∞) models.
In this paper, we first derive an oscillation-like result for the residual em-
pirical process. Then, we apply this result to autoregressive time series. In
particular, for a stationary AR(∞) process, we are able to determine the
order of the number of coefficients of a fitted AR(qn) model and obtain the
limiting Gaussian processes. For an unstable AR(q) process, we show that
if the characteristic polynomial has a unit root 1, then the limiting process
is no longer Gaussian. For the explosive case, one of our side results also
provides a short proof for the Brownian bridge results given by Koul and
Levental.

1. Introduction. Many of the statistical techniques available for the an-
alysis of stationary time series have been designed for Gaussian processes,
since the Gaussian assumption usually leads to a more tractable situation.
For example, if �Xt� is a Gaussian process, and �X1� � � � �Xn� is observed, the
best predictor X̂n+h of Xn+h, h ≥ 1, is a linear combination of X1� � � � �Xn.
This, in general, is not true for non-Gaussian processes. However, in some
applications, the process is expected to be non-Gaussian. The deconvolution
problem arising in geographical analysis such as seismic exploration [cf. Lii
and Rosenblatt (1982) and Rosenblatt (1985), pages 45 and 206] is an example.
Thus, it is important to know whether a time series is Gaussian or not.

For the Gaussian test of a linear process, Subba Rao and Gabr (1980) and
Hinich (1982) considered the frequency domain approach. Their method is
based on the property that the bispectral density of a Gaussian process is
identically zero. However, their tests do not perform well under symmetric
alternatives since in these cases, the bispectral densities are also zero. For a
related work, see Epps (1987).

For the time domain approach, the idea is to fit the time series by an AR(q)
process through least squares methods. The residuals ε̂t are then used to
construct a related empirical process, which in turn is employed to form a test

Received March 1996; revised September 1998.
AMS 1991 subject classifications. Primary 60F17; secondary 62M10.
Key words and phrases. Gaussian tests, residual empirical process, stochastic regression

model, stationary AR(∞) process, oscillation-like result, unstable AR(q) process, explosive pro-
cess, Brownian bridge.

237



238 S. LEE AND C.-Z. WEI

statistic, such as the Kolmogorov–Smirnov statistic. Boldin (1982) and Pierce
(1985) considered the stationary AR(q) model,

Xt = β1Xt−1 + · · · + βqXt−q + εt� �εt� ∼ iid�0� σ2��

and the process

Ŷn�u� = n−1/2
n∑
t=1

[
I�G�ε̂t� ≤ u� − u

]
� u ∈ �0�1��(1.1)

where G is a true underlying distribution of �εt� and �ε̂t� are residuals. They
showed that Ŷn converges weakly to a Brownian bridge in D�0�1�. For a gen-
eral review of the residual empirical process in stationary AR(q) models, see
Koul (1992), Chapter 7. Kreiss (1988) extended Boldin’s result to the station-
ary AR(∞) process by fitting a long AR(qn) process, where the order qn depends
on the sample size n.

In this paper, we consider the following stochastic regression model:

ynt = �′
nxnt + rnt + εnt� 1 ≤ t ≤ n�(1.2)

where �n are qn × 1 unknown parameters, xnt are observable qn × 1 random
vectors and rnt are random variables which may be viewed as “model bias.”
The setting includes classical fixed design regression, nonlinear regression,
stationary AR(∞) and general AR(q) models. For example, if qn = q, rnt =
0, εnt = εt, �n = �, ynt = Xt and xnt = �Xt−1� � � � �Xt−q+1�′, the model in
(1.2) is an AR(q) model. If εnt = εt, ynt = Xt, �n = �β1� � � � � βqn

�′, xnt =
�Xt−1� � � � �Xt−qn+1�′ and rnt =

∑∞
j=qn+1 βjXt−j, then the model is an AR(∞)

model. For discussion of other models which can be covered by (1.2), see Wei
(1992). Note that the double array setting for the error terms is to allow the
obtained results to be used to calculate the local power of a test. In this case, a
sequence of contiguous alternatives is considered and the error terms ε depend
on n as well.

Let �̃n denote the least squares estimate of �n in (1.2) and ε̃nt = ynt− �̃
′
nxnt

the tth residual. The corresponding residual empirical process is defined by

Ỹn�u� = n−1/2
n∑
t=1

[
I�Hn�ε̃nt� ≤ u� − u

]
�

where Hn is the underlying distribution of �εnt�. The asymptotic behavior of
any test based on Ỹn is determined by the asymptotic distribution of Ỹn. One
may expect this distribution is close to the empirical process based on true
errors, that is,

Yn�u� = n−1/2
n∑
t=1

[
I�Hn�εnt� ≤ u� − u

]
�
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In Section 2, we find that an additional term n−1/2 ∑n
t=1�Hn�x+��̃n−�n�′xnt�−

Hn�x�� is needed. More precisely, we have the oscillation-like result

sup
x

∣∣∣∣n−1/2
n∑
t=1

[
I�ε̃nt ≤ x� −Hn

(
x+ ��̃n − �n

)′xnt�

+Hn�x� − I�εnt ≤ x�]
∣∣∣∣ →P 0�

(1.3)

In fact, a result (Theorem 2.2) which is more general than (1.3) is established
with the aid of martingale tools. This result is the key tool for our further
analysis.

In Section 3, we concentrate on the applications. For the fixed design case
and related issues, one can see Durbin (1973) and Shorack and Wellner (1985),
page 708. We will focus on autoregressive processes. More specifically, in Sec-
tion 3.1, the limiting process of Ỹn of (3.10) under a sequence of contiguous
alternatives is shown to be a Gaussian process with a drift. The result (Theo-
rem 3.1) not only helps us to determine the order of the fitted AR(qn) process
but also provides us a mean in the study of the local power of tests. In Sec-
tion 3.2, we investigate the case for an unstable AR(q) process. The limiting
process of Ŷn of (3.26) is the standard Brownian bridge unless there is a unit
root 1. The unit root case is of importance since it covers the IAR models. Our
result (Theorem 3.2) shows that in this case, the limiting process is no longer
Gaussian. Finally, we consider the explosive AR(1) case. The Brownian bridge
result given by Koul and Levental (1989) is reestablished by a short proof (see
Remark 3.1).

2. Main results. Suppose that ���� �P� is a probability space, ��ni�0 ≤
i ≤ n� is a double array of sub-σ-fields of � such that �ni ⊂ �n� i+1, i =
0� � � � � n− 1 and q �= qn is a sequence of positive integers. Let us consider the
stochastic regression model

ynt = �′
nxnt + rnt + εnt� t = 1� � � � � n�(2.1)

where �n are unknown q× 1 vectors, xnt are observable q× 1 random vectors
that are �n� t−1-measurable and rnt are random variables not necessarily ob-
servable. The errors �εnt�1 ≤ t ≤ n� are iid random variables with common
distribution Hn, which has zero mean and finite variance. Also assume that
εnt is �nt-measurable and independent of �n� t−1.

Given the observations �xn1� y1�� � � � � �xnn� yn�, the least squares estimate
of �n is given by

�̃n =
( n∑

t=1

xntx
′
nt

)−1 n∑
t=1

xntynt�(2.2)

In view of (2.1), �̃n = �n + �n1 + �n2, where

�n1 =
( n∑

t=1

xntx
′
nt

)−1 n∑
t=1

xntrnt(2.3)
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and

�n2 =
( n∑

t=1

xntx
′
nt

)−1 n∑
t=1

xntεnt�(2.4)

Note that if we set �̂n = �n + �n2, then β̂n is the least squares estimate when
rnt = 0 for all n� t.

In the following, we would like to obtain the limiting process of the residual
empirical process

Ẽn�x� = n−1/2
n∑
t=1

[
I�ε̃nt ≤ x� −Hn�x�

]
� x ∈ R�(2.5)

where ε̃nt = ynt−�̃
′
nxnt, t = 1� � � � � n. To tackle this problem, we first introduce

the residual empirical process Ên when the model bias is zero. Precisely,

Ên�x� = n−1/2
n∑
t=1

[
I�ε̂nt ≤ x� −Hn�x�

]
� x ∈ R�(2.6)

where ε̂nt = ynt − �̂
′
nxnt. Our approach is to reduce the limiting distribution

problem of Ẽn to that of Ên and then investigate the conditions for the limiting
distribution of Ẽn to exist. We start with two lemmas, which do not require
the validity of (2.1).

Lemma 2.1. For each n, let Rn = max1≤t≤n �rnt� and let �n1 be the random
variable in (2.3). Then,

max
1≤t≤n

∣∣�′
n1xnt

∣∣ ≤ �nq�1/2Rn max
1≤t≤n

{
x′
nt

( n∑
t=1

xntx
′
nt

)−1

xnt

}1/2

�

Proof. Put An =
∑n

t=1 xntx′
nt. By the Schwarz inequality,

∣∣�′
n1xnt

∣∣ ≤ ∥∥x′
ntA

−1/2
n

∥∥
∥∥∥∥A−1/2

n

n∑
t=1

xntrnt

∥∥∥∥

≤ n1/2Rn

(
x′
ntA

−1
n xnt

)1/2
( n∑

t=1

∥∥A−1/2
n xnt

∥∥2
)1/2

= �nq�1/2Rn

(
x′
ntA

−1
n xnt

)1/2
�

This completes the proof. ✷

Lemma 2.2. Suppose that for each n, εnt, t = 1� � � � � n, are iid random
variables with common distribution Hn� and ε∗nt are the random variables
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satisfying

αn �= sup
x

∣∣∣∣n−1/2
n∑
t=1

[
I�ε∗nt ≤ x� −Hn�x+ εnt − ε∗nt�

+Hn�x� − I�εnt ≤ x�]
∣∣∣∣

= oP�1��

(2.7)

Let �ηn� be a sequence of nonnegative random variables with n1/2ηn = oP�1�.
If supn�x �H′

n�x�� < ∞, then

sup
�∈�n

sup
x

∣∣∣∣n−1/2
n∑
t=1

[
I�ε∗nt ≤ x+ θt� −Hn�x+ εnt − ε∗nt + θt�

+Hn�x� − I�εnt ≤ x�]
∣∣∣∣

= oP�1��

where �n = �� = �θ1� � � � � θn�′ ∈ Rn�max1≤t≤n �θt� ≤ ηn�.

Proof. For x ∈ R and � ∈ Rn, set

Sn��� x� =
n∑
t=1

[
I�ε∗nt ≤ x+ θt� −Hn�x+ εnt − ε∗nt + θt�

+Hn�x� − I�εnt ≤ x�]�
Since the mapping y → Hn�y� and y → I�ε∗nt ≤ y� are nondecreasing,
Sn��� x� has an upper bound

n∑
t=1

[
I�ε∗nt ≤ x+ηn�−Hn�x+ εnt− ε∗nt+ηn�+Hn�x+ηn�−I�εnt ≤ x+ηn�

]

+
n∑
t=1

[
Hn�x+ εnt − ε∗nt + ηn�Hn�x+ εnt − ε∗nt + θt�

]

+
n∑
t=1

[
I�εnt ≤ x+ ηn� −Hn�x+ ηn� +Hn�x� − I�εnt ≤ x�]

Similarly, Sn��� x� has a lower bound that is the same as above with ηn re-
placed by −ηn. Thus, from (2.7) and Taylor’s series expansion we have that

sup
�∈�n

sup
x

∣∣n−1/2Sn��� x�
∣∣ ≤ αn + n1/2ηn sup

n�x
�H′

n�x�x�� +ωn�ηn��
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where

ωn�a� = sup
x∈R� �y�≤a

∣∣∣∣
n∑
t=1

[
I�εnt ≤ x+ y� −Hn�x+ y�

+Hn�x� − I�εnt ≤ x�]
∣∣∣∣�

(2.8)

Since ωn�a� → 0 in probability as a → 0 [cf. Stute (1982)], the lemma is
established by our assumptions. ✷

Remark 2.1. When ε∗nt = εnt, (2.7) holds automatically. From Lemma 2.2,
we have that

sup
�∈�n

sup
x

∣∣∣∣n−1/2
n∑
t=1

[
I�εnt ≤ x+ θt� −Hn�x+ θt� +Hn�x� − I�εnt ≤ x�]

∣∣∣∣ = oP�1��

This perturbation result is useful in establishing the result given by Koul and
Levental (1989). For the details, see Remark 3.1.

The following theorem provides us conditions under which Ẽn and Ên have
the same limiting distribution.

Theorem 2.1. Recall the definition of Rn in Lemma 2.1. Suppose that (2.1)
and the conditions given in Lemma 2.2 hold. If:

(a) supn�x �H′
n�x�� < ∞;

(b) Rn = oP�n−1/2�;
(c) �nq�1/2Rn max1≤t≤n�x′

nt�
∑n

t=1 xntx′
nt�−1xnt�1/2 = oP�1�;

(d) supx �n−1/2 ∑n
t=1�I�ε̂nt ≤ x� −Hn�x + �′

n2xnt� +Hn�x� − I�εnt ≤ x��� =
oP�1�,
then supx �Ẽn�x� − Ên�x�� = oP�1�.

Proof. Note that ε̃nt = ε̂nt − �′
n1xnt and

sup
x

�Ẽn�x� − Ên�x��

≤ sup
x

∣∣∣∣n−1/2
n∑
t=1

[
I�ε̂nt ≤ x� −Hn�x+ εnt − ε̂nt� +Hn�x� − I�εnt ≤ x�]

∣∣∣∣

+ sup
x

∣∣∣∣n−1/2
n∑
t=1

[
I�ε̂nt ≤ x+ �′

n1xnt� −Hn�x+ εnt − ε̂nt + �′
n1xnt�

+Hn�x� − I�εnt ≤ x�]
∣∣∣∣

+ sup
x

∣∣∣∣n−1/2
n∑
t=1

[
Hn�x+ εnt − ε̂nt + �′

n1xnt� −Hn�x+ εnt − ε̂nt�
]∣∣∣∣

= In1 + In2 + In3 (say)�
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Observe that

In1 ≤ sup
x

∣∣∣∣n−1/2
n∑
t=1

[
I�ε̂t ≤ x� −Hn�x+ �′

n2xnt� +Hn�x� − I�εnt ≤ x�]
∣∣∣∣

+ sup
x

∣∣∣∣n−1/2
n∑
t=1

[
Hn�x+ εnt − ε̂nt� −Hn�x+ �′

n2xnt�
]∣∣∣∣�

The first term in the right-hand side of the above inequality converges in
probability to zero by (d). Since εnt − ε̂nt = �′

n2xnt − rnt, the second term is
bounded by n1/2 supn�x �H′

n�x��max1≤t≤n �rnt�� which also converges in proba-
bility to zero in view of (a) and (b). Therefore, In1 = oP�1�. This and (a) in
turn imply that Lemma 2.2 is applicable with ε∗nt = ε̂nt.

For In2, we first note that Lemma 2.1 and (c) give that max1≤t≤n ��′
n1xnt� =

oP�n−1/2�. This and Lemma 2.2 immediately prove that In2 = oP�1�. Together
with (a), the order on ��′

n1xnt� also shows that In3 = oP�1�. ✷

Now we are ready to study the limiting distribution of Ên. Let En�x� =
n−1/2 ∑n

t=1�I�εnt ≤ x�−Hn�x��, the empirical process based on errors. Accord-
ing to our analysis (cf. Section 3.2), the limiting distribution of Ên depends
not only on En but also on the term n−1/2 ∑n

t=1�H�x+��̂n−�n�′xnt�−Hn�x��.
This leads us to consider the following oscillation-like result:

sup
x

∣∣∣∣n−1/2
n∑
t=1

[
I�ε̂nt ≤ x� −Hn�x+ ��̂n − �n�′xnt�

+Hn�x� − I�εnt ≤ x�]
∣∣∣∣ = oP�1��

(2.9)

where the oscillation terms ��̂n−βn�′xnt depend not only on n but also on t. In
general, we may expect that there exists a sequence of nonstochastic matrices
$n, such that $n��̂n − �n� = OP�1�. Let δnt = εnt, �′

n = −$n��̂n − �n� and
znj = �$′

n�−1xnj. Then we reformulate (2.9) in a more general form as follows
[cf. (2.20)].

Theorem 2.2. For each n, let ��nj�1 ≤ j ≤ n� be a family of nondecreasing
sequences of sub-σ-fields of � and �εnj�1 ≤ j ≤ n� be iid random variables
with the distribution Hn such that εnj is independent of �n�j−1. Suppose that
δnj, 1 ≤ j ≤ n are the random variables such that

δnj = εnj + �′
nznj + ρnj�(2.10)

where �n and znj are q = qn dimensional random vectors, znj is �n�j−1-

measurable and ρnj are random variables with max1≤j≤n �ρnj� = oP�n−1/2��
Further, assume that supn�x �H′′

n�x�� < ∞ and that there exists a distribution
G with uniformly bounded second derivative such that

sup
x

∣∣H′
n�x� −G′�x�∣∣ → 0 as n →∞�(2.11)
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and that for some positive real sequences bn and cn,

��n� = OP�1��(2.12)

n−1/2

∥∥∥∥
n∑

j=1

znj

∥∥∥∥ = OP�1��(2.13)

n−1/2
n∑

j=1

�znj�2 = oP�1��(2.14)

n∑
j=1

�znj� = OP�bn��(2.15)

max
1≤j≤n

�znj� = OP�cn��(2.16)

Finally, assume that there exists a sequence �ζn� of positive integers such that

lim
n→∞ ζn = ∞�(2.17)

lim
n→∞�nq�

1/2cn/ζn = 0�(2.18)

lim
n→∞ ζqnn

1/2 exp�−nB/�q1/2bn + n1/2�� = 0 for all B > 0�(2.19)

Then, -n �= supx �-n�x�� = oP�1�, where

-n�x� =
∣∣∣∣n−1/2

n∑
j=1

[
I�δnj ≤ x� −Hn�x− �′

nznj� +Hn�x� − I�εnj ≤ x�]
∣∣∣∣�(2.20)

Proof. Put ε∗nj = εnj + �′
nznj. By Taylor’s series expansion, we have that

-n ≤ sup
x

∣∣∣∣n−1/2
n∑

j=1

[
I�δnj ≤ x� −Hn�x− �′

nznj − ρnj� +Hn�x� − I�εnj ≤ x�]
∣∣∣∣

+ n1/2 max
1≤j≤n

�ρnj� sup
n�x

�H′
n�x��

= sup
x

∣∣∣∣n−1/2
n∑

j=1

[
I�ε∗nj ≤ x− ρnj� −Hn�x+ εnj − ε∗nj − ρnj�

+Hn�x� − I�εnj ≤ x�]
∣∣∣∣+ oP�1��

where the last equality follows from (2.11) and the assumption on ρnj. Hence,
in view of Lemma 2.2, it suffices to show that

sup
x

∣∣∣∣n−1/2
n∑

j=1

[
I�εnj ≤ x− �′

nznj� −Hn�x− �′
nznj�

+Hn�x� − I�εnj ≤ x�]
∣∣∣∣ = oP�1��

(2.21)
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Toward this end, fix d > 0 and partition the real line by the points −∞ =
xn0 < · · · < xn�Nn

= ∞ such that Nn = �n1/2d−1� and Hn�xni� = i/Nn for
i = 0� � � � �Nn. Then we have for x ∈ �xnr� xn� r+1��

∣∣Hn�xni� −Hn�x�
∣∣ ≤ n−1/2d� i = r� r+ 1�(2.22)

Furthermore, by (2.11) and the proposition in the Appendix, we have that for
all sufficiently large n and x ∈ �xnr� xn� r+1�,

∣∣H′
n�xni� −H′

n�x�
∣∣ ≤ d� i = r� r+ 1�(2.23)

Observe that for any x ∈ �xnr� xn� r+1�, -n�x� in (2.20) is bounded by In1�x� +
In2�x� + In3�x�, where

In1�x� = max
i=r� r+1

∣∣∣∣n−1/2
n∑

j=1

[
I�εnj ≤ xni − �′

nznj� −Hn�xni − �′
nznj��

+Hn�xni� − I�εnj ≤ xni�
]∣∣∣∣

In2�x� = max
i=r� r+1

∣∣∣∣n−1/2
n∑

j=1

[
Hn�xni − �′

nznj� −Hn�x− �′
nznj�

]∣∣∣∣�

In3�x� = max
i=r� r+1

∣∣∣∣n−1/2
n∑

j=1

[
I�εnj ≤ xni� −Hn�xni� +Hn�x� − I�εnj ≤ x�]

∣∣∣∣�

By Taylor’s series expansion, we have that

�In2�x�� ≤ n1/2 max
i=r� r+1

∣∣Hn�xni� −Hn�x�
∣∣

+ n−1/2��n�
∥∥∥∥

n∑
j=1

znj

∥∥∥∥ max
i=r� r+1

∣∣H′
n�xni� −H′

n�x�
∣∣

+ n−1/2��n�2
n∑

j=1

�znj�2 sup
n�x

∣∣H′′
n�x�

∣∣
= d+ dOP�1� + oP�1��

(2.24)

where the last inequality follows from (2.11), (2.13), (2.14), (2.22) and (2.23).
This in turn implies that supx �In2�x�� = oP�1� because d can be chosen arbi-
trarily small. Meanwhile, supx �In3�x��= oP�1� since supx �In3�x�� ≤ωn�n−1/2d�
= oP�1�, where

ωn�a� = sup
�0≤u� ν≤1� �u−ν�≤a�

∣∣∣∣n−1/2
n∑

j=1

[
I�Hn�εnj� ≤ u� − u+ ν − I�Hn�εnj� ≤ ν�]

∣∣∣∣
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[cf. Stute (1982)]. Therefore, (2.21) follows once we verify

-∗n �= max
0≤r≤Nn

∣∣∣∣n−1/2
n∑

j=1

[
I�εnj ≤ xnr − �′

nznj�

−Hn�xnr − �′
nznj� +Hn�xnr� − I�εnj ≤ xnr�

]∣∣∣∣ = oP�1��
(2.25)

For any γ > 0, in view of (2.12), (2.15) and (2.16), there exists K > 0 such
that P�⋃3

i=1 S
c
i� < γ for all sufficiently large n, where

S1 =
{��n� ≤ K

}
�

S2 =
{ n∑
j=1

�znj� ≤ Kbn

}
�

S3 =
{

max
1≤j≤n

�znj� ≤ Kcn

}
�

Then for λ > 0,

P�-∗n > λ� ≤ P�-∗n > λ�∩3
i=1Si� + γ

≤ P

(
max

0≤r≤Nn�y∈�

∣∣∣∣n−1/2
n∑

j=1

dj�xnr�y�
∣∣∣∣ > λ�S2 ∩S3

)
+ γ�

where � = �y ∈ Rq� �y� ≤ K� and for x ∈ R, y ∈ �,

dj�x�y� = I�εnj ≤ x+ y′znj� −Hn�x+ y′znj� +Hn�x� − I�εnj ≤ x��
In order to verify (2.25), it suffices to show that

sup
0≤r≤Nn�y∈�

∣∣∣∣n−1/2
n∑

j=1

dj�xnr�y�
∣∣∣∣I�S2 ∩S3� = oP�1��(2.26)

since γ can be taken arbitrarily small.
Partition the rectangle �−K�K�q in Rq by subrectangles generated by the

lattices Vq = ��y1j1
� � � � � yqjq

�; 0 ≤ j1� � � � � jq ≤ ζn�, where yij = −K +
2Kj/ζn, i = 1� � � � � q, j = 0� � � � ζn. Let � denote the class of all the sub-
rectangles C such that C ∩� �= �. Note that the cardinal number kn of � is
at most ζqn. Let � = �Cs� s = 1� � � � � kn�. For y ∈ �s, let w+

js = supy∈�s
y′znj and

w−
js = inf y∈�s

y′znj. Note that both w+
js and w−

js are �n�j−1 measurable. Now,
for y ∈ �s, we have that Lj�x�y� ≤ dj�x�y� ≤ Uj�x�y�, where

Uj�x�y� = {
I�εnj ≤ x+w+

js� −Hn�x+w+
js� +Hn�x� − I�εnj ≤ x�}

+ {
Hn�x+w+

js� −Hn�x+ y′znj�
}
�

and Lj�x�y� is the same as Uj�x�y� with w+
js replaced by w−

js. On S2 ∩S3,
∣∣Hn�x+w+

js� −Hn�x+ y′znj�
∣∣ ≤ sup

n�x

∣∣H′
n�x�

∣∣ ∣∣w+
js − y′znj

∣∣ = O�cnq1/2/ζn��
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which is o�n−1/2� by (2.11) and (2.18). Similarly, on S2 ∩S3,
∣∣Hn

(
x+w−

js

)−Hn

(
x+ y′znj

)∣∣ = o�n−1/2��
Therefore, the left term in (2.26) is bounded by IIn1 + IIn2 + o�1�, where

IIn1 = max
1≤s≤kn

max
0≤r≤Nn

∣∣∣∣n−1/2
n∑

j=1

ej�xnr�w
+
js�

∣∣∣∣I�S2 ∩S3��

IIn2 = max
1≤s≤kn

max
0≤r≤Nn

∣∣∣∣n−1/2
n∑

j=1

ej�xnr�w
−
js�

∣∣∣∣I�S2 ∩S3�

and

ej�x�y� = I�εnj ≤ x+ y� −Hn�x+ y� +Hn�x� − I�εnj ≤ x��
In the following, we only provide a proof for IIn1 = oP�1� since IIn2 can be
handled similarly.

Define

ĨIn1 = max
1≤s≤kn

max
0≤r≤Nn

∣∣∣∣n−1/2
n∑

j=1

ẽj�xnr�w
+
js�

∣∣∣∣�

where

ẽj �= ẽj�xnr�w
+
js� = ej�xnr�w

+
js�I

( j∑
i=1

�zni� ≤ Kbn

)
�

Note that �ẽj��nj� is a martingale difference sequence with �ẽj� ≤ 1 a.s. for
all j. Further,

E
(
ẽ2
j ��n�j−1

) ≤ ∣∣Hn�xnr +w+
js� −Hn�xnr�

∣∣
∣∣∣∣I
( j∑

i=1

�zni� ≤ Kbn

)

≤ sup
n�x

�H′
n�x�� �w+

js�I
( j∑

i=1

�zni� ≤ Kbn

)
�

Consequently,

n∑
j=1

E
(
ẽ2
j ��n�j−1

) ≤ θq1/2bn�

where θ = K2 supn�x �H′
n�x��. By Bernstein’s inequality for martingales [cf.

Shorack and Wellner (1986), page 809], we have that for all λ > 0,

P�ĨIn1 > λ� ≤ 2kn�Nn + 1� exp
{−nλ2/2�θq1/2bn + n1/2λ/3�}

= O
(
ζqnn

1/2 exp
{−nB/�q1/2bn + n1/2�})� B > 0�
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which goes to 0 as n →∞ due to (2.19). Here, note that

P
(
ẽj �= ej�xnr�w

+
nj� for some j ≤ n on S2 ∩S3

)

≤ P

( n∑
j=1

�znj� > Kbn on S2 ∩S3

)
= 0�

Hence, P�IIn1 > λ� = P�ĨIn1 > λ� → 0 as n →∞. This completes our proof. ✷

Remark 2.2. (a) When the contiguous alternatives Hn = �1 − γn−1/2�G+
γn−1/2F are considered, then supx��G′′ �x��+�F′′ �x��� < ∞ would ensure (2.11).

(b) If condition (2.13) is replaced by n−1/2�∑n
j=1 znj� = oP�1�, then condition

(2.11) can be replaced by supn�x �H′
n�x�� < ∞ and supn�x �H′′

n�x�� < ∞. This
is because in argument (2.24), �In2�x�� is then bounded by d+ oP�1� + oP�1�.
The rest of the arguments are the same.

When the number of regression parameters are fixed and there is no model
bias, the following corollary provides some easy-to-check conditions.

Corollary 2.1. Assume that q is a fixed number and ρni are equal to 0.
If Hn satisfy (2.11), and if ��n� = OP�1� and

∑n
j=1 �znj�2 = OP�1�, then

-n = oP�1�.

Proof. Note that by the Schwarz inequality, �∑n
j=1 znj� ≤ ∑n

j=1 �znj� ≤
n1/2�∑n

j=1 �znj�2�1/2. Thus (2.13) holds. Moreover,

max
1≤j≤n

�znj� ≤
( n∑

j=1

�znj�2
)1/2

= OP�1��

Now, applying Theorem 2.2 with bn = n1/2, cn = 1 and ζn = n, we obtain
-n = oP�1�. ✷

We now return to the original stochastic regression model (2.1).

Corollary 2.2. Let �n2 be the same in (2.4) and �̂n = �n + �n2. Suppose
that Hn satisfies (2.11). In addition, assume that there exists a sequence of
q× q nonstochastic matrices $n, such that:

(i) �$n��̂n − �n�� = OP�1�;
(ii) n−1/2�∑n

j=1�$′
n�−1xnj� = OP�1�, n−1/2 ∑n

j=1 ��$′
n�−1xnj�2 = oP�1�,

∑n
j=1

��$′
n�−1xnj� = OP�bn� and max1≤j≤n ��$′

n�−1xnj� = OP�cn��
with some positive sequences bn and cn satisfying (2.15)–(2.19). Then if
max1≤t≤n �rnt� = oP�n−1/2�,

sup
x

∣∣∣∣n−1/2
n∑
t=1

[
I�ε̂nt ≤ x� −Hn�x+ ��̂n − �n�′xnt�

+Hn�x� − I�εnt ≤ x�]
∣∣∣∣ = oP�1��

(2.27)
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Proof. Note that ε̂nt = εnt−��̂n−�n�′xn� t−1+rnt. Let �n = −$n��̂n−�n�,
znj = �$′

n�−1xnj and ρnj = rnj. In view of Theorem 2.2, we obtain (2.27). ✷

Corollary 2.3. Assume that q is a fixed number and rnt in (2.1) are equal
to 0 . Let �̂n be the least squares estimate of �n. If Hn satisfies (2.11), and if

there exists a sequence of q× q nonstochastic matrices $n, such that �$n��̂n −
�n�� = OP�1� and

∑n
j=1 ��$′

n�−1xnj�2 = OP�1�, then

sup
x

∣∣∣∣n−1/2
n∑
t=1

[
I�ε̂nt ≤ x�−Hn�x+��̂n−�n�′xnt�+Hn�x�−I�εnt ≤ x�]

∣∣∣∣ = oP�1��

The corollary is a direct result of Corollary 2.1.

3. Applications. In this section, we apply the results in Section 2 to au-
toregressive processes. For a stationary AR(∞) process, the limiting process of
the residual empirical process is shown to be a Gaussian process with a drift.
For an unstable process, the limiting process is a standard Brownian bridge
unless the characteristic polynomial has a unit root 1. A final remark gives
a shorter proof for the explosive AR(1) results given by Koul and Levental
(1989).

3.1. Stationary AR (∞) time series models. Let us consider a stationary
AR(∞) process of the form

Xt −
∞∑
ν=1

βνXt−ν = εt�(3.1)

where �εt� are iid random variables with mean zero and unknown variance
σ2 > 0, and the function A�z� = 1−∑∞

ν=1 βνz
ν is analytic on an open neighbor-

hood of the closed unit disk D in the complex plane and has no zeroes on D.
The AR(∞) process in (3.1) has been given considerable attention in research
areas such as econometrics and control theory. The related literature is quite
extensive: see, for example, Shibata (1980).

Note that �Xt� has the linear representation

Xt =
∞∑
ν=0

aνεt−ν�(3.2)

where aν are uniquely determined by the relation θ�z� = ∑∞
ν=0 aνz

ν = A−1�z�
for �z� ≤ 1. Moreover, there exist constants ρ ∈ �0�1� and C > 0, such that

max��βν�� �aν�� ≤ Cρν for all ν ≥ 0(3.3)

[cf. Brockwell and Davis (1990), Proposition 3.2]. Since by the decomposition
theorem in Cramér [(1974), page 213], �Xt� is Gaussian if and only if �εt� is
Gaussian, the Gaussian test on �Xt� is equivalent to that on �εt�. This allows
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us to set up the null and alternative hypotheses based on �εt� rather than on
�Xt� themselves. The null and alternatives under consideration are as follows:

K0� �εt� ∼ >�·/σ��(3.4)

Kn� �εt� ∼ Hn�·/σ� �= �1 − γ/n1/2�>�·/σ� + �γ/n1/2�H�·/σ��(3.5)

where > denotes the standard normal distribution and H is a distribution
function with mean 0 and variance 1. Let �Pn0� and �Pn1� be the sequences
of the joint distributions of �X1� � � � �Xn� under K0 and �Kn�, respectively.
They are contiguous in the sense of Le Cam [see, for the definition, Roussas
(1972)].

Since the true errors are not observable, we fit the process by a long AR(q)
model, where q = qn is a sequence of positive integers such that q → ∞ and
q/n → 0 as n → ∞. Rewrite the model and allow the error terms to depend
on the chosen contiguous alternatives. Then we have

xnt =
q∑

ν=1

βνxn� t−ν + rnt + εnt�(3.6)

where rnt =
∑∞

ν=q+1 βνxn� t−ν is the model bias, and �xnt� and �εnt� denote the
random variables �Xt� and �εt� under Kn, respectively. Note that similarly
to (3.2), �xnt� has the linear representation

xnt =
∞∑
ν=0

aνεn� t−ν�(3.7)

Assume that xn1� � � � � xnn are observed. The least squares estimate is

�̃n =
( n∑

t=q+1

xn� t−1x′
n� t−1

)−1 n∑
t=q+1

xn� t−1xnt�(3.8)

where xnt = �xnt� � � � � xn� t−q+1�′, and the residuals are

ε̃nt = xnt − �̃
′
nxn� t−1� t = q+ 1� � � � � n�(3.9)

Based on ε̃nt, the residual empirical process is defined by

Ỹn�u� = �n− q�−1/2
n∑

t=q+1

[
I�>�ε̃nt/σ̃n� ≤ u� − u

]
� u ∈ �0�1��(3.10)

where

σ̃2
n = �n− q�−1

n∑
t=q+1

(
xnt − �̃

′
nxn� t−1

)2
�(3.11)

The following is the main result of Section 3.1.
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Theorem 3.1. Suppose that q satisfies

n−1/2q2 log n → 0 and n7/4qρq → 0 for all ρ ∈ �0�1� as n →∞�(3.12)

and the distribution H in (3.5) satisfies

sup
x

�H′�x�� < ∞� sup
x

�H′′ �x�� < ∞ and
∫
x4dH�x� < ∞�(3.13)

Then, under �Kn�, Ỹn converges weakly to a Gaussian process Y, with

�i� EY�u� = −γ�u−H ◦>−1�u���
�ii� Cov�Y�u��Y�v�� = u ∧ v− uv

−2−1φ�>−1�u��>−1�u�φ�>−1�v��>−1�v��
(3.14)

for all 0 ≤ u� v ≤ 1. Here, φ denotes the density of >.

Remark 3.1. A typical example of such q satisfying (3.12) is �log n�2.
Kreiss (1988) studied the limiting process of

Y∗
n�u� = �n− q�−1/2

n∑
t=q+1

[
I�G�ε̃nt� ≤ u� − u

]

under the null H0� εt ∼ G. Here, G is a distribution function such that
supx �G′′ �x�� < ∞ and

∫
x4 dG�x� < ∞. He showed that Y∗

n converges weakly
to a Brownian bridge under the conditions that n−1/2q2�log n�2 → 0 and
n3ρq → 0 as n → ∞ for all ρ ∈ �0�1�. Although in Theorem 3.1, we only
considered the Gaussian distribution case, the result can be easily extended
to the general case. According to our analysis (cf. Lemma 3.4), Y∗

n converges
weakly to a standard Brownian bridge if supx �G′′ �x�� < ∞,

∫
x4 dG�x� < ∞

and q satisfies (3.12). Apparently, conditions (3.12) are weaker than those of
Kreiss.

In order to establish Theorem 3.1, consider the process

Ẽn�x� = �n− q�−1/2
n∑
t=1

[
I�ε̃nt/σ̃n ≤ x� −>�x�]� x ∈ R�(3.15)

and split it into An�x� +Bn�x� +Cn�x� +Dn�x�, where

An�x� = �n− q�−1/2
n∑

t=q+1

[
I�εnt/σ ≤ x� −Hn�x�

]
�

Bn�x� = �n− q�−1/2
n∑

t=q+1

[
Hn�σ̃nx/σ� −>�x�]�

Cn�x� = �n− q�−1/2
n∑

t=q+1

[
I�εnt/σ ≤ σ̃nx/σ� −Hn�σ̃nx/σ�

+Hn�x� − I�εnt/σ ≤ x�]�
Dn�x� = �n− q�−1/2

n∑
t=q+1

[
I�ε̃nt ≤ σ̃nx� − I�εnt ≤ σ̃nx�

]
�
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Throughout the sequel of this section, we denote Zn = OP�an� if for any
η > 0, there exists M > 0 such that Pn��Zn� > Man� < η for all n, where Pn

denotes the probability measure under Kn. Also, we denote Zn = oP�an� if
for any η > 0, Pn��Zn/an� > η� → 0 as n → ∞� For q × q matrix A, �A� =
supx��Ax�� �x� = 1�. To prove Theorem 3.1, we need to verify supx �Dn�x�� =
oP�1�. The following series of lemmas is useful.

Lemma 3.1. Let Cn be the q× q matrix whose �µ� ν�th entry is E�n�xnµxnν.

If
∫
x4 dH�x� < ∞ and if q3/n → 0 as n → ∞, then �Ĉ−1

n � = OP�1�, where

Ĉn = �n− q�−1 ∑n
t=q+1 xn� t−1x′

n� t−1�

The lemma follows from Lemma 4 of Berk (1974) and Grenander and Szegö
(1958), page 14.

Lemma 3.2. If Rn = maxq+1≤t≤n �rnt�, then Rn = OP�nρq�, where ρ is the

number in (3.3). Moreover, if q satisfies (3.12), then Rn = oP�n−1/2� and

�nq�1/2Rn max
q+1≤t≤n

{
x′
n� t−1

( n∑
q+1

xn� t−1x′
n� t−1

)−1

xn� t−1

}1/2

= oP�1��(3.16)

Proof. It is easy to see that Rn = OP�nρq�. Thus, if (3.12) holds, Rn =
oP�n−1/2�. The result in (3.16) is yielded by Lemma 3.1 and (3.12). ✷

Lemma 3.3. Let

�̂n = �n +
( n∑

t=q+1

xn� t−1x′
n� t−1

)−1 n∑
t=q+1

xn� t−1εnt�

If (3.12) holds, ��̂n − �n�2 = OP�n−1q��

Proof. The lemma is a direct result of Lemma 3.1 and the fact ��̂n −
�n�2 ≤ �Ĉ−1

n �2��n− q�−1 ∑n
t=q+1 xn� t−1εnt�2. ✷

Lemma 3.4. Under the conditions of Theorem 3.1, supx �Dn�x�� = oP�1�.

Proof. First, observe that Hn satisfies (2.11) [cf. Remark 2.2 (a)] and
Rn = oP�n−1/2� by Lemma 3.2. Let ε̂nt = εnt−��̂n−�n�′xn� t−1 + rnt, where �̂n

is the random variable defined in Lemma 3.3. Define

D∗
n�x� = �n− q�−1/2

n∑
t=q+1

[
I�ε̂nt ≤ x� −Hn�x+ ��̂n − �n�′xn� t−1�

+Hn�x� − I�εnt ≤ x�]�
Put $n = n1/2q−1/2Iq×q, bn = n1/2q� cn = 1 and ζn = n. By Lemma 3.1, we
obtain (i) of Corollary 2.2. Applying Corollary 2.2 with the above bn, cn and
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ζn, we have that supx �D∗
n�x�� = oP�1�. Hence, in view of Lemma 3.2 and

Theorem 2.1, it suffices to show that supx �D̂n�x�� = oP�1�, where

D̂n�x� = D∗
n�x� + �n− q�−1/2

n∑
t=q+1

[
Hn�x+ ��̂n − �n�′xn� t−1� −Hn�x�

]
�

It can be readily seen from Lemmas 3.2 and 3.3 and Taylor’s series expansion
that the second term in the right-hand side of the above equality is oP�1�.
This completes the proof. ✷

Proof of Theorem 3.1. Recall that Ẽn�x� in (3.15) is equal to An�x� +
Bn�x� + Cn�x� + Dn�x�. Let σ̃2

n be the random variable defined in (3.11).
By using Lemmas 3.2 and 3.3, we have that σ̃2

n = �n − q�−1 ∑n
t=q+1 ε

2
nt + En

with En = oP�n−1/2�� Therefore, supx �Hn�σ̃nx/σ� −Hn�x�� = oP�1� and thus
supx �Cn�x�� = oP�1� [cf. (2.8) and Stute (1982)]. Meanwhile, Taylor’s series
expansion yields that

Bn�x� = −γ�>�x� −H�x�� + 2−1xφ�x��n− q�−1/2
n∑

t=q+1

�ε2
nt/σ

2 − 1� + ηn�x��

where supx �ηn�x�� = oP�1�� Since supx �Dn�x�� = oP�1� by Lemma 3.4, and
Ỹn�u� in (3.10) is equal to Ẽ�>−1�u��, we can write that

Ỹn�u� = −γ�u−G ◦>−1�u�� +Zn�u� + δn�u��
where supu �δn�u�� = oP�1� and

Zn�u� = �n−q�−1/2
n∑

t=q+1

[
I�Hn�εnt� ≤ u�−u+2−1>−1�u�φ�>−1�u���ε2

nt/σ
2−1�]�

Here, one can readily check that Zn converges weakly to a Gaussian process
Z whose covariance structure is the same as of Y in (3.14). This establishes
the theorem. ✷

3.2. Unstable AR�q� processes. In this subsection, we consider the time
series model

Xt − β1Xt−1 − · · · − βqXt−q = εt�(3.17)

where εt are iid random variables with zero mean, finite variance σ2 and
common distribution H, such that

sup
x

�H′�x�� < ∞ and sup
x

�H′′ �x�� < ∞�(3.18)

We assume that the corresponding characteristic polynomial ϕ has a decom-
position

ϕ�z� = 1 − β1z− · · · − βqz
q

= �1 − z�a�1 + z�b
l∏

k=1

(
1 − 2 cos θkz+ z2)dkψ�z��
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where a� b� l� dk are nonnegative integers, θk belongs to �0� π� and ψ�z� is the
polynomial of order r = q − �a + b + 2d1 + · · · + 2dl� that has no zero on the
unit disk in the complex plane. When a = b = dk = 0, �Xt� is stationary.
When one of a� b and dk is nonzero, the process is said to be unstable. The
commonly used IAR model is the case where a �= 0 = b = dk, for all k.

Denote Xt = �Xt� � � � �Xt−q+1�′ and X0 = 0. Let

�̂n =
( n∑

t=1

Xt−1X′
t−1

)−1 n∑
t=1

Xt−1Xt� n > q�(3.19)

be the least squares estimate of � = �β1� � � � � βn�′ based on X1� � � � �Xn. Then
the residuals are

ε̂t = Xt − �̂
′
nXt−1� t = 1� � � � � n(3.20)

and the process under consideration is

Ên�x� = n−1/2
n∑
t=1

[
I�ε̂n ≤ x� −H�x�]� x ∈ R�(3.21)

In the following, we only consider the limiting distribution under the assump-
tion that the true distribution of ε is H. The limiting result, unlike the sta-
tionary AR(∞) case, is complicated by the nonstationary feature of �Xt�. In
particular, the locations of the unit roots would affect the Gaussianity of the
limiting process.

Note that Ên�x� =
∑3

i=1 Eni�x�, where

En1�x� = n−1/2
n∑
t=1

[
I�εt ≤ x� −H�x�]�

En2�x� = n−1/2
n∑
t=1

[
H�x+ ��̂n − ��′Xt−1� −H�x�]�

En3�x� = n−1/2
n∑
t=1

[
I�εt ≤ x+ ��̂n − ��′Xt−1� −H�x+ ��̂n − ��′Xt−1�

+H�x� − I�εt ≤ x�]�
We are going to establish the limiting process by three steps. First, we show
that En3 is negligible. Second, we obtain the limiting process of En2. Finally,
since En1 is the usual empirical process which has a known limiting process,
we will use the continuous mapping theorem to combine all results together.

Next, we follow the idea of Chan and Wei (1988) and decompose the time
series into several components so that each component has its own distinct
characteristic roots.

Let

ut = ϕ�B��1 −B�−aXt�

vt = ϕ�B��1 +B�−bXt�
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xt�k� = ϕ�B�(1 − 2 cos θkB+B2)−dkXt� k = 1� � � � � l�

zt = ϕ�B�ψ−1�B�Xt�

where B denotes the back shift operator. Note that

�1 −B�aut = εt� �1 +B�bvt = εt�

�1 − 2 cos θkB+B2�dkxt�k� = εt and ϕ�B�zt = εt�

For convenience, set

ut =
(
ut� � � � � ut−a+1

)′
� vt = �vt� � � � � vt−b+1�′�

xt�k� =
(
xt�k�� � � � � xt−2dk+1�k�

)′
�

Since x0 = 0, we have u0 = v0 = x0�1� = · · · = x0�l� = z0 = 0.
According to Chan and Wei (1988), there exists a q× q nonsingular matrix

Q such that

QXt =
(
u′
t�v′

t�x′
t�1�� � � � �x′

t�l�� z′t
)′

and there exist block diagonal matrices Tn = diag�Jn�Kn�Ln�1�� � � � �Ln�l��
Mn� such that

TnQ
n∑
t=1

Xt−1X′
t−1Q

′T′
n

∼P diag
(
Jn

n∑
t=1

ut−1u′
t−1J

′
n� � � � �M

′
n

n∑
t=1

zt−1z′t−1M
′
n

)

= OP�1��

(3.22)

where Jn, Kn, Ln�1�� � � � �Ln�l�, Mn are a× a, b× b, 2d1 × 2d1� � � � �2dl × 2dl

and r× r matrices. Moreover, it holds that

�Q′T′
n�−1��̂n − �� ∼P



�J′

n�−1�∑n
t=1 ut−1u′

t−1�−1 ∑n
t=1 ut−1εt

���
�M′

n�−1�∑n
t=1 zt−1z′t−1�−1 ∑n

t=1 zt−1εt




= OP�1��

(3.23)

For details, see (3.2)–(3.5) of Chan and Wei (1988). Now, from (3.18), (3.22)
and (3.23), we obtain supx �En3�x�� = oP�1� in view of Corollary 2.3 and the
proposition in the Appendix. This completes the first step.

On the other hand, by Taylor’s series expansion,

En2�x� = n−1/2
n∑
t=1

(
�̂n − �

)′Xt−1H
′�x�

+ �4n�−1/2
n∑
t=1

{��̂n − ��′Xt−1
}2
H

′′ �ζnt�
(3.24)
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for some random variables ζnt. In view of (3.18), (3.22) and (3.23), one can see
that the second term of the right-hand side of (3.24) is oP�1�. Thus, to complete
the analysis of the second step, it remains to deal with the first term. Note
that in terms of (3.22) and (3.23),

n−1/2
n∑
t=1

��̂n − ��′Xt−1

∼P

[
�J′

n�−1
( n∑

t=1

ut−1u′
t−1

)−1 n∑
t=1

ut−1εt

]−1

n−1/2
n∑
t=1

Jnut−1

+ · · · +
[
�M′

n�−1
( n∑

t=1

zt−1z′t−1

)−1 n∑
t=1

zt−1εt

]−1

n−1/2
n∑
t=1

Mnzt−1�

(3.25)

Since the limiting behavior of the first term in each summand in (3.25) is
already established by Chan and Wei (1988), we only have to deal with the
second terms. For this, we separate the terms into four cases according to the
locations of their characteristic roots. The following four lemmas are concerned
with this task. The proofs can be found in Lee [(1991), pages 84–88] and are
omitted for brevity.

Lemma 3.5. Let W denote a standard Brownian motion on [0,1] and define
F0�u� = σW�u� and Fj�u� = ∫ u

0 Fj−1�s�ds. Then it holds that n−1/2 ∑n
t=1

Jnut−1 →� �F1�1�� � � � �Fa�1�� as n →∞.

Lemma 3.6. n−1/2 ∑n
t=1 Knvt−1 → 0 a.s. as n →∞.

Lemma 3.7. For k = 1� � � � � l, n−1/2 ∑n
t=1 Ln�k�xt−1�k� → 0 as n →∞.

Lemma 3.8. n−1/2 ∑n
t=1 Mnzt−1 → 0 a.s. as n →∞.

From Lemmas 3.5–3.8 and the argument in (3.25), we can see that only the
root 1 affects the asymptotic behavior of the residual empirical process. Before
we state the main theorem of this subsection, we introduce a lemma.

Lemma 3.9. Suppose that ξ1� ξ2� � � � � are iid random variables with mean
0, variance σ2 ∈ �0�∞� and continuous distribution G. Define

Wn1�u� = n−1/2
n∑

j=1

[
I�G�ξj� ≤ u� − u

]
� u ∈ �0�1�

and

Wn2�u� = n−1/2
�nu�∑
j=1

ξj/σ� u ∈ �0�1��
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Then �Wn1�Wn2� converges weakly to a mean zero Gaussian process �W1�W2�
in D2�0�1� space, such that for all s� t ∈ �0�1�,

Cov�W1�s��W1�t�� = s ∧ t− st�

Cov�W2�s��W2�t�� = s ∧ t�

Cov�W1�s��W2�t�� = �t/σ�
∫ G−1�s�

−∞
xdG�x��

The proof is rather standard and is omitted.

Theorem 3.2. Let Ên�x� be the empirical process defined by (3.21) and
suppose that the characteristic polynomial ϕ has root 1 with multiplicity a ≥
1. Suppose that �W1�W2� is the Gaussian process defined in Lemma 3.9,

F0 = σW2, Fj =
∫ 1

0 Fj−1�s�ds, � = �∫ 1
0 Fa−1�s�dW2�s�� � � � �

∫ 1
0 F0�s�dW2�s��′,

� = �Fa�1�� � � � �F1�1��′, and F is the matrix whose �j� l�th entry is σjl =∫ 1
0 Fj−1�s�Fl−1�s�ds. Then, as n →∞,

Ŷn�u� �= Ên�H−1�u�� �→ W1�u� + σ�F−1��′�H′�H−1�u���(3.26)

Proof. As we have seen earlier, it holds that

sup
x

∣∣∣∣En2�x� −
[
�J′

n�−1
( n∑

t=1

ut−1u′
t−1

)−1 n∑
t=1

ut−1εt

]−1

× n1/2
n∑
t=1

Jnut−1H
′�x�

∣∣∣∣ = oP�1��
(3.27)

Meanwhile, by Lemma 3.5, Theorem 3.1.2 and the Proposition in Appendix 3
of Chan and Wei (1988), and the continuous mapping theorem, we have that

[
�J′

n�−1
( n∑

t=1

ut−1u′
t−1

)−1 n∑
t=1

ut−1εt

]−1

n1/2
n∑
t=1

Jnut−1
D→ σ�F−1��′��(3.28)

Recall here that En�x� =
∑3

i=1 Eni�x� and supx �En3�x�� = oP�1�. Then, (3.26)
is yielded by (3.27), (3.28), Lemma 3.9, the Proposition of Appendix 3 of Chan
and Wei (1988) and the continuous mapping theorem. ✷

Theorem 3.2 indicates that, unlike the stationary case, the residual empir-
ical process from the unstable process with the root 1 does not behave like a
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Brownian bridge asymptotically. Therefore one should perform a unit root test
a priori before using the conventional tests, such as the Kolmogorov–Smirnov
test and the Cramér–von Mises test.

Finally, we remark that for the explosive case, the proof of the result (3.29)
given by Koul and Levental (1989) can be substantially shortened by
Lemma 2.2.

Remark 3.1 [Explosive AR(1) processes]. Consider the explosive AR(1)
process

Xt = ρXt−1 + εt�

where ε1 has the distribution G, �ρ� > 1 and X0 = 0. Koul and Levental (1989)
showed that

Ŷn�u� = n−1/2
n∑

j=1

[
I�G�ε̂j� ≤ u� − u

]
→� Ẇ�u�� u ∈ �0�1��(3.29)

where ε̂j = Xj−ρ̂nXj−1, ρ̂n is an estimate of ρ and Ẇ is a standard Brownian
bridge, under the conditions E log+ �ε1� < ∞; G has a uniformly bounded
derivative; ρ̂n satisfies ρn�ρ̂n − ρ� = oP�n1/2�.

They obtained (3.29) by giving a lengthy proof for the result

Un = sup
x

∣∣∣∣n−1/2
n∑

j=1

unj�x�
∣∣∣∣ = oP�1��(3.30)

where

unj�x� = I
(
εj ≤ x+ �ρ̂n − ρ�Xj−1

)−G
(
x+ �ρ̂n − ρ�Xj−1

)+G�x� − I�εj ≤ x��
However, (3.30) can be derived directly from Lemma 2.2 (see also Remark 2.1).
Note that

Un ≤ sup
x

∣∣∣∣n−1/2
n−n1/3∑
j=1

unj�x�
∣∣∣∣+ sup

x

∣∣∣∣n−1/2
n∑

j=n−n1/3+1

unj�x�
∣∣∣∣�(3.31)

Since unj�x� is bounded by 2, the second term of the right-hand side of (3.31) is
no more than 2n−1/6, and thus it converges to 0. On the other hand, replacing
n in Lemma 2.2 by n− n1/3, the first term is oP�1�, since

max
1≤j≤n−n1/3

∣∣�ρ̂n − ρ�Xj−1

∣∣ = OP�n1/2ρ−n/3� = oP�n−1/2�

[cf. Koul and Levental (1989), Lemma 1].

APPENDIX

Proposition. Let �Hn� be a sequence of distribution functions and �ηn�
be a sequence of positive real numbers decaying to 0 as n tends to infinity. If
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there exists a distribution function G such that supx �G′′ �x�� < ∞ and

sup
x

∣∣H′
n�x� −G′�x�∣∣ → 0 as n →∞�(A.1)

then as n →∞�

sup
�x�y�∈Sn

∣∣H′
n�x� −H′

n�y�
∣∣ → 0�(A.2)

where Sn = ��x�y�� �Hn�x� −Hn�y�� ≤ ηn�.

This proposition is proved through the following two lemmas.

Lemma A.1. Let �Hn� be a sequence of distribution functions and �ηn� be
a sequence of positive real numbers decaying to 0 as n tends infinity. If there
exists a continuously differentiable distribution function G satisfying (A.1) and

lim
�x�→∞

G′�x� → 0�(A.3)

then �Hn� satisfies (A.2).

Proof. Note that by (A.1) and Schéffe’s theorem,

sup
x

∣∣Hn�x� −G�x�∣∣ → 0 as n →∞�(A.4)

If the lemma is not true, there exist d > 0, a subsequence �mn� of �n� and a
sequence ��xn� yn��, such that∣∣Hmn

�xn� −Hmn
�yn�

∣∣ ≤ ηmn
and

∣∣H′
mn
�xn� −H′

mn
�yn�

∣∣ > d�

Then, by (A.1) and (A.4),

�G�xn� −G�yn�� → 0 as n →∞�(A.5)

�G′�xn� −G′�yn�� > d ∀ sufficiently large n�(A.6)

We claim that �xn� yn� belongs to a compact set. Otherwise, there exists
a subsequence ��xn′� yn′ �� such that at least one of �xn′ � and �yn′ � diverges
to ±∞. Suppose that xn′ → ∞. (The case for xn′ → −∞ can be handled
similarly). If �yn′ � is bounded, there exists a limit point y0. Then, G�y0� = 0
by (A.5) and so G′�y0� = 0 by the continuity of G′. However, this contradicts
(A.6) since G′�xn′ � → 0 by (A.3). Thus, �yn′ � must have a subsequence �yn′′ �
that goes to ∞ or −∞. In this case, however, �G′�xn′′ � −G′�yn′′ �� → 0 due to
(A.3). This contradicts (A.6). Hence, we conclude that �xn� yn� is contained in
a compact set.

Now, assume that �x0� y0� is a limit point of �xn� yn�. By (A.6), G′�x0� �=
G′�y0�. However, this leads to a contradiction since (A.5) implies G�x0� =
G�y0� and consequently G′�x0� = G′�y0�. This completes the proof. ✷

Lemma A.2. If G is a distribution function with uniformly bounded second
derivative, then G satisfies condition (A.3).
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Proof. Assume that limx→∞G′�x� = 0 does not hold. (The case for x →
−∞ can be handled in a similar fashion). Then, there exist a positive real
number ε and a sequence of real numbers �xn� diverging to infinity, such
that G′�xn� > ε. Put δ = supx �G′′ �x��ε/2. Since by the mean value theorem,
�G′�xn + y� −G′�xn�� ≤ supx �G′′ �x��δ = ε/2 for all �y� ≤ δ, we have that

G′�xn + y� ≥ G′�xn� − ε/2 > ε/2�

Integrating both sides of the above inequality over �0� δ�, we obtain

G�xn + δ� −G�xn� ≥ εδ/2�

However, this leads to a contradiction since the left-hand side of the above
inequality goes to 0 as n tends to infinity. This completes the proof. ✷
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