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IMPROVED NONNEGATIVE ESTIMATION OF MULTIVARIATE
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In this paper, we consider a multivariate one-way random effect model
with equal replications. We propose nonnegative definite estimators for “be-
tween” and “within” components of variance. Under the Stein loss function,
it is shown that the proposed estimators of the “within” component dom-
inate the best unbiased estimator. Restricted maximum likelihood, trun-
cated and order-preserving minimax estimators are also proposed. A Monte
Carlo simulation is carried out to choose among these estimators.

For estimating the “between” component, we consider the Stein loss
function for jointly estimating the two positive definite matrices (“within”
and “within” plus “between”) and obtain estimators for the “between” com-
ponent dominating the best unbiased estimator. Other estimators as con-
sidered for “within” are also proposed. A Monte Carlo simulation is carried
out to choose among these estimators.

1. Introduction. The estimation of variance components in univariate
mixed linear models has been considered extensively in the literature and
various results are available. For example, Rao and Kleffe (1988) provide an
exhaustive account of Rao’s MINQUE theory. The unbiased estimators of “be-
tween” components of variance, however, take negative values with positive
probability and considerable attention has been paid to provide positive esti-
mators for between components. Herbach (1959) considered the balanced one-
way layout and provided maximum likelihood estimators free from the above
defect. Other important contributions in maximum likelihood and restricted
maximum likelihood estimators are due to Thompson (1962), Patterson and
Thompson (1971, 1975), Searle (1971) and Harville (1977). Estimators which
are not only nonnegative but also improve on the unbiased estimators have
been derived from a frequentist viewpoint by Mathew, Sinha and Sutradhar
(1992) and Kubokawa (1995).

On the other hand, the estimation of variance components in the multi-
variate mixed linear model did not receive such attention, primarily due to
technical difficulties encountered even in the balanced one-way random effect
model with equal replications. For example, maximum likelihood estimators
have been proposed in the literature in various forms but it is not known if

Received August 1998; revised September 3, 1999.
1Supported in part by Natural Sciences and Engineering Research Council of Canada.
2Supported in part by a grant from the Center for International Research on the Japanese

Economy, the University of Tokyo and by the Ministry of Education, Japan, Grants 09780214 and
11680320.

AMS 1991 subject classifications. Primary 62H12, 62F30; secondary 62C12, 62C20.
Key words and phrases. Random effects model, Stein loss, minimax and unbiased estimators,

restricted maximum likelihood estimator.

2008



IMPROVED NONNEGATIVE ESTIMATION 2009

these estimators dominate the usual uniformly minimum variance unbiased
estimators other than being nonnegative definite. A brief review of the re-
stricted maximum likelihood estimators appears in Anderson, Anderson and
Olkin (1986). Bock and Vandenberg (1968) introduced simple estimators for
the components which were later shown by Bock and Petersen (1975) to be
maximum likelihood estimators. Earlier, Klotz and Putter (1969) had consid-
ered maximum likelihood estimation of the components but this solution is
in a different form than Bock and Petersen (1975). Other contributors in this
area of maximum likelihood estimation and testing are Rao (1983), Amemiya
and Fuller (1984), Amemiya (1985) and Anderson, Anderson and Olkin (1986).

Calvin and Dykstra (1991) proposed restricted maximum likelihood (REML)
estimators for the ordered covariances, but nothing is known about the prop-
erties of these estimators. Calvin and Dykstra (1991) also mention the com-
putational difficulties encountered with the corresponding MINQUE theory
given in Rao and Kleffe (1988). Recently Mathew, Niyogi and Sinha (1994)
considered a one-way random effect model with equal replications and pro-
posed some shrinkage estimators but the dominance result over the unbiased
estimator remained open. Thus, no analytical results are available in the lit-
erature for the dominance over the best unbiased estimator.

In this paper, we also consider the one-way random effect model with equal
replications,

yij = �+ ai + eij� i = 1� � � � � k� j = 1� � � � � r�(1.1)

where ai’s and eij’s are independent random variables, ai having p-variate
normal distribution with mean 0 and covariance matrix �A, �p�0��A� and
eij having �p�0��1�. Here � ∈ Rp is an unknown common mean vector and
�A and �1 are unknown covariance matrices. Let ȳi� = r−1∑r

j=1 yij, ȳ�� =
�rk�−1∑k

i=1
∑r
j=1 yij, S1 =∑k

i=1
∑r
j=1�yij− ȳi���yij− ȳi��′ and S2 = r

∑k
i=1�ȳi�−

ȳ����ȳi�− ȳ���′. The statistics ȳ��, S1 and S2 are the minimal sufficient statistics
and are mutually independently distributed as ȳ�� ∼ �p��� �rk�−1��1 +r�A��,

S1 ∼ �p��1� n1� and S2 ∼ �p��2� n2�(1.2)

for

�2 = �1 + r�A� n1 = k�r− 1� and n2 = k− 1�(1.3)

where �p��1� n1� designates the p-variate Wishart distribution with expec-
tation n1�1 and n1 degrees of freedom.

In Section 2, the estimation of the “within” multivariate component of
variance is addressed under the Stein (or entropy) loss function. The usual
unbiased estimator of �1, �̂UB1 = n−1

1 S1, can be improved on by using the
information from the order restriction �1 ≤ �2. This issue was discussed by
Mathew, Niyogi and Sinha (1994) who considered the estimator

�̂MNS1 =


�n1 + n2 − p+ 1�−1�S1 + S2��

n−1
1 S1�

if
∣∣I+ S−1

1 S2

∣∣ ≤ �n1 + n2 − p+ 1�/n1�

otherwise,

(1.4)
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and showed that �̂MNS1 dominates �̂UB1 in the case of p = 2. But their argu-
ments leading to the showing of dominance of (1.4) over the unbiased estimator
are not clear to us. For example, from their Lemma 3.1, it appears to us that
the only claim that can be made is that the estimator defined by

�̂∗
1 =


�n1 + n2 − p+ 1�−1�I+ S−1

1 S2�S1�

n−1
1 S1�

if �I+ S−1
1 S2� ≤ �n1 + n2 − p+ 1�/n1,

otherwise

(1.5)

dominates �̂UB1 when p = 2.
The estimator (1.5) was obtained by using the so-called ‘pivot’ S−1/2

1 S2S
−1/2
1

whose statistical properties are difficult to obtain. In this paper, we consider
instead the statistic S−1/2

2 S1S
−1/2
2 and propose estimators of the type

�̂1��� = S1/2
2 P����P′S1/2

2 �

where S1/2
2 is a symmetric matrix such that S2 = �S1/2

2 �2, ���� = diag �ψ1����
� � � � ψp���� and P is an orthogonal p× p matrix such that

P′S−1/2
2 S1S

−1/2
2 P = � = diag �λ1� � � � � λp�

= diag �λi� i = 1� � � � � p��
For example, if ���� = �n1 + n2�−1�I + �� for � ≥ �n1/n2�I; ���� = n−1

1 �
otherwise, then

�̂1��� =
{
�n1 + n2�−1�S1 + S2�� if I+ S−1

1 S2 ≤ �n1 + n2�/n1I,
n−1

1 S1� otherwise.
(1.6)

Clearly for large n2, the truncation in (1.6) begins later than in (1.4). But no
dominance result is available. We, however, show in Section 2.1, Corollary 1,
that if we modify (1.4) in which the truncation is without the determinant sign,
then it dominates �̂UB1 for all p. This estimator is similar, in spirit to (1.6) and
perhaps can be obtained from the pivot S−1/2

1 S2S
−1/2
1 . However, we show in

Corollary 1 that the estimator given by (1.6) dominates this estimator. In Sec-
tion 2, we describe a general method for obtaining the estimators �̂1��� dom-
inating another one �̂1��0�. From this result, we get estimators improving on
the unbiased estimator �̂UB1 in terms of risk. One of the improved estimators
is the so-called REML estimator, which can be also interpreted as an empir-
ical Bayes rule. Using the general method, we provide minimax estimators
dominating the minimax estimator given by James and Stein (1961). Some of
the minimax estimators are nonorder-preserving and they can be further im-
proved upon by the order-preserving estimators as suggested by Stein (1975,
1977), Lin and Perlman (1985) and Sheena and Takemura (1992).

The problem of estimating the “between” multivariate component of vari-
ance �A is treated in Section 3. The unbiased estimator of �A is given by

�̂UBA = r−1�n−1
2 S2 − n−1

1 S1��
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which is not always nonnegative definite (n.n.d.). The (restricted) maximum
likelihood estimators, on the other hand, are n.n.d. However, its superior-
ity over the unbiased estimator has not been established from a decision-
theoretical aspect. Mathew, Niyogi and Sinha (1994) considered another type
of estimators, namely, linear combinations of S1 and S2 and provided con-
ditions under which the combined estimators are n.n.d. and better than the
unbiased estimator relative to the quadratic loss function. In the univariate
case, the mean squared error (MSE) has been usually employed as a criterion
of comparing estimators of the “between” component of variance. However we
do not think the MSE is an appropriate measure in evaluating estimators
of dispersion parameters because the MSE penalizes the underestimate less
than the overestimate. As an alternative measure, we employ the Kullback–
Leibler distance or Stein loss function and consider the estimation of �A in
the context of simultaneous estimation of �1 and �A. Under this measure, the
results given in Section 2 are directly applicable to get estimators improving
on the unbiased estimators ��̂UB1 ��UBA �. From this result, it is shown that the
REML estimators of ��1��A� dominate the unbiased estimators. Also n.n.d.
estimators superior to minimax estimators of �1 and �A are derived. Monte
Carlo simulations are carried out in Section 4 to choose among different esti-
mators. The paper concludes in Section 5.

2. Estimation of the multivariate “within” component of variance.

2.1. A general approach to improving estimators. Let S1 and S2 be inde-
pendent random matrices, Si ∼ �p��i� ni�, i = 1�2, with �1 ≤ �2 where
�1 ≤ �2 denotes that �2 − �1 is n.n.d. Denote the parameter space by � =
���1��2� ��1 ≤ �2�. Suppose that we want to estimate �1 relative to the Stein
(or entropy) loss function

L��̂1�
−1
1 � = tr �̂1�

−1
1 − log ��̂1�

−1
1 � − p�(2.1)

which was proposed by James and Stein (1961) and also can be derived by the
Kullback–Leibler distance∫ {

log
f�S1� �̂1�
f�S1��1�

}
f�S1� �̂1�dν�S1��

where f�S1��1� designates a density function of S1 with respect to mea-
sure ν�·�. Every estimator �̂1 is evaluated by the risk function R1�ω� �̂1� =
Eω�L��̂1�

−1
1 �� for ω ∈ �.

Let S1/2
2 be a symmetric matrix such that S2 = �S1/2

2 �2 and let P be an
orthogonal p× p matrix such that

P′S−1/2
2 S1S

−1/2
2 P = � = diag �λ1� � � � � λp��

where λ1 ≥ λ2 ≥ · · · ≥ λp. We consider estimators of the form

�̂1��� = S1/2
2 P����P′S1/2

2(2.2)
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where ���� = diag�ψ1���� � � � � ψp���� for nonnegative function ψ���. For

given estimator �̂1���, we define two types of truncation rules ������TR and
������TR∗ by

������TR=diag �ψTR1 ���� � � � � ψTRp �����

ψTRi ���=min
{
ψi���� λi + 1

n1 + n2

}
� i = 1� � � � � p

(2.3)

and

������TR∗ =diag �ψTR∗
1 ���� � � � � ψTR∗

p �����

ψTR∗���=
{ �n1 + n2�−1�λi + 1�� if �n1 + n2�−1��+ I� ≤ ����
ψi���� otherwise.

(2.4)

Then the corresponding truncated estimators are written as

�̂1����TR�=S1/2
2 P diag �ψTR1 ���� � � � � ψTRp ����P′S1/2

2 �

�̂1����TR∗�=


�n1 + n2�−1�S1 + S2��

if �n1 + n2�−1�S1 + S2� ≤ �̂1������
�̂1������� otherwise.

(2.5)

Note that each diagonal element is truncated componentwise in �̂1����TR�
while the diagonal matrix is truncated for �̂1����TR∗�. We get the following
general dominance results.

Theorem 1. (i) The estimator �̂1����TR� dominates �̂1��� relative to the
Stein loss (2.1) if P�������TR �= ����� > 0 at some ω ∈ �.

(ii) The estimator �̂1����TR� dominates �̂1����TR∗� relative to the Stein loss
(2.1) if P�������TR �= ������TR∗� > 0 at some ω ∈ �.

Proof. Without any loss of generality, let �1 = I and �2 = � = diag �θ1�
� � � � θp� with θ1 ≥ 1� � � � � θp ≥ 1. The joint density of S1 and S2 is

const��S1��n1−p−1�/2�S2��n2−p−1�/2���−n2/2 etr
[− 1

2�S1 +�−1S2�
]
�

Making the transformation F = S−1/2
2 S1S

−1/2
2 with J�S1 → F� = �S2��p+1�/2

gives the joint density of F and S2,

fF�S2
�F�S2�
= const��F��n1−p−1�/2�S2��n1+n2−p−1�/2���−n2/2 etr

[− 1
2�F+�−1�S2

]
�

(2.6)

Making the transformation F=P�P′, we see that the joint density of ���P�
S2� is written by

f �P�S2
���P�S2�

= const�fp�P�g����S2��n1+n2−p−1�/2���−n2/2 etr
[− 1

2�P�P′ +�−1�S2
]
�
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where fp�P� = J�P′dP → dP� and g��� is a function of � [see Srivastava
and Khatri (1979), pages 31 and 32]. Hence the conditional distribution of S2
given ���P� is

S2 � ���P� ∼ �p

(�P�P′ +�−1�−1� n1 + n2
)
�

which yields the conditional expectation of S2 given ���P�,
E�S2 ���P� = �n1 + n2��P�P′ +�−1�−1�(2.7)

For the proof of part (i), we write the difference of the risk functions of
�̂1��� and �̂1����TR� as

R1
(
�� �̂1���)−R1

(
�� �̂1����TR�)

= E"

[
tr �P����P′ −P������TRP′�S2 − log ������������TR�−1�]

= E
 �P
"

[
tr����� − ������TR�P′E"�S2 ���P

]
P

− log ������������TR�−1 � ]�
(2.8)

From (2.7) and the fact that ���� ≥ ������TR, it follows that the r.h.s. in (2.8)
is greater than or equal to

E"

[
tr����� − ������TR��n1 + n2���+ I�−1 − log ������������TR�−1�]
=

p∑
i=1

E"

[{(
ψi��� − λi + 1

n1 + n2

)
n1 + n2

λi + 1
− logψi���n1 + n2

λi + 1

}
× I
(
ψi��� > λi + 1

n1 + n2

)]
=

p∑
i=1

E"

[{
ψi
n1 + n2

λi + 1
− logψi

n1 + n2

λi + 1
− 1
}
I

(
ψi��� > λi + 1

n1 + n2

)]
≥ 0�

(2.9)

which proves part (i).
For the proof of part (ii), note that �n1 + n2�−1��+ I� ≤ ���� is equivalent

to the condition that �n1 + n2�−1�λi + 1� ≤ ψi��� for every i, and that under
this condition, ψTRi ��� = �n1 + n2�−1�λi + 1� for every i. Since P�������TR �=
������TR∗� > 0 for some ω ∈ �, there exists an index set J such that

Pω�ψTRj ��� < ψTR∗
j ���� = Pω��n1 + n2�−1�λi + 1� < ψTR∗

j ���� > 0

at some ω ∈ � for any j ∈ J. By the same arguments as in (2.8) and (2.9), we
have

R1
(
�� �̂1����TR∗�)−R1

(
�� �̂1����TR�)

≥ ∑
j∈J

E"

[{(
ψj��� − λi + 1

n1 + n2

)
n1 + n2

λi + 1
− logψj���n1 + n2

λi + 1

}
× I
(
ψj��� > λi + 1

n1 + n2

)]
�

which is nonnegative, and the proof of Theorem 1 is complete. ✷
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Corollary 1. The estimator in (1.4) modified as

�̂S1 �a� =
{
�n1 + n2 − a�−1�S1 + S2�� if I+ S−1

1 S2 ≤ �n1 + n2 − a�/n1I,
n−1

1 S1� otherwise,

where 0 < a < n2, dominates �̂UB1 . Furthermore �̂S1 �0� dominates �̂S1 �a�.

Proof. Define the set A by

A = �I+ S−1
1 S2 ≤ �n1 + n2 − a�/n1I�

=
{

λi
λi + 1

n1 + n2 − a
n1

≥ 1� i = 1� � � � � p
}
�

Then the same argument as in the proof of Theorem 1 gives that

R1
(
�� �̂UB1

)−R1
(
�� �̂S1 �a�

)
≥

p∑
i=1

E"

[{(
λi
n1

− λi + 1
n1 + n2 − a

)
n1 + n2

λi + 1
− log

λi
n1

n1 + n2

λi + 1

}
IA

]

=
p∑
i=1

E"

[{
λi

λi + 1
n1 + n2 − a

n1
− log

λi
λi + 1

n1 + n2 − a
n1

− 1
}
IA

+ a

n1 + n2 − a
{

λi
λi + 1

n1 + n2 − a
n1

− 1
}
IA

]
�

which is greater than or equal to zero, and the first part of Corollary 1 is
proved.

For the proof of the second part, define the set B by

B =
{

λi
λi + 1

n1 + n2

n1
≥ 1� i = 1� � � � � p

}
�

and denote the complement of A by Ac. Similarly to the above arguments, the
risk difference is written as

R1��� �̂S1 �a�� −R1��� �̂S1 �0��

≥
p∑
i=1

E"

[{(
λi + 1

n1 + n2 − a
− λi + 1
n1 + n2

)
n1 + n2

λi + 1
− log

n1 + n2

n1 + n2 − a
}
IA

]

+
p∑
i=1

E"

[{(
λi
n1

− λi + 1
n1 + n2

)
n1 + n2

λi + 1
− log

λi
n1

n1 + n2

λi + 1

}
IB∩Ac

]
�

which is greater than or equal to zero, and the proof of Corollary 1 is com-
plete. ✷
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2.2. Improvements on the unbiased estimator. Since S1 = S1/2
2 S−1/2

2 S1S
−1/2
2

S1/2
2 = S1/2

2 P�P′S1/2
2 , the unbiased estimator �̂UB1 = n−1

1 S1 can be expressed
in the same manner as (2.2) by

�̂UB1 = �̂1��UB��
where

�UB = diag �n−1
1 λ1� � � � � n

−1
1 λp��

The truncation rules given in Section 2.1 produce the estimators

�̂REML1 = �̂1���UB�TR��(2.10)

where

��UB�TR = diag
(

min
{
λ1

n1
�
λ1 + 1
n1 + n2

}
� � � � �min

{
λp

n1
�
λp + 1

n1 + n2

})
�

and

�̂UTR∗
1 = �̂1���UB�TR∗�

=
{
�n1 + n2�−1�S1 + S2�� if �n1 + n2�−1�S1 + S2� ≤ n−1

1 S1,

n−1
1 S1� otherwise.

(2.11)

For instance, suppose that

λ1 ≥ n1/n2� � � � � λq ≥ n1/n2� λq+1 < n1/n2� � � � � λp < n1/n2

for some q. Then ��UB�TR takes the value

��UB�TR = diag
(
λ1 + 1
n1 + n2

� � � � �
λq + 1

n1 + n2
�
λq+1

n1
� � � � �

λp

n1

)
�

while

��UB�TR∗ = diag
(
λ1

n1
� � � � �

λp

n1

)
�

From Theorem 1, we get the following corollary.

Corollary 2. The estimator �̂REML1 dominates the estimator �̂UTR∗
1 which

improves on the unbiased one �UB1 relative to the Stein loss (2.1).

It may be noted that Hara (1999) has also recently obtained this result by
a different method.

The estimator �̂REML1 is known to be the restricted (or residual) maximum
likelihood (REML) estimator of �1 under the constraint �1 ≤ �2. Corollary 2
implies that the REML estimator is superior not only to the unbiased estima-
tor but also to �̂UTR∗

1 and �̂UTR∗
1 �a�, although �̂UTR∗

1 appears to have a natural
form.
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It is interesting to note that the REML estimator �̂REML1 can also be derived
as an empirical Bayes rule. Let � = �−1

2 and 	 = �
1/2
2 �−1

1 �
1/2
2 . Suppose that �

has noninformative prior distribution ���−�p+1�/2 dν��� for some measure ν�·�
and that 	 is unknown. The joint density of ���S1�S2� has the form

const�����n1+n2−p−1�/2�S1��n1−p−1�/2�S2��n2−p−1�/2�	�n1/2 etr
[− 1

2�	1/2S1	
1/2 +S2��

]
�

so that the posterior density given S1 and S2 and the marginal density of S1
and S2 are given by

(posterior) ∝ ����n1+n2−p−1�/2 etr
[− 1

2�	1/2S1	
1/2 + S2��

]
�

(marginal) ∝ �	�n1/2�	1/2S1	
1/2 + S2�−�n1+n2�/2�S1��n1−p−1�/2�S2��n2−p−1�/2�

We thus get the Bayes estimator of �1 under the Stein loss (2.1),

�̂B1 �	� = 	−1/2(E�� �S1�S2�
)−1

	−1/2

= �n1 + n2�−1	−1/2�	1/2S1	
1/2 + S2�	−1/2

= �n1 + n2�−1(S1 + 	−1/2S2	
−1/2)�

Since 	 is unknown, 	 needs to be estimated from the marginal density. Putting

 = S−1/2

1 	−1/2S2	
−1/2S−1/2

1 , the maximum likelihood estimator of 
 can be
derived by maximizing �
�n2/2�I + 
�−�n1+n2�/2 subject to the order restriction

 ≤ S−1/2

1 S2S
−1/2
1 since 	 ≥ I. The resulting MLE of 
 is


̂ = Q diag
(

min
{
n2

n1
�

1
λi

}
� i = 1� � � � � p

)
Q′�

where Q is an orthogonal p× p matrix such that

Q′S−1/2
1 S2S

−1/2
1 Q = diag�λ−1

1 � � � � � λ−1
p ��

Putting 
̂ or 	̂ into the Bayes estimator �̂B1 �	�, we obtain the empirical Bayes
estimator,

�̂B1 �̂	� =
1

n1 + n2
S1/2

1 Q
{
diag

(
min

{
n2

n1
�

1
λi

}
� i = 1� � � � � p

)
+ I
}
Q′S1/2

1

= 1
n1 + n2

S1/2
1 Q diag

(
min

{
1
n1
�

λi + 1
�n1 + n2�λi

}
� i = 1� � � � � p

)
Q′S1/2

1 �

Here note that orthogonal matrices P and Q satisfy

S−1/2
2 S1S

−1/2
2 = �S−1/2

2 S1/2
1 ��S−1/2

2 S1/2
1 �′ = P�P′�

S−1/2
1 S2S

−1/2
1 = �S−1/2

1 S1/2
2 ��S−1/2

1 S1/2
2 �′ = Q�−1Q′�

Then we have that

S−1/2
2 S1/2

1 = P�1/2Q′ or S1/2
2 P = S1/2

1 Q�−1/2�
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Hence �̂1�̂	� is rewritten as

�̂1�̂	� = S1/2
2 P diag

(
min

{
λi
n1
�
λi + 1
n1 + n2

}
� i = 1� � � � � p

)
P′S1/2

2 �

which is identical to the REML estimator �̂REML1 . Hence the REML estimator
can be interpreted as the empirical Bayes rule.

2.3. Improvements on the minimax estimator. Historically, the first inter-
esting result in estimation of the covariance matrix was provided by James
and Stein (1961), who established the nonminimaxity of the unbiased estima-
tor �̂UB1 and presented the minimax estimator of the form

�̂JS1 = T1D
mT′

1�

where T1 is a lower triangular p× p matrix such that S1 = T1T
′
1, and Dm is

the diagonal matrix given by Dm = diag�d1� � � � � dp� for

di = �n1 + p+ 1 − 2i�−1� i = 1� � � � � p�

It is known that the James–Stein minimax estimator �̂JS1 has a drawback
that it depends on the coordinate system. For modifying this property, sev-
eral orthogonally equivariant minimax estimators have been proposed in the
literature. The orthogonally equivariant estimators are generally given by

�̃1��� = R��L�R′�(2.12)

whereR is an orthogonal matrix such that S1 = RLR′ and L = diag�)1� � � � � )p�
for eigenvalues )1 ≥ · · · ≥ )p. It is important to note that the estimator �̂1���
is equivariant under the scale transformation S1 → AS1A′ and S2 → AS2A′

for any p × p nonsingular matrix A, so that �̂1��� does not depend on the
coordinate system.

Proposition 1. If the orthogonally equivariant estimator �̃1���L�� is mini-

max, then for the same function ��·�, �̂1������ is scale-equivariant, minimax

and improving on �̂JS1 relative to the Stein loss (2.1).

Proof. Recall that F = S−1/2
2 S1S

−1/2
2 = P�P′ and that S1 ∼ �p�I� n1�.

Then it is seen that the conditional distribution of F given S2 has �p��∗� n1�
for �∗ = S−1

2 . Then the risk function of �̂1��� is represented by

R1��� �̂1����
= ES2

[
EF �S2�trP����P′�−1

∗ − log �P����P′�−1
∗ � − p �S2�

]
�

(2.13)

so that given S2, conditionally P�P′ corresponds to the Stein’s orthogonally
invariant estimator �̃1��� of �∗ with S1 ∼ � ��∗� n�. Hence the minimaxity
of �̃1��� implies the minimaxity of �̂1���, which proves Proposition 1. ✷
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From Proposition 1, we can obtain some minimax estimators by using the
results derived previously for the estimation of �1.

2.3.1. Stein-type estimator. Let �̂S1 = �̂1��S� for

�S��� = diag�d1λ1� � � � � dpλp��(2.14)

The minimaxity of �̂S1 follows from the result of Dey and Srinivasan (1985),
who also give another orthogonally equivariant estimator beating �̃S1 for p ≥ 3.

2.3.2. Takemura-type estimator. Stein (1956), Eaton (1970) and Takemura
(1984) gave an orthogonally equivariant and improved estimator, which can
be represented in our problem as

�̂T = S1/2
2

{∫
O�p�

�U�DmU
′
��

′ dµ���
}
S1/2

2 �(2.15)

where U, ∈ G+
T with U,U

′
, = �′F� for F = S−1/2

2 S1S
−1/2
2 = P�P′. Takemura

(1984) provided another expression as �̂T = �̂��T� for �T��� = diag�ψT1 � � � � �
ψTp�, where

�ψT1 � � � � � ψTp�′ = diag�λ1� � � � � λp�W����d1� � � � � dp�′�(2.16)

for p × p doubly stochastic matrix W���. Also Takemura (1984) gave exact
expressions for �T��� for p = 2 and 3. For instance,

ψT1 = λ1

( √
λ1√

λ1 +
√
λ2

d1 +
√
λ2√

λ1 +
√
λ2

d2

)
�

ψT2 = λ2

( √
λ2√

λ1 +
√
λ2

d1 +
√
λ1√

λ1 +
√
λ2

d2

)
for p = 2. However, the explicit calculation of W��� for p > 3 remains an
intractable problem.

2.3.3. Perron-type estimator. Perron (1992) gave an approximation to
W���, say W̃���, with a doubly stochastic property, and showed the mini-
maxity of the approximated estimator. Let

w̃ij��� = trj−1��i�
trj−1��� − trj��i�

trj��� �

for

trj��� =


1� if j = 0,∑
1≤i1<···<ij≤p

j∏
k=1

λik� if j = 1� � � � � p,

0� otherwise,

and

�i = diag�λ1� � � � � λi−1�0� λi+1� � � � � λp��



IMPROVED NONNEGATIVE ESTIMATION 2019

Let W̃��� = �w̃ij� and put

�ψP1 � � � � � ψPp�′ = diag�λ1� � � � � λp�W̃����d1� � � � � dp�′�(2.17)

For p = 2, they are given by

ψP1 = λ1

(
λ1

λ1 + λ2
d1 +

λ2

λ1 + λ2
d2

)
�

ψP2 = λ1

(
λ2

λ1 + λ2
d1 +

λ1

λ1 + λ2
d2

)
�

Then the result of Perron (1992) implies the minimaxity of the scale equivari-
ant estimator �̂P1 = /̂1��P� for �P = diag�ψP1 � � � � � ψPp��

2.3.4. Haff-type estimator. Let

�̂H1 = 1
n1

(
S1 +

a0

trS−1
1 S2

S2

)
�(2.18)

From the result of Haff (1980), it can be verified that �̂H dominates the un-
biased estimator �̂UB1 when 0 < a0 ≤ 2�p − 1�/n1. Then �̂H1 is expressed as
�̂H1 = �̂1��H� by letting �H = n−1

1 �+ a0�tr �−1�−1I.
Yang and Berger (1994) derived an orthogonally equivariant estimator as

a Bayes rule against the reference prior distribution, and we can construct a
scale equivariant one corresponding to it. Since it is difficult to express the
estimator in an explicit form, we shall not consider this estimator in this pa-
per. However, for some numerical investigations, see Sugiura and Ishibayashi
(1997).

Now, applying the truncation rule (2.3) given in Section 2.1 to the Stein-type
estimator �̂1��S�, we get the corresponding improved estimator,

�̂STR1 = �̂1���S�TR��(2.19)

where

��S����TR = diag
(

min
{
d1λ1�

λ1 + 1
n1 + n2

}
� � � � �min

{
dpλp�

λp + 1

n1 + n2

})
and

�̂STR∗
1 = �̂1���S�TR∗�

=
{
�n1 + n2�−1�S1 + S2�� if �n1 + n2�−1�S1 + S2� ≤ �̂1��S�,
�̂1��S�� otherwise.

Similarly, we get truncated estimators

�̂1���T�TR�� �̂1���P�TR� and �̂1���H�TR�
corresponding to the above scale-equivariant estimators. From Theorem 1 and
Proposition 1, we can get the following corollary.
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Corollary 3. For � = �S, �T and �P, the estimator �̂1����TR� is scale-
equivariant, minimax and improving on the corresponding estimator �̂1���
and truncated estimator �̂1����TR∗� relative to the Stein loss (2.1). Also

�̂1���H�TR� dominates �̂1��H� and �̂1���H�TR∗�.

It should be noted that Corollary 3 does not imply the dominance of
�̂1����TR� over �̃1���, but states the dominance of �̂1����TR� over �̂1���.
Although �̂1��� is not identical to �̃1���, if �̃1��� is a superior minimax es-
timator, �̂1��� inherits the same good risk properties with minimaxity and
improvement. Corollary 3 states that these minimax estimators can be further
improved on by �̂1����TR� by employing the information in S2.

2.4. Dominance results by order-preserving estimation. We consider the
general type of estimators given by (2.2), namely,

�̂1��� = S1/2
2 P����P′S1/2

2 � ���� = diag�ψ1���� � � � � ψp�����
For the diagonal elements ψ1���� � � � � ψp���, it is quite natural to satisfy the
condition

ψ1��� ≥ ψ2��� ≥ · · · ≥ ψp��� for any ��

which is called order-preserving in Sheena and Takemura (1992). However
the minimax and improved estimators �̂STR1 and �̂STR∗

1 given in the previous
section do not satisfy the order-preserving condition.

We here show that nonorder-preserving estimators can be improved on by
the order-preserving estimators. We first write the risk function of �̂1��� as

R1
(
�� �̂1���)
= E"

[
trP����P′�P�P′ +�−1�−1 − log ������ − log �S2� − p

]
= E"

[
tr ������+P′�−1P�−1 − log ������ − log �S2� − p

]
�

(2.20)

Let B = �+P′�−1P and denote the �i� i�-diagonal element of B−1 by Bii. Then
the following lemma whose proof is deferred to the Appendix is essential for
proving the required result.

Lemma 1. Let E�· ��� be a conditional expectation with respect to P given
�. For i < j,

E�Bii ��� ≤ E�Bjj ����(2.21)

Let �̂1��� be a nonorder-preserving estimator. Let ψOi ��� be the ith largest
element in �ψ1���� � � � � ψp����, so that ψO1 ��� ≥ · · · ≥ ψOp ���. Note that
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�ψO1 � � � � � ψOp � majorizes �ψ1� � � � � ψp�, that is,

j∑
i=1

ψOi ≥
j∑
i=1

ψi for 1 ≤ j ≤ p− 1 and
p∑
i=1

ψOi =
p∑
i=1

ψi�(2.22)

Let �̂1��O� = S1/2
2 P�O���P′S1/2

2 for �O��� = diag�ψO1 ���� � � � � ψOp ����. Then
we get the theorem.

Theorem 2. IfPω����� �= �O���� > 0 for some ω ∈ �, then �̂1��� is dom-

inated by the order-preserving estimator �̂1��O� relative to the Stein loss (2.1).

Proof. The risk difference is written as

R1��� �̂1��O�� −R1��� �̂1����=E"�tr��O��� −�����B−1�

=E 
"

[ p∑
i=1

�ψOi ��� − ψi����E�Bii ���
]
�

(2.23)

Following Sheena and Takemura (1992), we use the Abel’s identity to get the
equation
p∑
i=1

�ψOi − ψi�E�Bii ���

= �ψO1 − ψ1��E�B11 ��� −E�B22 ����
+ �ψO1 + ψO2 − ψ1 − ψ2��E�B22 ��� −E�B33 ����
+ · · · + �ψO1 + · · ·+ψOp−1−ψ1−· · ·−ψp−1��E�Bp−1� p−1 ���−E�Bpp �����

which can be seen to be negative from Lemma 1 and (2.22). Hence from (2.23),
Theorem 2 is proved. ✷

Applying Theorem 2 to �̂STR1 and �̂STR∗
1 , we obtain the order-preserving

estimators improving on them. For instance, the order-preserving estimator
of �̂STR1 is given by

�̂STRO1 = S1/2
2 P���S�TR�OP′S1/2

2 �

where ���S�TR�O = diag�ψSTRO1 � � � � � ψSTROp � and ψSTROi is the ith largest in
the diagonal elements min�diλi� �n1 + n2�−1�λi + 1��, i = 1� � � � � p.

3. Estimation of the “between”multivariate component of variance.
In this section, we consider the estimation of the “between” multivariate com-
ponent of variance in the context of the simultaneous estimation of “within”
and “between” components.

Recall that as described in (1.1), (1.2) and (1.3), S1 and S2 are independent
random matrices having �p��1� n1� and �p��2� n2�, respectively, for �2 =
�1 + r�A. We want to estimate �A based on S1 and S2 and to discuss the
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preference of estimators in a decision-theoretic framework. The parametric
structure �2 = �1+r�A means that estimators of �A can be provided through
estimation of both �1 and �2. This suggests that the estimation of �A may be
considered in the context of the simultaneous estimation of ��1��2�.

We thus consider the problem of estimating ��1��2� simultaneously relative
to the Kullback–Leibler loss function,

LKL��̂1� �̂A��1��A� = n1L��̂1�
−1
1 �

+ n2L
(��̂1 + r�̂A���1 + r�A�−1)�(3.1)

for the function L�·� given by (2.1). This loss can be really derived from the
Kullback–Leibler distance∫ [

log
{
f�S1�S2� �̂1� �̂A�/f�S1�S2��1��A�

}]
f�S1�S2� �̂1� �̂A�dν�S1�dν�S2�

for joint density function f�S1�S2��1��A�.
When �1 and �2 = �1 +r�A are estimated by �̂1 and �̂2, it is quite natural

to take the form �̂A = r−1��̂2 − �̂1� as an estimator of �A. As long as such
types of estimators are treated, the risk function of ��̂1� �̂A� relative to the
Kullback–Leibler loss (3.1) is written as

RKL�ω� �̂1� �̂A� = Eω

[
LKL��̂1� �̂A��1��A�

]
= n1R1�ω� �̂1� + n2R2�ω� �̂2��

where ω = ��1��1 + r�A� ∈ � and

R1�ω� �̂1� = Eω

[
tr �̂1�

−1
1 − log ��̂1�

−1
1 � − p]�

R2�ω� �̂2� = Eω

[
tr �̂2�

−1
2 − log ��̂2�

−1
2 � − p]�

Hence the original problem under the loss (3.1) is decomposed into two prob-
lems of estimating �1 and �2 in terms of the risk functions R1�ω� �̂1� and
R2�ω� �̂2�, respectively.

Since the estimation of �1 in terms of the risk R1�ω� �̂1� has been treated
in previous sections, we need only to consider the estimation of �2 under the
risk R2�ω� �̂2�.

Let S1/2
1 be a symmetric matrix such that S1 = �S1/2

1 �2 and let Q be an
orthogonal p× p matrix such that

Q′S−1/2
1 S2S

−1/2
1 Q = �−1 = diag�λ−1

1 � � � � � λ−1
p ��

where λ−1
1 ≤ · · · ≤ λ−1

p . The diagonal matrix � is also defined in Section 2.1 as

P′S−1/2
2 S1S

−1/2
2 P = ��

so that we note that the following relation holds:

S1/2
2 P = S1/2

1 Q�−1/2�(3.2)
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We consider the estimators of the form

�̂2��� = S1/2
1 Q����Q′S1/2

1 �(3.3)

where ���� = diag�φ1���� � � � � φp����. From (3.2), it is seen that the estima-

tor �̂2��� is also represented as

�̂2��� = S1/2
2 P�1/2�����1/2P′S1/2

2 �(3.4)

We shall provide general conditions for the dominance of �̂2��� given by
(3.3) in terms of the risk R2�ω� �̂2�. Making the transformations, we can sup-
pose that S1 ∼ �p��−1� n1� and S2 ∼ �p�I� n2� without any loss of generality,
where �−1 = diag �θ−1

1 � � � � � θ−1
p � for θ−1

1 ≤ 1� � � � � θ−1
p ≤ 1. Therefore we can

apply the results directly to get the improvements on �̂2���. The truncation
rules corresponding to (2.3) and (2.4) are described as

������TR=diag
(
φTR1 ���� � � � � φTRp ���)�

φTRi ���=max
{
φi���� λ

−1
i + 1
n1 + n2

}
� i = 1� � � � � p

(3.5)

and

������TR∗ =diag
(
φTR∗

1 � � � � � φTR∗
p ���)�

φTR∗
i ���=

{ �n1 + n2�−1�λ−1
i + 1�� if �n1 + n2�−1��+ I� ≥ ����,

φi���� otherwise,

(3.6)

respectively, and the resulting truncated estimators are given by

�̂2����TR�=S1/2
1 Q diag

(
φTR1 ���� � � � � φTRp ���)Q′S1/2

1 �

�̂2����TR∗�=


�n1 + n2�−1�S1 + S2��

if �n1 + n2�−1�S1 + S2� ≥ �̂2������,
�̂2������� otherwise.

(3.7)

Similar to Theorem 1, we can verify that �̂2����TR� dominates �̂2����TR∗�
which is better than �̂2��� in terms of the risk R2�ω� �̂2�.

Using these truncation rules, we can get several truncated estimators better
than unbiased or minimax estimators. For instance, applying the truncation
rule ���TR to the unbiased estimator,

�̂UB2 = n−1
2 S2 = S1/2

1 Q�UBQ′S1/2
1

for �UB = diag��n2λ1�−1� � � � � �n2λp�−1�, we obtain the REML estimator

�̂REML2 = �̂2���UB�TR��(3.8)
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improving upon �̂UB2 , where

��UB�TR = diag
(

max
{
λ−1

1

n2
�
λ−1

1 + 1
n1 + n2

}
� � � � �max

{
λ−1
p

n2
�
λ−1
p + 1

n1 + n2

})
�

Also the Stein type minimax estimator corresponding to (2.14) for �2 is given
by

�̂S2 = �̂2��S� = S1/2
1 Q�S���Q′S1/2

1 �

where

�S��� = diag
(
ep

λ1
� � � � �

e1

λp

)
�

for ei = �n2 + p + 1 − 2i�−1. It should be noted that the order of e1� � � � � ep
in �S��� is reversed to the case of �S��� in (2.14) because λ−1

p ≥ · · · ≥ λ−1
1 .

Applying the truncation rule yields

�̂STR2 = �̂2���S�TR��(3.9)

improving on �̂S2 , where

��S����TR = diag
(

max
{
ep

λ1
�
λ−1

1 + 1
n1 + n2

}
� � � � �max

{
e1

λp
�
λ−1
p + 1

n1 + n2

})
�

We now construct estimators of �A along the manner that �̂A = r−1��̂2 −
�̂1�. It will be interesting to know the kind of nonnegative estimators that
can be obtained by combining truncated estimators of �1 and �2. Combin-
ing �̂1����TR� given by (2.5) and �̂2����TR� given by (3.7), and noting the
expression (3.4), we get the estimator of �A of the form

�̂A����TR� ���TR� = r−1(�̂2����TR� − �̂1����TR)
= r−1S1/2

2 P
{
�1/2������TR�1/2 − ������TR}P′S1/2

2 �

where

�1/2������TR�1/2 − ������TR

= diag
(

max
{
φi���λi�

λi + 1
n1 + n2

}
− min

{
ψi���� λi + 1

n1 + n2

})
�

(3.10)

In the case of combining the REML estimators �̂REML1 and �̂REML2 , the ith
diagonal element in (3.10) is

max
{

1
n2
�
λi + 1
n1 + n2

}
− min

{
λi
n1
�
λi + 1
n1 + n2

}
= max

{
1
n2

− λi
n1
� 0
}
�
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which gives the n.n.d. estimator

�̂REMLA = r−1��̂REML2 − �̂REML1 �

= r−1S1/2
2 P diag

(
max

{
1
n2

− λi
n1
�0
}
� i = 1� � � � � p

)
P′S1/2

2 �

This REML estimator of �A is similar to the one proposed by Amemiya (1985).
We thus get n.n.d. estimators ��̂REML1 � �̂REMLA � improving on ��̂UB1 � �̂UBA � rela-
tive to the Kullback–Leibler loss (3.1). It may be noted that Hara (1999) has
also recently obtained this dominance result by a different method.

In the case of combining improved minimax estimators �̂STR1 = �̂1���S�TR�
and �̂STR2 , the ith diagonal element in (3.10) is

max
{
ep−i+1�

λi + 1
n1 + n2

}
− min

{
diλi�

λi + 1
n1 + n2

}

= max
{

1
n2 − �p+ 1 − 2i� −

λ

n1 + p+ 1 − 2i
� 0
}
�

which gives the estimator

�̂STRA = r−1(�̂STR2 − �̂STR1

)
= r−1S1/2

2 P diag
(

max
{

1
n2 −�p+1−2i� −

λi
n1 +p+1−2i

�0
}
�

i=1� � � � � p
)
P′S1/2

2

which is also n.n.d. In the sequel we get n.n.d. estimators ��̂STR1 � �̂STRA � improv-

ing on ��̂JS1 � �̂JSA � in terms of the risk RKL�ω� �̂1� �̂A� where �̂JSA = r−1��̂JS2 −
�̂JS1 � for the James–Stein minimax estimator �̂JS2 of �2. Comparing two n.n.d.
estimators �̂REMLA and �STRA , we note that for i > �<��p+ 1�/2,

1
n2 − �p+ 1 − 2i� −

λi
n1 + p+ 1 − 2i

> �<� 1
n2

− λi
n1
�

which implies that

P

[
1

n2 − �p+ 1 − 2i� −
λi

n1 + p+ 1 − 2i
> 0

]
> �<�P

[
1
n2

− λi
n1

> 0
]
�
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Hence we cannot compare them in the sense of maximizing the probability
that they are positive definite.

4. Simulation results. In this section, we investigate the risk behavior
of several estimators proposed in this paper through Monte Carlo simulation.
The reported risks are the average of 50,000 replications for p = 2 and r = 2.
We choose n1 = 6, n2 = 7 and the covariance matrices as �1 = diag�1� a� and
�2 = diag��b + 1�/2� ab� for various values of b ≥ 1 and a is chosen as 1 and
10 in our simulation.

We first investigate the risk performance of the estimators of �1. For the
sake of simplicity, we shall denote the estimators �̂UB1 , �̂JS1 and �̂REML1 by
UB, JS and REML, respectively; the original estimators �̃1�5S�, �̃1�5T� and
�̃1�5P� and their induced estimators �̂1�5S�, �̂1�5T� and �̂1�5P� by S, T, P
and S∗, T∗, P∗, respectively. We shall denote the truncated estimators
�̂1���S�TR�, �̂1���T�TR� and �̂1���P�TR� by STR, TTR and PTR, respectively.
Similarly, the estimators �̂H1 and �̂1���H�TR� with a0 = �p − 1�/n will be
denoted by H∗ and HTR, respectively. Table 1 reports the values of the risks
of the estimators UB, JS, REML, S, T, P, S∗, T∗, P∗, H∗, STR, TTR, PTR and
HTR for b = 1, 3, 5, 11 and 21. Also the risk behaviors of the estimators UB,
JS, REML, S∗, STR, TTR, PTR and HTR are given in Figure 1 for 1 ≤ b ≤ 31.

Table 1 and Figure 1 reveal that:

1. There are no dominance relations between the estimators S, T, P and STR,
TTR, PTR.

2. HTR � STR � PTR � TTR � REML � JS � UB when b is close to one,
where δA � δB means that δA is better than δB.

3. STR � PTR � HTR � TTR � JS � REML � UB when b is larger than 6.
4. The risks of STR, TTR and PTR approach those of S∗, T∗ and P∗, respec-

tively, as b increases.
5. REML is not as good as the truncated minimax estimators STR, TTR and

PTR.

Table 1

Risks of the estimators UB, JS, S, T, P, REML, S∗, STR, T∗, TTR, P∗, PTR, H∗ and HTR in
estimation of �1

a UB JS S T P

1 0.485 0.464 0.374 0.445 0.417
10 0.485 0.464 0.452 0.450 0.444

b REML S∗ STR T∗ TTR P∗ PTR H∗ HTR

1 0.421 0.413 0.378 0.447 0.395 0.428 0.386 0.446 0.357
3 0.445 0.413 0.397 0.447 0.419 0.429 0.407 0.446 0.394
5 0.462 0.416 0.408 0.447 0.432 0.429 0.419 0.447 0.418

11 0.478 0.418 0.416 0.447 0.445 0.430 0.427 0.447 0.439
21 0.483 0.416 0.418 0.447 0.447 0.430 0.429 0.447 0.445
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Fig. 1. Risks of the estimator UB, JS, REML, S∗, STR, TTR, PTR and HTR in estimation of �1.

For significant risk reduction near �2 = I, the truncated Stein type estima-
tor STR or its order-preserving estimator will be recommended for practical
use.

The risk performance in simultaneous estimation of ��1��A� is investigated
in Figure 2.

For simplicity, denote ��̂UB1 � �̂UBA �, ��̂JS1 � �̂JSA �, ��̂REML1 � �̂REMLA � and ��̂STR1 �

�̂STRA � by UB, JS, REML and STR, respectively. Figure 2 reports their risk
behaviors for 1 ≤ b ≤ 31, and reveals that STR has the best risk behavior of
the four.

Finally, we investigate the risk behavior of the estimators of the “between”
component �A. We have proposed the two estimators �̂REMLA and �̂STRA for
�A in Section 3. It would be desirable to compare the performance of these
estimators with the one proposed by Mathew, Niyogi and Sinha (1994) and
given by

�̂MNSA = r−1S1/2
2 P diag

(
max

{
1

n2 + 2
− λi
n1 + 2

�0
}
� i = 1� � � � � p

)
P′S1/2

2 �

this has a good risk performance under the quadratic loss

L1��̂A��A� = tr
(
�̂A�

−1
A − I

)2
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Fig. 2. Risks of the estimators UB, JS, REML and STR in simultaneous estimation of ��1��A�.

since the coefficients �n2+2�−1 and �n1+2�−1 are the best in a sense under the
quadratic loss. Thus we compare these three nonnegative definite estimators
relative to the L1 loss and the following loss functions:

L2��̂A��A� =
{
tr
(
�̂A�

−1
A − I

)2}1/2
�

L3��̂A��A� = �1 + d�−1 tr��̂A�−1
A − I� − log ��̂A�−1

A + dI� + 2 log�1 + d��

where L3��̂A��A� is convex and L3��A��A� = 0 for positive constant d. Ta-
ble 2 reports the results of the simulation experiments for p = 2, r = 2, n1 = 6,
n2 = 7, �1 = I and �A = cI, c = 0�05, 0�1, 0�2, 0�4, 1�0, 2�0 and d = 0�0001.
From Table 2, we see that �̂MNSA � �̂STRA � �̂REMLA for the loss functions L1
and L2.

For the loss function L3, it is concluded that �̂STRA is superior to both �̂MNSA

and �̂REMLA . The numerical results in Table 2, for the loss function L3, suggest

that the performance of �̂REMLA and �̂MNSA is somewhat mixed. It appears that

�̂MNSA � �̂REMLA , most of the time.

5. Concluding remarks. In this paper we have proposed n.n.d. estima-
tors for the “between” and “within” covariance matrices. We considered a nat-
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Table 2

Risks of the estimators �̂MNSA , �̂REMLA and �̂STRA , denoted by MNS, REML, STR, under the L1, L2
and L3 loss functions

L1 L2 L3

c MNS REML STR MNS REML STR MNS REML STR

0.05 60.3 11.5 72.2 2.24 2.62 2.24 12.2 14.2 12.3
0.1 17.1 33.4 21.1 1.70 1.98 1.73 9.47 10.3 9.20
0.2 5.73 11.1 7.30 1.36 1.56 1.40 7.71 8.07 7.05
0.4 2.53 4.79 3.21 1.16 1.31 1.19 6.13 6.22 5.07
1.0 1.32 2.29 1.59 1.01 1.11 1.02 3.79 3.71 2.65
2.0 1.00 1.57 1.16 0.95 1.02 0.95 2.23 2.12 1.43

ural “pivot” S−1/2
2 S1S

−1/2
2 instead of S−1/2

1 S2S
−1/2
1 ; the latter is even difficult to

handle. Although it can be shown that the results of this paper hold for any
factorization of S2, the symmetric factorization is easier to handle and from a
practical viewpoint can easily be obtained from any statistical packages.

Monte Carlo simulation suggests that for both “between” and “within” com-
ponents, the Stein type truncated estimators STR perform best.

APPENDIX

Proof of Lemma 1. From (2.6), it is seen that F = S−1/2
2 S1S

−1/2
2 has the

density

const��F��n1−p−1�/2�F+�−1�−�n1+n2−p−1�/2��−1�n2/2�

so that the joint density of ���P� is given by

const�fp�P�g�����+P′�−1P�−�n1+n2−p−1�/2���−n2/2�

where fp�P� is a Jacobian and g��� is a function of �. Hence inequality (2.21)
is equivalent to∫

O�p�
�Bjj −Bii���+P′�−1P�−�n1+n2−p−1�/2 dµ�P� ≥ 0�

where µ�·� designates the invariant probability measure on the group of p-
dimensional orthogonal matrices O�p�. Without any loss of generality, we
demonstrates the case where j = 2 and i = 1; that is,∫

O�p�
�B22 −B11���+P′�−1P�−�n1+n2−p−1�/2 dµ�P� ≥ 0�(A.1)

Let Bf
ii, i = 1�2, be the cofactor determinants corresponding to the element

Bii. Then B22 −B11 = �Bf
22 −Bf

11�/�B�, and (A.1) can be written as∫
O�p�

�Bf
22 −Bf

11���+P′�−1P�−�n1+n2−p+1�/2 dµ�P� ≥ 0�(A.2)
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Note that µ�P� is invariant with respect to permutation of columns of P. By
interchanging 1 and 2, the left-hand side of (A.2) can be written as

−
∫
O�p�

�Bf
22 −Bf

11���∗ +P′�−1P�−�n1+n2−p+1�/2 dµ�P� ≥ 0�(A.3)

where �∗ = diag�λ2� λ1� λ3� � � � � λp�. Adding (A.2) and (A.3), we see that for
α = −�n1 + n2 − p+ 1�/2, E�B22 ��� ≥ E�B11 ��� if and only if∫

O�p�
�Bf

22 −Bf
11����+P′�−1P�α − ��∗ +P′�−1P�α�dµ�P� ≥ 0�(A.4)

Let us decompose P′�−1P as

P′�−1P =
a11 a12 a′

13
a12 a22 a′

23
a13 a23 A33

 �
Then we have

Bf
22 −Bf

11 =
∣∣∣∣a11 + λ1 a′

13
a13 A33 +�3

∣∣∣∣−
∣∣∣∣a22 + λ2 a′

23
a23 A33 +�3

∣∣∣∣
= �λ1 − λ2��A33 +�3� +

∣∣∣∣a11 a′
13

a13 A33 +�3

∣∣∣∣−
∣∣∣∣a22 a′

23
a23 A33 +�3

∣∣∣∣�
where �3 = diag�λ3� � � � � λp�. On the other hand, for x = λ1 − λ2,

��∗ +P′�−1P� =
∣∣∣∣∣
λ1 + a11 − x a12 a′

13
a12 λ2 + a22 + x a′

23
a13 a23 A33 +�3

∣∣∣∣∣
= ��+P′�−1P� + x

∣∣∣∣λ1 + a11 a′
13

a13 A33 +�3

∣∣∣∣
−x
∣∣∣∣λ2 + a22 a′

23
a23 A33 +�3

∣∣∣∣− x2�A33 +�3�

= ∣∣�+P′�−1P
∣∣+ ∣∣A33 +�3

∣∣�xλ1 − xλ2 − x2� + kP� x
= ��+P′�−1P� + kP� �λ1 − λ2��

where

kP� = k�P′�−1P��3� =
∣∣∣∣a11 a′

13
a13 A33 +�3

∣∣∣∣−
∣∣∣∣a22 a′

23
a23 A33 +�3

∣∣∣∣�
Therefore inequality (A.4) is represented by∫

O�p�

{�λ1 − λ2��A33 +�3� + kP� 
}

×
{∣∣�+P′�−1P

∣∣α − (��+P′�−1P� + kP� �λ1 − λ2�
)α}

dµ�P� ≥ 0�
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Since �A33 + �3� does not depend on the above permutation of exchanging 1
and 2,∫

O�p�
�λ1 − λ2��A33 +�3�

× {∣∣�+P′�−1P
∣∣α − �∣∣�+P′�−1P

∣∣+ kP� �λ1 − λ2��α
}
dµ�P� = 0�

Since ��� + P′�−1P� + kP� �λ1 − λ2��α is a decreasing function of kP� for
λ1 − λ2 > 0 and α = −�n1 + n2 −p+ 1�/2, it is seen that kP� ≥ �resp� <� 0 if
and only if∣∣�+P′�−1P

∣∣α − (∣∣�+P′�−1P
∣∣+ kP� �λ1 − λ2�

)α ≥ �resp. <� 0�

so that for any kP� ,

kP� 
{∣∣�+P′�−1P

∣∣α − (∣∣�+P′�−1P
∣∣+ kP� �λ1 − λ2�

)α} ≥ 0�

This establishes inequality (A.4), and Lemma 1 is proved. ✷
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