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ADAPTIVE MODEL SELECTION
USING EMPIRICAL COMPLEXITIES

By Gábor Lugosi1 and Andrew B. Nobel2

Pompeu Fabra University and University of North Carolina

Given n independent replicates of a jointly distributed pair �X�Y� ∈
�d×�, we wish to select from a fixed sequence of model classes �1��2� � � �
a deterministic prediction rule f: �d → � whose risk is small. We inves-
tigate the possibility of empirically assessing the complexity of each model
class, that is, the actual difficulty of the estimation problem within each
class. The estimated complexities are in turn used to define an adaptive
model selection procedure, which is based on complexity penalized empir-
ical risk.

The available data are divided into two parts. The first is used to form
an empirical cover of each model class, and the second is used to select
a candidate rule from each cover based on empirical risk. The covering
radii are determined empirically to optimize a tight upper bound on the
estimation error. An estimate is chosen from the list of candidates in order
to minimize the sum of class complexity and empirical risk. A distinguish-
ing feature of the approach is that the complexity of each model class is
assessed empirically, based on the size of its empirical cover.

Finite sample performance bounds are established for the estimates,
and these bounds are applied to several nonparametric estimation prob-
lems. The estimates are shown to achieve a favorable trade-off between ap-
proximation and estimation error and to perform as well as if the
distribution-dependent complexities of the model classes were known be-
forehand. In addition, it is shown that the estimate can be consistent, and
even possess near optimal rates of convergence, when each model class has
an infinite VC or pseudo dimension.

For regression estimation with squared loss we modify our estimate to
achieve a faster rate of convergence.

1. Introduction. Let �X�Y� ∈ �d×� be a jointly distributed pair, where
X represents the outcomes of several real- or vector-valued predictors that are
related to a real-valued response Y of interest. The relationship between X
and Y will generally be stochastic: Y is not assumed to be a function of X.
Any measurable function f: �d → � acts as a deterministic prediction rule
if f�X� is used to estimate the value of Y.

Let �: � ×� → �0�∞� be a nonnegative loss function having the interpre-
tation that ��y′� y� measures the loss (or cost) incurred when the true value
Y = y is predicted to be y′. The performance of a prediction rule f will be
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assessed in terms of its expected loss, or risk,

L�f� = E��f�X��Y��
The risk of every prediction rule is bounded below by the optimum value

L∗ = inf
f
L�f� ≥ 0�

where the infimum is taken over all measurable functions f: �d → �.
Throughout the paper it is assumed that �X�Y� is such that ��f�X��Y� ∈
�0�1� with probability 1.

Constructing a good prediction rule from a finite data set is an important
problem in both parametric and nonparametric statistics. Put more precisely,
the task is as follows:

Given a data set Tn = �X1�Y1�� � � � � �Xn�Yn� containing n i.i.d.
replicates of the pair �X�Y�, select a prediction rule f: �d → �
whose risk is small, in the sense that L�f� ≈ L∗.

For convenience, the notation Z = �X�Y�, Zi = �Xi�Yi� and Zn1 = Tn will be
used in what follows.

1.1. Complexity of a model class. Many approaches to the general esti-
mation problem restrict their search for a prediction rule to a constrained
collection of functions � containing a finite or infinite number of prediction
rules. In such a case it is natural to replace the unknown joint distribution of
�X�Y� by the empirical distribution of Tn and to evaluate the performance of
each prediction rule f ∈ � in terms of its empirical loss,

L̂n�f� = 1
n

n∑
i=1

��f�Xi��Yi��

Selecting a rule f ∈ � in order to minimize L̂n�f� is known as empirical risk
minimization. To avoid minimization over an infinite set, one may discretize
the class � . A simple but suboptimal procedure is the following: fix a positive
number r, and select a finite subset �r = �f1� � � � � fN� of � such that for all
f ∈ � there exists a g ∈ �r with

sup
x∈�d� y∈�

∣∣��f�x�� y� − ��g�x�� y�∣∣ ≤ r�
(We assume for now that such a finite covering exists.) The smallest N such
that this is possible is called the r-covering number of the class of functions

� = �h�x�y� = ��f�x�� y�: f ∈ � �
with respect to the supremum norm. Denote this quantity byNr, and assume
that ��r� =Nr.
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If fn is that element of �r having minimal empirical risk, then one may
readily show that

EL�fn� − inf
f∈�

L�f� ≤ r+ 2E
{
max
f∈�r

∣∣∣L̂n�f� −L�f�
∣∣∣} ≤ r+

√
2 lnNr

n
�(1)

The second inequality follows from the boundedness of the loss function,
Hoeffding’s (1963) inequality for the moment generating function of a sum of
independent bounded random variables and a standard bounding argument
explained, for example, in Pollard (1989).

Since Nr is a monotone decreasing function of r, selecting the covering
radius r such that r ≈ √�2/n� logNr approximately minimizes the upper

bound (1). Indeed, if one defines r′ = inf
{
r > 0: r ≥ √�2/n� logNr

}
, then

EL�fn� − inf
f∈�

L�f� ≤ 2r′ ≤ 2 inf
r

(
r+

√
2 logNr

n

)
�

Thus r′ might be called the balanced covering radius of the class � (with
respect to the supremum norm). The quantity 2r′ is a distribution-free upper
bound on the difficulty of estimation in � , and as such, r′ may be considered as
a measure of the complexity of � . Though bounding the estimation error by r′

may seem to be quite crude, it is often close to the best achievable distribution-
free upper bound. In fact, the minimax rate of convergence is in many cases
proportional to r′ [see, e.g., Nicoleris and Yatracos (1997), Yang and Barron
(1999)]. Nevertheless, one may significantly improve the upper bound above
in a distribution-dependent fashion.

Definition. Let � be a family of functions g: � → �, let sn1 = s1� � � � � sn
be a sequence of points in � , and let r > 0. A subset �0 ⊆ � is called an
empirical cover of � on sn1 with radius r if for every g ∈ � there exists a
function g′ ∈ �0 such that

1
n

n∑
j=1

∣∣g�sj� − g′�sj�
∣∣ ≤ r�

The covering numberN�sn1 � r�� � is the size of the smallest r-cover of � on sn1 .
If no finite r-cover exists then N�sn1 � r�� � = ∞. If S1� � � � � Sn are n random
elements taking values in � , the covering number N�Sn1 � r�� � is a positive
integer-valued random variable.

Replacing the data-independent sup-norm covering number Nr by the
(smaller) expected covering numbers EN �Zn1 � r�� �, one may define an al-
ternative balanced covering radius of � as follows:

r̄n = inf

r: r ≥
√
8 logEN

(
Zn1 � r/2��

)
n

 ∨
√
8
n
�
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Here a ∨ b = max�a� b�. Given data Tn, let f′
n denote a function in � having

minimal empirical risk. Then Lemma 2 in Section 6 shows that

EL�f′
n� − inf

f∈�
L�f� ≤ 2E

[
sup
f∈�

�L̂n�f� −L�f��
]

≤ 8r̄n�

Note that r̄n depends critically on the (unknown) distribution of Z = �X�Y�.
For certain “nice” distributions, r̄n may be significantly smaller than the min-
imax risk associated with the class � . In other words, the actual complexity
of the estimation problem may be much less than the worst-case complex-
ity, as measured by the minimax risk. This implies that adaptive model se-
lection methods which assign a penalty to a model class based on its mini-
max risk will necessarily perform suboptimally for all such nice distributions.
The purpose of this paper is to present a method that assesses the actual
(distribution-dependent) balanced covering radius of each model class empir-
ically and then uses these radii to calculate data-based complexity penalties
for adaptive model selection. Our estimates are based on empirical coverings
of the model classes. A closely related approach to exploiting nice distributions
is elaborated by Shawe-Taylor, Bartlett, Williamson and Anthony (1997).

1.2. Adaptive model selection. Empirical risk minimization over a model
class � provides an estimate whose loss is close to the optimal loss L∗ if the
class � is (1) sufficiently large so that the loss of the best function in � is
close to L∗, and (2) is sufficiently small so that finding the best candidate in
� based on the data is still possible. This trade-off between approximation
error and estimation error is best understood by writing

EL�fn� −L∗ =
(
EL�fn� − inf

f∈�
L�f�

)
+
(
inf
f∈�

L�f� −L∗
)
�

Often � is large enough to minimize L�·� for all possible distributions of
�X�Y�, so that � is too large for empirical risk minimization. In this case it is
common to fix in advance a sequence of smaller model classes �1��2� � � � whose
union is equal to � . Given data Tn, one wishes to select a good model from
one of these classes. Denote by f�k�

n a function in �k having minimal empirical
risk. If the distribution of �X�Y� were known in advance, one would select a
model class �K such that

EL�f�K�
n � −L∗ = min

k
EL�f�k�

n � −L∗

= min
k

[(
EL�f�k�

n � − inf
f∈�k

L�f�
)

+
(
inf
f∈�k

L�f� −L∗
)]
�

In the previous section it was shown that for each model class �k, a quite
acceptable upper bound for the estimation error is given by

EL�f�k�
n � − inf

f∈�k
L�f� ≤ 8r̄�k�

n �
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Here r̄�k�
n denotes the balanced covering radius of the class �k = ���f�x�� y�:

f ∈ �k� with respect to Zn1 , and is defined by

r̄
�k�
n = inf

{
r: r ≥

√
8 logEN�Zn1 � r/2��k�

n

}
∨
√
8
n
�

With this in mind, a slightly less ambitious goal for the model selection prob-
lem is to find an estimate gn such that

EL�gn� −L∗ ≈ min
k

[
8r̄�k�
n +

(
inf
f∈�k

L�f� −L∗
)]
�(2)

An estimate satisfying (2) achieves an optimal trade-off (over classes �k) be-
tween approximation error and a tight distribution-dependent upper bound on
estimation error. The main difficulty in constructing such an estimate is that
both r̄�k�

n and the approximation error depend on the unknown distribution of
�X�Y�, and the optimal k is a complicated function of this distribution. The
main result of the paper is the construction of an estimate which achieves this
goal. The exact performance bound is given in Theorem 1 below.

Previous approaches to the model selection–prediction problem described
above include Grenander’s (1981) method of sieves, in which the classes �i
are nested, finite subsets of a fixed universal collection � . Here, typically, the
model class is selected in advance of the data, based only on the sample size
n, in such a way that the model class gets richer as n increases, but that this
increase of complexity is sufficiently slow so that the estimation error may be
controlled.

Distribution-free consistency and rates of convergence for sieve-type esti-
mates have been investigated, for example, by Geman and Hwang (1982), Gal-
lant (1987), Shen and Wong (1994), Wong and Shen (1992), Devroye (1988),
White (1990), Lugosi and Zeger (1995) and Birgé and Massart (1998).

Complexity regularization, also known as structural risk minimization, ex-
tends the methodology of sieve estimates by using the data to choose the
class from which the estimate is selected. Complexity regularization seeks to
counter optimistic estimates of empirical risk by means of complexity penal-
ties that favor simpler prediction rules, or rules belonging to smaller classes.
In other words, the training set Tn is used to adaptively select both a model
class �k and a suitable prediction rule from that class. The potential advan-
tages of such flexibility are clear. If a function minimizing L�·� lies in �k,
then there is no point in searching for a rule in a larger class, which has a
greater estimation error. On the other hand, when no rule f in a nonadap-
tively chosen class �k minimizes L�·�, the data may warrant consideration of
a larger model class �k′ having better approximation capabilities. Early ap-
plications of complexity penalties to the problem of model selection were pro-
posed by Mallows (1973), Akaike (1974), Vapnik and Chervonenkis (1974) and
Schwarz (1978).
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In the works of Rissanen (1983), Barron (1985), Wallace and Freeman (1987)
and Barron and Cover (1991), the complexity penalty assigned to a model class
is the length of a binary string describing the class. In this model, minimiza-
tion of empirical risk plus complexity takes the form of a minimum description
length principle. In this paper, as in the earlier work of Vapnik (1982), Barron
(1991), Lugosi and Zeger (1996) and the recent work of Barron, Birgé, and
Massart (1999), the complexity assigned to a model class does not have the
formal interpretation of a description length, but is instead an upper bound on
the estimation error of the class. For different applications and extensions of
the same ideas we refer to Kearns, Mansour, Ng and Ron (1995), Krzyżak and
Linder (1998), Meir (1997), Modha and Masry (1996), Shawe-Taylor, Bartlett,
Williamson and Anthony (1997) and Yang and Barron (1998).

Both the design and the analysis of penalized model fitting procedures rely
on bounds for the complexity of the given model classes. As was mentioned
above, worst-case assessments of model complexity are vulnerable to the fact
that the complexity of a given model class can vary greatly with the under-
lying distribution of the pair �X�Y�. For example, if the random vector X
takes values in a finite set �x1� � � � � xk� ⊆ �d, then any model class � can be
viewed as a subset ��f�x1�� � � � � f�xk��: f ∈ � � of the finite-dimensional space
�k, where the dimension k is independent of the sample size n. Under these
circumstances worst-case bounds on the complexity of � will be extremely
pessimistic.

As the distribution of �X�Y� is unknown, any procedure that seeks to as-
sess model complexity in a distribution-specific fashion must do so based on
the data. In this paper we propose and analyze an adaptive model fitting
procedure, which is based on data-dependent complexity penalties.

The available data are divided into two parts. The first is used to form
an empirical cover of each model class, and the second is used to select a
candidate rule from each cover having minimal empirical risk. The covering
radii are determined empirically in order to optimize an upper bound on the
estimation error. The empirical complexity of each model class is related to
the cardinality of its empirical cover. An estimate gn is chosen from among the
countable list of candidates in order to minimize the sum of class complexity
and empirical risk.

Estimates of this sort, based on empirical covering of model classes, were
first proposed by Buescher and Kumar (1996a, b), who showed that empirical
covering provides consistent learning rules whenever such rules exist.

Below inequalities and rates of convergence for the estimate gn are estab-
lished, and application of the estimates to a variety of problems, including
nonparametric classification and regression, is considered. The proposed es-
timates achieve a favorable tradeoff between approximation and estimation
error, and they perform as well as if the distribution-dependent complexities
of the model classes were known beforehand.

1.3. Summary. Our principal assumptions and several technical prelimi-
naries are discussed in the next section. In Section 3 the complexity penalized
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estimator gn is defined. A general upper bound on the performance of the esti-
mator is given in Theorem 1, after which the relation of the bound to existing
results is discussed.

In Section 4, some special cases, including regression function estimation
under theL2 loss, are considered. In these cases, by modifying the complexities
assigned to each class, faster rates of convergence are achievable. An upper
bound on the performance of the modified estimate is presented in Theorem 2.

Sections 5.1 to 5.5 contain applications of Theorem 1 to curve fitting and
classification. In Section 5.6, the complexity-based estimate is employed as a
means of fitting piecewise polynomial regression trees to multivariate data.
The proofs of Theorems 1 and 2 appear in Section 6.

2. The AMSEC estimate.

2.1. Preliminaries and assumptions. In what follows, a model class is any
family � of prediction rules f: �d → �. It is assumed that a sequence of
model classes

�1� �2� �3� � � �(3)

and a nonnegative loss function l: �×� → �0�∞� have been fixed in advance.
The model classes (3) need not be nested. For each model class �k, let

�k = �h�x�y� = ��f�x�� y�: f ∈ �k�(4)

be the associated family of error functions. By definition, each error function is
nonnegative. Each model class �k is assumed to contain a countable subclass
� 0
k with the property that every f ∈ �k is a pointwise limit of a sequence of

functions from � 0
k . Each family �k of error functions is assumed to have the

same property. This ensures the measurability of random variables that are
defined in terms of suprema or infima over the various classes [see Dudley
(1978) for more details].

The data consist of n i.i.d. replicates of a jointly distributed pair Z =
�X�Y� ∈ �d × �. Our principal assumption is that l�y�y′� ≤ 1 for each
y�y′ ∈ �, or more generally, that

h�Z� ≤ 1 with probability 1 for each error function h ∈
∞⋃
k=1

�k�(5)

By suitably rescaling ��·� ·�, one may ensure that the latter condition holds
whenever there is a constant B < ∞ such that h�Z� ≤ B with probability
1 for every error function h. In other circumstances, it may be necessary to
truncate ��·� ·�, or to assume (e.g., in the case of absolute or squared loss) that
the response variable Y is bounded.

If a uniform upper bound B on the error functions exists, but is unknown,
one may define a modified estimator that employs a data-dependent rescaling
of the loss function. Upper bounds on the performance of the modified esti-
mator will be asymptotic in nature, and will involve distribution-dependent
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constants involving the distribution of h�Z�. The condition of uniform bound-
edness may be replaced by conditions requiring rapidly decreasing tails of
h�Z�, but for the sake of simplicity such cases are not discussed here.

Beyond boundedness of the error functions, no restrictions are placed on the
joint distribution of �X�Y�. In particular, the distribution ofX is not assumed
to be absolutely continuous, nor is it assumed that the conditional distribu-
tion of Y given X is of some parametric form. No regularity or smoothness
conditions are placed on the loss function ��·� ·�.

3. Description of the estimate. The estimate is defined by first splitting
the available data in half. The first half of the data is used to (1) select a
suitable covering radius for each model class, and (2) construct a suitable
empirical cover of each model class using the selected radius. Each model class
is assigned an empirical complexity that depends on the size of its empirical
cover. The second half of the data is used to assess the empirical risk of a
given classification rule. From the empirical cover of each class, a candidate
rule is selected having minimal empirical risk. The estimate is defined to be
a candidate rule for which the sum of empirical risk and class complexity is
minimized. A formal description of the estimate follows. Let �1��2� � � � be a
fixed sequence of model classes.

Data splitting. Ignoring the last sample point if necessary, assume with-
out loss of generality that the size n of the available data is even. Split the
data sequence into two parts of equal size,

Z1� � � � �Zm and Zm+1� � � � �Zn�

where �n−m� =m = n/2, and Zi denotes the pair �Xi�Yi�.

Step 1. For each k ≥ 1, consider the family �k of error functions (4) associ-
ated with �k. Using the first half of the data, evaluate the balanced empirical
covering radius of �k as follows:

r̂
�k�
m = inf

r: r ≥
√
8 logN

(
Zm1 � r/2��k

)
m

 ∨
√

8
m
�(6)

Here a ∨ b = max�a� b�. Let �̂k be an empirical cover of �k on Z1� � � � �Zm
with radius r̂�k�

m and minimal cardinality,

��̂k� = N�Zm1 � r̂�k�
m ��k��

(Covering numbers and empirical covers are defined in Section 1.1 above.) Let
�̂k be a corresponding finite subset of �k such that �̂k = ���f�x�� y�: f ∈ �̂k�
and ��̂k� = ��̂k�. Assign to the model class �k the empirical complexity

Ĉn−m�k� =
√
log ��̂k� + 2 log k

2�n−m� =
√
logN�Zn/21 � r̂

�k�
m ��k� + 2 log k
n

�
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Note that �̂k may be regarded as an empirical cover of �k with respect to a
metric that is determined by the loss function ��·� ·�.

Step 2. Define the empirical risk of a prediction rule f: �d → � to be the
average loss of f on the second half of the data,

L̂n−m�f� = 1
n−m

n∑
i=m+1

��f�Xi��Yi��(7)

For each j ≥ 1, let f̂j be a member of �̂j having minimal empirical risk,

f̂j = argmin
f∈�̂j

L̂n−m�f��(8)

Note that f̂j depends onZ1� � � � �Zm through the choice of �̂j and onZm+1� � � � �

Zn through the definition of L̂n−m�·�.

Step 3. From each model class �j there is a candidate rule f̂j that is chosen
based on the available data. The estimate is chosen from the list of candidates
f̂1� f̂2� � � � in order to minimize the sum of empirical risk and empirical class
complexity. Define gn = f̂k, where

k = argmin
j≥1

[
L̂n−m�f̂j� + Ĉn−m�j�

]
�(9)

Thus gn is defined by means of adaptive model selection, using empirical
complexities. It will be referred to as the AMSEC estimator in what follows.
Observe that Ĉn−m�j� → ∞ as j → ∞. Since the empirical risks L̂n−m�f̂j�
are bounded above by 1, a minimizing index k must exist, and therefore gn is
well defined.

Remark. We note that the estimate defined above will not, in general, be
computationally feasible. This limitation arises principally from the difficulty
of evaluating empirical covering numbers and of selecting a minimal covering
of a given radius.

The chosen prediction rule gn comes from the union of the empirical covers
�̂ = ⋃∞

j=1 �̂j. The underlying model classes �j may overlap (if they are nested,

for example), and therefore the covers �̂j may not be disjoint. With this in
mind one may define the complexity of each individual rule f ∈ �̂ by

!̂n−m�f� = min
{
Ĉn−m�j� � all j such that f ∈ �̂j

}
�

Let g′
n be any function in �̂ achieving an optimum trade-off between perfor-

mance and complexity,

g′
n = argmin

f∈�̂

[
L̂n−m�f� + !̂n−m�f�

]
�(10)
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It is easy to show that any function achieving this minimum can be obtained
via a two-stage optimization procedure similar to that described in Steps 2
and 3 above. Thus the analysis of gn applies to g′

n as well.

3.1. Performance of the estimate. Our initial bounds on the expected loss of
the estimate gn are given in terms of balanced covering radii for the families
of error functions �k. The balanced covering radius of �k with respect to
Z1� � � � �Zm is defined by

r̄
�k�
m = inf

r: r ≥
√
8 logEN

(
Zm1 � r/2��k

)
m

 ∨
√

8
m
�(11)

Recall that the optimal performance obtainable with any prediction rule is
given by

L∗ = inf
f
L�f��

where the infimum ranges over all measurable functions f: �d → �. Define
also

L∗
k = inf

f∈�k
L�f�

to be the optimal performance of rules in the kth model class. The follow-
ing theorem gives expected performance bounds for the estimator gn defined
above.

Theorem 1. Under the boundedness assumption �5�, for each n the AM-
SEC estimate gn is such that

EL�gn� −L∗ ≤ inf
k≥1

[
13�66r̄�k�

n/2 + 5�2

√
log k
n

+ �L∗
k −L∗�

]
�

Remark 1. The bound of Theorem 1 comes quite close to the goal set forth
in (2). In addition to a larger constant (13�66 instead of 8), the balanced
covering radii are now calculated at sample size n/2. The additional term
5�2
√
log k/n is typically much smaller than the first term. The bounds in The-

orem 1 and the corollaries that follow are nonasymptotic. They hold for every
fixed sample size n. Thus, in principle, the sequence of model classes may
change with sample size, that is, each �j may be replaced by �j�n.

Remark 2. To evaluate the performance bound in specific examples, one
needs upper bounds for r̄�k�

n/2. Since

r̄
�k�
n/2 ≤ inf

r
max

 r� 2
√
logEN

(
Zm1 � r/2��k

)
n

�
4√
n

 �



1840 G. LUGOSI AND A. B. NOBEL

we see by taking r = 4/
√
n, for example, that

r̄
�k�
n/2 ≤ 2

√
logEN

(
Zm1 �2n−1/2��k

)
n

∨ 4√
n
�

This inequality will be used in some of the applications below.

Remark 3 (Lipschitz loss). A loss function ��·� ·� is called Lipschitz if there
is a constantM<∞ and a set C ⊂ �, containing the range of every function
in
⋃∞
k=1�k, such that for every y1� y2 ∈ C and every v ∈ �,∣∣��y1� v� − ��y2� v�

∣∣ ≤M�y1 − y2��
Note that the absolute loss ��u� v� = �u − v� is Lipschitz, and that if � is
Lipschitz then for each pair f�f′ ∈ �k,∣∣L�f� −L�f′�∣∣ ≤ME�f�X� − f′�X���
If ��·� ·� is Lipschitz, a straightforward argument shows that for every k ≥ 1
and r > 0,

N
(
Z
n/2
1 � r��k

)
≤N

(
X
n/2
1 �Mr��k

)
�

This inequality will be used in some of the applications below.

Remark. For technical reasons, it is necessary to require that both r̂�k�
m

and r̄�k�
m be at least

√
8/m. In all interesting situations N�Zn/21 � r/2��k� ≥ 3,

and the maximum in the definition of the covering radii is achieved by the
first term.

3.2. Discussion. Theorem 1 is similar in spirit to results of Barron and
Cover (1991) and Barron (1991). In their work, there is for each sample size
n, a fixed, countable list of candidate rules, each of which is assigned a data-
independent complexity. They show that for each n the error of their estimate
is bounded by a constant times an index of resolvability, which is the minimum,
over all candidates, of the sum of approximation error and complexity. In a
similar fashion, the bound of Theorem 1 measures the best possible tradeoff
between complexity and approximation ability, and it too may be viewed as
an index of resolvability. The crucial improvement here is the appearance of
the distribution-dependent quantity r̄�k�

n/2.
In applications where the model classes �1��2� � � � contain infinitely many

functions, Barron and Cover (1991) and Barron (1991) assume that, for ev-
ery fixed positive resolution, each class can be covered in supremum norm
by finitely many functions. For each n, their countable list of candidates is
the union of the finite εn-covers of each class. While covering in the supre-
mum norm ensures that the list will have good approximation properties un-
der every distribution, for Lipschitz loss functions the appropriate measure of
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approximation is the metric of L1�PX�. Sup-norm covering numbers overes-
timate L1 covering numbers, sometimes substantially, and thereby increase
the index of resolvability.

In light of its equivalent definition g′
n above (10), it can be seen that our esti-

mate selects, for each n, a countable list of candidate functions from �1��2� � � �
in a data-adaptive way. The list contains functions that have good approxi-
mation properties in the norm corresponding to the empirical distribution of
X1� � � � �Xn. As a result, our upper bound is expressed in terms of the expected
L1 covering numbers, rather than the sup-norm covering numbers.

In recent work, Barron, Birgé and Massart (1999) give an exhaustive review
and a wide variety of sharp bounds for estimation procedures based on data-
independent complexities. When each of the model classes �k is both linear
and finite dimensional, their bounds improve those obtained below, and they
obtain rates that differ from ours by a logarithmic factor. In earlier work on
linear finite-dimensional model classes, Birgé and Massart (1997) defined a
data-dependent complexity penalty different from the one considered here.
In their penalty the observations are used to scale a data-independent term
that involves the dimension of the model and the sample size. In both papers
the complexity penalties derive from distribution-free upper bounds on the
estimation error, which are based on the assumption that the individual model
classes are finite dimensional. Our method does not require the availability of
such distribution-free bounds, or that each model class be finite dimensional.
Indeed, the strength of our method is seen when neither of these conditions
holds. Several examples are given in the next two sections.

4. The second estimate. As it was pointed out by Barron (1991), there
are special cases, such as regression estimation with squared error loss, in
which it may be advantageous to significantly decrease the size of the com-
plexity penalties in order to achieve faster rates of convergence. In this spirit,
a modification of the AMSEC estimate is proposed and analyzed below.

For k ≥ 1 let �k be a model class consisting of functions f: �d → �, and let
�k = �h�x�y� = ��f�x�� y�: f ∈ �k� be the corresponding class of error func-
tions. Let rk > 0 be a data-independent covering radius for �k. Given data
Z1� � � � �Zn, with n assumed to be even, set m = n/2 and let �̂k be an empir-
ical cover of �k on Z1� � � � �Zm with radius rk and cardinality N�Zm1 � rk��k�.
(Covering numbers and empirical covers are defined in Section 1.1 above.) Let
�̂k be any subset of �k such that �̂k = ���f�x�� y�: f ∈ �̂k� and such that
��̂k� = ��̂k�. Assign to the �k the complexity

Ĉn−m�k� = 22
log ��̂k� + 2 log k

n−m �

Select from each family �̂j a candidate rule f̂j as in (8) that has minimal aver-
age risk on the last n/2 observations. Let k be the least integer j minimizing
L̂n−m�f̂j� + Ĉn−m�j�, where the empirical risk L̂n−m is defined in (7). Define
a rule ψn = f̂k. Thus ψn is defined by selecting from among the candidates
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f̂j a rule minimizing the sum of empirical risk and class complexity. Recall
that L∗

k = inff∈�k L�f� is the optimal expected performance of rules in the kth
model class.

Theorem 2. Under the boundedness assumption above, the modified AM-
SEC estimate satisfies

EL�ψn� ≤ c0 inf
k≥1

[
rk + c1

logEN�Zn/21 � rk/14��k�
n

+ c2 log k
n

+L∗
k

]
+ c3
n
�

where c0� c1� c2� c3 > 1 are universal constants.

Remark 4. The principal improvement of Theorem 2 over Theorem 1 is
that the complexity penalty

r̄
�k�
n/2 ≈ inf

r

r+ 2

√
logEN

(
Z
n/2
1 � r/2��k

)
n


has now been replaced by rk + c1n

−1 logEN�Zn/21 � rk/14��k�, which is of-
ten much smaller. However, a price is paid for this improvement. Since the
constant c0 is strictly greater than 1, subtracting L∗ from both sides of the
performance bound shows that Theorem 2 provides an asymptotic improve-
ment over Theorem 1 only if L∗ = 0. If L∗ > 0, then inf k L

∗
k is necessarily

positive, and the bound of Theorem 2 does not even guarantee consistency;
it may happen that EL�ψn� does not converge to L∗. Nevertheless, the case
L∗ = 0 is interesting, and as shown below, Theorem 2 applies to the general
situation in the case of squared error loss.

Remark 5. We have not attempted to find the optimal constants for Theo-
rem 2. The values found in the proof below are c0 = 10, c1 = 401, c2 = 18 and
c3 = 10442. These may be improved by a more careful analysis.

Remark 6. In the modified AMSEC estimate, the covering radii rk are
fixed in advance of the data. As a consequence, the optimal balanced covering
radii do not appear in Theorem 2. In certain cases, satisfactory approximations
can be found by investigating the model classes. For finite-dimensional model
classes rk ≈ n−1 is generally a good choice.

4.1. Regression function estimation. Consider the squared loss function
��y′� y� = �y′ −y�2. In this case it is well known that for any bounded function
f: �d → �,

L�f� = E{�f�X� −Y�2} = E{�f�X� − f∗�X��2}+E{�f∗�X� −Y�2}�
where f∗�x� = E�Y�X = x� is the regression function of Y on X. Note that if
Y and each candidate decision rule take values in the unit interval, then the
boundedness assumption above is satisfied.
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To study regression estimation in the context of Theorem 2 we introduce
modified expected and empirical losses

J�f� = L�f� −L�f∗� and Ĵn�f� = L̂n�f� − L̂n�f∗��
If the regression function f∗ is unknown, the empirical modified loss Ĵn�f�
cannot be calculated directly. However the AMSEC estimate ψn computed with
the modified loss is the same as that computed using the unmodified squared
loss as the term L̂n�f∗� is the same for each candidate rule. It follows from
Theorem 2 that

EJ�ψn� ≤ c0 inf
k≥1

(
rk + c1

logEN�Zn/21 � rk/14��k�
n

+ c2 log k
n

+J∗
k

)
+ c3
n
�

whereJ∗
k= inff∈�k J�f�. This readily implies the following performance bound

for the AMSEC regression estimate: if �f�X� − Y�2 ≤ 1 for each candidate
prediction rule then

EL�ψn� −L�f∗�

≤ c0 inf
k≥1

(
rk + c1

logEN�Zn/21 � rk/14��k�
n

+ c2 log k
n

+ (L∗
k −L�f∗�))

+c3
n
�

Thus, in the special case of regression function estimation with the squared
loss, one may obtain improved rates of convergence even whenL∗ = L�f∗� �= 0.

5. Applications.

5.1. Finite-dimensional classes. In many applications the model classes
�k are “finite dimensional,” meaning that there exist numbers Vk�wk such
that for every sequence z1� � � � � zm ∈ �d × � and every r > 0, one has
N�zm1 � r��k� ≤ �wk/r�Vk . The number Vk is called the “dimension” of the
model class �k. In this case the performance bound of Theorem 1 together
with Remark 2 imply that

EL�gn� −L∗ ≤ min
k≥1

{
C

√
Vk�log n+ logwk� + ck

n
+ (L∗

k −L∗)}�(12)

For example, if �k is a VC-graph class, then it is finite-dimensional in the
above sense [see, e.g., Chapter 2 of Pollard (1984)].

When the numbersV1�w1�V2�w2� � � � are known in advance of the data, ex-
isting complexity-based methods offer similar, and in some specific cases [see
Barron, Birgé and Massart (1999)] better, performance bounds than those in
(12) above. One advantage of the adaptive approach taken here is that it may
be applied without the knowledge that the model classes are finite dimen-
sional, and without knowledge of the quantities wk, Vk. More importantly,
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however, if for some distribution EN�Zm1 � r��k� ≤ �w′
k/r�V

′
k with w′

k � wk
and V′

k � Vk, then we may replace wk and Vk, respectively, in (12) by these
smaller values.

One might call V′
k the “effective dimension” of �k with respect to the ac-

tual distribution of Z = �X�Y�. As V′
k is often significantly smaller than Vk,

the new method will, in such cases, be superior to methods in which com-
plexity penalties are based on distribution-free quantities. The new method is
also able to handle “infinite-dimensional” model classes. One such example is
sketched in the following section.

5.2. Piecewise monotone functions. Consider a one-dimensional curve fit-
ting problem in which the kth model class �k contains all those functions
f: � → �−1/3�1/3� comprising k monotone pieces, that is, there exist num-
bers u1 ≤ · · · ≤ uk−1 such that on each of the intervals �−∞� u1�� �u1� u2�� � � � �
�uk−1�∞�, f is either decreasing or increasing. It can be shown that none
of the �k is finite dimensional in the sense described above. Assume that
the response variable is Y = f∗�X� +W, where f∗ is an unknown function
in
⋃∞
k=1�k, and the random variable W is independent of X and such that

P��W� ≤ 1/3� = 1, and the median ofW equals zero. Let ��·� ·� be the absolute-
error loss ��y1� y2� = �y1 − y2�. Thus the uniform boundedness assumption is
satisfied. Moreover L∗ = E�W� and inff∈�k L�f� = L∗ if k is so large that
f∗ ∈ �k. Under these assumptions the AMSEC estimator gn satisfies the fol-
lowing inequality.

Proposition 1. Let K be the least index k such that f∗ ∈ �k. Then

EL�gn� −L∗ ≤ c
(√

K log n
n

+ n−1/3
√
K log n

)
�

where c is a universal constant.

The risk of gn converges to zero at rate n−1/3
√
log n. Nemirovksii, Polyak

and Tsybakov (1985) showed that the minimax optimal rate of convergence
for the class �1 is n−1/3. Thus, the performance of the estimate gn is at most
a factor of

√
log n away from the optimal rate for all �k.

Proof. As the absolute-error loss is Lipschitz, for every sequence z1 =
�x1� y1�� � � � � zm = �xm�ym�, every r > 0 and every k ≥ 1, one hasN�zm1 � r��k�
≤ N�xm1 � r��k� (see Remark 3 above). To calculate an upper bound for
N�xm1 � r��k�, it suffices to count the number of functions restricted to xm1 ,
comprising k monotone pieces, that take at most N = �1/r� distinct values.
Now there are at most

(
m+k
k−1

)
different ways of segmenting x1� � � � � xm into k

pieces of lengths m1� � � � �mk with
∑k
i=1 = m. Since the number of monotone

functions on mi points taking N distinct values is at most
(
mi+N+2
mi

)
, for each
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m ≥ k, and each r > 0,

N�xm1 � r��k� ≤
(
m+ k
k− 1

)
max

m1+···+mk=m

k∏
i=1

(
mi +N+ 2

mi

)
≤ �2m�k−1�m+N+ 2�k�N+2��

so that

logN�xm1 � r��k� ≤ �k− 1� log�2m� + k
(
1
r

+ 3
)
log
(
m+ 1

r
+ 3
)
�

In conjunction with (11), the last bound shows that r = cm−1/3
√
k logm is

an upper bound for r̄�k�
m . As m = n/2 the bound stated above follows from

Theorem 1. ✷

5.3. Applications to classification. In the simplest version of the classi-
fication problem the response variable Y takes values in �0�1�. A (binary)
classification rule is any function f: �d → �0�1�. Under the absolute loss
��y�y′� = �y− y′�, the risk of f is equal to its probability of error,

L�f� = P�f�X� �= Y��
The minimum probability of error L∗ is achieved by the Bayes rule f∗�x� =
I�P�Y = 1�X = x� ≥ 1/2�, where I�·� is the indicator function of the event in
braces. The Bayes rule can be found when the joint distribution of �X�Y� is
known.

In the remainder of this section, each model class � under consideration
will be a family of binary classification rules. For each sequence of vectors
x1� � � � � xm ∈ �d, the shatter coefficient S�xm1 �� � of � is defined to be the
cardinality of the set ��f�x1�� � � � � f�xm��: f ∈ � � of binary m-tuples. One
may readily verify that for each r > 0,

N�xm1 � r�� � ≤ S�xm1 �� ��(13)

The Vapnik–Chervonenkis (or VC) dimension of � , written dim�� �, is the
least integer m such that

max�S�xm1 �� �: x1� � � � � xm ∈ �d� < 2m�

and dim�� � = ∞ if no such m exists. It is well known [Vapnik and Chervo-
nenkis (1971)] that for each m ≥ 1 and each sequence x1� � � � � xm ∈ �d,

S�xm1 �� � ≤mdim�� � + 1�(14)

It follows from (13) and (14) that if the VC-dimension of a model class � is
finite, then its covering numbers are bounded by a polynomial in m that is
independent of r.

Fix a sequence �1��2� � � � of families of binary classification rules. If each
family �k has finite VC-dimension, then Theorem 1 gives useful bounds on
the performance of the resulting estimator. Similar bounds were established
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by Lugosi and Zeger (1996) for an estimator that is based on the method of
structural risk minimization proposed by Vapnik and Chervonenkis (1974).
In both references, construction of the corresponding estimator requires that
bounds on the dimension of each model class be known in advance of the data.
The following performance bound for the AMSEC estimate is an immediate
consequence of Theorem 1 and Remarks 2 and 3:

Corollary 1. Let gn be the AMSEC estimator for �1��2� � � � based on
independent observations �X1�Y1�� � � � �Xn�Yn�. If Vk = dim��k� for each k,
then

EL�gn� −L∗ ≤ min
k≥1

{
55

√
Vk log n
n

+ 5�2

√
log k
n

+
(
inf
f∈�k

L�f� −L∗
)}
�

and the upper bound is nontrivial if some Vk is finite.

Comparison of this result with Theorem 1 of Lugosi and Zeger (1996) shows
that the AMSEC estimate, which is based solely on empirical complexities,
works as well as the method of structural risk minimization, in which com-
plexity penalties are assigned according to the (known) dimension of each
class. More important, the arguments above give also an analogous bound
with Vk log n replaced by logES�Xm

1 ��k�. In some cases ES�Xm
1 �� � is sig-

nificantly smaller than the maximum of S�xm1 �� � over all m-length vector
sequences. Estimates based on data-dependent complexities can perform well
even if each model class �k has infinite VC-dimension.

5.4. Unions of convex sets. In this section we stay in the framework of
classification discussed above, but now we consider certain model classes with
infinite VC-dimension, for which the results of the previous section cannot
be applied. For k = 1�2� � � � let �k contain the indicator function of each set
C ⊆ �d that is equal to the union of at most k convex sets. The VC-dimension
of each class �k is infinite. However, if the distribution ofX has a density with
respect to Lebesgue measure, then there exist constants �bm�, depending on
the density of X, such that bm/m→ 0 and ES�Xm

1 ��1� ≤ 2bm for each m ≥ 1,
[see Devroye, Györfi and Lugosi (1996), Section 13.4]. An inspection of their
proof shows, in addition, that for each k ≥ 1,

E
{
S�Xm

1 ��1�k
} ≤ 2kbm�(15)

Elementary combinatorial arguments like those in Chapter 2 of Pollard (1984)
show that for each k and each sequence x1� � � � � xm ∈ �d, S�xm1 ��k� ≤
S�xm1 ��1�k. Therefore,

logEN�Xm
1 �m

−1/2��k� ≤ logES�Xm
1 ��k� ≤ kbm = ko�m��

Moreover, for each distribution of �X�Y�, inff∈�k L�f� → L∗ as k → ∞ since
any subset of �d can be approximated in the symmetric difference metric
by a finite union of convex sets. Combining the last two observations with
Theorem 1, one may establish the following result.



ADAPTIVE MODEL SELECTION 1847

Proposition 2. If the distribution of X is absolutely continuous, the AM-
SEC estimates gn for �1��2� � � � are Bayes risk consistent; that is,EL�gn� → L∗

as the sample size n→ ∞.

Remark. There is at least one special case in which it is possible to obtain
rates of convergence for the estimates of Proposition 2. Suppose that d = 2
and thatX has a bounded density with bounded support. Then it is known [cf.
Devroye, Györfi and Lugosi (1996), Section 13.4] that bm ≤ c√m, where c > 0
depends only on the distribution of X. Under these additional assumptions,
Theorem 1 shows that

EL�gn� −L∗ ≤ inf
k

(
c′k1/2n−1/4 + �L∗

k −L∗�)
for some universal constant c′. In computational learning theory it is common
to assume that L∗ = 0 and moreover that f∗ ∈ ⋃∞

k=1�k. In such cases, choosing
rk = 14/n, Theorem 2 may be applied to show that the modified estimate ψn
achieves

EL�ψn� ≤ c′′ K√
n
�

whereK is the smallest index k such that f∗ ∈ �k and c′′ is another universal
constant.

5.5. Discrete distributions. If the common distribution of the predictors
X1�X2� � � � is discrete, then, under mild conditions, simple classification
schemes such as empirical minimization are consistent regardless of the model
class � from which prediction rules are selected. Under the same circum-
stances, the more adaptive procedures considered here exhibit similar behav-
ior. It is shown below that the effective dimension of a model class � with
respect to a sequence X1� � � � �Xm is bounded by the number of distinct el-
ements in that sequence. The proposed estimation method exploits this re-
duction of complexity adaptively, without prior knowledge of X or the model
classes �k. Application of Theorem 1 requires a preliminary result.

Proposition 3. Let W1�W2� � � � �W be i.i.d. integer-valued random vari-
ables, with probabilities pk = P�W = k� for k ≥ 1. Let Mn be the number of
distinct integers appearing in the sequence W1� � � � �Wn. Then

lim
n→∞n

−1 logE2Mn = 0�(16)

If EW1 =∑∞
k=1 kpk <∞ then

lim
n→∞n

−1/2 logE2Mn = 0�(17)

Proof. Note that for every integer k ≥ 1,

Mn ≤ k+
n∑
i=1

I�Wi > k��
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From this last inequality and the independence of W1� � � � �Wn it follows that

E2Mn ≤ 2k
(
E2I�W>k�

)n
= 2k

(
1+ 2P�W > k�)n

≤ exp�k+ 2nP�W > k���
(18)

Therefore,

n−1 logE2Mn ≤ k

n
+ 2P�W > k�

and letting n tend to infinity,

lim sup
n→∞

1
n
logE2Mn ≤ 2P�W > k��

Suitable choice of k insures that the right-hand side of the last inequality is
arbitrarily close to zero, and (16) follows.

To establish (17), note that if
∑∞
k=1 kpk <∞, then limk→∞ kP�W > k/j� = 0

for every fixed positive integer j. Set N0 = 1 and for each j ≥ 1 let Nj be the
least integer N >Nj−1 such that for every n ≥N,

n1/2P
{
W >

n1/2

j

}
≤ 1
j
�

Therefore,

kn = n1/2

max�j: Nj ≤ n� �

is such that kn = o�n1/2� and n1/2P�W > kn� = o�1�. It follows from (18) with
k = kn that

n−1/2 logE2Mn ≤ kn
n1/2

+ 2n1/2P�W > kn� = o�1�� ✷

Proposition 4. Let gn be the n-sample AMSEC estimator for an arbitrary
sequence �1��2� � � � of families of binary-valued prediction rules. If the dis-
tribution of X is supported on a countable set S ⊆ �d then the following
implications hold.

(i) If the Bayes rule f∗ is in the L1 closure of
⋃
k �k then EL�gn� → L∗.

(ii) If the elements of S may be ordered as x1� x2� � � � in such a way that∑∞
k=1 kP�xk� is finite, and if f∗ ∈ ⋃k �k, then EL�gn� ≤ L∗ +O�n−1/4�.

Proof. Define Wi = ∑∞
j=1 jI�Xi = xj� and fix k ≥ 1. The shatter coef-

ficient of �k on Xm
1 is at most #��f�X1�� � � � � f�Xm��: f ∈ � � ≤ 2Mm , where

Mm is the number of distinct integers among W1� � � � �Wm. Thus, for every
r > 0,

EN�Xm
1 � r��k� ≤ ES�Xm

1 ��k� ≤ E2Mm�
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and it follows from (16) that n−1 logEN�Xn/2
1 � n−1/2��k� → 0. In conjunction

with Theorem 1 and Remark 3, this last relation implies

lim sup
n→∞

EL�gn� −L∗ ≤ L∗
k −L∗ ≤ inf

f∈�k
E�f− f∗��

Letting k tend to infinity establishes the first conclusion of the proposition. To
establish the second, let K be any index such that f∗ ∈ �K. By the bound on
the expected covering numbers above,

EL�gn� −L∗ ≤ c ·

√
logES�Xn/2

1 ��K�
n

+
√
logK
n


for every n ≥ 1. Equation (17) implies that the first term in brackets is
O�n−1/4�. ✷

Remark. Note that no conditions have been placed on the model classes
�k, which can be arbitrarily complex.

5.6. Piecewise polynomial regression trees. Here the modified estimate of
the previous section is used to fit piecewise polynomial regression trees to
multivariate data, when the unknown regression function f∗ is smooth, in the
sense that it possesses continuous partial derivatives of some unknown order.

Piecewise polynomial regression trees are most naturally described by dou-
bly indexed model classes. The class �k�p contains functions f: �d → � that
are obtained by (1) forming a hierarchical (tree-structured) partition of �d

with k cells and then (2) assigning a truncated multivariate polynomial of de-
gree p to each cell. In selecting a suitable model, the procedure must choose
both the number of cells k and the degree of local approximation p. Increasing
p enables the procedure to more accurately reproduce the empirical behavior
of the data within each cell, while increasing k allows for smaller cells. Bal-
ancing these choices against the estimation error of the resulting models, the
complexity penalized regression procedure adapts to the unknown regularity
of the regression function. Its success is reflected in its rate of convergence,
which is within a logarithmic factor of optimal.

A tree-structured partition is described by a pair �T� τ�, where T is a finite
binary tree, and τ is a function that assigns a test vector τ�t� ∈ �d to every
node t ∈ T. Every vector x ∈ �d is associated, through a sequence of binary
comparisons, with a descending path in T. Beginning at the root, and at each
subsequent internal node of T, xmoves to that child of the current node whose
test vector is nearest to x in Euclidean distance. In case of ties, x moves to
the left child of the current node. The path ends at a terminal node (leaf)
of T.

For each node t ∈ T, let Ut be the set of vectors x whose path includes t. If
t is the root node of T, then Ut = �d. In general, the region Ut corresponding
to an internal node of T is split between the children of that node by the
hyperplane that forms the perpendicular bisector of their test vectors. Thus if
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t is at distance k from the root, then Ut is a polytope having at most k faces.
The pair �T� τ� generates a partition π of �d, whose cells are the regions Ut

associated with the terminal nodes of T. Let �k contain all those partitions
generated by binary trees T having k terminal nodes.

If at each internal node of T, the comparison between the test vectors label-
ing its children involves a single coordinate of x, then each cell of the resulting
partition is a d-dimensional rectangle. Partitions of this sort, based on axis-
parallel splits, are the basis for the regression trees considered by Breiman,
Friedman, Olshen and Stone (1984).

For each vector u = �u1� � � � � ud� ∈ �d and each sequence α = �α1� � � � � αd�
of nonnegative integers, let uα = u

α1
1 · · ·uαdd and �α� = α1 + · · · + αd. For each

p ≥ 0, let

�p =
{
g�x� = ∑

�α�≤p
aαx

α: aα ∈ �

}
be the class of multivariate polynomials on �d of order p. Assuming that the
response variable Y ∈ �−1/2�1/2�, define the class of truncated polynomials,

�̃p = ��g�·� ∧ 1/2� ∨ �−1/2�: g ∈ ���
A k-node piecewise polynomial regression tree with local order p is a func-

tion f: �d → � of the form

f�x� = ∑
U∈π

gU�x�IU�x��

where π ∈ �k, and gU ∈ �̃p for each U ∈ π. In other words, f is obtained
by applying a different truncated multivariate polynomial in �̃p within each
cell of a partition in �k. For each pair k�p ≥ 0 let �k�p contain all the k-
node piecewise polynomial regression trees with local degree p. Let gn be the
complexity penalized regression estimate defined using ��k�p: k�p ≥ 0� with
covering radii rk = 1/n as in Section 4 above.

Proposition 5. If the common distribution P of the measurement vectors
Xi is supported on a bounded set S ⊆ �d, if each Yi ∈ �−1/2�1/2�, and if
the regression function f∗ has continuous partial derivatives of order s ≥ 1 on
some open set containing S, then

EL�gn� −L�f∗� = E
[∫

�gn − f∗�2dP
]

≤ C�s� d�
[
log n
n

]2s/�2s+d�
�

where the constant C�s� d� is independent of n.

Results of Stone (1982) show that the rate of convergence obtained here
is, within a logarithmic factor, minimax optimal simultaneously for all r.
Breiman, Friedman, Olshen and Stone (1984) and Gordon and Olshen (1984)
gave sufficient conditions for the L2 and a.s. consistency of piecewise con-
stant (e.g., p = 0) regression trees with rectangular cells. Their conditions
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stipulate that the cells of the selected partitions must shrink with increasing
sample size and that each cell must contain a minimum number of measure-
ment vectors. Under additional conditions, Chaudhuri, Huang, Loh and Yao
(1994) established the consistency of piecewise polynomial regression trees
with rectangular cells and fixed local degree p. Each of these results applies
to unbounded response variables under suitable moment restrictions. Nobel
(1996) considered the consistency of the general polynomial regression trees
described above when the approximation degree p is fixed.

Proof. We consider, in turn, the estimation and approximation properties
of the model classes �k�p. For each p ≥ 0, the family �p is a finite-dimensional
vector space of functions on �d having dimension

p∑
k=0

(
d+ k− 1
d− 1

)
≤ �p+ 1�

(
d+ p− 1
d− 1

)
≤ �d+ p�d+1�

Thus �p is a VC-graph class, and the same is true of �̃p. Standard results
concerning VC-graph classes [cf. Chapter 2 of Pollard (1984)] show that

N�xn1 � r� �̃p� ≤ apr−bp�

where bp = 2�d+p�d+1+4 and ap = exp�2bp log bp� are independent of n and
r > 0. Proposition 1 of Nobel (1996) shows further that

N�xn1 � r��k�p� ≤ (apndr−bp)k(19)

for each sequence x1� � � � � xn and each r > 0.
Assume without loss of generality that X is supported on S = �0�1�d. Let

k = 2ld where l ≥ 1 is an integer, and consider the regular dyadic partition π
of �0�1�d into k cells, each of which is a cube with sides of length 2−l. One can
implement π by means of a pair �T� τ�, where T is a balanced binary tree of
depth ld.

Fix a cube Ui ∈ π and let zi be its center, that is, the jth coordinate of zi
is the midpoint of the jth interval in the Cartesian product that defines Ui.
Let M < ∞ bound each partial derivative of f∗ on some open set containing
S. A multivariate Taylor series expansion of f∗ about zi shows that

f∗�zi + x� = ∑
�α�≤s−1

aαx
α +R�x��

where

�R�x�� ≤M ∑
�α�=s

�xα��

If zi + x ∈ Ui, then

�R�x�� ≤ ck−s/d
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with c = M2−s�s + d�d, and consequently for each i = 1� � � � � k there is a
polynomial gi ∈ �s−1 such that

max
x∈Ai

∣∣f∗�x� − gi�x�∣∣ ≤ ck−s/d�

As �f∗� ≤ 1/2, truncating each gi at +/ − 1/2 leaves the bound unchanged.
Piecing together these truncated polynomials produces a function f ∈ �k� s−1
such that ∫

�f− f∗�2 dP ≤ c2k−2s/d�(20)

The upper bound of Theorem 2 is an infimum over indices k� p ≥ 0. Fixing
p = s and applying the bounds (19) and (20) above, one finds that

EL�gn� −L�f∗� ≤ C�s� d� inf
k≥0

[
k log n
n

+ k−2s/d
]
�

Optimizing over k gives the desired bound. ✷

6. Proofs. Our first lemma is a straightforward modification of some ar-
guments in Lugosi and Zeger (1995). Recall that L�f� = E��f�X��Y�, L∗ =
inff L�f� and L̂n�f� = n−1∑n

i=1 ��f�Xi��Yi�. Covering numbers and empiri-
cal covers are defined in Section 1.1.

Lemma 1. Let �1��2� � � � be a sequence of finite sets of functions f: �d →
�. Let �X1�Y1�� � � � � �Xn�Yn� ∈ �d × � be independent replicates of a pair
�X�Y� such that ��f�Xi��Yi� ≤ 1 with probability 1 for all f ∈ ⋃∞

k=1�k. Let

f′
k = argmin

f∈�k
L�f� and f̂k = argmin

f∈�k
L̂n�f��

be rules in the kth class having minimal actual and empirical risk, respectively.
Let L′

k = L�f′
k�. Define nonnegative complexities Cn�1��Cn�2�� � � � by

Cn�k� =
√
log ��k� + 2 log k

2n
�

and consider the complexity penalized empirical risks

L̃n�f̂k� = L̂n�f̂k� +Cn�k�� k = 1�2� � � � �

If gn = argminf̂k:k≥1 L̃n�f̂k� is that function f̂k minimizing L̃n, then

EL�gn� −L∗ ≤ inf
k≥1
[
3�66 ·Cn�k� + �L′

k −L∗�]�
Proof. We begin with the decomposition

L�gn� −L′
k =

(
L�gn� − inf

j≥1
L̃n�f̂j�

)
+
(
inf
j≥1
L̃n�f̂j� −L′

k

)
�
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which holds for any k ≥ 1. Let ε > 0 be arbitrary. Then

P
{
L�gn� − inf

j≥1
L̃n�f̂j� > ε

}
≤ P

{
sup
j≥1

(
L�f̂j� − L̃n�f̂j�

)
> ε

}

≤
∞∑
j=1

P
{
L�f̂j� − L̂n�f̂j� > ε+Cn�j�

}

≤
∞∑
j=1

P
{
max
f∈�j

(
L�f� − L̂n�f�) > ε+Cn�j�

}

≤
∞∑
j=1

��j� exp
(−2n�ε+Cn�j��2

)
(21)

≤
∞∑
j=1

��j� exp �−2nε2� exp �−2nCn�j�2�

= exp �−2nε2�
∞∑
j=1

1
j2

≤ 2 exp �−2nε2��

where (21) follows from the union bound and Hoeffding’s inequality. Standard
bounding then shows that

E
{
L�gn� − inf

j≥1
L̃n�f̂j�

}
≤ 1√

n
�

On the other hand, if ε ≥ 2Cn�k�, then

P
{
inf
j≥1
L̃n�f̂j� −L′

k > ε
}

≤ P
{
L̃n�f̂k� −L′

k > ε
}

≤ P
{
L̂n�f̂k� −L′

k >
ε

2

}
�ε ≥ 2Cn�k��

≤ P
{(
L̂n�f′

k� −L�f′
k�
)
>
ε

2

}
≤ exp

(−nε2
2

)
�

where at the last step Hoeffding’s inequality is used. Consequently,

E

{(
inf
j≥1
L̃n�f̂j� −L′

k

)2}
=
∫ 1

0
P
{
inf
j≥1
L̃n�f̂j� −L′

k >
√
ε

}
dε

≤ 4Cn�k�2 +
∫ ∞

4Cn�k�2
exp
(−nε

2

)
dε

≤ 4Cn�k�2 + 2
nk2��k�

≤ 5Cn�k�2�
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Therefore,

E
{
inf
j≥1
L̃n�f̂j� −L∗

k

}
≤
√√√√E{(inf

j≥1
L̃n�f̂j� −L∗

k

)2}
≤

√
5Cn�k��

Collecting bounds, we have

EL�gn� −L′
k ≤

√
5Cn�k� + 1√

n
≤ Cn�k�(√5+

√
2
)
< 3�66 ·Cn�k��

Hence,

EL�gn� −L∗ = inf k≥1
[
EL�gn� −L′

k + �L′
k −L∗�]

≤ inf k≥1
[
3�66 ·Cn�k� + �L′

k −L∗�]� ✷

Let Z1� � � � �Zm be i.i.d. replicates of a random vector Z ∈ �d+1 and let � be
a family of nonnegative functions h: �d+1 → �0�∞� such that h�Z� ≤ 1 with
probability 1. For each function h ∈ � , define

Ph = Eh�Z� and P̂mh = 1
m

m∑
i=1

h�Zi��

Lemma 2. If r̄m is the balanced covering radius (11) of � , then

E
[
sup
h∈�

∣∣∣∣P̂mh−Ph
∣∣∣∣] ≤ 4r̄m�

Proof. Fix a number r > r̄m. Then by definition of r̄m,

r ≥
√
8 logEN�Zm1 � r/2�� �

m
∨
√

8
m
�(22)

By standard symmetrization arguments [cf. Pollard (1989)],

E
[
sup
h∈�

�P̂mh−Ph�
]

≤ 2E
[
sup
h∈�

∣∣∣∣ 1m m∑
i=1

σih�Zi�
∣∣∣∣]�

where σ1� � � � � σm are independent sign random variables, independent of the
Zi’s, such that P�σi = 1� = P�σi = −1� = 1/2. According to Pollard [(1984),
Chapter 2], for every t > 0,

P
{
sup
h∈�

∣∣∣∣ 1m m∑
i=1

σih�Zi�
∣∣∣∣ > t} ≤ 2EN

(
Zm1 �

r

2
��

)
exp
(−mt2

8

)
�

Therefore,

E
[
sup
h∈�

∣∣∣∣P̂mh−Ph
∣∣∣∣] ≤ 2r+ 4

∫ 1

r
EN

(
Zm1 �

r

2
��

)
exp
(−mt2

8

)
dt

≤ 2r+ 4EN
(
Zm1 �

r

2
��

) ∫ 1

r
exp

(−mt2
8

)
dt



ADAPTIVE MODEL SELECTION 1855

≤ 2r+ 4
√
2EN

(
Zm1 �

r

2
��

)
×
∫ ∞

r/
√
8
exp�−ms2�

(
2+ 1

ms2

)
ds

= 2r+ 4
√
2EN

(
Zm1 �

r

2
��

)[−1
ms

exp�−ms2�
]∞

r/
√
8

= 2r+ 16
mr
EN

(
Zm1 �

r

2
��

)
exp
(−mr2

8

)
≤ 2r+ 16

mr

≤ 4r�

The last two inequalities above follow from (22). Taking the infimum over all
r > r̄m establishes the assertion of the lemma. ✷

Lemma 3. If r̄m and r̂m are, respectively, the balanced covering radius (11)
and the balanced empirical covering radius (6) of � , then

Er̂m ≤ 2r̄m�

Proof. Fix a radius r > r̄m and note that the expected value of r̂m may
be bounded as follows:

Er̂m ≤ r+
∫ ∞

0
P�r̂m > r+ t�dt�(23)

If r̂m > r+t, then by definition of r̂m and monotonicity of the covering numbers,

r+ t <
√
8 logN

(
Zm1 � �r+ t�/2�� )

m
∨
√

8
m

≤
√
8 logN

(
Zm1 � r/2��

)
m

∨
√

8
m
�

Combining this last inequality with (22) gives the bound,

P�r̂m > r+ t� ≤ P

√
8 logN

(
Zm1 � r/2��

)
m

∨
√

8
m

>

(√
8 logEN

(
Zm1 � r/2��

)
m

∨
√

8
m

)
+ t


≤ P

√
8 logN

(
Zm1 � r/2��

)
m

>

√
8 logEN

(
Zm1 � r/2��

)
m

+ t
 �
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Let ψ�x� = exp�mx2/8�. As ψ is monotone increasing, Markov’s inequality
implies that the last probability above is at most

Eψ

√ 8 logN
(
Zm1 � r/2��

)
m

ψ
√ 8 logEN

(
Zm1 � r/2��

)
m

+ t
−1

= EN(Zm1 � r2 �� ) exp
−m

8

√ 8 logEN
(
Zm1 � r/2��

)
m

+ t
2


≤ exp
(−mt2

8

)
�

Now
∫∞
0 exp�−mt2/8�dt = √2π/m ≤ r̄m, and therefore (23) shows that Er̂m ≤

r+ r̄m. Taking the infimum over all r > r̄m completes the proof. ✷

Proof of Theorem 1. (See Section 3 above for the definition of quantities
appearing in the proof.) If Z1� � � � �Zm are held fixed, then the empirical cov-
ers �̂1, �̂2� � � � may be treated as fixed, finite model classes with cardinalities
given by ��̂k� =N�Zm1 � r̂�k�

m ��k�. Conditional application of Lemma 1 gives the
following bound:

EL�gn� −L∗ = EE
{
L�gn� −L∗�Zm1

}
≤ E

{
inf
k≥1

(
3�66 · Ĉn−m�k� + �L′

k −L∗�
)}

= E
{
inf
k≥1

(
3�66 · Ĉn−m�k� + �L′

k −L∗
k� + �L∗

k −L∗�
)}
�

Now observe that

L′
k −L∗

k = min
f∈�̂k

L�f� − inf
f∈�k

L�f�

≤ min
f∈�̂k

L̂m�f� − inf
f∈�k

L̂m�f� + 2 sup
f∈�k

∣∣∣L̂m�f� −L�f�
∣∣∣

≤ r̂�k�
m + 2 sup

h∈�k

∣∣∣P̂mh−Ph
∣∣∣ �

Therefore, by an application of Lemmas 2 and 3,

EL�gn� −L∗

≤ E
{
inf
k≥1

[
3�66 · Ĉn−m�k� + r̂�k�

m + 2 sup
h∈�k

�P̂mh−Ph� + �L∗
k −L∗�

]}
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≤ inf
k≥1

[
E
{
3�66 · Ĉn−m�k�}+Er̂�k�

m + 2 sup
h∈�k

�P̂mh−Ph� + �L∗
k −L∗�

]
≤ inf
k≥1

[
E
{
3�66 · Ĉn−m�k�}+ 10r̄�k�

m + �L∗
k −L∗�

]
�

It remains to consider the expectation of the empirical complexities. As
√
a+ b

≤ √
a+ √

b and m = n−m = n/2,

Ĉn−m�k� ≤
√
logN

(
Zm1 � r̂

�k�
m ��k

)
2m

+
√
2 log k
n

= 1
4

√
8 logN

(
Zm1 �2r̂

�k�
m /2��k

)
m

+
√
2 log k
n

≤ 2
4
r̂

�k�
m +

√
2 log k
n

�

where the last inequality follows from the definition of r̂�k�
m and the fact that

2r̂�k�
m > r̂

�k�
m . By another application of Lemma 3,

E
{
3�66 · Ĉn−m�k�} ≤ 3�66 · r̄�k�

m + 5�2

√
log k
n

and the proof is complete. ✷

To prove Theorem 2, we need the following technical lemma.

Lemma 4. Let � be a finite class of functions h: � → � and let Z ∈ �
be a random variable such that 0 ≤ h�Z� ≤ 1 with probability 1 for all h ∈ � .
If Z1� � � � �Zn are i.i.d. copies of Z, and η� γ� ε are positive numbers, then

P
{

min
h∈� : Ph>η+�1+γ�ε

P̂nh ≤ η+ γε
}

≤ �� � exp
[
−3n

8
· ε2

η+ �1+ γ�ε
]
�

Proof. If

max
h∈�

Ph− P̂nh√
Ph

≤ ε√
η+ �1+ γ�ε�

then for every h ∈ � ,

P̂nh ≥ Ph− ε
√

Ph

η+ �1+ γ�ε�

As the function x − c√x is monotone increasing for x ≥ c2/4, if in addition
Ph > η+ �1+ γ�ε, then

P̂nh ≥ η+ �1+ γ�ε− ε
√
η+ �1+ γ�ε
η+ �1+ γ�ε = η+ γε�
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Hence,

P
{

min
h∈� :Ph>η+�1+γ�ε

P̂nh ≤ η+ γε
}

≤ P
{
max
h∈�

Ph− P̂nh√
Ph

≥ ε√
η+ �1+ γ�ε

}

≤ �� �max
h∈�

P

{
Ph− P̂nh√

Ph
≥ ε√

η+ �1+ γ�ε

}
�

It therefore suffices to show that for every h ∈ � ,

P

{
Ph− P̂nh√

Ph
≥ θ
}

≤ exp
[
−3n

8
ε2

η+ �1+ γ�ε
]
�

where θ = ε�η+ �1+ γ�ε�−1/2. Note that the probability on the left-hand side
is zero whenever θ ≥ √

Ph, so we may assume without loss of generality that
θ <

√
Ph. Then

P
{
Ph− P̂nh ≥ θ

√
Ph
} ≤ exp

[ −nθ2Ph
2Ph+ �2/3�θ√Ph

]
≤ exp

[−3nθ2

8

]
�

The first inequality above follows from Bernstein’s inequality [see, e.g., Pollard
(1984), page 193] and the fact that Varh�Z� ≤ Ph. The second follows from
the assumption that θ <

√
Ph. ✷

Lemma 5. Consider the same situation as in Lemma 1 but now with com-
plexities

Cn�k� = 22
log ��k� + 2 log k

n
�

Let ψn be the candidate rule f̂j minimizing the sum of class complexity and
empirical risk. Then

EL�ψn� ≤ inf
k≥1

�2Cn�k� + 5L′
k� + 106

n
�

Proof. Let f̂k and f′
k be defined as in Lemma 1. In order to establish

the stated inequality, we first derive a probabilistic bound for the difference
between L�ψn� and L′

k. For any number ε > 0,

P
{
L�ψn� −L′

k ≥ ε} =
∞∑
j=1

P
{
L�f̂j� −L′

k ≥ ε and ψn = f̂j
}
�

Set ε = 4L′
k + 2δ and consider a single term in the sum. If ψn = f̂j and

L�f̂j� −L′
k ≥ ε, then there is a function f ∈ �j such that

L̃n�f� ≤ L̃n�f̂k� ≤ L̃n�f′
k� and L�f� ≥ 5L′

k + 2δ�
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Therefore,

P
{
L�f̂j� −L′

k > 4L′
k + 2δ and ψn = f̂j

}
≤ P

{
inf

f∈�j: L�f�≥5L′
k+2δ

L̃n�f� ≤ L̃n�f′
k�
}

= P
{

inf
f∈�j: L�f�≥5L′

k+2δ
L̂n�f� ≤ L̂n�f′

k� + �Cn�k� −Cn�j��
}
�

Let A be the event in the last line above. Define additional events,

B = �L̂n�f′
k� +Cn�k� −Cn�j� ≥ 0�

and

C = {2L̂n�f′
k� < 3L′

k +Cn�j� −Cn�k� + δ}�
Clearly P�A ∩Bc� = 0, and consequently,

P�A� ≤ P�A ∩B ∩C� +P�Cc��(24)

A straightforward calculation shows that Var�L̂n�f′
k�� ≤ L′

k/n. It then follows
from Bernstein’s inequality that

P�Cc� = P
{
2�L̂n�f′

k� −L′
k� ≥ L′

k + δ+Cn�j� −Cn�k�
}

≤ exp
(−n�δ+Cn�j� −Cn�k��

28/3

)
= k2��k�
j2��j�

exp
(−nδ
28/3

)
�

(25)

If B ∩C occurs, then

2�Cn�j� −Cn�k�� ≤ 2L̂n�f′
k� ≤ 3L�f′

k� + �Cn�j� −Cn�k�� + δ�
which implies

Cn�j� −Cn�k� ≤ 3L′
k + δ�

Thus B ∩C implies that

5L′
k + 2δ ≥ 2L′

k + �δ+Cn�j� −Cn�k���
It follows from these considerations that

P�A ∩B ∩C�

≤ P
{

inf
f∈�j: L�f�≥2L′

k+�δ+Cn�j�−Cn�k��
L̂n�f�

≤ 3
2
L′
k + 1

2
�δ+

(
Cn�j� −Cn�k��+

)}
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≤ ��j� exp
(−n�δ+Cn�j� −Cn�k��

22

)
≤ k2

j2
��k� exp

(−nδ
22

)
�

where the second inequality follows from Lemma 4 with η = L′
k, γ = 1, and

ε = �L′
k + δ+ �Cn�j� −Cn�k��+�/2. Combining the inequality above with (24)

and (25) shows that

P�L�f̂j� −L�f′
k� > 4L′

k + 2δ� ≤ 2
k2

j2
��k� exp

(−nδ
22

)
and therefore, by the union bound and by replacing δ with δ/2,

P
{
L�ψn� −L′

k ≥ 4L′
k + δ} ≤ 2k2��k� exp

(−nδ
44

) ∞∑
j=1

1
j2

≤ 4k2��k� exp
(−nδ

44

)
�

(26)

Using the last inequality, the expected difference between L�ψn� and L′
k may

be bounded as follows:

E
[
L�ψn� −L′

k

] ≤ E[L�ψn� −L′
k

]
+

≤ 4L′
k + u+

∫ ∞

u
P
{
L�ψn� −L′

k ≥ 4L′
k + t

}
dt

≤ 4L′
k + u+ 4k2��k�

∫ ∞

u
exp
(−nt

44

)
dt

= 4L′
k + u+ 176k2��k�

n

∫ ∞

nu/44
e−v dv

≤ 4L′
k + 44 log

(
4ek2��k�

)
n

�

where in the last step u is set equal to 44n−1 log�4k��k��. It follows that for
every k ≥ 1,

EL�ψn� ≤ 5L′
k + 44 log

(
4ek2��k�

)
n

≤ 5L′
k + 2Cn�k� + 106

n
�

as desired. ✷

The following inequality is due to Pollard (1986); see also Haussler (1992)
for the proof.

Lemma A. Let � be a family of functions h: �d+1 → �0�1�, and let
Z1� � � � �Zm ∈ �d+1 be i.i.d. random vectors. For each u > 0 and each α ∈ �0�1�,

P

{
sup
h∈�

�Pmh−Ph�
Pmh+Ph+ u > α

}
≤ 4EN

(
Zm1 �

αu

8
��

)
exp
(−mα2u

16

)
�
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Lemma 6. Let �k be a model class, f
∗
k = argminf∈�k L�f� and L∗

k = L�f∗
k�.

For each r > 0,

E
{
L′
k − 2L∗

k

} ≤ 2r+ 392 logEN�Zm1 � r/14��k�
m

+ 1023
m

�

Proof. We first derive a probabilistic bound for the difference between L′
k

and 2L∗
k. If L

′
k − 2L∗

k > 2r + t for some t > 0, then there exists a prediction
rule f ∈ �̂k ⊆ �k such that

1
m

m∑
i=1

∣∣ l�f�Xi��Yi� − l�f∗
k�Xi��Yi�

∣∣ < r and L�f� ≥ L′
k ≥ 2L∗

k + 2r+ t�

The first inequality implies L̂m�f� < L̂m�f∗
k� + r, and it follows that

P
{
L′
k − 2L∗

k > t+ 2r
}

≤ P
{

inf
f∈�k: L�f�>2L∗

k+2r+t
L̂m�f� < L̂m�f∗

k� + r
}

≤ P
{

inf
f∈�k: L�f�>2L∗

k+2r+t
L̂m�f� < 3

2
L∗
k + r+ t

2

}
+P

{
L̂m�f∗

k� + r ≥ 3
2
L�f∗

k� + r+ t

2

}
≤ P

{
inf

f∈�k: L�f�>2L∗
k+2r+t

L̂m�f� < 3
2
L∗
k + r+ t

2

}
+P

{
L̂m�f∗

k� ≥ 3
2
L�f∗

k� + t

2

}
�

(27)

Bernstein’s inequality implies that the second probability in (27) is at most
exp �−mt/10�. To bound the first, let f ∈ �k be any prediction rule such that
L�f� ≥ 2L∗

k + 2r+ t. If in addition,

L�f� − L̂m�f�
L�f� + L̂m�f� + 2�2r+ t�

≤ 1
7
�

then by a straighforward calculation,

L̂m�f� ≥ �2L∗
k + 2r+ t�3

4
− 2r+ t

4
= 3

2
L�f∗

k� + r+ t

2
�

It follows from Lemma A that the first inequality in (27) is at most

P
{
sup
f∈�k

L�f� − L̂m�f�
L�f� + L̂m�f� + 2�2r+ t�

>
1
7

}
≤ 4EN�Zm1 � r/14��k� exp

(−mt
392

)
�

Summarizing, for each t > 0,

P�L′
k − 2L∗

k > t+ 2r� ≤ 5EN�Zm1 � r/14��k� exp
(−mt
392

)
�
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Thus, for every u > 0,

EL′
k − 2L∗

k ≤ 2r+
∫ ∞

0
P
{
L′
k −L∗

k > t+ 2r
}
dt

≤ 2r+ u+
∫ ∞

u
5EN

(
Zm1 �

r

14
��k

)
exp
[−mt
392

]
dt�

The desired inequality follows by setting u = 392 log�5EN�Zm1 � r/14��k��/m.
✷

Proof of Theorem 2. By conditioning on Zm1 and applying Lemma 5, one
obtains the bound

EL�ψn� ≤ E
{
inf
k

�2Cn−m�k� + 5L′
k�
}

+ 212
n
�

By Lemma 6 and the definition of the complexities Ĉn�k�, the first term on
the right-hand side is at most

inf
k

(
88E logN�Zm1 � rk��k�

n
+ 176 log k

n
+ 5E

{
L′
k − 2L∗

k

}+ 10L∗
k

)
≤ inf

k

(
88E logN�Zm1 � rk��k�

n
+ 176 log k

n
+ 10rk

+ 3920 log
(
EN�Zm1 � rk/14��k�

)
n

+ 10230
n

+ 10L∗
k

)

≤ inf
k

(
4008 log

(
EN�Zm1 � rk/14��k�

)
n

+ 176 log k
n

+ 10rk + 10L∗
k

)
+ 10230

n
�

and the result follows. ✷
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