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BINOMIAL MIXTURES: GEOMETRIC ESTIMATION
OF THE MIXING DISTRIBUTION
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Given a mixture of binomial distributions, how do we estimate the
unknown mixing distribution? We build on earlier work of Lindsay and
further elucidate the geometry underlying this question, exploring the ap-
proximating role played by cyclic polytopes. Convergence of a resulting
maximum likelihood fitting algorithm is proved and numerical examples
given; problems over the lack of identifiability of the mixing distribution
in part disappear.

1. Introduction. Over the past thirty years there has been considerable
interest in the problem of estimating the mixing distribution underlying a
mixture of binomial distributions. Formally, the problem is stated as follows.
Let hp�x� be the binomial probability mass function, for a fixed number of tri-
als n and probability of success p. Let G be a cumulative distribution function
on [0, 1] and let

f�x� =
∫ 1

0
hp�x� dG�p� for x = 0�1� 	 	 	 � n

be the mixture of binomials determined by G. Given observations x1� 	 	 	 � xN
of the mixture, the challenge is to estimate G. This problem has often been re-
garded as intractable, for when f is known exactly, G can be determined only
up to its first n moments; binomial mixtures do not determine the mixing dis-
tribution uniquely, or in the terminology of the subject, the mixing distribution
is not identifiable.

Our purpose here is to add to work begun more than a decade ago by Lind-
say [11, 12, 13, 14, 15] and to uncover more of the geometry in this binomial
setting. As we do this we find that the identifiability difficulty in part disap-
pears and that a range of geometric estimators of the mixing distribution, and
associated fitting algorithms, become evident. Each estimate is supported by
at most �n+ 2�/2 points in [0, 1].

The geometry underlying this situation is analogous in many ways to the
geometry underlying linear models [24]. The model determines a convex sub-
set of Euclidean space, and the data a point in that space; choice of a distance
measure allows us to smooth the data vector to a nearest point in the convex
model space. When the data vector lies outside the model space the identifia-
bility problem vanishes, and we argue that this is the norm for small sample
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sizes or situations where the number of trials n is greater than approximately
ten. For lower n values the identifiability difficulties become tractable.

We pause now to review the landmarks in the history of this problem. It
appears to have been considered first in the late 1960s by Lord [17] who ad-
dressed the problem in the context of psychological testing. Each student in a
psychological test is assumed to have a “true score” of p ∈ �0�1� and sits an
n question test, with outcome x determined by a binomial distribution with
parameters n and p. Given the results from a large number of students, the
task is to estimate the distribution G of true scores in the population. Assum-
ing smoothness of the mixing distribution, Lord used a calculus of variations
technique to estimate G. The difficulties encountered by Lord are explained
by the geometric viewpoint: his “negative probabilities” and discreteness of
the mixing distribution are to be expected ([17], pages 268 and 269).

In 1975 Cressie joined Lord for a different attack on the problem [18]. They
obtained an interval estimate for the mean of the posterior true score dis-
tribution, the Bayes estimator of the true score, by finding the extremes of
its value over a “most likely” set of mixing distributions. This set was deter-
mined using a χ2 criterion. With the aid of a theorem of Markov, the authors
showed that the extremes occur for finitely supported mixing distributions
and used an optimization algorithm to find them. More recently, Sivagane-
san and Berger [25] have employed a Bayesian, moment focused approach to
the problem. As in [18], the fact that the posterior mean is a function of the
lower order moments of the mixing distribution is used. In contrast to [18],
however, a prior distribution is placed on this moment space and an inter-
val estimate for the posterior mean obtained by using a “most likely” set (a
highest posterior density region) in the moment space.

Nonparametric maximum likelihood estimation of a mixing distribution
was addressed by Laird in [8] under, however, the assumption of identifia-
bility. She was able to show that the estimator is “self-consistent,” a property
which permits an iterative method for evaluating the mixing distribution.
Turnbull [26] had showed this to be a special case of the EM algorithm. Un-
der certain conditions, Laird showed the nonparametric maximum likelihood
estimator to be a step function and under further conditions, that it is finitely
supported.

Of greatest interest to us here is the series of works by Lindsay and others
[11, 12, 13, 14, 15] on the geometry of mixture likelihoods. This work is quite
general and recognizes for the first time that the maximum likelihood estima-
tor of the mixing distribution is found by maximizing the loglikelihood function
over the convex hull of the “likelihood curve.” Lindsay’s work relates properties
of the maximum likelihood estimator of the mixing distribution to properties
of the convex hull of the likelihood curve. Our development is linked to that of
Lindsay as the paper progresses. We conclude this brief summary by drawing
the attention of the reader to [9], where a method for computing the non-
parametric maximum likelihood estimator of the mixing distribution, based
on directional derivatives, is presented, and to [2], [16], two recent mixture
model reviews.
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Our results stem from the observation that the convex set of mixtures of
binomial distributions is affinely isomorphic to the convex hull of the moment
curve, ��x� x2� 	 	 	 � xn�: 0 ≤ x ≤ 1
 ⊆ Rn. This curve and the associated cyclic
polytopes used in our study have been thoroughly investigated in [5] and [20].
We exploit these results here.

The paper is structured as follows. In Section 2 we review the known ge-
ometry underlying the problem and introduce some new geometrical ideas.
Maximum likelihood estimation of G is discussed in Section 3 for the identifi-
able case, where the observed mixture lies outside the model space. Section 4
discusses estimation of the mixing distribution in the nonidentifiable case,
where the observed mixture lies inside the model space. Two general conver-
gence results (Theorems 1 and 2), depending on ideas from Choquet theory,
are given in Section 5, while in Section 6 numerical examples are presented.
In Section 7 we assess the probability that we will have identifiability, us-
ing a theoretical argument and also simulation evidence. A discussion and
summary complete the paper in Section 8.

2. The geometric setting. Here we review the geometric structure un-
derlying the problem, so providing the framework for estimating the mixing
distribution G in the next section. For fixed n and p we may view hp�x�, the
binomial probability mass function, as a point in Rn+1, the �n+ 1�-tuple,

�hp�0�� hp�1�� 	 	 	 � hp�n��
which we denote hp. As p runs from 0 to 1 such points trace out the binomial
curve Bn in the simplex,

Tn =
{
x = �x0� x1� 	 	 	 � xn�:

n∑
i=0
xi = 1 and xi ≥ 0 for all i

}

of all probability mass functions on �0�1� 	 	 	 � n
. The mixing distribution G
can then be viewed as a probability measure on the binomial curve, with center
of mass (or barycenter),

f�x� =
∫ 1

0
hp�x� dG�p� for x = 0�1� 	 	 	 � n�

the mixture of binomials determined byG. Necessarily f lies in the convex hull
of Bn, denoted coBn. The binomial curve is precisely the likelihood curve used
by Lindsay [11] when all the values 0�1� 	 	 	 � n appear in the sample. Figure 1
pictures the relationship between Tn�Bn and coBn for the case n = 2. Here
B2 = ���1−p�2�2p�1−p�� p2�: 0 ≤ p ≤ 1
 with the set of all possible mixtures
being the convex hull of B2.

We assume throughout that we have a large number of observations,
x1� 	 	 	 � xN from f, the density histogram of which provides us with an ap-
proximation, f̂, to f. Recall that f̂ is the maximum likelihood estimate of f
under the multinomial model; we must use f̂ to estimate G.

We now make a critical observation. Only when f̂ lies in the model space,
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Fig. 1. The simplex T2 of probability mass distribution functions on �0�1�2
, the curve of bino-
mial probability mass distribution functions B2 and the mixtures of binomial distributions, coB2,
shaded.

coBn, does the nonidentifiability problem rear its head. In this case there are
many possible mixing distributions G which may have given rise to f. When
f̂ lies outside coBn we smooth it, using a distance measure, to a unique point
f̂∞ in the model space, associated with which there is a (fortunately unique)
mixing distribution. In the next section we view f̂∞ as the limit of a sequence
of discrete approximations f̂k, hence the notation. We shall show in Section 7
that for n ≥ 10 it is usual for f̂ to lie outside the model space.

Practical estimation of G described here begins with a discrete approxima-
tion to Bn. Specifically, for k ∈ N, the natural numbers, we define a k-segment
piecewise linear approximation to Bn, namely,

Bn�k� =
k⋃
i=1

co�h�i−1�/k� hi/k


We shall use coBn�k� to estimate G. In Theorem 1, given in Section 5, we
show that as k increases the estimate of G converges in a weak∗ sense to the
unique finitely supported mixing distribution which gives rise to f̂∞.

Our results hinge on the following fact, demonstrated in [27], proof of The-
orem 1. The binomial curve Bn is affinely isomorphic to the moment (or cyclic)
curve,

Cn = �cx = �x� x2� 	 	 	 � xn�: 0 ≤ x ≤ 1
 ⊆ Rn	
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We discretize the moment curve as we did the binomial curve, so defining

Cn�k� =
k⋃
i=1

co�c�i−1�/k� ci/k


and take its convex hull to form the cyclic polytope coCn�k�. Fortunately, much
is known about cyclic polytopes. Coming full circle, coCn�k� is affinely isomor-
phic to coBn�k�, so we can exploit the properties of cyclic polytopes in our
study of binomial mixtures.

Cyclic polytopes came into prominence in the 1960s as the solution to the
upper bound conjecture: the maximum number of faces (of any dimension)
of an n-dimensional polytope with k > n vertices is attained by coCn�k�. An
account of this epic result is contained in [20]. Karlin and Shapley [5] earlier
studied the convex hull of the moment curve and will provide us with further
results.

Faces of any dimension on cyclic polytopes are simplexes ([20], Chapter 2,
Proposition 17) so the same property holds for coBn�k�. In the event that f̂ lies
outside the model space this structure suggests that we smooth f̂ to produce a
“nearest point” estimator f̂k of the mixture in coBn�k�. Since faces of coBn�k�
are simplexes it follows that f̂k, on a face of coBn�k�, has a unique realization
as a convex combination of the vertices of the face. These vertices and their
weights provide us with an estimator of G. We discuss this procedure in the
next section.

In researching this procedure, we first used Euclidean distance, then succes-
sively refined it to a “weighted least squares” distance, an iteratively
reweighted least squares procedure and finally Kullback–Leibler distance. The
weighted least squares procedure acknowledges the statistical importance of
the χ2 measure of goodness-of-fit. In turn, the weighted least squares distance
measure approximates Kullback–Leibler distance, which yields the maximum
likelihood estimator. Thus we explored a spectrum of fitting methods and
found that the more elaborate the distance, the more statistically satisfac-
tory was the solution. For this reason, in the sequel only Kullback–Leibler
distance is used.

This estimation approach is available when the maximum likelihood esti-
mator of G is identifiable; the software we use during the estimation process
is capable of indicating when this occurs. In the next two sections we discuss
separately the identifiable and the nonidentifiable cases.

3. Estimating the mixing distribution: the identifiable case. Given
f̂, how do we estimate the mixing distribution G? In Figure 2 we illustrate a
three stage process:

1. Approximation. Use coBn�k� to approximate coBn, for some k ∈ N.
2. Smoothing. Find the nearest point f̂k in coBn�k� to the empirical mixture
f̂.
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Fig. 2. An example with binomial parameter n = 10 (Example 1 in Section 6) and discretiza-
tion parameter k = 10, in which the empirical mixture f̂ lies outside the polytope of mixtures,
coB10�10�. The nearest point f̂10 to f̂ under Kullback–Leibler distance lies on a triangular face
of the polytope with vertices the binomial probability mass functions h0	4, h0	5 and h0	6. Unique
barycentric weights π0	4 = 0	0138, π0	5 = 0	9807 and π0	6 = 0	0055 at these vertices represent f̂10
and provide g10, an estimate of the mixing distribution.

3. Representation. Express (or “represent”) f̂k as the unique convex combina-
tion of the extreme points of the simplicial face of coBn�k� on which f̂k
lies.

In stage one we approximate the binomial curve using k+ 1 evenly spaced
values of p, as described in the previous section. In the second stage we smooth
f̂ by projection onto coBn�k�, using Kullback–Leibler distance. The strict con-
vexity of the contours of Kullback–Leibler distance ensures that the projection
f̂k is unique. The final stage exploits the simplicial nature of coBn�k� to ex-
press f̂k as a convex combination of the extreme points of the simplicial face
on which it lies; that is, we form

f̂k = πp1hp1 + · · · + πpmhpm�
where hp1� 	 	 	 � hpm are the m vertices of the face. Then the discrete distribu-
tion on [0, 1] with weights πp1 at p1 and so on, forms a unique estimate gk of
the unknown mixing distribution.

Standard software readily handles these operations efficiently, as will be
described in Section 6. That these discrete estimates gk which represent f̂k
converge to a unique mixing distribution g∞ which represents f̂∞ is shown
in the first convergence theorem of Section 5.

We now briefly review Kullback–Leibler distance. Given the data
�n0� n1� 	 	 	 � nn� =Nf̂, where N is the total number of observations, the like-
lihood of a particular distribution �θi� in coBn�k� is given by

∏n
i=0 θ

ni
i . The

likelihood ratio, contrasting the likelihood under the observed probability dis-
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tribution �θ̂i� to that for �θi� is thus
n∏
i=0

(
θ̂i
θi

)ni
�

whence the loglikelihood ratio is

n∑
i=0
ni log

θ̂i
θi
	

This in turn is proportional to

n∑
i=0
θ̂i log

θ̂i
θi
�

the so-called Kullback–Leibler distance between �θ̂i� and �θi�. It follows that
we can find the maximum likelihood estimator of �θi� by minimizing the
Kullback–Leibler distance between �θi� in coBn and the fixed point �θ̂i�. An
example of such a calculation is presented in Section 6.

4. Estimating the mixing distribution: the nonidentifiable case. In
the event that f̂ belongs to coBn the mixing distribution can be identified only
up to its first n moments. This lack of identifiability cannot be side-stepped
and was discussed by Lindsay in [10]. If f̂ ∈ coBn�k� for some k > n+ 1 then
all the mixing distributions g = �π0� π1/k� 	 	 	 � π1� associated with f̂ occur as
the solution space to the underdetermined system of linear equations



h0�0� h1/k�0� 	 	 	 h1�0�
			

			
			

h0�n� h1/k�n� 	 	 	 h1�n�
1 1 	 	 	 1






π0
π1/k
			
π1




=



f̂�0�
			

f̂�n�
1


 with πi/k ≥ 0 for i = 0�1� 	 	 	 � k	

The solution space is an affine slice through the simplex of probability mass
functions Tk in Rk+1, so forms a polytope. We term it Pk, the “slice of mixing
distributions,” or priors in a Bayesian context. Without additional information
we cannot reduce the estimation of g to any set smaller than Pk. Note that
our aim should be to find the mixing distributions P associated with f̂ in
coBn, rather than the Pk determined by coBn�k�. The manner in which Pk
approximates P is described in Theorem 2 in Section 5.

In [18], in the context of psychological testing, we are given a new test score
x and must estimate the true score p of the student. The best estimate under
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squared error loss is the posterior mean, shown in [18] and [25] to take the
form

linear combination�moments about the origin of g of order ≤ n+ 1

linear combination�moments about the origin of g of order ≤ n
 	

Members of Pk share the same moments up to those of order n. Thus the
posterior mean is a linear function on a compact convex set, so attains its
extreme values at extreme points of Pk. Example 2 in Section 6 illustrates
this observation.

5. Convergence results. A natural question which now arises is the fol-
lowing. If Bn�k� yields gk as the maximum likelihood estimate of the unknown
mixing distribution, what can be said about the behavior of gk as k increases?
We answer this in the following theorem, the statement and proof of which
draw upon ideas and terminology from Choquet theory. This theory deals with
the representation of points in compact convex sets by means of measures on
the extreme points of the set; we refer the reader to [1], [3] or [22] for back-
ground.

For the present it suffices to recall that a boundary probability measure
g on coBn is one which has support on the extreme points of the set; in the
case of coBn the extreme points are Bn itself ([5], Theorem 7.3). We say that
a boundary probability measure G represents f, or the resultant of G is f,
if f�x� = ∫ 1

0 hp�x� dG�p� for x = 0�1� 	 	 	 � n. It is usual to denote the weak∗-
compact convex set of all boundary probability measures on coBn byZ

+
1 �coBn�,

while the subset of Z+
1 �coBn� representing f ∈ coBn is denoted Z

+
f �coBn� ([1],

page 86).

Theorem 1. Let Bn denote the binomial curve in the simplex of probability

mass functions Tn in Rn+1 and take f̂ ∈ Tn\coBn. Let Tn be equipped with Eu-
clidean distance, a weighted Euclidean distance or Kullback–Leibler distance.
Then, in each case:

(i) There is a unique nearest point to f̂ in coBn, denoted f̂∞.
(ii) There is a unique boundary probability measure g∞ on coBn represent-

ing f̂∞, supported by at most �n+ 2�/2 points in Bn.
Now let k ∈ N and Bn�k� be the associated discrete approximation to Bn. Then,
again in each case,

(iii) There is a unique nearest point in coBn�k� to f̂, denoted f̂k, and f̂k →
f̂∞ in Rn+1 as k→ ∞.

(iv) There is a unique boundary probability measure gk in Z
+
1 �coBn�, rep-

resenting f̂k, supported by at most n + 1 points and such that gk → g∞ as
k→ ∞ in the weak∗ topology on Z+

1 �coBn�.

Proof. (i) The contours of the Euclidean, weighted Euclidean and
Kullback–Leibler distance functions are strictly convex. It follows that a point
in the convex model space coBn nearest to f̂ will exist and be unique.
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(ii) In [27] it was shown that Bn is affinely isomorphic to Cn, the mo-
ment curve in Rn. Given this affine equivalence, it follows immediately that
coBn is affinely isomorphic to coCn, the nth moment space (the set of n-tuples
which are first to nth moments for cumulative distribution functions defined
on �0�1��.
In [5], Theorem 11.1, it is shown that a point in the (topological) bound-

ary of coCn has a unique representation via a boundary probability measure.
Moreover, in [6], Chapter 2, Theorem 2.1, it is shown that such a measure is
supported by at most �n+ 2�/2 points. We can conclude that the same result
holds for coBn, so (ii) follows.

(iii) That f̂k exists and is unique follows as in (i). Suppose that f̂k does
not converge to f̂∞ in Rn+1. Then there exists a subsequence �f̂kj� of �f̂k�
which remains outside an ε-ball centered on f̂∞, for some ε > 0. Now coBn is
compact so there is a subsequence �f̂kji � of �f̂kj� which converges to a point

in coBn, l say. Since f̂∞ is unique, �f̂− l� > d. As k increases, coBn�k� is an
improving approximation to coBn, so �f̂ − f̂k� converges to d. This contra-
dicts the existence of the convergent subsequence for which limi �f̂− f̂kji � is
greater than d. Thus f̂k converges to f̂∞ in Rn+1.

(iv) Every face of coBn�k� is simplicial ([20], Chapter 2, Proposition 17).
Since f̂k lies on such a face, it is uniquely represented by a boundary prob-
ability measure gk. By Carathéodory’s theorem (see, e.g., [20], Chapter 1,
Theorem 11) gk is supported by at most n+ 1 points.
In order to show that gk → g∞ as k → ∞, in the weak∗ topology,

we remark that coBn is stable ([21], Example 3.4). This is sufficient to en-
sure that the resultant map r:Z+

1 �coBn� → coBn is open ([21], Satz 2.6). The
resultant map is also (weak∗) continuous. This follows from [1], Proposition
I.2.2 applied to a�coBn with a a linear functional on Rn+1.
LetR be the equivalence relation onZ+

1 �coBn� induced by the resultant map
r. Since r is continuous and open, coBn has the quotient topology relative to
r and the weak∗ topology of Z+

1 �coBn� ([7], Chapter 3, Theorem 8). Thus the
map which takes an element f ∈ coBn to �Z+

f �coBn��, the equivalence class of
Z+
f �coBn�, from coBn to Z

+
1 �coBn�/R, is continuous ([7], page 96).

From (iii) we have that f̂k → f̂∞ in coBn whence �Z+
r�gk��coBn�� →

�Z+
r�g∞��coBn��, as k → ∞. Suppose that gk �→ g∞. Then given a sufficiently

small neighborhood U of g∞ there exists a subsequence �gkj� of �gk� such
that gkj is not in U for all j. But Z+

1 �coBn� is compact in the weak∗ topology,
so there exists a convergent subsequence of �gkj�, �gkji � with limit g′

∞��= g∞�,
say. The identification map from Z+

1 �coBn� to Z+
1 �coBn�/R is continuous so

�Z+
r�gkji �

�coBn�� → �Z+
r�g′∞��coBn��, while the quotient space Z+

1 �coBn�/R is

Hausdorff so �Z+
r�g′∞��coBn�� = �Z+

r�g∞��coBn��, whence r�g′
∞� = r�g∞�. Now

g′
∞ and g∞ are boundary probability measures on coBn representing the same

point, so again using the uniqueness result ([5], Theorem 11.1), we have that
g′
∞ = g∞, a contradiction. Thus gk → g∞ as k→ ∞. ✷
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In the nonidentifiable case we can produce a sequence of representing mea-
sures for f̂ in which the kth representing measure is supported by no more
than k+1 extreme boundary points. Our next result reassures us that such a
sequence will possess a subsequence which converges to a representing mea-
sure for f̂. For the proof of this result, the author is most grateful to Robert
Phelps.

Theorem 2. Let Bn denote the binomial curve in the simplex of probability

mass functions Tn in Rn+1 and take f̂ ∈ coBn. Let gk, supported on the vertices
of coBn�k�, represent f̂ for all sufficiently large k. Then:

(i) There exists a subsequence gkj of gk which converges in the weak
∗ topol-

ogy to a boundary probability measure g on coBn.
(ii) The boundary probability measure g represents f̂.

Proof. The boundary probability measures Z+
1 �coBn� on the compact con-

vex set coBn are weak∗ compact and metrizable, so there exists a subsequence
�gkj� of �gk� which converges in the weak∗ topology to a boundary probability
measure g on coBn. Thus

∫
l dgkj →

∫
l dg as j → ∞, for every real-valued

continuous function l on coBn, with the integrals taken over Bn. In particu-
lar, this holds for the restriction to coBn of every continuous affine function on
Rn+1. For such a function e we have e�f̂� = ∫

edgkj →
∫
edg as j→ ∞. Thus

e�f̂� = ∫
edg for all such e so g represents f̂ (projection onto a coordinate

direction is a continuous affine function on coBn). Note that g is also finitely
supported ([6], Chapter 2, Theorem 2.1). ✷

6. Numerical examples. We now illustrate the estimation procedure
with an example from the literature in which f̂ lies outside the model space.
A second example illustrates the nonidentifiable case. Software to determine
whether the mixing distribution is identifiable, and to estimate f̂k and the
associated mixing distribution gk, was developed in MATLAB, using the nnls
and constrmacros in the optimization toolbox. This software is available from
the author on request.

Example 1. The simulated data set analyzed here is from Cressie ([4],
pages 102–104). In this example, n = 10 and N = 10�000 values are drawn
from a mixture of binomials, with G a cumulative distribution function on
[0, 1] with mean 0.5 and negligible standard deviation. These values give an
empirical mixture density of

f̂ = �7�102�477�1140�2053�2476�2027�1173�437�98�10�/10�000	
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Using B10�10�, for example, we find f̂10 lies on a face of B10�10� with just
three vertices, corresponding to values of p of 0.4, 0.5 and 0.6. The associated
weights are π0	4 = 0	0138, π0	5 = 0	9807 and π0	6 = 0	0055. Figure 2 illustrated
the situation.

Figure 3 numerically displays the convergence of the mixing distribution
estimator gk [Theorem 1(iv)] toward the limiting mixing distribution g∞ as k
increases, using Kullback–Leibler distance. Evidently the process has closely
recovered the mixing distribution.

A comparison of the posterior means determined by the Kullback–Leibler
estimator, using k = 100, and those given in [4], Table 1, is presented in
Table 1; the maximum likelihood estimator correctly leads to a value near 0.5
no matter what the observed value.

Two large data sets are given in [17]: a sample of size 3135 from a 15-item
test (page 268) and a sample of size 21310 from a 20-item test (page 290). For
both data sets, f̂ lies outside the binomial mixture model space.

We turn now to the situation where f̂ lies inside the model space, illustrat-
ing the ideas with a simple example.

Fig. 3. Maximum likelihood fitting of the mixing distribution as the approximation to the bino-
mial curve improves (i.e., k increases) from left to right. By the time that k = 100, the mixing
distribution, a small perturbation around 0.5, is captured well.
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Table 1

A comparison of the posterior means based on the “quick and easy” em-
pirical Bayes estimator in [4] and the maximum likelihood estimator
of the mixing distribution. Even for extreme observations the Kullback–
Leibler based estimator pushes the estimate to the correct value, very

close to 0.5

Conditional posterior mean

Observed value “Quick and easy” Based on ML mixture

0 0.100 0.4930
1 0.387 0.4942
2 0.434 0.4955
3 0.485 0.4967
4 0.498 0.4980
5 0.487 0.4993
6 0.503 0.5005
7 0.518 0.5018
8 0.543 0.5030
9 0.624 0.5042
10 0.900 0.5054

Example 2. Consider the problem where we approximate B2 using bino-
mial probability values p of 0, 0.3̇, 0.5, 0.6̇ and 1, and f̂ = �5/16�6/16�5/16�,
a mixture lying inside the convex model space. Figure 4a illustrates the sit-
uation. Note that the results of Section 4 remain valid when the values of p
are unequally spaced.

As f̂ moves within the model space, the slice of mixing distributions P4 is
variously a triangle, a quadrilateral or a pentagon. For the f̂ of this example,
P4 is a pentagon, as shown in Figure 4b. The values of the posterior mean,
as x runs through 0, 1 and 2 and g runs over the five vertices, are shown in
Table 2, with the range of these values shown on the right. For a given x, any
prior distribution in P4 would produce a posterior mean in this interval.

Note how vertices v2 and v4 determine the extremes of the interval. These
are the distributions with smallest and largest third moment about the origin,
respectively. We caution the reader that the intervals presented in the table
are not confidence intervals in the usual sense. Two stages of widening would
have to take place for this to be the case: we should use coBn as the model
space and we should allow f̂ to range over a confidence region in coBn. Meth-
ods for finding the vertices of the slice of mixing distributions are described
in [19].

7. How likely is identifiability? How likely is it that f̂ will lie outside
coBn? There are two immediate reasons why the empirical mixture may not
lie in the model space: first, sampling variation, particularly in the tails, can
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Fig. 4. An example in which the empirical mixture f̂ lies inside the polytope of mixtures. In
(a) the polytope is seen to be the convex hull of five points on the binomial curve B2 and f̂ =
�5/16�6/16�5/16� lies inside the polygon of mixtures. The associated set of mixing distributions
P4 is shown in (b) as a pentagon in R5.

push f̂ outside coBn and second, the binomial mixture model may be wrong.
We now explore the effect of sampling variation, but should bear in mind that
in practice an incorrect model will also favor identifiability.

In [27] an initial investigation of this question was begun, examining the
probability that a randomly chosen distribution in Tn, the simplex of all distri-
butions on �0�1� 	 	 	 � n
, is a mixture of binomial distributions. We considered
Tn equipped with Lebesgue measure. For n = 2 the probability is 2/3, for
n = 3 it is 3/10, for n = 4 it is 0.0914 while for n = 5 it drops to 0.0189. By
the time n = 10 the probability is 2	14× 10−8 (see [27], Table 1). The volume
of the model space of binomial mixtures relative to the volume of the simplex
of all probability mass functions on �0�1� 	 	 	 � n
 shrinks rapidly to zero.

This was very much a first view of the problem and did not take into account
the fact that f̂, under the model, is centered on a point inside coBn and will

Table 2

Values of the posterior mean, for all combinations of data x and
vertex vi of the slice of mixing distributions, P4

Vertex
Range of

v1 v2 v3 v4 v5 posterior mean

0 0.30 0.23 0.24 0.37 0.36 [0.23, 0.37]
x 1 0.50 0.61 0.59 0.39 0.41 [0.39, 0.61]

2 0.70 0.63 0.64 0.77 0.76 [0.63, 0.77]
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Table 3

Simulation results showing that as n increases the probability
that f̂ lies inside the model space decreases rapidly. Low sample
sizes N also decrease the chance that f̂ lies in the model space.

In each case 1000 f̂ points were generated

Number of values N generated Proportion of the f̂
n from f to produce an f̂ inside coBn(100)

2 50 0.9840
100 0.9999
500 1.0000

5 100 0.3820
500 0.8490
1000 0.9530

10 1000 0.0030
5000 0.0390

15 10000 0.0000

certainly not generate empirical distributions uniformly on the simplex. A
simulation was conducted in order to shed more light on this issue.

For n = 2�5�10 and 15 and f centrally located in coBn [in fact a uniform
convex combination of the vertices of coBn�100�], 1000 f̂ points were gener-
ated, each based upon a predetermined number N of observations from f.
Table 3 reports the proportion of these f̂ distributions lying in coBn�100�.
Note that as n increases or N decreases, it becomes less likely that f̂ will lie
in coBn�100�. The software developed yields the minimum Euclidean distance
between f̂ and coBn�100�, so indicating whether f̂ lies in the mixture set.

To conclude, for typical sample sizes, the “thinness” of the model space
within the simplex, coupled with real deviations from the model, make it very
likely that f̂ will lie outside coBn for values of n of ten and beyond.

8. Summary and discussion. Given a mixture of binomial distributions,
the problem of estimating the mixing distribution has long been considered
intractable, since the mixture determines the mixing distribution only up to
the first n moments.

In this paper we have looked closely at the geometry underlying this prob-
lem and revealed two helpful aspects. First, sampling variation and model
inadequacy often render the maximum likelihood estimator of the mixing dis-
tribution identifiable. Second, very convenient geometry makes the maximum
likelihood estimator of the mixing distribution estimable in the identifiable
case.

Our investigations are summarized in Table 4. If f̂ lies outside coBn then a
unique geometrically motivated maximum likelihood estimator of G is avail-
able, with support on no more than �n + 2�/2 points in [0, 1]. An improving
sequence of approximations to this estimator has been described. On the other
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Table 4

A summary of the estimation procedure,
for small and large n

Location of f̂

Outside coBn Inside coBn

Small Estimate unique Estimate not unique

(problem tractable)
n

Large Estimate unique Estimate not unique
(problem intractable)

hand, if f̂ belongs to coBn then G is not identifiable. Finding the vertices of
the polytope of priors then facilitates estimation of the posterior mean; this is
a tractable task when n is small.

It is interesting in light of this insight to reflect on the “negative proba-
bilities” found by Lord in [17], page 268 and Figure 1. Representing a point
outside the model space inevitably will produce negative weights on points in
the binomial curve. Lord’s procedure also correctly leads to the discreteness
which we have seen is inherent in the maximum likelihood estimate of the
mixing distribution.

We conclude by remarking that the simplex of probability mass functions
on n+1 points, Tn, is a foliation of exponential families (see, for example, [23],
Section 3.1); the binomial distributions form just one strand. The methods of
this paper can be used to unravel mixtures of any such family, for example,
mixtures of truncated Poisson distributions.
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