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SPEED OF CONVERGENCE FOR THE BLIND DECONVOLUTION
OF A LINEAR SYSTEM WITH DISCRETE RANDOM INPUT

By E. Gassiat and E. Gautherat

Université Paris–Sud and Université de Reims

In a recent paper, we proposed a new estimation method for the blind
deconvolution of a linear system with discrete random input, when the
observations may be noise perturbed. We give here asymptotic properties
of the estimators in the parametric situation. With nonnoisy observations,
the speed of convergence is governed by the l1-tail of the inverse filter,
which may have an exponential decrease. With noisy observations, the
estimator satisfies a limit theorem with known distribution, which allows
for the construction of confidence regions. To our knowledge, this is the
first precise asymptotic result in the noisy blind deconvolution problem
with an unknown level of noise. We also extend results concerning Hankel’s
estimation to Toeplitz’s estimation and prove a formula to compute Toeplitz
forms that may have interest in itself.

1. Introduction. Let us consider an observed sequence �Yk�k∈Z which
is the output of an unknown linear time-invariant system � with impulse
response �uk�k∈Z that is driven by an unobservable input sequence �Xk�k∈Z,
corrupted or not with additive noise �σ0εk�k∈Z where the level σ0 is either 0,
or known, or unknown,

Yk =
∑
j∈Z
ujXk−j + σ0εk	(1.1)

The linear system u = �uj�j∈Z is invertible; θ = �θk�k∈Z is the inverse filter of
u, that is, ∑

j

θjuk−j = δk� k ∈ Z�

in which δk denotes the Kronecker symbol. When u has finite length, the
system is a noisy moving-average (MA), when θ has finite length, the system
is autoregressive (AR).

The estimation of the parameters of the linear system u without observing
the variables �Xt� is known as “blind identification” and has a long history. The
case in which the input signal is discretely distributed has received consider-
able interest over the past few years. Indeed, this happens to be the situation
in important applications in digital signal processing (cellular telephone, high-
definition satellite,...) and it appears that, in the noiseless case, it is possible
to propose estimators that converge very fast; see Li (1995), Sashadri (1994),
van der Veen, Talwar and Paulraj (1997), Gamboa and Gassiat (1996, 1997).
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All these authors (except the last ones) assume the knowledge of the finite al-
phabet in which the input series take value. In the other direction, there are
very few results concerning noisy observations. Li (1993) gives, for a known
level of noise σ0 and an AR�p� linear system, an estimator which is proven
to be

√
n-consistent, but the asymptotic distribution is not given. Other pa-

pers concern numerical strategies to find presumably consistent estimators.
Liu and Chen (1995) propose an algorithm to compute a Bayesian estimator,
Cappé, Doucet, Lavielle and Moulines (1999) survey stochastic EM algorithms
to approach the maximum likelihood estimate, but no consistency results are
given. For noisy MA processes, Bermond and Kéribin (1998) give asymptotic
results and numerical issues for a split-likelihood estimator. The consistency
of maximum-likelihood estimators and their asymptotic distribution is still
an open problem in the general case. In particular MA cases, (1.1) may be
modelled as a hidden Markov model (HMM), asymptotic results of Bickel, Ri-
tov and Ryden (1998) may be used, numerical strategies are proposed, for
instance, in Anton-Haro, Fonollosa and Fonollosa (1997).

In a recent paper [Gamboa and Gassiat (1996)], one of the authors proposed
a new method for the estimation of a linear filter when the input series takes
value in an unknown finite alphabet with known cardinality and when the
filtered output is noiseless. To solve the problem of blind identification, they
apply an adjustable linear time-invariant system � : s = �sk�k∈Z to the output
�Yk�k∈Z and work on the sequence �Z�s�k�k∈Z,

Z�s�k =
∑
j

sjYk−j	(1.2)

In the absence of noise, the sequence �Z�s�k�k∈Z is the result of the linear sys-
tem � ∗� applied to the inputX. The estimator relies on the quantification of
the fact that a variable is discrete, after noticing that Z�s�1 takes at most the
same number of values as the input does iff s equals θ up to scale and delay.
This quantification may be made, for instance, by using the Hankel matrix of
the first algebraic moments or the Toeplitz matrix of the trigonometric mo-
ments of the empirical distribution. We further refined the method [Gassiat
and Gautherat (1998)] to take noise into account. The advantages of our esti-
mator are the following: the estimated filter converges to the unknown filter
whatever the signal to noise ratio is; the assumptions on the input series are
very weak, the variables may be dependent; the precise values of the alphabet
need not to be known; this may be of importance for noncooperative digital
communications when one’s aim is to discover confidential communications;
numerical implementation is easy.

In this paper, we give theoretical results on the speed of convergence both
in the nonnoisy and in the noisy situation.

1. In the nonnoisy situation and when the filter is parametrized with a fi-
nite dimensional parameter, the speed of convergence is upper bounded by
the l1-tail of the inverse of the unknown filter; see Theorem 3.2. Though
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the result is analogous to that of Li (1995), the proof takes advantage of
discreteness also for empirical distributions of the input series.

2. In the noisy situation, we prove a central limit theorem which allows the
construction of asymptotic confidence regions; see Theorem 4.2. This holds
for parametric filters that may have infinite length and the inverse of infi-
nite length. To our knowledge, this is the first result of this kind for such
models.

In the next section, we shall briefly recall the general estimation procedure
proposed by Gamboa and Gassiat (1996) when there is no noise and the refine-
ment to deal with the presence of noise proposed by Gassiat and Gautherat
(1998), together with their convergence theorems. We also get new results
when using Toeplitz forms in the estimation procedure. We refer interested
readers to previous papers for details and explanations of the procedures. Sub-
sequent sections give the asymptotic speed of convergence in the parametric
case when there is no noise and the asymptotic distribution in the noisy sit-
uation. Numerical experiments to illustrate these theoretical results may be
found in Gassiat and Gautherat (1998). Technical parts of the proofs are given
in the last section.

2. Estimation procedures and previous results. We make the follow-
ing assumptions on model (1.1):

(M1) The input signal consists of discrete real random variables Xk with un-
known common support A 	= 
x1� 	 	 	 � xp� of known cardinality p.

(M2) U�x� 	= ∑
k uke

ikx is a continuous function that does not vanish on
�0�2π.

(M3) X = �Xk�k∈Z is a stationary ergodic process.

(M4) For any integer n and for any integers j1� 	 	 	 � jn in 
1� 	 	 	 � p�,
P�X1 = xj1� 	 	 	 �Xn = xjn� > 0	

(M5) ε = �εk�k∈Z is a sequence of i.i.d. Gaussian variables which are indepen-
dent of the input signal; σ0 is unknown; E�ε1� = 0; E�ε21� = 1.

The Gaussian distribution for the noise ε has been chosen for the sake of
simplicity. However, all the probabilistic results of the section remain true
with a noise of the form σ0ηk, when the scale σ0 is unknown, and ηk has an
infinitely divisible distribution of class L; see Petrov (1975).

Under (M1), (M2) and (M4), it is proved by Gamboa and Gassiat (1996) that
the variable Z�s�1 takes at most p different values if and only if s equals θ up
to scale and delay, that is, iff there exists r ∈ R, � ∈ Z such that ∀ k ∈ Z� sk =
rθk−�. We thus define the parameter space � as a subset of l1�Z� which is
unambiguous in scale and delay, that is, so that whenever two elements s and
s′ in � satisfy ∀ k ∈ Z� sk = rs′k−�, then r = 1 and � = 0.
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The procedure relies on a function that discriminates between variables
having at most p points of support and the others, using only a finite number of
moments of the variable. Let  = �1� 1� 	 	 	 �  2p� be a set of real (or complex)
functions. Let h be a continuous real function on R2p+1 (or C2p+1). Here h
is said to discriminate between variables having at most p points of support
and the others if the following holds. For any real random variable Z, define
cZ = E� �Z�. Then h�cZ� ≥ 0, and h�cZ� = 0 if and only if Z has at most p
points of support. Examples of such functions h may be found in Gamboa and
Gassiat (1996). In this paper, we shall use the following ones:

1. Hankel forms. Here h is the determinant of the Hankel matrix of the al-
gebraic moments, that is,  j�x� = xj� j = 0� 	 	 	 �2p, and for any c =
�1� c1� 	 	 	 � c2p� in 
1�×R2p, h�c� = det�M whereM is the �p+1�×�p+1�
Hankel matrix given byMi�j = ci+j−2� i� j = 1� 	 	 	 � p+ 1.

2. Toeplitz forms. Here h is the determinant of the Toeplitz matrix of the
trigonometric moments. In this case we assume

(T) 2π�u�1 sups∈� �s�1�maxj xj − minj xj� is known to be strictly upper
bounded by F.

Here  j�x� = exp� i
F
�j − p − 1�x�� j = 1� 	 	 	 �2p, and for any c =

�1� c1� 	 	 	 � c2p� in 
1�×C2p, h�c� = det�T where T is the �p+ 1� × �p+ 1�
Toeplitz matrix given by Ti�j = ci−j� i� j = 1� 	 	 	 � p+ 1.

For any filter s, define

c�s� = �ci�s��i=1�			�2p =
(
E

[
 i�Z�s�1�

])
i=1�			�2p

	(2.1)

We then define a contrast function H by

H�s� = h�c�s��� s ∈ �	(2.2)

Obviously, for any s ∈ �, H�s� ≥ 0, and H�s� = 0 if and only if s = θ. The
sequenceHn is defined as an empirical contrast function in the following way.
To use only the observations Y1� 	 	 	 �Yn, we need to truncate the filter s.

Let k�n� be an increasing sequence of integers. Define

Ẑ�s�t =
+k�n�∑
k=−k�n�

skYt−k

for t = 1+ k�n�� 	 	 	 � n− k�n�, and

cn�s� 	=
1

n− 2k�n�
n−k�n�∑
t=1+k�n�

 

(
Ẑ�s�t

)
	

We may now define

Hn�s� 	= h�cn�s��	
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Definition 2.1. The estimator θ̂ is any minimizer of Hn over �n where

�n = � ∩ 
s	 sk = 0 for �k� > k�n��	

We assume throughout the sequel that

lim
n←+∞k�n� = +∞ and lim

n←+∞
k�n�
n
= 0	

The following theorems were proved by Gamboa and Gassiat (1996).

Theorem 2.2. Assume that (M1), (M2), (M3), (M4) hold and that σ0 = 0.
If � is compact, then θ̂ converges almost surely, in l1�Z�, to θ as n tends to
infinity.

Suppose that the set � can be represented as a parametric model with real-
valued parameter vector ξ in a compact set � of dimension q, ξ = �ξj�j=1			q,

� 	= 
θ�ξ�� ξ ∈� �	
Let ξ∗ be the true parameter value. To estimate ξ∗, we minimize Ln�ξ� 	=
Hn�θ�ξ��. Let ξ̂ be any minimizer of Ln over � . Assume the identifiability,

θk�ξ� = rθk−��ξ′�� ∀k ∈ Z ⇐⇒ r = 1� � = 0 and ξ = ξ′	

Theorem 2.3. Assume that the application ξ → θ�ξ� from Rq to l1�Z� is
continuous, that assumptions (M1) to (M4) hold, and that σ0 = 0.
Then, ξ̂ converges, almost surely, as n approaches infinity, to ξ∗.

Using Hankel forms or Toeplitz forms, the method extends to noisy obser-
vations.

Hankel forms. DefineM�s� σ� as the �p+ 1� × �p+ 1� Hankel matrix built
using the solutions cj�s� σ� of the triangular system (M�s� σ�i�j = ci+j−2�s� σ�),

E�Z�s�j1� =
j∑
i=0
Cijc

i�s� σ�v�s� σ�j−iµj−i� j = 0� 	 	 	 �2p�(2.3)

where Cij = i!�j− i�!/j! is the binomial coefficient, v2�s� σ� = σ2�s�22 and
µj−i is the j− ith moment of the standard Gaussian distribution. Define the
functionH�s� σ� of the filter and the noise level as the value of the determinant
of M�s� σ�. Define the estimators cjn�s� σ� of the pseudo-moments cj�s� σ� as
the solutions of the triangular system

cjn�s� =
j∑
i=0
Cijc

i
n�s� σ��σ�s�2�j−iµj−i� j = 1� 	 	 	 �2p	

Let Mn�s� σ� be the Hankel matrix built using the cjn�s� σ�, and let Hn�s� σ�
be the estimator of the function H,

Hn�s� σ� = det�Mn�s� σ�	
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Toeplitz forms. Define T�s� σ� as the �p+ 1� × �p+ 1�-Toeplitz matrix built
using the cj�s� σ� (T�s� σ�i� j = ci−j�s� σ�),

E

(
exp

(
ij

F
Z�s�1

))
= cj�s� σ� exp

(
− j

2σ2�s�22
2F2

)
� j = −p� 	 	 	 � p	(2.4)

Define the function H�s� σ� of the filter and the noise level as the value
of the determinant of T�s� σ�. Define the estimators cjn�s� σ� of the pseudo-
moments cj�s� σ� by

cjn�s� σ� = cjn�s� exp
(
j2σ2�s�22

2F2

)
� j = −p� 	 	 	 � p	

Let Tn�s� σ� be the Toeplitz matrix built using the cjn�s� σ�, and let Hn�s� σ�
be the estimator of the function H,

Hn�s� σ� = det�Tn�s� σ�	
Let δ�n� be a sequence of positive real numbers with limit 0 as n tends to
infinity. Define in both cases:

Jn�s� σ� = �Hn�s� σ��2 + �δ�n��2σ	(2.5)

We set the following definition.

Definition 2.4. The estimator �θ̂� σ̂� is any minimizer of Jn over �×R+.

To have good asymptotic behavior of the estimator, the speed δ�n� has to be
related to the stochastic variation of the empirical moments and to the trunca-
tion parameter k�n�. We then need a slightly stronger assumption concerning
the following processes.

Assumption (M6). Assume that∑
�k�>k�n�

�θk� = o�δ�n��

and that

lim
n→∞�δ�n��

−1 1
n

n∑
t=1

(
 j�Xt +

∑
k

θkεt−k −mj�θ�
)
= 0

in probability for j = 1� 	 	 	 �2p, where mj�θ� = E� j�Xt +
∑
k θkεt−k�	

In Gassiat and Gautherat (1998), a convergence theorem was proved for the
estimator minimizing �Hn�s� σ�� + δ�n�σ . Since we shall derive the speed of
convergence via a Taylor expansion, we chose here to work with �Hn�s� σ��2.
Following the same lines, we easily have the theorem.

Theorem 2.5. Assume that (M1) – (M6) hold. When using Toeplitz forms,
assume in addition (T). Then, as n tends to infinity, θ̂ converges in l1 in prob-
ability to θ and σ̂ converges in probability to σ0	
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An immediate corollary of this theorem is that the method leads to con-
sistent estimation in the parametric case. With the same assumptions as in
Theorem 2.3, with (M6) [and (T) if Toeplitz forms are used], define the esti-
mator �ξ̂� σ̂� as the minimizer of Jn�θ�ξ�� σ� over � ×R+. Then we have the
corollary.

Corollary 2.6. �ξ̂� σ̂� converges in probability towards the true value
�ξ∗� σ0� of the parameter.

We shall also recall a useful formula given by Lindsay (1989), which gives
the value M�W� of the determinant of the Hankel matrix based on the first
2p algebraic moments of a random variable W.

Proposition 2.7. Let W0� 	 	 	 �Wp be p + 1 independent copies of W. We
have

M�W� = 1
�p+ 1�!E

[ ∏
i<j

(
Wi −Wj

)2]
	

A similar formula holds for the value T�W� of the determinant of the
Toeplitz matrix based on the first p complex exponential moments of a random
variable W. Its proof follows Lindsay’s (1989) and will be omitted.

Proposition 2.8. Let W0� 	 	 	 �Wp be p + 1 independent copies of W. We
have

T�W� = 2p�p+1�/2

�p+ 1�!E
∏
j<k

(
1− cos

(
Wj −Wk

F

))

Remarks.

(i) When p is not small, algebraic moments have large asymptotic vari-
ance, and Toeplitz forms should be preferred after a rough estimate of F.

(ii) The numerical implementation of the method is easy. It requires only a
minimization procedure of a function which is computed using only empirical
moments of the observations. There is no need of simulations as required by
the Bayesian methods [van der Veen, Talwar and Paulraj (1997)] or stochastic
EM algorithms [Cappé, Doucet, Lavielle and Moulines (1999)]. Like the other
methods, the convergence is sensitive to the choice of the initial guess; a data
driven method for the choice of the initial values and for the choice of the
penalization term δ�n� is given by Gassiat and Gautherat (1998).

From now on, the parameter will be ξ = �ξj�j=1			q in � so that � 	=

θ�ξ�� ξ ∈� �, with the associated identifiability and continuity assumptions.
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3. Speed of convergence: nonnoisy observations. Throughout this
section, the level noise σ0 is set at 0. The notation Dr

xF�y� will designate
the rth derivative of F with respect to the variable x and will be evaluated at
point y.

Let �∗ be the set of all elements of � except θ. Let us introduce the as-
sumptions:

(D) The functions h�·� and  �·� are twice continuously differentiable. Let
D2
sH�s� = ��∂2/∂sk∂sl�H�s��k�l∈Z. Then D2

sH�θ� is positive definite on the
set �∗.

(P) The application ξ→ θ�ξ� is twice continuously differentiable. For any i =
1� 	 	 	 � q, �∂θk/∂ξi�k∈Z and �∂2θk/∂ξ2i �k∈Z are in l1�Z�. Moreover,
��∂θk/∂ξ1��ξ∗��k∈Z� 	 	 	 � �∂θk/∂ξq�ξ∗��k∈Z and �θk�k∈Z are linearly indepen-
dent.

It should be seen that H�·� and Hn are twice continuously differentiable
and that since θ is a minimizer of H, the operator D2

sH�θ� is necessarily
nonnegative. The assumption concerns the definiteness. Notice also that the
gradient operator D1

sH ofH is in L∞ with no more assumptions. In caseH is
the Hankel form, h is a multipolynomial and c is an algebraic power, so that
they are twice continuously differentiable. It will be later proved that in this
case D2

sH�θ� is positive definite on �∗, so that (D) holds with no particular
assumption. In case H is the Toeplitz form, h is a multipolynomial and c is
a complex exponential, so that they are twice continuously differentiable. It
will also be later proved that in this case D2

sH�θ� is positive definite on �∗,
so that again (D) holds with no particular assumption.

To estimate ξ∗, we minimize Ln�ξ� as described in Section 2. Let L�ξ� =
H�θ�ξ��. A useful result will be the following.

Proposition 3.1. Under (P) and (D), the functions L�ξ� and Ln�ξ� are
twice continuously differentiable. Let D2

ξL�ξ� = �∂2L�ξ�/∂ξk∂ξl�k� l=1�			�q. Then
D2
ξL�ξ∗� is positive definite on � − ξ∗.

The main result of this section follows.

Theorem 3.2. Assume that (M1), (M2), (M3), (M4), (P) hold. If the estima-
tion method is not Hankel or Toeplitz, assume moreover (D). We have almost
surely for big enough n,

�ξ̂ − ξ∗�2 ≤ C
∑

�k�>k�n�
�θk�ξ∗���

where C is a constant.

Remarks.

(i) The constant C is explicitly given in the proof; it may be estimated by
a plug-in method after having estimated the distribution of X1 (i.e., the set of
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possible values and the respective weights); this may be done with Hankel or
Toeplitz forms. See Gautherat (1997).

(ii) Usually, empirically based estimators are related to the speed of con-
vergence of the empirical functions to the expectation of the functions, so that√
n speed of convergence is obtained. The key idea here will be to relate not to

the expectation of the functions but to the nontruncated empirical moments
and to notice that, at the true parameter value, the random variable is dis-
crete, and its empirical distribution is also that of a discrete variable. Though
the method may look like Li’s (1995), this last point is the main different idea
that exploits the discreteness assumption.

Proof of Theorem 3.2. Using Theorem 2.3, ξ̂ is almost surely consistent.
So that for big enough n, and for i = 1� 	 	 	 � q,

∂

∂ξi
Ln�ξ̂� = 0	

Using a first order Taylor expansion, we obtain, for all i = 1� 	 	 	 � q,

0 = ∂

∂ξi
Ln�ξ∗� +

q∑
j=1
�ξ̂j − ξ∗j�

∂2

∂ξi∂ξj
Ln�ξ̃j��(3.1)

where ξ̃j ∈ �ξ̂� ξ∗�. Define for any filter s the empirical moments for the non
truncated series

c̃n�s� =
1

n− 2k�n�
n−k�n�∑
t=1+k�n�

 
(
Z�s�t

)
and also

H̃n�s� = h�c̃n�s��� L̃n�ξ� = H̃n�θ�ξ��	
SinceZ�θ�ξ∗��t =Xt for all t, c̃n�θ�ξ∗�� is the expectation of a random variable
taking at most p distinct values, so that θ�ξ∗� is a minimum point of H̃n. Now

∂

∂ξi
Ln�ξ∗� =

∑
�k�≤k�n�

∂

∂sk
Hn�θ�ξ∗��

∂

∂ξi
θk�ξ∗�

since Hn depends only on sk for �k� ≤ k�n�. Using the previous remark,

∂

∂sk
H̃n�θ�ξ∗�� = 0

for all k, and then,

∂

∂ξi
Ln�ξ∗� =

∑
�k�≤k�n�

(
∂

∂sk
Hn�θ�ξ∗�� −

∂

∂sk
H̃n�θ�ξ∗��

)
∂

∂ξi
θk�ξ∗�	(3.2)

This will allow us to prove (see Section 5)∣∣∣∣ ∂∂ξiLn�ξ∗�
∣∣∣∣ ≤ C̃ ∑

�k�>k�n�
�θk�(3.3)
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for some constant C̃. Now, for any i� j = 1� 	 	 	 � q we have

∂2

∂ξi∂ξj
Ln�ξ̃j� =

∂2

∂ξi∂ξj
L�ξ∗� +

(
∂2

∂ξi∂ξj
Ln�ξ̃j� −

∂2

∂ξi∂ξj
L�ξ∗�

)
	

It is easily proved, using the ergodicity of the process �Xt� and the fact that
it is bounded, that (

∂2

∂ξi∂ξj
Ln�ξ̃j� −

∂2

∂ξi∂ξj
L�ξ∗�

)
tends to 0 a.s. and uniformly in i and j since there are a finite number of
them.

Now, using Proposition 3.1,

∑
i�j=1�			�q

∂2

∂ξi∂ξj
L�ξ∗��ξ̂i − ξ∗i ��ξ̂j − ξ∗j� ≥ λ�ξ̂ − ξ∗�22�(3.4)

where λ is the smallest eigenvalue of D2L�ξ∗�.
The theorem follows using (3.1), (3.3) and (3.4) and with C = �C̃/λ�√q. ✷

Let us study the second derivative operator of H with respect to s when it
is the Hankel or the Toeplitz form.

Let �X0
t �t∈Z� 	 	 	 � �Xp

t �t∈Z be p+ 1 independent copies of �Xt�t∈Z. Define for
i = 0� 	 	 	 � p and t ∈ Z�

Yit =
∑
k∈Z
ukX

i
t−k	

�Y0
t �t∈Z� 	 	 	 � �Ypt �t∈Z are p+1 independent copies of �Yt�t∈Z	 In the same way,

define for i = 0� 	 	 	 � p, t ∈ Z and any filter s,

Zi�s�t =
∑
k∈Z
skY

i
t−k	

�Z0�s�t�t∈Z� 	 	 	 � �Zp�s�t�t∈Z are p+1 independent copies of �Z�s�t�t∈Z. We have
the following result.

Proposition 3.3. For any filter v = �vk�k∈Z, we have for the Hankel pro-
cedure,

vTD2
sH�θ�v =

2
�p+ 1�!

∑
i<j

E

(
�Zi�v�0 −Zj�v�0�

∏
i′<j′� �i′�j′��=�i� j�

�Xi′
0 −Xj′

0 �
)2
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and for the Toeplitz procedure,

vTD2
sH�θ�v

= 2p�p+1�/2

�p+ 1�!F2

∑
i<j

E

(
�Zi�v�0 −Zj�v�0�2

× ∏
i′<j′� �i′� j′��=�i�j�

(
1− cos

(
Xi′

0 −Xj′
0

F

)))

In particular, D2
sH�θ� is positive definite on �∗ under assumption (M4).

To finish the study of D2
sH�θ�, let us mention a result.

Proposition 3.4. For any filter v, and if the variables Xt are i.i.d., then

vTD2
sH�θ�v = CH

∑
k �=0
�v ∗ u�2k

with:

For the Hankel procedure,

CH =
2Var�X0�
�p− 1�! E

( ∏
i<j� �i� j��=�0�1�

�Xi
0 −Xj

0�2
)
	

For the Toeplitz procedure,

CH =
21+p�p+1�/2Var�X0�
�p− 1�!F2

E

( ∏
i<j� �i� j��=�0�1�

(
1− cos

(
Xi

0 −Xj
0

F

)))
	

Indeed, by easy computation and applying Proposition 3.3, we have for the
Hankel procedure,

vTD2
sH�θ�v =

1
�p− 1�!

∑
k� l∈Z∗

�v ∗ u�k�v ∗ u�l

×E
[
�X0
−k −X1

−k��X0
−l −X1

−l�
∏

i<j� �i� j��=�0�1�
�Xi

0 −Xj
0�2
]

Now, if k = 0 or l = 0, �X0
−k −X1

−k��X0
−l −X1

−l�
∏
i<j� �i� j��=�0�1��Xi

0 −Xj
0�2 = 0

a.s. If theXi
k are i.i.d., for k �= l ∈ Z, E�X0

−k−X1
−k��X0

−l−X1
−l�

∏
i<j� �i� j��=�0�1�

�Xi
0−Xj

0�2� = 0. For k = l �= 0, E�X0
−k−X1

−k��X0
−l−X1

−l�
∏
i<j� �i� j��=�0�1��Xi

0−
X
j
0�2 = �p− 1�!CH.
The same arguments lead to the result for the Toeplitz procedure.
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4. Asymptotic distribution with noisy observations. Now, the level
of noise σ is unknown, and the estimator �ξ̂� σ̂� minimizes

Jn�ξ� σ� = �Hn�θ�ξ�� σ��2 + �δ�n��2σ
defined in Section 2 for Hankel or Toeplitz forms. Define

µj�ξ� =
(
E� j�Zt�θ�ξ����

)
j=1�			�2p

�

Mn�ξ� =
(
1
n

n∑
t=1
� j�Zt�θ�ξ����

)
j=1�			�2p

�

D1
ξMn�ξ� =

((
∂

∂ξi
Mn�ξ�

))
i=1�			�q

	

Let us introduce the following assumption:

lim
n→∞

k�n�√
n
= 0� lim

n→∞
√
n

∑
�k�>k�n�

�θk� = 0� lim
n→∞
√
nδ�n� = +∞�

(M8)

lim
n→∞
√
nδ�n�2 = 0	

The vector
√
n�Mn�ξ∗�−m�ξ∗��D1

ξMn�ξ∗�−D1
ξm�ξ∗�� converges in distribution

to � �0� 7�

Notice that under (M8), (M6) holds. DefineR�θ�ξ�� σ� the triangular matrix
inverting the system (2.3) for the Hankel procedure, or inverting the system
(2.4) for the Toeplitz procedure. In this last case, R�θ�ξ�� σ� is a diagonal
matrix. Notice that R�θ�ξ�� σ� is differentiable with respect to ξ and with
respect to σ . Let 71 be the asymptotic variance of

√
n�Mn�ξ∗�−m�ξ∗��. Define

V = D1
ch ·R · 71 ·RT · �D1

ch�T	
We now have the lemma.

Lemma 4.1. Under the assumptions of Theorem 4.2 below,

�√nD1
ξHn�θ� σ0��

√
nHn�θ� σ0��

converges in distribution to a centered Gaussian distribution,D1
σHn�θ� σ0� con-

verges in probability to a negative constant and
√
nHn�θ� σ0� has asymptotic

variance V.

Define G the q× q matrix given by

Gi�j =
(
∂θ

∂ξi
�ξ∗�

)T
D2
sH�θ�

(
∂θ

∂ξj
�ξ∗�

)
	

We have the theorem.
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Theorem 4.2. Assume that (M1), (M2), (M3), (M4), (M5), (M8), (P) hold.
Then, as n tends to infinity,

√
n�ξ̂−ξ∗� converges in distribution to the centered

Gaussian distribution with variance ; given by

; =
(
D2
ξ� σHn�θ� σ0�
D1
σHn�θ� σ0�

)2

G−1V�G−1�T	

Let us give an outline of the proof (the complete proof is given in Section
5). Using (P), Jn is twice continuously differentiable. Then �ξ̂� σ̂� is a zero
of D1Jn and converges in probability to �ξ∗� σ0� by Corollary 2.6, so that the
following Taylor expansion holds:

D1Jn�ξ∗� σ0� +D2Jn�ξ∗� σ0��ξ̂ − ξ∗� σ̂ − σ0�T�1+ o�1�� = 0	

Direct computation, noticing thatHn�θ� σ0� �= 0 (indeed, the pseudo-moments
may not be moments of discrete random variables), leads to D1

ξHn�θ� σ0�

D1
σHn�θ� σ0� +

�δ�n��2
2Hn�θ� σ0�


+
(
D2Hn�θ� σ0� +

D1Hn�θ� σ0�D1Hn�θ� σ0�T
Hn�θ� σ0�

)(
ξ̂ − ξ∗
σ̂ − σ0

)
×�1+ o�1�� = 0	

(4.1)

Roughly speaking, the asymptotic result comes from the fact that asymptoti-
cally, the matrix involved in equation (4.1) has the bottom-right term tending
to infinity, so that asymptotically, the inverse has only the up-left term as a
nonzero term.

Remarks.

(i) Hankel or Toeplitz forms may be used to obtain estimators of the dis-
tribution of X1 (possible values with corresponding weights); see Gautherat
(1997). In case the Xt are i.i.d., this also allows us to estimate 7. All other
matrices and constants may be estimated by a plug-in method, and thus ;
may be consistently estimated. This allows us to construct a confidence region
for ξ∗.

(ii) The estimator is not efficient. In general, roughly speaking, a lower
bound for the asymptotic variance is given via the maximum likelihood esti-
mator (m.l.e.) Asymptotic general results for the m.l.e. are still open problems;
after the first submission of the paper, the result of Bickel, Ritov and Ryden
(1998) for the m.l.e. in HMMs allow one to obtain a central limit theorem for
the m.l.e. for noisy MA processes with discrete inputs. However, the asymp-
totic variance (and Fisher information) is defined as the asymptotic variance
of the derivative of conditional likelihoods and is not directly computed.
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5. Proofs.

Proof of Proposition 3.1. Differentiability of L and Ln easily comes
from that of H, Hn and θ. Now we have

D2
ξL�ξ� = D1

ξθ�ξ�TD2
sH�θ�ξ��D1

ξθ�ξ� +D1
sH�θ�ξ��D2

ξθ�ξ�	
Since H is minimum at point θ�ξ∗�, D1

sH�θ�ξ∗�� = 0. We then have

D2
ξL�ξ∗� = D1

ξθ�ξ∗�TD2
sH�θ�ξ∗��D1

ξθ�ξ∗�	
Taking the associated quadratic form at some nonzero point y = �ξi−ξ∗i �i=1�			�q,

yTD2
ξL�ξ∗�y = �yD1

ξθ�ξ∗��TD2
sH�θ�ξ∗���yD1

ξθ�ξ∗���
which, using (D), is nonzero unless yD1

ξθ�ξ∗� is either the null series or the
filter θ�ξ∗�, which is impossible by (P). ✷

Proof of Theorem 3.2. Formula (3.3) remains to be proved. Using (3.2),
we have ∣∣∣∣ ∂∂ξiLn�ξ∗�

∣∣∣∣ ≤ An
∥∥∥∥ ∂∂ξi θ�ξ∗�

∥∥∥∥
1

(5.1)

with

An = sup
�k�≤k�n�

∣∣∣∣ ∂∂skHn�θ�ξ∗�� −
∂

∂sk
H̃n�θ�ξ∗��

∣∣∣∣	
By the chaining rule,

∂

∂sk
Hn�θ� = D1

ch�cn�θ��
∂

∂sk
cn�θ� and

∂

∂sk
H̃n�θ� = D1

ch�c̃n�θ��
∂

∂sk
c̃n�θ�	

Notice that

sup
i

sup
k

∣∣∣∣ ∂∂sk cin�θ�
∣∣∣∣ ≤ C1

with C1 = �D1 �∞�X�∞�u�1. Here �X�∞ is the maximum possible absolute
value in the alphabet in which the variablesXt take value. The norms �·�∞ for
functions are taken as the supremum value of the function on the space where
the possible moments and their derivatives take value, which are compact
since the Xt are bounded and the filters are summable. Then

An ≤ 2pC1Bn + �D1
ch�∞En(5.2)

with

Bn = sup
i

∣∣∣∣D1
ch�cn�θ��i −D1

ch�c̃n�θ��i
∣∣∣∣

and

En =
∣∣∣∣ ∂∂sk cn�θ� − ∂

∂sk
c̃n�θ�

∣∣∣∣	
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However, easily,

Bn ≤ �D2
ch�∞�D1 �∞�X�∞�u�1

∑
�k�>k�n�

�θk��(5.3)

and for any �k� ≤ k�n�,

sup
i

∣∣∣∣ ∂∂sk cin�θ� − ∂

∂sk
c̃in�θ

∣∣∣∣ ≤ �D2 �∞�u�21�X�2∞
∑

�k�>k�n�
�θk�	(5.4)

Taking into account (5.1), (5.2), (5.3) and (5.4), we finally obtain (3.3) with

C̃=�u�21�X�2∞ sup
i

∥∥∥∥( ∂

∂ξi
θk�ξ∗�

)∥∥∥∥
1
�2p�D1 �2∞�D2

ch�∞+�D2 �∞�D1
ch�∞�	 ✷

Proof of Proposition 3.3. Let us first study the Hankel procedure. Ap-
plying Proposition 2.7, we have

H�s� = 1
�p+ 1�!E

[ ∏
i<j

�Zi�s�0 −Zj�s�0�2
]

so that

∂

∂sk
H�s� = 2

�p+ 1�!E
(∑
i<j

�Yi−k −Yj−k��Zi�s�0 −Zj�s�0�

× ∏
i′<j′� �i′� j′��=�i� j�

�Zi′ �s�0 −Zj
′ �s�0�2

)

and

∂2

∂sk∂sl
H�s� = 2

�p+ 1�!E
(∑
i<j

�Yi−k −Yj−k��Yi−l −Yj−l�

× ∏
i′<j′� �i′� j′��=�i� j�

�Zi′ �s�0 −Zj
′ �s�0�2

)

+ 4
�p+ 1�!E

( ∑
i<j� i′<j′� �i′� j′��=�i� j�

�Yi−k −Yj−k��Zi�s�0 −Zj�s�0�

×�Yi′−l −Yj
′

−l��Zi
′ �s�0 −Zj

′ �s�0�

× ∏
i′′<j′′� �i′′� j′′��=�i′� j′� and �=�i�j�

�Zi′′ �s�0 −Zj
′′ �s�0�2

)
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At the point s = θ, this leads to
∂2

∂sk∂sl
H�θ� = 2

�p+1�!E
(∑
i<j

�Yi−k−Yj−k��Yi−l−Yj−l�

× ∏
i′<j′��i′�j′��=�i�j�

�Xi′
0−Xj′

0 �2
)

+ 4
�p+1�!E

( ∑
i<j�i′<j′��i′�j′��=�i�j�

�Yi−k−Yj−k��Yi
′
−l−Yj

′

−l�

·�Xi′
0−Xj′

0 ��Xi
0−Xj

0�

× ∏
i′′<j′′��i′′�j′′��=�i′�j′�and�=�i�j�

�Xi′′
0 −Xj′′

0 �2
)
	

However H�θ� = 0 says that a.s.,∏
i<j

�Xi
0 −Xj

0� = 0

(which is also easily seen from the fact that the p+1 variablesXi
0 take values

in the same alphabet with p values). This leads to

∂2

∂sk∂sl
H�θ� = 2

�p+ 1�!E�
∑
i<j

�Yi−k−Yj−k��Yi−l−Yj−l�
∏

i′<j′� �i′� j′��=�i� j�
�Xi′

0−Xj′
0 �2��

which applied to v leads to the formula of Proposition 3.3.
Notice that for v = λθ, where λ is a real number, vTD2H�θ�v = 0. However,

the set �∗ cannot contain any multiple of delayed θ except 0; either � would
be ambiguous on scale and delay. Now, vTD2H�θ�v = 0 if and only if for any
i < j, �Zi�v�0 −Zj�v�0�

∏
i′<j′� �i′� j′��=�i� j��Xi′

0 −Xj′
0 � = 0 a.s. Now,

�Zi�v�0 −Zj�v�0�
∏

i′<j′� �i′� j′��=�i� j�
�Xi′

0 −Xj′
0 � =

∑
k �=0
�u ∗ v�kP−k�

where P−k = �Xi
−k −Xj

−k�
∏
i′<j′� �i′� j′��=�i� j��Xi′

0 −Xj′
0 �. The variables Pk have

discrete distribution with at least two different points of support, and, using
(M4), any finite trajectory has positive probability. However, as soon as v is
not a multiple of θ, there is at least one k �= 0 such that �u ∗ v�k �= 0. We may
conclude that the distribution of

∑
k �=0�u∗v�kP−k may not be degenerate with

support 
0�, so that D2H�θ� is positive definite on �∗.
Let us now study the Toeplitz procedure. Applying Proposition 2.8, we have

H�s� = 2p�p+1�/2

�p+ 1�!E
[∏
j<k

(
1− cos

(
Zj�s�0 −Zk�s�0

F

))]
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so that

∂

∂sl
H�s� = 2p�p+1�/2

�p+ 1�!FE
(∑
j<k

�Yj−l −Yk−l� sin
(
Zj�s�0 −Zk�s�0

F

)

× ∏
j′<k′� �j′� k′��=�j� k�

(
1− cos

(
Zj

′ �s�0 −Zk′ �s�0
F

)))
and

∂2

∂sl∂sm
H�s�

= 2p�p+1�/2

�p+ 1�!F2
E

(∑
j<k

�Yj−l −Yk−l��Yj−m −Yk−m� cos
(
Zj�s�0 −Zk�s�0

F

)

× ∏
j′<k′��j′�k′��=�j�k�

(
1− cos

(
Zj

′ �s�0 −Zk′ �s�0
F

)))

+ 2p�p+1�/2

�p+ 1�!F2
E

( ∑
j<k�j′<k′��j′�k′��=�j�k�

�Yj−l −Yk−l��Yj
′

−l −Yk
′
−l�

× sin
(
Zj�s�0 −Zk�s�0

F

)
sin

(
Zj

′ �s�0 −Zk′ �s�0
F

)
× ∏
j′′<k′′��j′′�k′′��=�j�k� and �i′�j′�

(
1− cos

(
Zj

′′ �s�0 −Zk′′ �s�0
F

)))
At the point s = θ, this leads to
∂2

∂sl∂sm
H�θ�

= 2p�p+1�/2

�p+1�!F2
E

(∑
j<k

�Yj−l−Yk−l��Yj−m−Yk−m�cos
(
X
j
0−Xk

0

F

)

× ∏
j′<k′��j′�k′��=�j�k�

(
1−cos

(
X
j′
0 −Xk′

0

F

)))

+ 2p�p+1�/2

�p+1�!F2
E

( ∑
j<k�j′<k′��j′�k′��=�j�k�

�Yj−l−Yk−l�sin
(
X
j
0−Xk

0

F

)

×�Yj′−l−Yk
′
−l�sin

(
X
j′
0 −Xk′

0

F

)

× ∏
j′′<k′′��j′′�k′′��=�j�k�and �i′�j′�

(
1−cos

(
X
j′′
0 −Xk′′

0

F

)))
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But H�θ� = 0 says that a.s., ∏
j<k

�Xj
0 −Xk

0� = 0

so that as soon as cos ��Xj
0 −Xk

0�/F� �= 1,

∏
j′<k′� �j′� k′��=�j� k�

(
1− cos

(
X
j′
0 −Xk′

0

F

)))
= 0	

This leads to

∂2

∂sl∂sm
H�θ� = 2p�p+1�/2

�p+ 1�!F2
E

(∑
j<k

�Yj−l −Yk−l��Yj−m −Yk−m�

(5.5)
× ∏
j′<k′� �j′� k′��=�j� k�

(
1− cos

(
X
j′
0 −Xk′

0

F

)))
�

which applied to v leads to the formula of Proposition 3.3.

Now, vTD2H�θ�v = 0 if and only if for any i < j,

�Zj�v�0 −Zk�v�0�2
∏

j′<k′� �j′� k′��=�j� k�

(
1− cos

(
X
j′
0 −Xk′

0

F

))
= 0

a.s. But Zj�v�0 −Zk�v�0 =
∑
l�u ∗ v�l�Xj

−l −X−l0 �. Now, on the event where∏
j′<k′� �j′� k′��=�j� k��1 − cos��Xj′

0 −Xk′
0 �/F�� �= 0, Xj

0 = Xk
0 and as soon as v is

not a multiple of θ, there is at least one l �= 0 such that �u ∗ v�l �= 0. We
may conclude that the variable Zj�v�0 −Zk�v�0 cannot be always 0, so that
D2H�θ� is positive definite on �∗. ✷

Proof of Lemma 4.1. First, the ergodicity of �Xt� allows us to prove that
Hn�θ� σ0� converges in probability to H�θ� σ0� = 0, and that D1Hn�θ� σ0�
converges in probability to D1H�θ� σ0�. In order to compute the derivatives
of H with respect to ξ or σ let us recall the following formula, which may be
found in Gassiat and Gautherat (1998):

∀ σ ≤ σ0� ∀ s� ∀ i� ci�s� σ� = E
[
 i�Y�s�0 +

√
σ2
0 − σ2ε�s�0�

]
in which for any k,

Y�s�k =
∑
j

�s ∗ u�jXk−j

and

ε�s�k =
∑
j

sjεk−j	
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For the Hankel procedure, we may now use Proposition 2.7 in the same way
as when studying the definiteness of D2

sH�θ�. Let, for i = 0� 	 	 	 � p, εi be p
independent random sequences of independent variables, independent from
the �Xi

t�i=0�			�p�t∈Z, with standard Gaussian distribution. We then have, for all
ξ and all σ < σ0,

H�θ�ξ�� σ� = 1
�p+ 1�!E

[∏
i<j

�Yi�θ�0 −Yj�θ�0 +
√
σ2
0 − σ2�εi�θ�0 − εj�θ�0��2

]
	

It is now possible to take derivatives of this expression with respect to ξ and/or
σ . We then take the value at ξ = ξ∗, and then look at the terms as polynomials

in
√
σ2
0 − σ2, beginning with negative exponents. Since it is already known

that H is infinitely differentiable with respect to ξ and σ , the coefficients of
terms with negative exponents are 0, and the terms with positive exponents
will be set at 0 when letting σ tend to σ0, so that we just have to compute the
constant term in the polynomials.

For the Toeplitz procedure we may do the same thing with the formula

H�θ�ξ��σ� = 2p�p+1�/2

�p+1�! E

×
[∏
i<j

(
1−cos

(Yi�θ�0−Yj�θ�0+√σ2
0−σ2�εi�θ�0−εj�θ�0��
F

))]
	

This leads to D1
ξH�θ� σ0� = 0 and D2

ξH�θ� σ0� = a positive matrix,

D1
σH�θ� σ0� = −

2σ0�θ�22
�p+ 1�!

∑
i<j

E

[ ∏
i′<j′� �i′j′��=�i� j�

�Xi′
0 −Xj′

0 �2
]

for the Hankel procedure, and

D1
σH�θ� σ0� = −

2p�p+1�/2+1σ0�θ�22
�p+ 1�!F

∑
i<j

E

[ ∏
i′<j′� �i′j′��=�i� j�

(
1− cos

(
Xi′

0 −Xj′
0

F

))]
for the Toeplitz procedure.

Now we have, if x is any of the variables ξj,

D1
xHn�θ� σ0� = �D1

ch�cn�θ� σ0�� −D1
ch�c�θ� σ0���D1

xcn�θ� σ0�
(5.6)

+D1
ch�c�θ� σ0���D1

xcn�θ� σ0� −D1
xc�θ� σ0��

and also

D1
ch�cn�θ�� −D1

ch�c�θ� σ0�� = �cn�θ� σ0� − c�θ� σ0��T�D2
ch�c�θ� σ0����1+ o�1��

Notice now that

cn�θ� σ0� = R�θ� σ0�mn�ξ∗�(5.7)
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in which �mn�ξ�� = �mj
n�θ�ξ���j=1�			�2p with

mj
n�θ�ξ�� =

1
n− 2k�n�

n−k�n�∑
t=1+k�n�

 j�Ẑt�θ�ξ���	

We then easily obtain, using (M8), the ergodicity of �Xt� and (M5), that

mn�ξ∗� =Mn�ξ∗� + o
(

1√
n

)
� D1

ξmn�ξ∗� = D1
ξMn�ξ∗� + o

(
1√
n

)
�

in which the o�1� are in probability. Using (5.7) we have also

D1
xcn�θ� σ0� = R�θ� σ0�D1

xMn�ξ� +D1
xR�θ� σ0�Mn�ξ� + o

(
1√
n

)
	

In particular, using (M8), cn�θ� σ0� converges in probability to c�θ� σ0� and
D1
xcn�θ� σ0� converges in probability to D1

xcn�θ� σ0�.

Similarly, expanding also Hn�θ� σ0� as
Hn�θ� σ0� = h�cn�θ� σ0�� − h�c�θ� σ0��

= D1
ch�c�θ� σ0���cn�θ� σ0� − c�θ� σ0���1+ o�1��

allows us to prove that jointly �√nD1
ξHn�θ� σ0��

√
nHn�θ� σ0�� converges in

distribution to a centered Gaussian distribution and to compute the asymp-
totic variance. ✷

Proof of Theorem 4.2. Let Dn be the matrix

D2Hn�θ� σ0� +
D1Hn�θ� σ0�D1Hn�θ� σ0�T

Hn�θ� σ0�
	

Write

Dn =
( �Dn�11 �Dn�12
�Dn�21 �Dn�22

)
	

We have, using Lemma 4.1,

�Dn�11 = D2
ξHn�θ� σ0� +

D1
ξHn�θ� σ0�D1

ξHn�θ� σ0�T
Hn�θ� σ0�

converges in probability to D2
ξH�θ� σ0��

�Dn�12 = D2
ξ�σHn�θ� σ0� +

D1
ξHn�θ� σ0�D1

σHn�θ� σ0�T
Hn�θ� σ0�

converges in distribution to some random variable, as does �Dn�12, and

�Dn�22 = D2
σHn�θ� σ0� +

�D1
σHn�θ� σ0��2
Hn�θ� σ0�
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converges to +∞. It follows that in probability for big enough n, the matrix
Dn has nonzero determinant and is invertible. Let

D−1n =
( �Dn�11 �Dn�12
�Dn�21 �Dn�22

)
be its inverse. Usual linear computations together with (4.1) lead to

�ξ̂ − ξ∗� =
(
�Dn�11D1

ξHn�θ� σ0� − �Dn�11

(5.8)
×�Dn�12
�Dn�22

(
D1
σHn�θ� σ0� +

δ�n�2
2Hn�θ� σ0�

))
�1+ o�1��

and

��Dn�11�−1 =
(
�Dn�11 −

�Dn�12�Dn�T21
�Dn�22

)
	

We now have that

�Dn�12�Dn�T21
�Dn�22

converges to 0 in probability, so that

��Dn�11� = G−1�1+ o�1��	
We thus obtain

√
n�ξ̂ − ξ∗� = −D

2
ξ�σHn�θ� σ0�
D1
σHn�θ� σ0�

√
nHn�θ� σ0��1+ o�1��

which leads to the theorem. ✷
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