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STATISTICAL ESTIMATION IN VARYING COEFFICIENT MODELS

By Jianqing Fan1 and Wenyang Zhang

University of North Carolina and Chinese University of Hong Kong

Varying coefficient models are a useful extension of classical linear
models. They arise naturally when one wishes to examine how regression
coefficients change over different groups characterized by certain covari-
ates such as age. The appeal of these models is that the coefficient functions
can easily be estimated via a simple local regression. This yields a sim-
ple one-step estimation procedure. We show that such a one-step method
cannot be optimal when different coefficient functions admit different de-
grees of smoothness. This drawback can be repaired by using our proposed
two-step estimation procedure. The asymptotic mean-squared error for the
two-step procedure is obtained and is shown to achieve the optimal rate of
convergence. A few simulation studies show that the gain by the two-step
procedure can be quite substantial. The methodology is illustrated by an
application to an environmental data set.

1. Introduction.

1.1. Background. Driven by many sophisticated applications and fueled
by modern computing power, many useful data-analytic modeling techniques
have been proposed to relax traditional parametric models and to exploit
possible hidden structure. For introduction to these techniques, see the books
by Hastie and Tibshirani (1990), Green and Silverman (1994), Wand and
Jones (1995) and Fan and Gijbels (1996), among others. In dealing with
high-dimensional data, many powerful approaches have been incorporated
to avoid the so-called “curse of dimensionality.” Examples include additive
models [Breiman and Friedman (1995), Hastie and Tibshirani (1990)], low-
dimensional interaction models, [Friedman (1991), Gu and Wahba (1993),
Stone, Hansen, Kooperberg and Truong (1997)], multiple-index models
[Härdle and Stoker (1990), Li (1991)], partially linear models [Wahba (1984),
Green and Silverman (1994)], and their hybrids [Carroll, Fan, Gijbels and
Wand (1997), Fan, Härdle and Mammen (1998), Heckman, Ichimura, Smith
and Todd (1998)], among others. Different models explore different aspects of
high-dimensional data and incorporate different prior knowledge into mod-
eling and approximation. They together form useful tool kits for processing
high-dimensional data.
A useful extension of classical linear models is varying coefficient models.

This idea is scattered around in text books. See, for example, page 245 of
Shumway (1988). However, the potential of such a modeling technique did not
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get fully explored until the seminal work of Cleveland, Grosse and Shyu (1991)
and Hastie and Tibshirani (1993). The varying coefficient models assume the
following conditional linear structure:

Y =
p∑
j=1
aj�U�Xj + ε(1.1)

for given covariates �U�X1� 	 	 	 �Xp�′ and response variable Y with

E�ε � U�X1� 	 	 	 �Xp� = 0

and

var
(
ε � U�X1� 	 	 	 �Xp

) = σ2�U�	
By regarding X1 ≡ 1, (1.1) allows a varying intercept term in the model. The
appeal of this model is that, via allowing coefficients a1� 	 	 	 � ap to depend on
U, the modeling bias can significantly be reduced and the “curse of dimension-
ality” can be avoided. Another advantage of this model is its interpretability.
It arises naturally when one is interested in exploring how regression coeffi-
cients change over different groups such as age. It is particularly appealing
in longitudinal studies where it allows one to examine the extent to which
covariates affect responses over time. See Hoover, Rice, Wu and Yang (1997)
and Fan and Zhang (2000) for details on novel applications of varying coeffi-
cient models to longitudinal data. For nonlinear time series applications, see
Chen and Tsay (1993) where functional coefficient AR models are proposed
and studied.

1.2. Estimation methods. Suppose that we have a random sample
��Ui�Xi1� 	 	 	 �Xip�Yi�	ni=1 from model (1.1). One simple approach to es-
timate the coefficient functions aj�·��j = 1� 	 	 	 � p� is to use local linear
modeling. For each given point u0, approximate the function locally as

aj�u� ≈ aj + bj�u− u0��(1.2)

for u in a neighborhood of u0. This leads to the following local least-squares
problem: minimize

n∑
i=1

[
Yi −

p∑
j=1

{
aj + bj�Ui − u0�

}
Xij

]2
Kh�Ui − u0�(1.3)

for a given kernel function K and bandwidth h, where Kh�·� = K�·/h�/h.
The idea is due to Cleveland, Grosse and Shyu (1991). While this idea is very
simple and useful, it is implicitly assumed that the functions aj�·� possess
about the same degrees of smoothness and hence they can be approximated
equally well in the same interval. If the functions possess different degrees of
smoothness, suboptimal estimators are obtained via using the least-squares
method (1.3).
To formulate the above intuition in a mathematical framework, let us as-

sume that ap�·� is smoother than the rest of the functions. For concreteness,
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we assume that ap possesses a bounded fourth derivative so that the function
can locally be approximated by a cubic function,

ap�u� ≈ ap + bp�u− u0� + cp�u− u0�2 + dp�u− u0�3�(1.4)

for u in a neighborhood of u0. This naturally leads to the following weighted
least-squares problem:

n∑
i=1

[
Yi −

p−1∑
j=1

{
aj + bj�Ui − u0�

}
Xij

− {
ap + bp�Ui − u0� + cp�Ui − u0�2 + dp�Ui − u0�3

}
Xip

]2

×Kh1
�Ui − u0�	

(1.5)

Let âj�1� b̂j�1 �j = 1� 	 	 	 � p − 1� and âp�1� b̂p�1� ĉp�1� d̂p�1 minimize (1.5). The
resulting estimator âp�OS�u0� = âp�1 is called a one-step estimator. We will
show that the bias of the one-step estimator is O�h21� and the variance of
the one-step estimator is O��nh1�−1�. Therefore, using the one-step estimator
âp�OS�u0�, the optimal rate O�n−8/9� cannot be achieved.
To achieve the optimal rate, a two-step procedure has to be used. The first

step involves getting an initial estimate of a1�·�� 	 	 	 � ap−1�·�. Such an initial
estimate is usually undersmoothed so that the bias of the initial estimator is
small. Then, in the second step, a local least-squares regression is fitted again
via substituting the initial estimate into the local least-squares problem. More
precisely, we use the local linear regression to obtain a preliminary estimate
by minimizing

n∑
k=1

(
Yk −

p∑
j=1

�aj + bj�Uk − u0�	Xkj

)2
Kh0

�Uk − u0�(1.6)

for a given initial bandwidth h0 and kernel K. Let â1�0�u0�� 	 	 	 � âp�0�u0� de-
note the initial estimate of a1�u0�� 	 	 	 � ap�u0�. In the second step, we substi-
tute the preliminary estimates â1�0�·�� 	 	 	 � âp−1�0�·� and use a local cubic fit to
estimate ap�u0�, namely, minimize

n∑
i=1

(
Yi−

p−1∑
j=1
âj�0�Ui�Xij

− {ap+ bp�Ui−u0�+ cp�Ui−u0�2+dp�Ui−u0�3}Xip

)2

×Kh2
�Ui−u0�

(1.7)

with respect to ap� bp� cp� dp, where h2 is the bandwidth in the second step.
In this way, a two-step estimator of âp�TS�u0� of ap�u0� is obtained. We will
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show that the bias of the two-step estimator is of O�h42� and the variance
O��nh2�−1	, provided that

h0 = o�h22�� nh0/logh0 → ∞�
and nh30 → ∞. This means that when the optimal bandwidth h2 ∼ n−1/9 is
used, and the preliminary bandwidth h0 is between the rates O�n−1/3� and
O�n−2/9�, the optimal rates of convergence O�n−8/9� for estimating a2 can be
achieved.
Note that the condition nh30 → ∞ is only a convenient technical condition

based on the assumption of the sixth bounded moments of the covariates. It
plays little role in understanding the two-step procedure. If Xi is assumed to
have higher moments, the condition can be relaxed to be as weak as nh1+δ →
∞ for some small δ > 0. See Condition (7) in Section 4 for details. Therefore,
the requirement on h0 is very minimal. A practical implication of this is that
the two-step estimation method is not sensitive to the initial bandwidth h0.
This makes practical implementation much easier.
Another possible way to conduct variable smoothing for coefficient functions

is to use the following smoothing spline approach proposed by Hastie and
Tibshirani (1993):

n∑
i=1

[
Yi −

p∑
j=1
aj�Ui�Xij

]2
+

p∑
j=1
λj

∫ {
a′′j�u�

}2
du

for some smoothing parameters λ1� 	 	 	 � λp. While this idea is powerful, there
are a number of potential problems. First, there are p-smoothing parameters
to choose simultaneously. This is quite a task in practice. Second, computation
can be a challenge. An iterative scheme was proposed in Hastie and Tibshirani
(1993). Third, sampling properties are somewhat difficult to obtain. It is not
clear if the resulting method can achieve the same optimal rate of convergence
as the one-step procedure.
The above theoretical work is not purely academic. It has important prac-

tical implications. To validate our asymptotic claims, we use three simulated
example to illustrate our methodology. The sample size is n = 500 and p = 2.
Figure 1 depicts typical estimates of the one-step and two-step methods, both
using the optimal bandwidth for estimating a2�·� (For the two-step estimator,
we do not optimize simultaneously the bandwidths h0 and h2; rather, we only
optimize the bandwidth h2 for a given small bandwidth h0). Details of simula-
tions can be found in Section 5.2. In the first example, the bias of the one-step
estimate is too large since the optimal bandwidth h1 for a2 is so large that a1
can no longer to approximated well by a linear function in such a large neigh-
borhood. In the second example the estimated curve is clearly undersmoothed
by using the one-step estimate, since the optimal bandwidth for a2 has to be
very small in order to compromise for the bias arising from approximating a1.
The one-step estimator works reasonably well in the third example, though
the two-step estimator still improves somewhat the quality of the one-step
estimate.
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Fig. 1. Comparisons of the performance between the one-step and two-step estimator. Solid curves:
true functions; short-dashed curves: estimates based on the one-step procedure; long-dashed curves:
estimates based on the two-step procedure.

In real applications, we do not know in advance if ap is really smoother
than the rest of the functions. The above discussion reveals that the two-step
procedure can lead to significant gain when ap is smoother than the rest of
the functions. When ap has the same degree of smoothness as the rest of the
functions, we will demonstrate that the two-step estimation procedure has the
same performance as the one-step approach. Therefore, the two-step scheme
is always more reliable than the one-step approach. Details of implementing
the two-step method will be outlined in Section 2.

1.3. Outline of the paper. Section 2 gives strategies for implementing the
two-step estimators. The explicit formulas for our proposed estimators are
given in Section 3. Section 4 studies asymptotic properties of the one-step
and two-step estimators. In Section 5, we study finite sample properties of
the one-step and two-step estimators via some simulated examples. Two-step
techniques are further illustrated by an application to an environmental data
set. Technical proofs are given in Section 6.

2. Practical implementation of two-step estimators. As discussed in
the introduction, a one-step procedure is not optimal when coefficient func-
tions admit different degrees of smoothness. However, we do not know in ad-
vance which function is not smooth. To implement the two-step strategy, one
minimizes (1.6) with a small bandwidth h0 to obtain preliminary estimates
â1�0�Ui�� 	 	 	 � âp�0�Ui� for i = 1� 	 	 	 � n. With these preliminary estimates, one
can now estimate the coefficient functions aj�u0� by using an equation that is
similar to (1.7). Other techniques such as smoothing splines can also be used
in the second stage of fitting.
In practical implementation, it usually suffices to use local linear fits in-

stead of local cubic fits in the second step. This would result in computational
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savings. Our experience with local polynomial fits show that for practical pur-
pose the local linear fit with optimally chosen bandwidth performs comparably
with the local cubic fit with optimal bandwidth.
As discussed in the introduction, the two-step estimator is not very sensitive

to the choice of initial bandwidth as long as it is small enough so that the bias
in the first step smoothing is negligible. This suggests the following simple
automatic rule: use cross-validation or generalized cross-validation [see, e.g.,
Hoover, Rice, Wu and Yang (1997)] to select the bandwidth ĥ for the one-step
fit. Then, use h0 = 0	5 ĥ (say) as the initial bandwidth.
An advantage of the two-step procedure is that in the second step, the

problem is really a univariate smoothing problem. Therefore, one can apply
univariate bandwidth selection procedures such as cross-validation [Stone,
(1974)], preasymptotic substitution method [Fan and Gijbels (1995)], plug-
in bandwidth selector [Ruppert, Sheather and Wand (1995)] and empirical
bias method [Ruppert (1997)] to select the smoothing parameter. As discussed
before, the preliminary bandwidth h0 is not very crucial to our final estimates,
since for a wide range of bandwidth h0 the two-step method will achieve the
optimal rate. This is another benefit of the two-step procedure: bandwidth
selection problems become relatively easy.

3. Formulas for the proposed estimators. The solution to the least
squares problems (1.5)–(1.7) can easily be obtained. We take this opportunity
to introduce necessary notation. In the notation below, we use subscripts “0”,
“1” and “2,” respectively, to indicate the variables related to the initial, one-
step and two-step estimators. Let

X0 =



X11 X11�U1 − u0� · · · X1p X1p�U1 − u0�
			

			
	 	 	

			
			

Xn1 Xn1�Un − u0� · · · Xnp Xnp�Un − u0�


 �

Y = �Y1� 	 	 	 �Yn�T and

W0 = diag
(
Kh0

�U1 − u0�� 	 	 	 �Kh0
�Un − u0�

)
	

Then the solution to the least-squares problem (1.6) can be expressed as

âj�0�u0� = eT2j−1�2p�XT0W0X0�−1XT0W0Y� j = 1� 	 	 	 � p	(3.1)

Here and hereafter, we will always use notation ek�m to denote the unit vector
of length m with 1 at the kth position.
The solution to problem (1.5) can be expressed as follows. Let

X2 =



X1p X1p�U1 − u0� X1p�U1 − u0�2 X1p�U1 − u0�3
			

			
			

			

Xnp Xnp�Un − u0� Xnp�Un − u0�2 Xnp�Un − u0�3



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and

X3 =



X11 X11�U1 − u0� · · · X1�p−1� X1�p−1��U1 − u0�
			

			
	 	 	

			
			

Xn1 Xn1�Un − u0� · · · Xn�p−1� Xn�p−1��Un − u0�


 �

X1 = �X3�X2�� W1 = diag
(
Kh1

�U1 − u0�� 	 	 	 �Kh1
�Un − u0�

)
	

Then the solution to the least-squares problem (1.5) is given by

âp�1�u0� = eT2p−1�2p+2�XT1W1X1�−1XT1W1Y	(3.2)

Using the notation introduced above, we can express the two-step estima-
tor as

âp�2�u0� = �1�0�0�0�(XT2W2X2
)−1XT2W2�Y−V��(3.3)

where

W2 = diag �Kh2
�U1 − u0�� 	 	 	 �Kh2

(
Un − u0�

)
and V = �V1� 	 	 	 �Vn�T with Vi =

∑p−1
j=1 âj�0�Ui�Xij. Note that the two-step

estimator âp�2 is a linear estimator for given bandwidths h0 and h2, since it
is a weighted average of observations Y1� 	 	 	 �Yn. The weights are somewhat
complicated. To obtain these weights, let X�i� be the matrix X0 with u0 = Ui
and W�i� be the matrix W0 with u0 = Ui. Then

Vi =
p−1∑
j=1
Xije

T
2j−1�2p

(
XT�i�W�i�X�i�

)−1XT�i�W�i�Y	

Set

Bn = In −
p−1∑
j=1



X1je

T
2j−1�2p

(
XT�1�W�1�X�1�

)−1
XT

�1�W�1�

			

Xnje
T
2j−1�2p

(
XT�n�W�n�X�n�

)−1XT�n�W�n�


 	

Then

âp�2�u0� = �1�0�0�0��XT2W2X2�−1XT2W2BnY	(3.4)

4. Main results. We impose the following technical conditions:

1. EX2s
j <∞, for some s > 2� j = 1� 	 	 	 � p.

2. a′′j�·� is continuous in a neighborhood of u0, for j = 1� 	 	 	 � p. Further,
assume a′′j�u0� �= 0, for j = 1� 	 	 	 � p.

3. The function ap has a continuous fourth derivative in a neighborhood of u0.
4. r′′ij�·� is continuous in a neighborhood of u0 and r′′ij�u0� �= 0, for i� j =

1� 	 	 	 � p, where rij�u� = E�XiXj � U = u�.
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5. The marginal density of U has a continuous second derivative in some
neighborhood of u0 and f�u0� �= 0.

6. The functionK�t� is a symmetric density function with a compact support.
7. h0/h2 → 0 and h2 → 0� nhγ0/ log h0 → ∞, for any γ > s/�s − 2� with s

given in condition 1.

Throughout this paper, we will use the following notation. Let

µi =
∫
tiK�t�dt and νi =

∫
tiK2�t�dt

and � be the observed covariates vector, namely,

� = (
U1� 	 	 	 �Un�X11� 	 	 	 �X1n� 	 	 	 �Xp1� 	 	 	 �Xpn

)T
	

Set rij = rij�u0� = E�XiXj � U = u0�, for i� j = 1� 	 	 	 � p. Put

* = diag
(
σ2�U1�� 	 	 	 � σ2�Un�

)
�

αj�u� =
(
r1j�u�� 	 	 	 � r�p−1�j�u�

)T
�

αj = αj�u0� for j = 1� 	 	 	 � p

and

,i�u� = E
{�X1� 	 	 	 �Xi�T�X1� 	 	 	 �Xi� � U = u}�

,i = ,i�u0� for i = 1� 	 	 	 � p	

For the one step-estimator, we have the following asymptotic bias and vari-
ance.

Theorem 1. Under conditions 1–6, if h1 → 0 in such a way that nh1 → ∞,
then the asymptotic conditional bias of âp�OS�u0� is given by

bias
(
âp�OS�u0� � �

) = −h
2
1µ2
2rpp

p−1∑
j=1
rpja

′′
j�u0� + oP�h21�

and the asymptotic conditional variance of âp�OS�u0� is

var
(
âp�OS�u0� � �

) = σ2�u0�
(
λ2rpp + λ3αTp,−1

p−1αp
)

nh1f�u0�λ1rpp
(
rpp − αTp,−1

p−1αp
)�1+ op�1���

where λ1 = �µ4−µ22�2 λ2 = ν0µ24−2ν2µ2µ4+µ22ν4 and λ3 = 2µ2ν2µ4−2ν0µ22µ4−
µ22ν4 + ν0µ42.

The proofs of Theorem 1 and other theorems are given in Section 6. It is
clear that the conditional MSE of the one-step estimator âp�OS�u0� is only
OP�h41 + �nh1�−1	 which achieves the rate OP�n−4/5� when the bandwidth
h1 = O�n−1/5� is used. The bias expression above indicates clearly that the
approximation errors of functions a1� 	 	 	 � ap−1 are transmitted to the bias
of estimating ap. Thus, the one-step estimator for ap inherits nonnegligible
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approximation errors and is not optimal. Note that Theorem 1 continues to
hold if condition (3) is dropped. See also Theorem 3.
We now consider the asymptotic MSE for the two-step estimator.

Theorem 2. If conditions 1–7 hold, then the asymptotic conditional bias of
âp�TS�u0� can be expressed as

bias
(
âp�TS�u0� � �

)
= 1
4!
µ24 − µ6µ2
µ4 − µ22

a
�4�
p �u0�h42 −

µ2h
2
0

2rpp

p−1∑
j=1
a′′j�u0�rpj + oP�h42 + h20�

and the asymptotic conditional variance of âp�TS�u0� is given by

var�âp�TS�u0� � � � = �µ24ν0 − 2µ4µ2ν2 + µ22ν4�σ2�u0�
nh2f�u0��µ4 − µ22�2

eTp�p,
−1
p ep�p�1+ oP�1�		

By Theorem 2, the asymptotic variance of the two-step estimator is inde-
pendent of the initial bandwidth as long as nhγ0 → ∞, where γ is given in
condition 7. Thus, the initial bandwidth h0 should be chosen as small as pos-
sible subject to the constraint that nhγ0 → ∞. In particular, when h0 = o�h22�,
the bias from the initial estimator becomes negligible and the bias expression
for the two-step estimator is

1
4!
µ24 − µ6µ2
µ4 − µ22

a
�4�
p �u0�h42 + oP�h42�	

Hence, via taking the optimal bandwidth h2 of order n−1/9, the conditional
MSE of the two-step estimator achieves the optimal rate of convergence
OP�n−8/9�.

Remark 1. Consider the ideal situation where a1� 	 	 	 � ap−1 are known.
Then, one can simply run a local cubic estimator to estimate ap. The resulting
estimator has the asymptotic bias

1
4!
µ24 − µ6µ2
µ4 − µ22

a
�4�
p �u0�h42 + oP�h42�

and asymptotic variance

µ24ν0 − 2µ4µ2ν2 + µ22ν4
nh2f�u0�rpp�µ4 − µ22�2

σ2�u0� + oP
{�nh2�−1}	

This ideal estimator has the same asymptotic bias as the two-step estimator.
Further, this ideal estimator has the same order of variance as the two-step
estimator. In other words, the two-step estimator enjoys the same optimal rate
of convergence as the ideal one.
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We now consider the case that ap is as smooth as the rest of functions. In
technical terms, we assume that ap has only continuous second derivative.
For this case, a local linear approximation is used for the function ap in both
the one-step and two-step procedure. With some abuse of notation, we still
denote the resulting one-step and two-step estimators as âp�OS and âp�TS,
respectively.
Our technical results are to establish that the two-step estimator does not

lose its statistical efficiency. Indeed, it has the same performance as the one-
step procedure. Since it gains the efficiency when ap is smoother, we conclude
that the two-step estimator is preferable. These results give theoretical en-
dorsement of the proposed two-step method in Section 2.

Theorem 3. Under conditions 1, 2, 4–6, if h1 → 0 and nh1 → ∞, then the
asymptotic conditional bias of the one-step estimator is given by

bias
(
âp�OS�u0� � �

) = h21µ2
2
a′′p�u0��1+ oP�1��

and the asymptotic conditional variance of âp�OS�u0� is given by

var
(
âp�OS�u0� � �

) = σ2�u0�ν0
nh1f�u0�

eTp�p,
−1
p ep�p�1+ oP�1�		

We now consider the asymptotic behavior for the two-step estimator.

Theorem 4. Suppose that conditions 1, 2, 4–7 hold. Then we have the
asymptotic conditional bias

bias
(
âp�TS�u0� � �

) =
(
1
2
a′′p�u0�µ2h22 −

µ2h
2
0

2rpp

p−1∑
j=1
a′′j�u0�rpj

)
�1+ oP�1��

and the asymptotic variance

var
(
âp�TS�u0� � �

) = ν0σ
2�u0�

nh2f�u0�
eTp�p,

−1
p ep�p�1+ oP�1�		

Remark 2. The asymptotic bias of the two-step estimator is simplified as

1
2a

′′
2�u0�µ2h21�1+ oP�1���

by taking initial bandwidth h0 = o�h2�. Moreover, it has the same asymptotic
variance as that of the one-step estimator. In other words, the performance of
the one-step and two-step estimators is asymptotically identical.

Remark 3. When a1�t�� 	 	 	 � ap−1�t� are known, we can use the local linear
fit to find an estimate of ap. Such an ideal estimator possesses the bias

1
2a

′′
p�u0�µ2h22

{
1+ oP�1�

}
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and variance

σ2�u0�ν0
nh2f�u0�rpp

{
1+ oP�1�

}
	

So, both one-step and two-step estimators have the same order of MSE as the
ideal estimator. However, the variance of the ideal estimator is typically small.
Unless �X1� 	 	 	 �Xp−1� andXp are uncorrelated givenU = u0, the asymptotic
variance of the ideal estimator is always smaller.

5. Simulations and applications. In this section, we illustrate our
methodology via an application to an environmental data set and via sim-
ulations. Throughout this section, we use the Epanechnikov kernal K�t�=
0	75�1− t2�+.

5.1. Applications to an environmental data set. We now illustrate the
methodology via an application to an environmental data set. The data set
used here consists of a collection of daily measurements of pollutants and
other environmental factors in Hong Kong between January 1, 1994 and
December 31, 1995 (courtesy of Professor T. S. Lau). Three pollutants, sul-
phur dioxide (in µg/m3), nitrogen dioxide (in µg/m3) and dust (in µg/m3),
are considered here. Table 1 summarizes their correlation coefficients. The
correlation between the dust level and NO2 is quite high. Figure 2 de-
picts the marginal distributions of the level of pollutants in the summer
(April 1–September 30) and winter seasons (October 1–March 31). The level
of pollutants in the summer season (raining very often) tends to be lower and
has smaller variation.
An objective of the study is to understand the association between the level

of the pollutants and the number of daily total hospital admissions for cir-
culatory and respiratory problems and to examine the extent to which the
association varies over time. We consider the relationship among the number
of daily hospital admissions �Y� and level of pollutants SO2, NO2 and dust,
which are denoted by X2�X3 and X4, respectively. We took X1 = 1 as the
intercept term and U = t = time. The varying coefficient model

Y = a1�t� + a2�t�X2 + a3�t�X3 + a4�t�X4 + ε(5.1)

Table 1
Correlation coefficients among pollutants

Sulphur dioxide Nitrogen dioxide Dust

Sulphur dioxide 1.000000 0.402452 0.281008

Nitrogen dioxide 1.000000 0.781975

Dust 1.000000
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Fig. 2. Density estimation for the distributions of pollutants. Solid curves are for the summer
season and dashed curves are for the winter season.

is fitted to the given data. The two-step method is employed. An initial band-
width h0 = 0	06 ∗ 729 (six percent of the whole interval) was chosen. As an-
ticipated, the results do not alter much with different choices of initial band-
widths. The second-stage bandwidths h2 were chosen, respectively, 25%, 25%,
30% and 30% of the interval length for the functions a1� 	 	 	 � a4. Figure 3 de-
picts the estimated coefficient functions. They describe the extent to which
the coefficients vary with time. Two short-dashed curves indicate pointwise
95% confidence intervals with bias ignored. The standard errors are computed
from the second-stage local cubic regression. See Section 4.3 of Fan and Gijbels
(1996) on how to compute the estimated standard errors from local polynomial
regression. The figure shows that there is strong time effect on the coefficient
functions. For comparison purposes, in Figure 3 we also superimpose the es-
timates (long-dashed curves) using the one-step procedure with bandwidths
25%, 25%, 30% and 30% of the time interval for a1� 	 	 	 � a4, respectively.
To compare the performance between the one-step and two-step methods,

we define the relative efficiency between the one-step and the two-step meth-
ods via computing{

RSSh�one-step� − RSSh�two-step�
}/
RSSh�two-step��

where RSSh (one-step) and RSSh (two-step) are the residual sum of squares
for the one-step procedure using the bandwidth h and the two-step method
using the same bandwidth h in the second stage, respectively. Figure 4a shows
that the two-step method has smaller RSS than that of the one-step method.
The gain is more pronounced as the bandwidth increases. This can be in-
tuitively explained as follows. As bandwidth increases, at least one of the
components would have nonnegligible biases.
Pollutants may not have an immediate effect on circulatory and respiratory

systems. A natural question arises if there is any time lag in the response
variable. To study this question, we fit model (5.1) for each time lag τ using
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Fig. 3. The estimated coefficient functions. The solid- and long-dashed curves are for the two-step
and one-step methods, respectively. Two short-dashed curves indicate pointwise 95% confidence
intervals with bias ignored.

the data {
Y�t+ τ��X2�t��X3�t��X4�t�� t = 1�2� 	 	 	 �

}
	

Figure 4b presents the resulting residuals sum of squares for each time lag.
As τ gets larger, so does the residuals sum of squares. This in turn suggests
no evidence for time delay in the response variable. We now examine how the
expected number of hospital admissions changes, over time, when pollutants
levels are set at their averages. Namely, we plot the function

Ŷ�t� = â1�t� + â2�t�X̄2 + â3�t�X̄3 + â4�t�X̄4

against t, where the estimated coefficient functions were obtained by the two-
step approach. Figure 4c presents the result. It indicates an overall increasing
trend in the number of hospital admissions for respiratory and circulatory
problems. A seasonal pattern can also be seen. These features are not available
in the usual parametric least-squares models.
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Fig. 4. (a) Comparing the relative efficiency between the one-step and the two-step method.
(b) Testing if there is any time delay in the response variable. (c) The expected number of hos-
pital admissions over time when pollutant levels are set at their averages.

5.2. Simulations. We use the following three examples to illustrate the
performance of our method:

Example 1. Y = sin�60U�X1 + 4U�1−U�X2 + ε.
Example 2. Y = sin�6πU�X1 + sin�2πU�X2 + ε.
Example 3. Y = sin

(
8π�U− 0	5�)X1

+ (
3	5

[
exp�−�4U− 1�2	 + exp�−�4U− 3�2	]− 1	5

)
X2 + ε�

where U follows a uniform distribution on [0, 1] and X1 and X2 are normally
distributed with correlation coefficient 2−1/2. Further, the marginal distribu-
tions of X1 and X2 are the standard normal and ε, U and �X1�X2� are inde-
pendent. The random variable ε follows a normal distribution with mean zero
and variance σ2. The σ2 is chosen so that the signal-to-noise ratio is about
5 � 1, namely,

σ2 = 0	2 var
{
m�U�X1�X2�

}
with m�U�X1�X2� = E�Y � U�X1�X2�	

Figure 5 shows the varying coefficient functions a1 and a2 for Examples 1–3.
For each of the above examples, we conducted 100 simulations with sample

size n = 250� 500, 1000. Mean integrated squared errors for estimating a2 are
recorded. For the one-step procedure, we plot the MISE against h1 and hence
the optimal bandwidth can be chosen. For the two-step procedure, we choose
some small initial bandwidth h0 and then compute the MISE for the two-
step estimator as a function of h2. Specifically, we choose h0 = 0	03� 0.04 and
0.05, respectively, for Examples 1, 2 and 3. The optimal bandwidths h1 and h2
were used to compute the resulting estimators presented in Figure 1. Among
100 samples, we select the one such that the two-step estimator attains the
median performance. Once the sample is selected, the one-step estimate and
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Fig. 5. Varying coefficient functions. Solid curves are for a1�·� and dashed curves are for a2�·�.

the two-step estimate are computed. Figure 1 depicts the resulting estimate
based on n = 500.
Figure 6 depicts the MISE as a function of bandwidth. The MISE curves for

the two-step method are always smaller than those for the one-step approach
for the three examples that we tested. This is in line with our asymptotic
theory that the two-step approach outperforms the one-step procedure if the
initial bandwidth is correctly chosen. The improvement of the two-step estima-
tor is quite substantial if the optimal bandwidth is used (in comparison with
the one-step approach using the optimal bandwidth). Further, for the two-step
estimator, the MISE curve is flatter than that for the one-step method. This
is turn reveals that the bandwidth for the two-step estimator is less crucial
than that for the one-step procedure. This is an extra benefit of the two-step
procedure.

6. Proofs. The proof of Theorem 3 (and Theorem 4) is similar to that of
Theorem 1 (and Theorem 2). Thus, we only prove Theorems 1 and 2. When
the asymptotic conditional bias and variance are calculated for the two-step
procedure âp�TS�u0�, the following lemma on the uniform convergence will be
used.

Lemma 1. Let �X1�Y1�� 	 	 	 � �Xn�Yn� be i.i.d random vectors, where the
Yi’s are scalar random variables. Assume further that E�y�3 < ∞ and
supx

∫ �y�sf�x�y�dy < ∞, where f denotes the joint density of �X�Y�. Let K
be a bounded positive function with a bounded support, satisfying a Lipschitz
condition. Then

sup
x∈D

∣∣∣∣∣n−1
n∑
i=1

{
Kh�Xi − x�Yi −E

[
Kh�Xi − x�Yi

]}∣∣∣∣∣ = OP
[�nh/ log�1/h�	−1/2]

provided that n2ε−1h −→ ∞ for some ε < 1− s−1.
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Fig. 6. MISE as a function of bandwidth. Solid curve: one-step procedure; dashed curve: two-step
procedure.

Proof. This follows immediately from the result obtained by Mack and
Silverman (1982).
The following notation will be used in the proof of the theorems. Let

S =
(
S11 S12
ST12 S22

)

with

S11 = ,p−1 ⊗
(
µ0 0
0 µ2

)
� S12 = αp ⊗

(
µ 0 µ2 0
0 µ2 0 µ4

)

and

S22 = rpp



µ0 0 µ2 0
0 µ2 0 µ4
µ2 0 µ4 0
0 µ4 0 µ6


 �
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where ⊗ denotes the Kronecker product. Let S̃ be the matrix similar to S
except replacing µi by νi. Set

S∗
�i� = ,p�Ui� ⊗

(
µ0 0

0 µ2

)
� S∗

�0� = S∗
�i��Ui=u0� Q = ,p ⊗

(
1 0

0 0

)

and

βT�i� =
p∑
j=1
a′′j�Ui�µ2�αTj �Ui�� rpj�Ui�� ⊗ �1�0�� α∗T = �αTp� rpp� ⊗ �1�0�	

Put

A = Ip−1 ⊗
(
1 0

0 h1

)
� G = Ip ⊗

(
1 0

0 h0

)

and

D =



1 0 0 0

0 h1 0 0

0 0 h21 0

0 0 0 h31


 � D2 =



1 0 0 0

0 h2 0 0

0 0 h22 0

0 0 0 h31


 	

We are now ready to prove our results.

Proof of Theorem 1. First, let us calculate the asymptotic conditional
bias of âp�1�u0�. Note that by Taylor’s expansion, we have

Y = X1

(
a1�u0�� a′1�u0�� 	 	 	 � ap−1�u0�� a′p−1�u0�� ap�u0�� a′p�u0��

1
2
a′′p�u0��

1
3!
a′′′p �u0�

)T

+ 1
2

p−1∑
j=1



a′′j�ξ1j��U1 − u0�2X1j

			

a′′j�ξnj��Un − u0�2Xnj


+ 1

4!



a
�4�
p �η1��U1 − u0�4X1p

			

a
�4�
p �ηn��Un − u0�4Xnp


+ �

where � = �ε1� 	 	 	 εn�T� ξij and ηi are between Ui and u0 for i = 1� 	 	 	 n� j =
1� 	 	 	 � p− 1. Thus,

âp�1�u0� = ap�u0�

+ 1
2

p−1∑
j=1
eT2p−1�2p+2

(
XT1W1X1

)−1XT1W1



a′′j�ξ1j��U1 − u0�2X1j

			

a′′j�ξnj��Un − u0�2Xnj



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+ 1
4!e

T
2p−1�2p+2

(
XT1W1X1

)−1XT1W1



a
�4�
p �η1��U1 − u0�4X1p

			

a
�4�
p �ηn��Un − u0�4Xnp




+ eT2p−1�2p+2
(
XT1W1X1

)−1XT1W1�	

Obviously,

XT1W1X1 =
(
XT3W1X3 XT3W1X2

XT2W1X3 XT2W1X2

)
	

By calculating the mean and variance, one can easily get

XT3W1X3 = nf�u0�AS11A�1+ oP�1���
XT3W1X2 = nf�u0�AS12D�1+ oP�1��

and

XT2W1X2 = nf�u0�DS22D�1+ oP�1��	(6.1)

Combining the last three asymptotic expressions leads to

XT1W1X1 = nf�u0�diag�A�D�Sdiag�A�D��1+ oP�1��	
Similarly, we have

XT3W1



a′′j�ξ1j��U1 − u0�2X1j

			

a′′j�ξnj��Un − u0�2Xnj




= nf�u0�h21a′′j�u0�A
(
αj ⊗ �1�0�T)µ2�1+ oP�1��

and

XT2W1



a′′j�ξ1j��U1 − u0�2X1j

			

a′′j�ξnj��Un − u0�2Xnj


 = nf�u0�h21a′′j�u0�D




rpjµ2

0

rpjµ4

0


 �1+ oP�1��	

Thus,

XT1W1



a′′j�ξ1j��U1 − u0�2X1j

			

a′′j�ξnj��Un − u0�2Xnj




= nf�u0�h21a′′j�u0�diag�A�D�

× (
αTj ⊗ �1�0�µ2� rpjµ2�0� rpjµ4�0

)T�1+ oP�1��	
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So the asymptotic conditional bais of âp�1�u0� is given by

bias
(
âp�1�u0� � �

)
= 1

2h
2
1

p−1∑
j=1
a′′j�u0�eT2p−1�2p+2S−1�αTj ⊗�1�0�µ2� rpjµ2�0� rpjµ4�0�T�1+ oP�1��	

Using the properties of the Kronecker product we have

bias�âp�1�u0� � � �

= h21µ2

2�rpp − αTp,−1
p−1αp�rpp

×
p−1∑
j=1

(
rpjα

T
p,

−1
p−1αp − rppαTp,−1

p−1αj
)
a′′j�u0��1+ oP�1��

= −h
2
1µ2
2rpp

p−1∑
j=1
rpja

′′
j�u0� + oP�h21�	

We now calculate the asymptotic variance. Using an asymptotic argument
similar to the above, it is easy to calculate that the asymptotic conditional
variance of âp�1�u0� is given by

var
(
âp�1�u0� � �

)
= eT2p−1�2p+2�XT1W1X1�−1XT1W1*W1X1�XT1W1X1�−1e2p−1�2p+2

= σ2�u0�
nh1f�u0�

eT2p−1�2p+2S
−1S̃S−1e2p−1�2p+2�1+ oP�1��	

By using the properties of the Kronecker product, it follows that

var
(
âp�1�u0� � �

) = σ2�u0��λ2rpp + λ3αTp,−1
p−1αp�

nh1f�u0�λ1rpp�rpp − αTp,−1
p−1αp�

�1+ oP�1��	

where λ1=�µ4−µ22�2� λ2= ν0µ24−2ν2µ2µ4+µ22ν4� λ3=2µ2ν2µ4−2ν0µ
2
2µ4−

µ22ν4 + ν0µ42. This establishes the result in Theorem 1. ✷

Proof of Theorem 2. We first compute the asymptotic conditional bias.
Note that by Taylor’s expansion, one obtains

Y = X�i��a1�Ui�� a′1�Ui�� 	 	 	 � ap�Ui�� a′p�Ui��T

+ 1
2

p∑
j=1



a′′j�ξ1j��U1 −Ui�2X1j

			

a′′j�ξnj��Un −Ui�2Xnj


+ �

= X�i��a1�Ui�� a′1�Ui�� 	 	 	 � ap�Ui�� a′p�Ui��T
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+ 1
2

p∑
j=1



a′′j�Ui��U1 −Ui�2X1j

			

a′′j�Ui��Un −Ui�2Xnj




+ 1
2

p∑
j=1



�a′′j�ξ1j� − a′′j�Ui���U1 −Ui�2X1j

			

�a′′j�ξnj� − a′′j�Ui���Un −Ui�2Xnj


+ ��

where ξkj is between Ui and Uk. Thus, for l = 1� 	 	 	 � p− 1,

âl�0�Ui� = al�Ui�

+ 1
2e
T
2l−1�2p�XT�i�W�i�X�i��−1XT�i�W�i�

p∑
j=1



a′′j�Ui��U1 −Ui�2X1j

			

a′′j�Ui��Un −Ui�2Xnj




+ 1
2e
T
2l−1�2p�XT�i�W�i�X�i��−1XT�i�W�i�

×
p∑
j=1



�a′′j�ξ1j� − a′′j�Ui���U1 −Ui�2X1j

			

�a′′j�ξnj� − a′′j�Ui���Un −Ui�2Xnj




+ eT2l−1�2p�XT�i�W�i�X�i��−1XT�i�W�i��	

By Lemma 1, we have

XT�i�W�i�X�i� = nf�Ui�GS∗
�i�G�1+ oP�1��(6.2)

and

XT�i�W�i�
p∑
j=1



a′′j�Ui��U1 −Ui�2X1j

			

a′′j�Ui��Un −Ui�2Xnj


 = nf�Ui�h20Gβ�i��1+ oP�1��	(6.3)

Note that in our applications below, we only consider those Ui’s which are
in a neighborhood of u0. By the continuity assumption, the term oP(1) holds
uniformly in i such that Ui falls in the neighborhood of u0. Combining (6.2)



VARYING COEFFICIENT MODELS 1511

and (6.3), we have

1
2e
T
2l−1�2p�XT�i�W�i�X�i��−1XT�i�W�i�

p∑
j=1



a′′j�Ui��U1 −Ui�2X1j

			

a′′j�Ui��Un −Ui�2Xnj




= 1
2h

2
0e
T
2l−1�2pS

∗−1
�i� β�i��1+ oP�1��	

Note thatK has a bounded support. From the last expression and the uniform
continuity of functions a′′j�·� in a neighborhood of u0, it follows that

E�âl�0�Ui� − al�Ui� � � � = 1
2h

2
0e
T
2l−1�2pS

∗−1
�i� β�i��1+ oP�1��	(6.4)

Since




Y1 −
p−1∑
j=1
âj�0�U1�X1j

			

Yn −
p−1∑
j=1
âj�0�Un�Xnj




=



ap�U1�X1p

			

ap�Un�Xnp




+




p−1∑
j=1

�aj�U1� − âj�0�U1��X1j

			

p−1∑
j=1

�aj�Un� − âj�0�Un��Xnj




+ ��

it follows from (3.3) that

âp�2�u0� = ap�u0� + 1
4!�1�0�0�0�

(
XT2W2X2

)−1XT2W2

×



a
�4�
p �η1��U1 − u0�4X1p

			

a
�4�
p �ηn��Un − u0�4Xnp



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+ �1�0�0�0��XT2W2X2�−1XT2W2




p−1∑
j=1

(
aj�U1� − âj�0�U1�

)
X1j

			

p−1∑
j=1

(
aj�Un� − âj�0�Un�

)
Xnj




+ �1�0�0�0��XT2W2X2�−1XT2W2ε

≡ ap�u0� + 1
4! J̃1 + J̃2 + �1�0�0�0��XT2W2X2�−1XT2W2ε	

By simple calculation we have

E�J̃1 � � � = h42a�4�p �u0��1�0�0�0�S−1
22




rppµ4

0

rppµ6

0


 �1+ oP�1��

= h42a�4�p �u0�
(

µ4

µ4 − µ22
�0�− µ2

µ4 − µ22
�0
)



µ4

0

µ6

0


 �1+ oP�1��

= µ24 − µ2µ6
µ4 − µ22

h42a
�4�
p �u0��1+ oP�1��	

By (6.4), we have

E�J̃2 � � � = �1�0�0�0�(XT2W2X2
)−1XT2W2

×




p−1∑
j=1
E
(�aj�U1� − âj�0�U1�� � �

)
X1j

			

p−1∑
j=1
E��aj�Un� − âj�0�Un�� � � �Xnj



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= − 1
2h

2
0�1�0�0�0�

(
XT2W2X2

)−1XT2W2




p−1∑
j=1
eT2j−1�2pS

∗−1
�1� β�1�X1j

			

p−1∑
j=1
eT2j−1�2pS

∗−1
�n� β�n�Xnj




× �1+ oP�1��

= − h20
2rpp

(
µ4

µ4 − µ22
�0�− µ2

µ4 − µ22
�0
)



p−1∑
j=1
eT2j−1�2pS

∗−1
�0� β�0�rpj

0

p−1∑
j=1
eT2j−1�2pS

∗−1
�0� β�0�rpjµ2




× �1+ oP�1��

= − h20
2rpp

p−1∑
j=1
eT2j−1�2pS

∗−1
�0� β�0�rpj�1+ oP�1��	

Therefore, by (6.5) we obtain

bias
(
âp�2�u0� � �

)
=
(
− h20
2rpp

p−1∑
j=1
eT2j−1�2pS

∗−1
�0� β�0�rpj +

µ24 − µ2µ6
4!�µ4 − µ22�

a
�4�
p �u0�h42

)
�1+ oP�1��	

By using the properties of the Kronecker product, we have

bias
(
âp�2�u0� � �

)
=
(
1
4!
µ24 − µ6µ2
µ4 − µ22

a
�4�
p �u0�h42 −

µ2h
2
0

2rpp

p∑
j=1
a′′j�u0��αTp�0�,−1

p

(
αj

rpj

))

× �1+ oP�1��

= 1
4!
µ24 − µ6µ2
µ4 − µ22

a
�4�
p �u0�h42 −

µ2h
2
0

2rpp

p−1∑
j=1
a′′j�u0�rpj + oP�h42 + h20�	

This proves the bias expression in Theorem 2.
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We now calculate the asymptotic variance. Recall Bn defined at the end of
Section 3. Denote by H = I−Bn. By (3.4), we have

var
(
âp�2�u0� � �

)
= �1�0�0�0��XT2W2X2�−1XT2W2*W2X2

(
XT2W2X2

)−1
× �1�0�0�0�T

− 2�1�0�0�0�(XT2W2X2
)−1XT2W2H*W2X2

(
XT2W2X2

)−1
× �1�0�0�0�T

+ �1�0�0�0�(XT2W2X2
)−1XT2W2H*H

TW2X2
(
XT2W2X2

)−1
× �1�0�0�0�T	

(6.5)

Using similar arguments as before, we can show that

�1�0�0�0�(XT2W2X2
)−1XT2W2*W2X2

(
XT2W2X2

)−1�1�0�0�0�T
= µ24ν0 − 2µ4µ2ν2 + µ22ν4
nh2f�u0�rpp

(
µ4 − µ22

)2σ2�u0��1+ oP�1��	
(6.6)

Since

H*W2X2 =
p−1∑
j=1



X1je

T
2j−1�2p

(
XT�1�W�1�X�1�

)−1XT�1�W�1�*W2X2

			

Xnje
T
2j−1�2p

(
XT�n�W�n�X�n�

)−1XT�n�W�n�*W2X2




by Lemma 1, we have

XT�i�W�i�*W2X2 = nf�Ui�σ2�Ui�Kh2
�Ui − u0�GT2p×4� �i�D2�1+ oP�1���

where

T2p×4� �i� =
(
ũk� l� �i�

)
2p×4

� 1 ≤ k ≤ 2p� 0 ≤ l ≤ 3

for k = 1� 	 	 	 � p,

ũ2k−1�0� �i� = rkp�Ui�� ũ2k−1�1� �i� = rkp�Ui�
(
Ui − u0
h2

)
+ oP�1��

ũ2k−1�2� �i� = rkp�Ui�
(
Ui − u0
h2

)2
+ oP�1�

(
Ui − u0
h2

)
+ oP�1��

ũ2k−1�3� �i� = rkp�Ui��
(
Ui − u0
h2

)3
+ oP�1�

(
Ui − u0
h2

)2

+ oP�1�
(
Ui − u0
h2

)
+ oP�1��
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ũ2k�0� �i� = oP�1�� ũ2k�1� �i� = oP�1�
(
Ui − u0
h2

)
+ oP�1��

ũ2k�2� �i� = oP�1�
(
Ui − u0
h2

)2
+ oP�1�

(
Ui − u0
h2

)
+ oP�1�

and

ũ2k�3� �i� = oP�1�
(
Ui − u0
h2

)3
+ oP�1�

(
Ui − u0
h2

)2

+ oP�1�
(
Ui − u0
h2

)
+ oP�1�	

Thus, we obtain

XT2W2H*W2X2 =
nf�u0�
h2

p−1∑
j=1
eT2j−1�2pS

∗−1
�0� α

∗rpjσ
2�u0�D2

×




ν0 0 ν2 0

0 ν2 0 ν4

ν2 0 ν4 0

0 ν4 0 ν6


D2�1+ oP�1��	

This and (6.1) together yield

�1�0�0�0�(XT2W2X2
)−1XT2W2H*W2X2

(
XT2W2X2

)−1�1�0�0�0�T
= µ24ν0 − 2µ4µ2ν2 + µ22ν4
nh2f�u0�r2pp

(
µ4 − µ22

)2
×
p−1∑
j=1
eT2j−1�2pS

∗−1
�0� α

∗rpjσ
2�u0��1+ oP�1��	

(6.7)

Let

Xk�i� =
(
Xk1�Xk1�Uk −Ui�� 	 	 	 �Xkp�Xkp�Uk −Ui�

)T
and

XT�i� =
(
X1�i��X2�i�� 	 	 	 �Xn�i�

)
	

Then we have

XT2W2H*H
TW2X2 = �vrs�4×4� 0 ≤ r� s ≤ 3�
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where

vrs =
n∑
i=1

n∑
l=1

{
XipXlp�Ui − u0�r�Ul − u0�sKh2

�Ui − u0�Kh2
�Ul − u0�

×
p−1∑
j=1
Xije

T
2j−1�2p

(
XT�i�W�i�X�i�

)−1XT�i�W�i�*

×
(p−1∑
m=1

Xlme
T
2m−1�2p

(
XT�l�W�l�X�l�

)−1XT�l�W�l�

)T}

=
p−1∑
j=1

p−1∑
m=1

n∑
k=1

{ n∑
i=1
XipXij�Ui − u0�reT2j−1�2p

(
XT�i�W�i�X�i��−1Xk�i�Kh2

× �Ui − u0�Kh0
�Uk −Ui�σ2�Uk�

}

×
{ n∑
l=1
XlpXlm�Ul − u0�sXT

k�l�
(
XT�l�W�l�X�l�

)−1
e2m−1�2pKh2

×�Ul − u0�Kh0
�Uk −Ul�

}
	

Using Lemma 1 and tedious calculation, we obtain

XT2W2H*H
TW2X2

= nf�u0�σ2�u0�
h2

p−1∑
j=1

p−1∑
m=1

rpjrpme
T
2j−1�2pS

∗−1
�0� QS

∗−1
�0� e2m−1�2pD2

×




ν0 0 ν2 0

0 ν2 0 ν4

ν2 0 ν4 0

0 ν4 0 ν6


D2�1+ oP�1��	

The combination of this and (6.1) gives

�1�0�0�0�(XT2W2X2
)−1XT2W2H*H

TW2X2
(
XT2W2X2

)−1�1�0�0�0�T
= µ24ν0 − 2µ4µ2ν2 + µ22ν4
nh2f�u0�r2pp�µ4 − µ22�2

×
p−1∑
j=1

p−1∑
m=1

rpjrpme
T
2j−1�2pS

∗−1
�0� QS

∗−1
�0� e2m−1�2pσ

2�u0��1+ oP�1��	

(6.8)
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Substituting (6.7)–(6.9) into (6.6), we have

var
(
âp�2�u0� � �

) = µ24ν0 − 2µ4µ2ν2 + µ22ν4
nh2f�u0�r2pp�µ4 − µ22�2

×
(
rpp +

p−1∑
j=1

p−1∑
m=1

rpjrpme
T
2j−1�2pS

∗−1
�0� QS

∗−1
�0� e2m−1�2p

− 2
p−1∑
j=1
rpje

T
2j−1�2pS

∗−1
�0� α

∗
)

× σ2�u0��1+ oP�1��	
Using the properties of the Kronecker product we get

var
(
âp�2�u0� � �

)
=
(
µ24ν0 − 2µ4µ2ν2 + µ22ν4

)
σ2�u0�

nh2f�u0�r2pp�µ4 − µ22�2

×
(
rpp + r2ppeTp�p,−1

p ep�p − (
αTp� rpp

)
,−1
p

(
αp

rpp

))
�1+ oP�1��	

Note that ,−1
p �αTp� rpp�T = ep�p. This results in Theorem 2. ✷
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