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ASYMPTOTIC DISTRIBUTION OF THE REDUCED RANK
REGRESSION ESTIMATOR UNDER GENERAL CONDITIONS

BY T. W. ANDERSON

Stanford University

In the regression model Y � � � BX � Z with Z unobserved, EEZ � 0
� ˆ �1and EEZZ � � , the least squares estimator of B is B � S S . If theZZ Y X X X

rank of B is known to be k less than the dimensions of Y and X, the
ˆreduced rank regression estimator of B, say B , depends on the first kk

ˆcanonical variates of Y and X. The asymptotic distribution of B isk
ˆobtained and compared with the asymptotic distribution of B. The advan-

ˆtage of B is characterized.k

1. Introduction. Reduced rank regression, introduced by Anderson
Ž .1951a , has been applied in many disciplines, including econometrics, time

Ž .series analysis and signal processing. See, for example, Johansen 1995 for
use of reduced rank regression in estimation of cointegration in economic

Ž . Ž .time series, Tsay and Tiao 1985 , and Ahn and Reinsel 1988 for applica-
Ž .tions in stationary processes and Stoica and Viberg 1996 for utilization in

signal processing. In general the estimated reduced rank regression is a
better estimator in a regression model than the unrestricted estimator. This
paper shows exactly in what sense the reduced rank estimator is better.

A general model for the dependence of a vector of p dependent variables Y�

on a vector of q independent variables X is�

1.1 Y � � � BX � Z ,Ž . � � �

where the unobservable disturbance or error Z is distributed independently�

of X with EEZ � 0 and EEZ Z� � � . If the rank of B is k, only k �� � � � ZZ
Ž .min p, q linear combinations of the components of X suffice to predict or

‘‘explain’’ Y. These linear combinations are the canonical variates of X
Ž . Ž .defined below . The model where k � min p, q is called a reduced rank
regression. The independent variables may be nonstochastic or stochastic.

Ž . Ž .On the basis of a sample y , x , . . . , y , x an estimator of B is desired.1 1 N N
Ž .Anderson 1951a found the maximum likelihood estimator of B of preas-

signed rank k when x , . . . , x are considered nonstochastic and z , . . . , z1 N 1 N
Ž . Ž � � .�are independently distributed according to N 0, � . If Y , X have a jointZZ � �

Ž � � .� Ž � � .�normal distribution with mean vector EE Y , X � � , � and covariance� � Y X
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matrix

Y � � � �� Y Y Y Y X� � � �1.2 EE Y � � , X � � � � � ,Ž . Ž .� Y � XX � � � �� X X Y X X

Ž � � .�then the density of Y , X is� �

� �� Y Y Y Xy Yn ,ž / �ž / ž /x � �X X Y X X1.3Ž .
� �� n y � � B x � � , � n x � , � ,Ž . Ž .Y X ZZ X X X

where

1.4 B � � ��1 ,Ž . Y X X X

1.5 � � � � B� B� � � � � ��1 � .Ž . ZZ Y Y X X Y Y Y X X X X Y

Ž . Ž .The maximum likelihood estimator of B of rank k in model 1.3 , 1.4 and
Ž . Ž .1.5 is the same as the maximum likelihood estimator in model 1.1 with
x , . . . , x nonstochastic. We call this estimator the reduced rank regression1 N
estimator. This estimator can be defined in terms of the canonical variates.

ˆ ˆ ˆ �One form is B � S � � , where S is the sample covariance between Yk Y X 1 1 Y X
ˆand X and � consists of the coefficients of the first k canonical variates of X;1

Ž .other forms are given in 2.13 below.
The major objective of this paper is to obtain the asymptotic distribution of

B̂ for x , . . . , x nonstochastic and for x , . . . , x observations on a randomk 1 N 1 N
Ž .Ž .�vector with EE X � � and EE X � � X � � � � under the assumptionX X X

that X and Z are independent. In fact, the conditions for the asymptotic� �

normal distribution of the reduced rank regression estimator are the same as
for the asymptotic distribution of the ordinary last squares estimator of B. A

ˆsecond aim of this paper is to relate the asymptotic distribution of B to thek
ˆ ˆ ˆasymptotic distribution of R, A and �, the sample canonical correlations and

ˆcoefficients of the canonical variables. In asymptotics B is a simple functionk
of the sample covariance matrix of Y and X expressed in terms of the
canonical variables.

ˆThe asymptotic distribution of B has been obtained by Ryan, Hubert,k
Ž . Ž .Carter, Sprague and Parrott 1992 , Schmidli 1996 , Stoica and Viberg

Ž . Ž .1996 and Reinsel and Velu 1998 by use of the expected Fisher information
on the assumption that Z is normally distributed. These studies are summa-�

rized and compared to the results of this paper in Section 5.

2. Canonical correlations and variables. To express and develop the
results it is convenient to review the canonical correlations and variables.

�Ž . � Ž .More details are given in Anderson 1984 , Chapter 12 and Anderson 1999 ,
for example. The equations defining the canonical correlations and variates
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Ž .in the population are

�� � �Y Y Y X �2.1 � 0,Ž . �ž /ž /� �� �X Y X X

where � satisfies

�� � �Y Y Y X2.2 � 0,Ž .
� �� �X Y X X

and
2.3 �� � � � 1, �� � � � 1.Ž . Y Y X X

The number of positive canonical correlations is the rank of � , which isY X
the rank of B. The canonical correlations are ordered � � ��� � � � �� �1 p p
��� � �� with q � p additional roots of 0 if q � p. We shall assume that the1

Ž . Ž .rank of � is k and � � ��� � � ; then the solution of 2.1 and 2.3 forY X 1 k
such a value of � is unique except for multiplication by �1. To eliminate this

�indeterminacy we shall require that � � 0, i � 1, . . . , k. Since the matrixi i
Ž .A � � , . . . , � is nonsingular, the components of Y can be numbered in1 p

�such a way that the ith component of � is nonzero.i
Ž . Ž . �1 Ž . �1From 2.1 we obtain � � 1�� � � � , � � 1�� � � �,X X X Y Y Y Y X

2.4 � 2 � � � � ��1 � � � B� B�� ,Ž . Y Y Y X X X X Y X X

2.5 � 2 � � � � ��1 � � .Ž . X X X Y Y Y X Y

Ž .The solutions of 2.1 corresponding to � , . . . , � can be assembled as A �1 p
Ž . Ž .� , . . . , � and � , . . . , � . If q � p, there are q � p additional solutions1 p 1 p
Ž . Ž . Ž .� , . . . , � to 2.1 with � � 0. Let � � � , . . . , � and let R �p�1 q 1 q

Ž . Ž .diag � , . . . , � , R � R, 0 . Then the solutions can be chosen to satisfy1 p

� � � A� � A A� � �Y Y Y X Y Y Y XA 0 A 0 �� � �ž / ž /ž / ž /0 � � � 0 � � � A � � �X Y Y Y X Y X X
2.6Ž .

I R� .
�ž /R I

This is the covariance matrix of the canonical variates U � A� Y and V � �� X.
The unbiased sample means and covariances are y, x and

N1 y � yS S �Y Y Y X � � �2.7 � y � y , x � x� ,Ž . Ž .Ý � �ž / ž /S S x � xnX Y X X ���1

Ž . Ž .where n � N � 1. The sample equations corresponding to 2.1 and 2.3
defining the population canonical correlations and variates are

�rS SY Y Y X a2.8 � 0,Ž . ž /cž /S �rSX Y X X

2.9 a�S a � 1, c�S c � 1.Ž . Y Y X X
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The solutions with a � 0, i � 1, . . . , p, and r � r � ��� � r � 0 define thei i 1 2 p
ˆ ˆ ˆŽ . Ž . Ž .estimators A � a , . . . , a , � � c , . . . , c , R � diag r , . . . , r . These are1 p 1 q 1 p

uniquely defined except that if q � p, c , . . . , c satisfy c�S c � 0, j �p�1 q X X j
Ž .Ž . Ž .1, . . . , p, and some other q � p q � p � 1 arbitrary conditions. From 2.8

Ž . Ž . �1 Ž . �1and 2.9 we obtain c � 1�r S S a, a � 1�r S S c,X X X Y Y Y Y X

2.10 S S�1 S a � r 2S a,Ž . Y X X X X Y Y Y

2.11 S S�1 S c � r 2S c.Ž . X Y Y Y Y X X X

ˆ ˆ ˆ ˆŽ . Ž . Ž .Let A � a , . . . , a , � � c , . . . , c , R � diag r , . . . , r and � �1 1 k 1 1 k 1 1 k 1
ˆ ˆ 2 �1�2 �1 ˆ ˆ �1 ˆ 2 �1�2Ž . Ž .A I � R � S S � R I � R . The least squares estimator1 k 1 Y Y Y X 1 1 k 1

Ž .of B in model 1.1 is

ˆ �12.12 B � � S ;Ž . Y X X X

this is the unrestricted maximum likelihood estimator under normality of the
Z ’s. The maximum likelihood estimator of B of rank k, found by Anderson�

Ž .1951a , is

ˆ ˆ ˆ � ˆ ˆ ˆ ˆ � ˆ ˆ �2.13 B � S � � B � S A R � � S � � ,Ž . ˆ ˆk ZZ 1 1 Y Y 1 1 1 Y X 1 1

ˆwhere S is the sample covariance matrix of the residual z � y � Bx. Aˆ ˆZZ
ˆcolumn of � satisfies1

�1 ˆ ˆ ˆ� ˆ2.14 S S S � � tS � , � S � � 1,Ž . ˆ ˆ ˆ ˆY X X X X Y ZZ ZZ

2 2 ˆŽ .t � r � 1 � r ; � differs from the corresponding a only with respect to the
normalization.

ˆ ˆAnother motivation of the estimator B is that B is the matrix B of rankk k k
k that minimizes

N
� �1Y � y � B X � x S Y � y � B X � xŽ . Ž .Ý � k � � k �ˆ ˆZZ2.15Ž . ��1

� tr S � B S � S B� � B S B� S�1 .Ž .Y Y k X Y Y X k k X X k ˆ ˆZZ

Ž . Ž . Ž .See Izenman 1975 , Brillinger 1975 and Reinsel and Velu 1998 for other
forms of this criterion and further discussions. The procedure of maximizing

ˆthe normal likelihood shows that B minimizesk
�NÝ Y � y � B X � x Y � y � B X � xŽ . Ž .��1 � k � � k �

� �S2.16Ž . ˆ ˆZZ

� � �1� S � B S � S B � B S B S .Ž . ˆ ˆY Y k X Y Y X k k X X k ZZ

The B that minimizes the trace criterion is identical to the B that mini-k k
mizes the generalized variance.

The distribution of nS , nS , nS is the same as the distribution ofY Y Y X X X
n � n � n � Ž � �.Ý Y Y ,Ý Y X Ý X X when � � 0, � � 0 and Y , X is nor-��1 � � ��1 � � ��1 � � Y X ' Žmally distributed. In any case, the limiting distribution of n S �Y Y
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� � �' '. Ž . Ž . Ž .� , n S � � , n S � � does not depend on � , � . HenceY Y Y X Y X X X X X Y X
we shall consider the model as Y � BX � Z with� � �

n1S S YY Y Y X � � �� �2.17 � Y , XŽ . Ý � �S S XnX Y X X ���1

and EE Y � 0, EE X � 0.� �

3. Asymptotic distribution of the reduced rank regression when
the independent variables are stochastic. We want to find the asymp-

ˆ ˆ ˆ �totic distribution of B � S � � . Note that the fact that the number ofk Y X 1 1
ˆcolumns of � is the rank of B implies that the rank of B is known to the1

statistician. The transformation to canonical variables U � A� Y , V � �� X� � � �

and W � A�Z transforms Y � BX � Z to� � � � �

3.1 U � 	 V � W ,Ž . � � �
� � �� � A � A � I , � � � � � � I , � � A � � � R, � � 0,U U Y Y p V V X X q U V Y X V W
� � � �2 �1Ž .� � A � A � I � R and 	 � A B � � R. Also S � A S A,W W ZZ p U U Y Y

� � ˆ �1 � ˆ � �1Ž . ŽS � A S �, S � �S � , 	 � S S � A B � the unrestrictedU V Y X V V X X U V V V
.estimator of 	 and the restricted estimator

ˆ �3.2 	 � S H H ,Ž . k U V 1 1
�1 ˆwhere H � � � satisfies1 1 1

�1 ˆ 2 �3.3 S S S H � S H R , H S H � I .Ž . V U U U U V 1 V V 1 1 1 V V 1 k

ˆ' Ž . Ž .The limiting distribution of n 	 � 	 will be found Theorem 1 belowk
Ž .and transformed back to the original coordinates Corollary 1 .

� � �' ' 'Ž . Ž . Ž .Define S � n S � I , S � n S � R , S � n S � I ,U U U U p U V U V V V V V q
�� � ˆ' 'Ž . � Ž . � Ž .H � n H � I and R � n R � R , 0 , where I � I , 0 is q � k.1 1 Žk . Žk . k

Ž .Then substitution of these quantities into 3.3 yields
1

� � � �� � � �R RI � S RI � R S I � R S RI � R RHŽk . V U Žk . U V Žk . U U Žk . 1'n
1 1

� � �2 2 2� I R � S I R � 2I R R � H R � oŽk . 1 V V Žk . 1 Žk . 1 1 1 1 p ž /' 'n n

3.4Ž .

or equivalently,
� �� � � � 2S RI � R S I � R S RI � S I RV U Žk . U V Žk . U U Žk . V V Žk . 1

�� � �2� 2I R R � H R � R RH � o 1 .Ž .Žk . 1 1 1 1 1 p

3.5Ž .

Ž .In terms of partitions into submatrices of k and q � k rows, 3.5 is
�11 �11 �11 �11 2S R � R S � R S R � S RV U 1 1 U V 1 U U 1 V V 1

� 21 � 21 2S R � S RV U 1 V V 1
3.6Ž .

� � �2 22R R � H R � R H1 1 11 1 1 11� � o 1 ,Ž .p� 2H R21 1
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� Ž �� �� .� Ž .where H � H , H . From 3.6 we obtain1 11 21
�� � 21 � 21 � 21 �123.7 H R � o 1 � S � S R � S � S .Ž . Ž . Ž .21 1 p V U V V 1 V W W V

Ž .From the second part of 3.3 we obtain

1 1
� � ��� � �3.8 I I � H I � I H � I S I � I � o ,Ž . Žk . Žk . 1 Žk . Žk . 1 Žk . V V Žk . k p ž /' 'n n

from which we obtain

3.9 H�� � H� � �S�11 � o 1 .Ž . Ž .11 11 V V p

� ˆ'Ž . Ž .From 3.2 and the definition 	 � n 	 � 	 , we obtaink k

� �� � � ��	 � S I I � RH I � RI H � o 1Ž .k U V Žk . Žk . 1 Žk . Žk . 1 p

� �� �11 ��R H � H � S R HŽ .1 11 11 U V 1 21� � o 1Ž .p� 21S 0U V3.10Ž .
�11 �12S SW V W V� � o 1 ,Ž .p� 21S 0W V

where the partitioning is into k and p � k rows and k and q � k columns.
� � �Ž . Ž .The last equality follows from 3.7 , 3.9 and S � RS � S .U V V V W V

The maximum likelihood estimator of B unrestricted with respect to rank
ˆ �1is B � S S , the unrestricted estimator in terms of canonical variables isY X X X

� ��1ˆ ˆ ˆ' Ž .	 � S S and 	 � n 	 � 	 � S . The effect of the rank restric-U V V V W V
tion is to replace the lower right-hand corner of S� by 0.W V

ˆ ˆTo characterize the asymptotic distribution of 	 and B , we use thek k
Ž . Ž � � .� Ž .notation vec A � vec a , . . . , a � a , . . . , a and A 	 B � a B and1 m 1 m i j

Ž � . � �the property vec ABC � C 	 A vec B, which implies vec xy � vec x1y �
Ž .y 	 x vec 1 � y 	 x. Then

n n Ž1.1 W� Ž1. Ž2.�ˆ � �vec 	 � vec W V , VÝ Ýk � � �ž /'n 0��1 ��1

Ž1.V 	 W� �n1
Ž1.� .Ý WŽ2. �'n V 	���1 ž /0

3.11Ž .

Since V and W are assumed to be independent, we obtain� �
�

� �ˆ ˆEE vec 	 vec 	Ž .k k

2I 	 I � R 0Ž .k p

2� I � R 0k 10 I 	q�k 0 0

3.12Ž .

� diag I � R2 , . . . , I � R2 , I � R2 , 0, . . . , I � R2 , 0 ,Ž .p p k 1 k 1
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2 Ž 2 .where there are k blocks of I � R and q � k blocks of diag I � R , 0 . Thep k 1
Ž . Ž . Ž .rank of 3.12 is kp � q � k k � k p � q � k .

Ž � � .THEOREM 1. Let u , v , � � 1, . . . , n, be observations on the random� �

Ž � �. Ž . �1vector U , V with mean 0 and covariance matrix 2.6 . Let 	 � � � ,U V V V
S � n�1Ýn u u� , S � n�1Ýn u v� , S � n�1Ýn v v .

� distributionU U ��1 � � U V ��1 � � V V ��1 � �
ˆ ˆ' Ž . Ž .of vec n 	 � 	 , where 	 is defined by 3.2 , is normal with mean 0 andk k

Ž .covariance matrix 3.12 .

ˆFor the least squares estimator 	 we have
�11 �12S SW V W V�ˆ ˆ'3.13 n 	 � 	 � 	 � � o 1 .Ž . Ž .Ž . p� 21 � 22S SW V W V

Ž .Since the four submatrices on the right-hand side of 3.13 are uncorrelated
�� g h n Ž g . Žh.'� Ž . �S � 1� N Ý W V , they are independent in the limiting normalW V ��1 � �

ˆ �distribution. Then 	 andk

0 0
� �ˆ ˆ3.14 	 � 	 �Ž . � 22k 0 SW V

are asymptotically independent with
�

� � �ˆ ˆ ˆ ˆEE vec 	 � 	 vec 	 � 	ž / ž /k k
�

0 0 0 0� EE 	 	Ž2. Ž2. Ž2. Ž2.ž / ž / ž / ž /V W V W3.15Ž .
0 0

0 0� .0 I 	q�k 0 I p�k

In the original coordinate system we obtain
�1� �ˆ ˆvec B � B � vec A 	 � 	 �Ž .Ž . Ž .k k

�1� ˆ� � 	 A vec 	 � 	Ž . Ž .k3.16Ž .
�12 ˆ� � , � 	 � A , A I � R vec 	 � 	 .Ž . Ž . Ž .Ž .1 2 ZZ 1 2 p k

Ž . Ž .From 3.12 and 3.16 we obtain
�ˆ ˆEE vec n B � B vec B � BŽ . Ž .k k

�1� 2� � � 	 � A I � RŽ . Ž .1 1 ZZ p

�1� �2� � � 	 � A I � R A �Ž .2 2 ZZ 1 k 1 1 ZZ
3.17Ž .

�1� � �2� �� � � 	 � � � � 	 � A I � R A �Ž .1 1 ZZ 2 2 ZZ 1 k 1 1 ZZ

� ��1 	 � � � �� 	 � A A� � .Ž .X X ZZ 2 2 ZZ 2 2 ZZ
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Ž 2 .�1 �If we define 
 � � � � � A R I � R and � � � , then B � 
 � .Y X 1 ZZ 1 1 1 1
We have

�1� � ��13.18 
 
 � 
 
 � � � � A A � ,Ž . Ž .ZZ ZZ ZZ 2 2 ZZ

�1� � � ��13.19 � � � � � � � � � � � � � .Ž . Ž .X X 1 1 X X 2 2

Ž .Thus 3.17 can be written
�1� �� � �1 �1ˆ ˆEE vec B vec B � � � 	 � � � � � � � � �Ž .Ž .k k X X ZZ X X X X

�1� ��1	 � � 
 
 � 
 
 .Ž .ZZ ZZ

3.20Ž .

Ž � � .�COROLLARY 1. Let y , x , � � 1, . . . , n, be observations on the random� �

Ž � �.� Ž . �1vector Y , X with mean 0 and covariance matrix 1.2 . Let B � � � ,Y X X X
S � n�1Ýn y y� , S � n�1Ýn x y� , S � n�1Ýn x x� . Let theY Y ��1 � � X Y ��1 � � X X ��1 � �

ˆ Ž . Ž .columns of � satisfy 2.9 , 2.11 and � � 0. Suppose that Y � BX � Z isˆ1 i i
�ˆ ˆ' Ž .independent of X. Then the limiting distribution of vec B � n vec B � B ,k k

ˆ ˆ ˆ � Ž .with B � S � � , is normal with mean 0 and covariance matrix 3.17 ork Y X 1 1
Ž .3.20 .

� �Ž �1 .�Note that B � 
 � � 
 M �M for arbitrary nonsingular M; however,
Ž . Ž .3.18 and 3.19 are invariant with respect to the transformation 
 � 
 M

�1 Ž . �and � � �M . Thus 3.20 holds for any factorization B � 
 � .
ˆ�It is interesting that the limiting distribution of B only depends onk

� ���1 �1 �1' Ž .n S S � A S S � and hence holds under the same conditions asZ X X X W V V V
ˆ ˆthe asymptotic normality of the least squares estimator B. However, B is ak

ˆ ˆfunction of � , and the asymptotic distribution of � requires some proper-1 1
ties of the normal distribution of Z.

Ž .From 3.6 we have

h� � 2 � � 2 � s� V U� � � s�U V � � s�U U� � s� V V� 2 � o 1 ,Ž .Ž .i j j i i j j i i j i i j j i j j p3.21Ž .
i � j, i � 1, . . . , q , j � 1, . . . , k .

The second-order moments of h� , i � j, depend on the second-order momentsi j
Ž .2 2 2of terms like v u , u u and v v ; under normality EE v u � EE v u �i j i j i j i j i j

EE v2 EE u2 � 1, for example. On the other hand, the limiting distribution ofi j
�� n'Ž . Ž .S � 1� n Ý W V depends only on W and V Z and X beingW V ��1 � � � � � �

� Ž .independent. The covariances of h are valid for Y, X normally distributedi j
and � � ��� � � ; they depend on the second-order moments of the sample1 k

Žcovariance matrices hence, on the fourth-order moments of the observed
�ˆ ˆ'. Ž .variables . However, the limiting distribution of vec B � N B � B is

Ž �1 .N 0, � 	 � , irrespective of whether Y and X are normal.X X ZZ
� � 21 �1 Ž .Note that H is S R � o 1 and asymptotically does not depend on21 V W 1 p

� � � ˆ � �S ; although H does depend on S , it enters 	 only through H �W W 11 W W k 11
�� �11 ˆ � ˆ�Ž .H � �S � o 1 . Thus the limiting distribution of 	 and hence of B11 V V p k k

does not depend on S� . In particular, the distributions of Theorem 1 andW W
Corollary 1 are valid for S� � 0, which is equivalent to replacing S orW W W W
S by � or � , respectively.ZZ W W ZZ
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4. Asymptotic distribution when the independent variables are
nonstochastic. Now suppose that X � x , � � 1, . . . , n, is nonstochastic.� �

We assume that

n1
�4.1 S � x x � � .Ž . ÝX X � � X Xn ��1

The model is

4.2 Y � Bx � Z ,Ž . � � �

where EEZ � 0 and EEZ Z� � � .� � � ZZ
Ž . Ž .We shall find a suitable canonical form by replacing 2.1 and 2.3 by

��� � � BS B BSŽ .ZZ X X X X �4.3 � 0,Ž . � �S B ��SX X X X

4.4 �� � � BS B� � � 1, ��S � � 1.Ž . Ž .ZZ X X X X

Ž . �Solving the second vector equation in 4.3 for �� � B � and substituting in
the first gives

4.5 BS B�� � � 2 � � BS B� � .Ž . Ž .X X ZZ X X

Ž . � 2 2 Ž 2 .This equation and 4.4 imply � � � � 1 � � , 	 � � � 1 � � and � �ZZ
Ž 2 .�1�2 Ž . Ž .� 1 � � . The solutions to 4.3 and 4.4 and � � 0, � � ��� � � ,i i 1 k

Ž .define � , . . . , � , � , . . . , � . The other columns of A � � , . . . , � and1 k 1 k n 1 p
Ž .� � � , . . . , � can be defined son 1 q

4.6 � � A� � A � I � R2 ,Ž . W W n ZZ n p n

4.7 S � �� S � � I ,Ž . V V n X X n q

�1� � �4.8 A BS � � R � A B � ,Ž . Ž .n X X n n n n

where U � A� Y, v � �� x , W � A� Z. Where convenient, the subscript n isn � n � n
used to emphasize that the matrices of transformed parameters depend on n
through S . We write the model for U in terms of v and W asX X

4.9 U � 	 v � W,Ž .
� � �1Ž .where R � A B � has been replaced by 	.n n n

The unrestricted maximum likelihood estimators of B and � are givenZZ
Ž .by 2.12 and

n1 � �ˆ ˆ ˆ ˆ4.10 S � y � Bx y � Bx � S � BS B .Ž . Ž . Ž .ˆ ˆ ÝZZ � � � � Y Y X Xn ��1

2 Ž . Ž .The estimators of A , � and R are formed from the solution of 2.9 , 2.10n n n
Ž .and 2.11 as in Section 3.
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When we transform from Y, x and Z to U, v and W, the estimators of 	
and � areW W

ˆ �14.11 	 � S S � S ,Ž . U V V V U V

n1 �ˆ ˆS � u � 	 v u � 	 vŽ . Ž .ˆ ˆ ÝW W � � � �n ��1

ˆ ˆ � ˆ ˆ �� S � 	S 	 � S � 	 	U U V V U U

4.12Ž .

� S � S S�1 S � S � S S .U U U V V V V U U U U V V U

�1 ˆNow H � � � satisfies1 1

�1 ˆ 2 ˆ 24.13 S S S H � S H R � H R ,Ž . V U U U U V 1 V V 1 1 1 1

4.14 I � H� S H � H� H .Ž . k 1 V V 1 1 1

ˆ 2 Ž .Substitution for S , S , H , R in 4.13 yieldsV U U U 1 1

� �� � �S RI � R S I � R S RIU V Žk . U V Žk . U U Žk .

�� � �2� 2I R R � H R � R RH � o 1 ,Ž .Žk . 1 1 1 1 1 p

4.15Ž .

Ž . 2 Ž .which is 3.5 with S I R omitted. As in Section 3, 4.15 impliesV V Žk . 1
�� �124.16 H R � o 1 � S .Ž . Ž . Ž .21 1 p W V

Ž .Substitution in 4.14 yields

4.17 H�� � H� � 0 � o 1 .Ž . Ž .11 11 p

Then again
�11 �12S SW V W V�ˆ4.18 	 � � o 1 .Ž . Ž .k p� 21S 0W V

Ž . Ž .In 3.11 v is nonstochastic and 3.12 holds.�
ˆ ˆThe conclusions of Theorem 1 and Corollary 1 hold for 	 and B ,k k

respectively, when the independent variables are nonstochastic.
Ž .The distribution of the roots and vectors of 2.14 have been given by

Ž .Anderson 1951b for arbitrary multiplicities of the population roots when Z�

is normally distributed and the independent variables are nonstochastic.
As in Section 3, the limiting distribution of H� does not depend on S�

21 W W
� ˆ �Ž .and H does not enter asymptotically 	 . Hence, the limiting distribution11 k

ˆ�of B is the same for � known as for � estimated.k W W W W

5. Discussion.

5.1. Asymptotic distribution of the reduced rank regression estimator un-
Ž .der normality. Ryan, Hubert, Carter, Sprague and Parrott 1992 let B �

� Ž .
 � and � � 0 and assume X in 1.1 is nonstochastic and Z is normally� a
distributed. They differentiate the log-likelihood function with respect to the



REDUCED RANK REGRESSION 1151

elements of 
 , � and � to obtain the expected Fisher information matrix.ZZ
From this they derive the asymptotic covariance matrix of the maximum
likelihood estimators of 
 , �, and � , presumably as a generalized inverse.ZZ
Then the asymptotic covariance matrix of the estimator of B � 
 �� is the

ˆ � ˆ � Ž .asymptotic covariance matrix of 
 � � 
 � . This agrees with 3.20 . The
authors do not comment on the indeterminacy in 
 ��.

Ž .Schmidli 1996 goes through the same steps, but with more care, and
reaches the same asymptotic covariance matrix of the estimator of B.

Ž .Stoica and Viberg 1996 have obtained an expression for the covariance of
ˆ' Ž .the limiting distribution of n B � B where the x’s are nonstochastick

Ž . Ž .satisfying 4.1 by assuming that the Y’s or Z’s are normally distributed and
calculating the Fisher information matrix. The expression is

�ˆ ˆEE n vec B � B vec B � B � � 	 I , I 	 � �Ž . Ž .Ž . Ž .k k 1 p q Y X 1

�� 	 I1 p �1� � 	 �� X X ZZ½ I 	 � �q 1 X Y

�

� � 	 I , I 	 � �Ž . Ž .1 p q Y X 1 55.1Ž .

�� 	 I1 p
� ,�I 	 � �q 1 X Y

� �� Ž .where denotes the Moore�Penrose inverse. That 5.1 is equivalent to
Ž . Ž .3.20 can be shown conveniently by transforming 5.1 to the canonical
variable framework as

I 	 I , I 	 RIŽ . Ž .Žk . p q Žk .

�
�1 �12
 �2I � R 0Ž . R I � Rk 1 Ž .1 k 1I 	 I 	 0k k0 I 0p� k

� �1 �1� 2 2 2I 	 R I � R , 0 I 	 R I � R 0Ž . Ž .k 1 k 1 k 1 k 1

�12 2� �0 0 I 	 R I � RŽ .q� k 1 k 1

5.2Ž .

�I 	 IŽk . p
� ;�I 	 I Rq Žk .

the Moore�Penrose inverse can be calculated explicitly. The treatment of
Stoica and Viberg does not show that these covariances hold when the Z’s are
not normal or when the X’s are stochastic.

Ž . � Ž .Reinsel and Velu 1998 also parameterize B as B � 
 � my notation ,
where 
 and � are p � k and normalized so that 
 � � � , and � � B� � .ZZ 1 1

Ž .The estimator of 
 , say L, that Reinsel and Velu defines page 41 satisfies

5.3 S S�1 S ��1 L � LT , L� ��1 L � I ,Ž . Y X X X X Y ZZ 1 ZZ k
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ˆ ˆ Ž .but the estimator 
 � S � defined in this paper satisfies 5.3 with �ZZ 1 ZZ
replaced by S . Similarly, their estimator of �, say P, satisfiesˆ ˆZZ

�1
� � ��1ˆ ˆ ˆ5.4 B � S P � PT , P B � B P � I ,Ž . ž /ZZ Y X 1 ZZ k

ˆ ˆ � ˆ Ž .while � � B �, satisfies 5.4 with � replaced by S .ˆ ˆZZ ZZ
ˆThe difference between the definitions of the pair L and P and the pair 


ˆ ˆ ˆand � is that L and P are defined in terms of � known, while 
 and �ZZ
are defined in terms of S , the estimator of � . However, as shown inˆ ˆZZ ZZ
Sections 3 and 4, the asymptotic distribution of the estimator LP� for L and

Ž . Ž .P defined by 5.3 and 5.4 is the same as the asymptotic distribution of
ˆ ˆ ˆ � �Ž . � Ž .B � 
 � . Reinsel and Velu 1998 , page 84 also obtain the expression 5.1k

�as the covariance matrix of the limiting distribution of their estimator. They
Ž .have provided the author with a direct verification that 5.1 is equivalent to

Ž . �3.20 .
�Ž . �Reinsel and Velu 1998 , page 45 also approach the asymptotic distribu-

tion of LP� in an alternative way by finding the limiting distribution of L�

�' 'Ž . Ž .� n L � 
 and P � n P � � . Although their limiting distribution of
� � Ž .L and P disagrees with Anderson 1999 because the variability in SX X

�was neglected e.g., in the first asymptotic covariance in Theorem 2.4 the
2 2 Ž . 2 2 2 2 �coefficient 
 � 
 in their notation should be 
 � 
 � 
 
 , this ap-j i j i i j

ˆproach leads to the correct limiting distribution of B by the results of Sectionk
Ž .4 X nonstochastic . However, they only give an explicit expression for the

� Ž .�case of k � 1 which agrees with 3.20 .
Ž .Velu, Reinsel and Wichern 1986 give the same asymptotic covariances for

L and P.
Ž .Lutkepohl 1993 repeats the incorrect asymptotic distribution of L and P¨

in Velu, Reinsel and Wichern and asserts that the asymptotic distribution of
LP� is that of L�� � 
 P�, but does not explicitly calculate the covariance
matrix.

˜5.2. Further comments. As a measure of the accuracy of the estimator B,
˜ ˜ � �1Ž . Ž .we might consider lim n tr EE B � B � B � B � . For the estima-n�� X X Y Y

ˆ ˆtors B and B, the measure isk

�
� ���1ˆ ˆ ˆ ˆlim n tr EE B � B � B � B � � lim EE tr 	 	Ž . Ž .k X X k Y Y k k

n�� n��

�
� �ˆ ˆ� EE vec 	 vec 	Ž .k k5.5Ž .

k
2� q 1 � � � k p � k ,Ž .Ž .Ý i

i�1

k
� �1 2ˆ ˆ5.6 lim n tr EE B � B � B � B � � q 1 � � � q p � k .Ž . Ž .Ž . Ž . Ž .ÝX X Y Y i

n�� i�1

Ž1. Ž .�If it were known that the rank of B was k and that U � U , . . . , U� 1� k �
Ž1. Ž .�and V � V , . . . , V were the canonical variables with positive canoni-� l� k �
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cal correlations, the estimator would be

�111 11S S 0Ž .U V V V˜5.7 	 � .Ž .
0 0

˜The error in the upper left-hand corner of 	 is

�1 �111 11 11 11 11S S � R � S � R S SŽ . Ž .Ž .U V V V 1 U V 1 V V V V

�111 11� S SŽ .W V V V

�11 1
�11 �11� S I � SW V k V Vž /' 'n n

5.8Ž .

1 1
�11� S � o .W V p ž /' 'n n

Ž .The error in the other three submatrices in 5.8 would be zero. Of course,
this estimator is not feasible, but it shows what use could be made of prior
information.

Ž . 2Note that the number of elements in 
 and � is p � q k, but k
restrictions can be imposed to eliminate the indeterminacy implied by 
 �� �

�Ž �1 .� Ž . �
 M �M , resulting in p � q � k k coordinates in B � 
 � . This num-
� Ž .ber, which is the number of elements in 	 not o 1 , can be much smallerk p

than pq, the number of elements in B.
ˆ�Since the limiting distribution of B under general conditions is the samek

as for normally distributed errors, confidence regions and test procedures for
B based on normal theory can also be used for nonnormal errors.
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