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ASYMPTOTIC APPROXIMATIONS FOR ERROR
PROBABILITIES OF SEQUENTIAL OR FIXED SAMPLE

SIZE TESTS IN EXPONENTIAL FAMILIES

By Hock Peng Chan1 and Tze Leung Lai2

National University of Singapore and Stanford University

Asymptotic approximations for the error probabilities of sequential
tests of composite hypotheses in multiparameter exponential families are
developed herein for a general class of test statistics, including generalized
likelihood ratio statistics and other functions of the sufficient statistics.
These results not only generalize previous approximations for Type I error
probabilities of sequential generalized likelihood ratio tests, but also pro-
vide a unified treatment of both sequential and fixed sample size tests and
of Type I and Type II error probabilities. Geometric arguments involving
integration over tubes play an important role in this unified theory.

1. Introduction. Let X1�X2� � � � be i.i.d. random variables. Wald (1945)
introduced the sequential probability ratio test to test a simple null versus
a simple alternative hypothesis and developed approximations to its error
probabilities under both hypotheses by ignoring overshoots. Making use of
renewal theory to approximate the distribution of the excess over the bound-
ary, Siegmund (1975) found more refined approximations that are asymp-
totically equivalent to the actual error probabilities. Subsequently nonlinear
renewal theory was developed by Woodroofe (1976) and Lai and Siegmund
(1977), and asymptotic approximations to the error probabilities were derived
for sequential generalized likelihood ratio (GLR) tests of composite hypotheses
in exponential families. The monographs by Woodroofe (1982) and Siegmund
(1985) give a systematic introduction to the basic results and methods, while
Hu (1988) summarizes the different methods and extends the “backward
method” of Siegmund (1985) to the multiparameter case.
A basic feature of this literature is that the approximations depend crucially

on the fact that stopping occurs at the first time T when the likelihood ratio
or GLR statistic lT exceeds some threshold c. Thus lT is equal to c plus an
excess over the boundary whose limiting distribution can be obtained using
renewal theory. When the test statistic used is not lT, the arguments break
down. Since they are based on the fact that lT = c+Op�1�, where the Op�1�
term is the overshoot, these arguments are also not applicable when T is
replaced by a fixed sample size n. Moreover, whereas the role of lT in change-
of-measure arguments is quite easy to see when the null hypothesis is simple,
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it becomes increasingly difficult to work with lT when the region defining
a composite null hypothesis becomes increasingly complex. In this paper we
describe a unified approach that can be applied not only to likelihood ratio
or GLR statistics but also to other functions of the sufficient statistics in a
multiparameter exponential family, and that is applicable to both sequential
and fixed sample size tests.
The essential ideas of our approach are given in Section 2. Section 3 presents

asymptotic approximations to the error probabilities of sequential and fixed
sample size tests when these probabilities are of the large deviation type. Most
of the error probability approximations in the literature on truncated sequen-
tial GLR tests deal with large deviations, and Section 3 gives a general form
of these results, extending their applicability to other truncated sequential
and nonsequential tests. In particular, in the case of t-tests applied to possi-
bly nonnormal distributions, we show how our results provide more precise
large deviation approximations for self-normalized sums than those recently
developed by Shao (1997). Motivated by applications to the asymptotic theory
of Bayes sequential tests and to composite hypotheses in which the under-
lying distributions other than their means and variances are not specified,
Section 4 develops approximations to error probabilities that are of moderate
deviation type. Section 5 considers moderate deviation approximations to the
error probabilities of fixed sample size tests and also provides higher-order
asymptotic expansions. Thus the approach presented herein is applicable to
both large and moderate deviations, and can also yield higher-order asymp-
totic expansions.

2. Overview of the method and some preliminaries. Let X1�X2� � � �
be i.i.d. d-dimensional nonlattice random vectors whose common moment
generating function is finite in some neighborhood of the origin. Let Sn =
X1 + · · · +Xn, µ0 = EX1 and � = �θ� Eeθ

′X < ∞
, where the prime denotes
transpose. Assume that cov�X1� is positive definite. Let ψ�θ� = log�Eeθ

′X�
denote the cumulant generating function ofX1. Let � be the closure of ∇ψ���
and let �o be its interior. Denote the boundary of � by ∂� �= �−�o�. As noted
by Lalley (1983), ∇ψ is a diffeomorphism from �o onto �o. Let θµ = �∇ψ�−1�µ�.
For µ ∈ �o, define

φ�µ� = sup
θ∈�
�θ′µ− ψ�θ�
 = θ′µµ− ψ�θµ��(2.1)

The function φ is the convex dual of ψ and is also known as the rate function
in large deviations theory. As will be shown in Section 3, we can reduce the
analysis of error probabilities of sequential and fixed sample size tests based
on the Xi to the following generic problem. Let g� � → R and define the
stopping time

Tc = inf�k ≥ n0 � kg�Sk/k� > c
�(2.2)
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where n0 corresponds to a prescribed minimal sample size. The generic prob-
lems are to evaluate

P�Tc ≤ n
� P�ng�Sn/n� > c
� P
{
min
k≤n

��n− k�β+ kg�Sk/k�� > c
}
�(2.3)

with n ∼ ac and n0 ∼ δc as c → ∞, for some a > δ > 0 such that g�µ0� <
1/a for the first two probabilities, and β > 1/a and g�µ0� = 0 for the third
probability.
Consider the first probability in (2.3). For δc ≤ n ≤ ac, it follows from the

large deviation principle that under certain conditions, logP�ng�Sn/n� > c
 is
asymptotically equivalent to −n inf�φ�µ� � g�µ� > c/n
 as c→∞ [cf. Dembo
and Zeitouni (1998), Theorem 2.2.30]. Therefore, log�∑δc≤n≤ac P�ng�Sn/n� >
c
� is asymptotically equivalent to −minδc≤n≤ac infg�µ�>c/n nφ�µ�, which, upon
interchanging the min and inf signs, is asymptotically equivalent to

− inf
g�µ�>1/a

cφ�µ�
min�1/δ�g�µ�� = −

c

r
�

where

r = sup
g�µ�>1/a

min�δ−1� g�µ��
φ�µ� �

Hence P�Tc ≤ ac
 = e−c/r+o�c� as c→∞. To obtain a more precise asymptotic
approximation, we assume the following regularity conditions:

(A1) g is continuous on �o and there exists ε0 > 0 such that

sup
a−1<g�µ�<δ−1+ε0

g�µ�/φ�µ� = r <∞�

(A2) Mε �= �µ� a−1 < g�µ� < δ−1 + ε and g�µ�/φ�µ� = r
 is a
q-dimensional oriented manifold for all 0 ≤ ε ≤ ε0, where q ≤ d.
(A3) lim infµ→∂� φ�µ� > �δr�−1 and there exists ε1 > 0 such that φ�µ� >

�δr�−1 + ε1 if g�µ� > δ−1 + ε0.
(A4) g is twice continuously differentiable in some neighborhood ofMε0

and
σ��µ� g�µ� = δ−1 and g�µ�/φ�µ� = r
� = 0, where σ is the volume element
measure of Mε0

.

Assumptions (A1)–(A3) imply that supg�µ�>a−1 min�δ−1� g�µ��/φ�µ� can be
attained on the q-dimensional manifoldM0. The first part of (A3) implies that
there exists ε∗ > 0 such that

M∗ �= �µ� a−1 ≤ g�µ� ≤ δ−1 + ε∗� g�µ�/φ�µ� = r
(2.4)

is a compact subset of �; it clearly holds if φ�µ� → ∞ as µ → ∂�, which
is usually the case. The asymptotic formula for P�Tc ≤ ac
 in Theorem 1
(in Section 3) involves an integral (with respect to dσ) over �µ� α−1 < g�µ� <
δ−1+ ε0
, whose dimensionality q appears in the formula as the power of

√
c.

Spivak (1965) provides a concise introduction to integration on q-dimensional
oriented manifolds in Rd. Following Lalley’s (1983) notation, for µ ∈ M0, let
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TM0�µ� denote the tangent space of M0 at µ and let TM⊥
0 �µ� denote its

orthogonal complement [i.e., TM⊥
0 �µ� is the normal space of M0 at µ]. Let

ρ�µ� = φ�µ� −g�µ�/r. By (A1) and (A3), ρ attains on Mε0
its minimum value

0 over �µ� α−1 < g�µ� < δ−1 + ε0
 and, therefore,
∇ρ�µ� = 0 and ∇2ρ�µ� is nonnegative definite for µ ∈M0�(2.5)

Let(⊥µ denote the d×�d−q�matrix whose column vectors form an orthonormal
basis of TM⊥

0 �µ�. Then the matrix ∇2
⊥ρ�µ� �= �(⊥µ�′∇2ρ�µ�(⊥µ is nonnegative

definite for µ ∈ M0. Letting � · � denote the determinant of a nonnegative
definite matrix, we shall also assume that

�A5� inf
µ∈M0

�∇2
⊥ρ�µ�� > 0 with ρ = φ− g/r�

where we set �∇2
⊥ρ�µ�� = 1 in the case d− q = 0.

Under (A1)–(A5), our method to evaluate P�Tc ≤ ac
 consists of the follow-
ing steps. First consider the case where X1 has a bounded continuous density
function (with respect to Lebesgue measure) so that Sn/n has the saddlepoint
approximation

P�Sn/n ∈ dµ
 = �1+ o�1���n/2π�d/2�*�µ��−1/2e−nφ�µ� dµ�(2.6)

where *�µ� = ∇2ψ�θ��θ=θµ and the o�1� term is uniform over compact subsets
of �o [cf. Borovkov and Rogozin (1965) and Barndorff-Nielsen and Cox (1979)].
Let

f�µ�dµ = P�Tc ≤ ac� STc
/Tc ∈ dµ


= ∑
δc≤n≤ac

P�Sn/n ∈ dµ
I�ng�µ�>c
(2.7)

× P�kg�Sk/k� < c for all δc ≤ k < n�Sn/n ∈ dµ
�
Making use of (2.6) and (2.7), we first show that

P�Tc ≤ ac
 =
∫
Rd

f�µ�dµ ∼
∫
Uc−1/2 log c

f�µ�dµ�(2.8)

whereUη is a tubular neighborhood ofM0 with radius η, and then perform the
integration in (2.8) over Uc−1/2 log c. The volumes of tubes around smooth closed
curves and more general manifolds, first derived by Hotelling (1939) and Weyl
(1939), have played a prominent role in recent developments in inference on
nonlinear regression models [cf. Johansen and Johnstone (1990), Johnstone
and Siegmund (1989), Knowles and Siegmund (1989), Naiman (1986, 1990),
Siegmund and Zhang (1993)]. In the foregoing papers, the tube is a union of
disks of radius η around all points of the manifold, and Weyl’s tube formula is
used to express its volume as a polynomial of degree �q/2� in η. The integral
in (2.8) uses a slightly different formulation of the tubular neighborhood and
certain differential geometric results on the so-called “infinitesimal change of
volume function.” Specifically, we say that

Uη = �y+ z� y ∈M0� z ∈ TM⊥
0 �y� and �z� ≤ η
(2.9)
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is a tubular neighborhood of M0 with radius η if the representation of the
elements of Uη in (2.9) is unique. For the existence of tubular neighbor-
hoods when η is sufficiently small, see Theorem 5.1 in Chapter 4 of Hirsch
(1976) and its proof. A comprehensive treatment of the infinitesimal change
of volume function is given by Gray (1990). From Lemmas 3.13 and 3.14 and
Theorem 3.15 of Gray (1990), it follows that as η �= c−1/2 log c→ 0,∫

Uη

f�µ�dµ ∼
∫
M0

{ ∫
z∈TM⊥

0 �y�� �z�≤η
f�y+ z� dz

}
dσ�y��(2.10)

The inner integral in (2.10) can be evaluated asymptotically by making use
of (2.6) and (2.7), leading to an asymptotic formula for P�Tc ≤ ac
 in view
of (2.8).
We have assumed in the preceding analysis that X1 has a bounded contin-

uous density function. We next replace this assumption by the much weaker
assumption thatX1 be nonlattice. By partitioning � into suitably small cubes,
we use exponential tilting and a refinement of Stone’s (1965) local limit
theorem to modify the preceding analysis, replacing “∈dµ” by “∈Iµ”, where
Iµ denotes a cube centered at µ.
For the second probability in (2.3), the large deviation principle yields

P�ng�Sn/n� > c
 = exp�−c inf
g�µ�>a−1

φ�µ� + o�c�
�

since n ∼ ac. To obtain a more precise approximation, we use integration over
some tubular neighborhood of a manifold as in (2.8), under certain geometric
assumptions that are analogous to (A1)–(A4). The third probability in (2.3)
can again be treated by similar arguments. The moderate deviation results in
Sections 4 and 5 involve considerably simpler geometric arguments since the
relevant manifolds are contained in a small neighborhood of µ0. However, we
need to replace (2.6) and (2.7) by deeper and more refined versions in Section
4 and by higher-order expansions in Section 5.

3. Large deviation approximations to error probabilities. In this
section we first state in Theorems 1–3 the asymptotic formulas for the proba-
bilities in (2.3). We then apply these results to derive large deviation approxi-
mations to error probabilities of sequential and fixed sample size tests, giving
extensions and refinements of the results of Woodroofe (1978), Lalley (1983),
Hu (1988), Chernoff (1952), Hoeffding (1965) and Bahadur (1967). The the-
orems, which are proved at the end of this section, use the same notation
and assumptions as in the first paragraph of Section 2. In addition, the fol-
lowing notation is also used. Let X

�µ�
i be i.i.d. such that P�X�µ�

i ∈ dx
 =
eθ

′
µx−ψ�θµ� dF�x�, where F is the distribution of X1, and let Sn�µ� =∑n
i=1�θ′µX�µ�

i − ψ�θµ�
. Let *�µ� = ∇2ψ�θ��θ=θµ .

Theorem 1. Suppose X1 is nonlattice and g� � → R satisfies (A1)–(A5)
with a > δ, g�µ0� < a−1 and n0 ∼ δc. Let γ�µ� = ∫∞

0 e−yP�minn≥1Sn�µ� >
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y
dy. Then as c→∞,

P�Tc ≤ ac
 ∼
(

c

2πr

)q/2

e−c/r

×
∫
M0

γ�µ��φ�µ��−�q/2+1��*�µ��−1/2�∇2
⊥ρ�µ��−1/2 dσ�µ��

where ∇2
⊥ρ is introduced in (A5).

In the next two theorems, g�µ0� < b and instead of (A1)–(A5), we impose
the following conditions on g:

(B1) g is continuous on �o and inf�φ�µ�:g�µ� ≥ b
 = b/r.
(B2) g is twice continuously differentiable on �µ ∈ �o: b − ε0 < g�µ� <

b+ ε0
 for some ε0 > 0.
(B3) ∇g�µ� �= 0 on N:= �µ ∈ �o:g�µ� = b
, and M:= �µ ∈ �o:g�µ� =

b�φ�µ� = b/r
 is a smooth p-dimensional manifold (possibly with boundary)
for some 0 ≤ p ≤ d− 1.
(B4) lim infµ→∂� φ�µ� > br−1 and infg�µ�>b+δ φ�µ� > br−1 for every δ > 0.

For the notion of smooth submanifolds (with or without boundaries), see
Hirsch (1976). Under (B2) and (B3), N is a �d− 1�-dimensional manifold and
TN⊥�µ� is a one-dimensional linear space with basis vector ∇g�µ�; see Theo-
rem 5-1 and Problem 5-13(c) of Spivak (1965). Moreover, making use of (B1)-
(B4), it is shown in the Appendix that

inf
µ∈M

�∇φ�µ��>0� �∇g�µ��′∇φ�µ�>0 and ∇φ�µ�∈TN⊥�µ� for all µ∈M�(3.1)

Hence ∇φ�µ�= s∇g�µ�with s=�∇φ�µ��/�∇g�µ��. Let e1�µ�=∇φ�µ�/�∇φ�µ��
and let �e1�µ�, e2�µ�, � � � � ed−p�µ�
 be an orthonormal basis of TM⊥�µ�. Define
the d×�d−p−1� matrix (µ (in the case d > p+1� and the positive number
ξ�µ� by

(µ = �e2�µ� · · · ed−p�µ���(3.2)

ξ�µ� =
{1/�∇φ�µ��� if d = p+ 1,

�(′µ�*−1�µ� − s∇2g�µ�
(µ�−1/2/�∇φ�µ��� if d > p+ 1,
(3.3)

where analogous to (A5) we assume that

(B5) infµ∈M �(′µ�*−1�µ� − s∇2g�µ�
(µ� > 0 if d > p+ 1.

Theorem 2. Suppose X1 is nonlattice and g:� → R satisfies (B1)–(B5).
Let b > g�µ0�. Then as n→∞,

P�g�Sn/n� > b
 ∼ P�g�Sn/n� ≥ b


∼ �2π�−�p+1�/2n�p−1�/2e−bn/r
∫
M
ξ�µ��*�µ��−1/2 dσ�µ��
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Theorem 3. Suppose X1 is nonlattice, g:� → R satisfies (B1)–(B5) and
g�µ0� = 0. Let β > b > 0. Define X

�µ�
i as in Theorem 1 and let

Wn�µ� =
∑n

i=1�θ′µ�X�µ�
i −µ�+s�b−β�
. Let w�µ� = ∫∞0 e−yP�maxn≥1Wn�µ� <

y
 dy. Then as n→∞,

P
{
min
k≤n

��n− k�β+ kg�Sk/k�� > bn
}

∼ P
{
min
k≤n

��n− k�β+ kg�Sk/k�� ≥ bn
}

∼ �2π�−�p+1�/2n−�p−1�/2e−bn/r
∫
M
ξ�µ�w�µ��*�µ��−1/2 dσ�µ��

(3.4)

3.1. Applications to Type I and Type II error probabilities of sequential and
fixed sample size tests. We now apply Theorems 1–3 to analyze the error
probabilities of a variety of sequential and fixed sample size tests.

(A) Consider the multiparameter exponential family with density function
exp�θ′x − ψ�θ�� with respect to some probability measure F. The natural
parameter space is �. Let �1 be a q1-dimensional smooth submanifold of �o

and let�0 be a q0-dimensional smooth submanifold of�1 with 0 ≤ q0 < q1 ≤ d.
The GLR statistics for testing the null hypothesis H0: θ ∈ �0 versus the alter-
native hypothesis H1: θ ∈ �1 −�0 are of the form ng�Sn/n�, where

g�x� = φ1�x� −φ0�x� with φi�x� = sup
θ∈�i

�θ′x− ψ�θ���(3.5)

Then g�x� ≤ φ�x� and equality is attained if and only if φ1�x� = φ�x� and
φ0�x� = 0. Since ∇ψ is a diffeomorphism, �i = ∇ψ��i� is a qi-dimensional
submanifold of �o. Note that φ�x� = φ1�x� iff x ∈ �1. Consider the sequential
GLR test with stopping rule Tc∧�ac�, where Tc is defined in (2.2) with g given
by (3.5) and n0 ∼ δc. To evaluate the Type I error probability at θ0, we can
assume, by choosing the underlying probability measure F as that associated
with θ0 and by replacing Xi by Xi − ∇ψ�θ0�, that

θ0 = 0� ψ�0� = 0 and ∇ψ�0� = 0�(3.6)

Then (A1)–(A5) hold with r = 1 and q = q1−q0 under certain regularity condi-
tions [cf. Woodroofe (1978)], and therefore we can apply Theorem 1 to approxi-
mate the Type I error probability P0�Tc ≤ ac
. Woodroofe (1978) also obtained
a similar approximation to the error probability in the case �1 = � under the
additional assumption that Sm has a bounded continuous density function
with respect to Lebesgue measure for some m ≥ 1. However, the constant in
the asymptotic formula of Theorem 1 is represented more directly as an inte-
gral over the manifoldM0 than as Woodroofe’s representation, which involves
a two-stage procedure that first integrates overM�t�

0 �=M0∩�µ:φ�µ� = t
 and
then integrates over t in the interval �1/a�1/δ�. The integral representation
in Theorem 1 is also simpler than that of Lalley (1983), which involves the
ratio of determinants of some complicated matrices and which replaces γ�µ�
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by the right-hand side of the following formula [cf. Theorem 2.7 of Woodroofe
(1982), noting that ES�µ�1 = θ′µµ− ψ�θµ� = φ�µ�]:

γ�µ� = φ�µ� lim
c→∞Eθµ

�exp�−Tcg�STc
/Tc� + c
��

Moreover, Lalley’s derivation of the approximation to P0�Tc ≤ ac
 is very
different from our approach, and his change-of-measure arguments lead to
somewhat different assumptions and representations of both the integrand
and the manifold over which integration is performed. We next give two con-
crete examples of the applications of Theorem 1. In the examples, it is more
convenient to denote the elements of Rd as row (instead of column) vectors.

Example 1. Consider the repeated t-test of the null hypothesis H0 that
the common mean of i.i.d. normal observations Y1�Y2� � � � is 0 when the vari-
ance is unknown. Here Xi = �Yi�Y

2
i �, Sn/n = �n−1

∑n
1 Yi�n

−1∑n
1 Y

2
i �� �o =

��y� v�:v > y2
 and �0 = ��0� v� � v > 0
. The GLR statistics are of the form
ng�Sn/n�, where g�y� v� = 1

2 log�v/�v − y2��, and the repeated t-test rejects
H0 if ng�Sn/n� > c for some δc ≤ n ≤ ac. The test is invariant under scale
changes, so we can consider the Type I error probability when Var�Yi� = 1.
Since φ�y� v� = �v− 1− log�v− y2��/2, (A1)–(A4) are satisfied with r = 1 and

Mε = ��y�1�: 1− exp�−2�δ−1 + ε�� > y2 > 1− exp�−2a−1�
�
Moreover, (A5) holds since ∇2

⊥ρ�y�1� = 1/2 for �y�1� ∈M0.

Example 2. Let Y1�Y2� � � � and Z1�Z2� � � � be independent exponential
random variables such that Yi has mean λ1 and Zi has mean λ2 for all i.
Consider the truncated sequential GLR test of H0:λ1 = λ2. Here Sn/n =
�n−1*n

1Yi�n
−1*n

1Zi� and the GLR statistics are of the form ng�Sn/n�, where
g�y� z� = 2 log���y+ z�/2�/√yz
�

This test rejects H0 when kg�Sk/k� > c for some ac ≥ k ≥ δc. Consider the
Type I error probability when λ1 = λ2 = 1. We can take 1 to be the common
value of λ1 and λ2 under H0 because the problem is invariant under scale
changes. Since φ�y� z� = − log y − log z − 2 + y + z� g�y� z� ≤ φ�y� z� with
equality if and only if y + z = 2. For 0 < y < 2� g�y�2 − y� is strictly convex
and attains the minimum value 0 at y = 1. Thus r = 1 and for all ε ≥ 0�Mε =
��y�2 − y�: 0 < y < 2 and a−1 < g�y�2 − y� < δ−1 + ε
 is a one-dimensional
manifold, so (A1) and (A2) are satisfied. Moreover, (A3) and (A4) can be easily
shown to hold. To check (A5), note that ρ�y� z� = −2 log��y+ z�/2� − 2+y+ z

and that for �y� z� ∈ M0�(
⊥
y�z = �1�1�/√2� yielding ∇2

⊥ρ�y� z� = 1. Letting
ν�µ� = γ�µ�/φ�µ� and noting that dσ�y�2 − y� = √2 dy, it therefore follows
from Theorem 1 that the Type I error probability of the test is

�1+ o�1��
√
c/πe−c

∫
e−1/a≥y�2−y�≥e−1/δ

ν�y�2− y�

× �− log�y�2− y��
−1/2�y�2− y�
−1 dy�
(3.7)
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(B) With the same notation as in (A), suppose that instead of the stopping
rule Tc ∧ �ac�, the GLR test of H0 is based on a sample of fixed size n. The
test rejects H0 if g�Sn/n� > b, where g is defined by (3.5). To evaluate the
Type I error probability at θ0, there is no loss of generality in assuming (3.6).
Then (B1)–(B5) hold with r = 1 and p = q1 − q0 − 1 under certain regularity
conditions [cf. Woodroofe (1978)], so Theorem 2 can be used to approximate the
Type I error probability P0�g�Sn/n� > b
. Not only does Theorem 2 remove
Woodroofe’s assumption that Sn/n has a bounded continuous density with
respect to Lebesgue measure, but a different choice of g in Theorem 2 also
gives an approximation to the Type II error probability Pθ�g�Sn/n� ≤ b
 with
g�∇ψ�θ�� > b. Specifically, let g̃�µ� = g�∇ψ�θ��−g�µ�, b̃ = g�∇ψ�θ��− b, and
apply Theorem 2 with g, b replaced by g̃, b̃.

Following the seminal work of Chernoff (1952), Hoeffding (1965) and
Bahadur (1967) on asymptotic efficiencies of tests at nonlocal alternatives,
most of the papers in the literature on large deviation approximations of the
Type I and Type II error probabilities give only the order of magnitude of
the logarithms of the probabilities. Theorem 2 provides a much more pre-
cise approximation. For linear hypotheses about a multivariate normal mean,
these more refined large deviation approximations have been derived from
well developed exact distribution theory in the normal case [cf. Groeneboom
(1980), pages 71–90].

Example 3. Consider the case of two independent exponential distribu-
tions in Example 2. As before,H0:λ1 = λ2, but here the sample size n is fixed.
We first consider the Type I error probability and assume without loss of gen-
erality λ1 = λ2 = 1. Let b > 0 = g�1�1�. As shown in Example 2, (B1) holds
with r = 1 and (B2), (B4), (B5) also hold. Since g�y� z� is a function of z/y,
the manifold N is a disjoint union of two rays of the form z = αy �y > 0�.
Since M is the intersection of N with the line y + z = 2, it is simply a set
containing two points, �ỹ�2 − ỹ� and �2 − ỹ� ỹ�, where ỹ = 1 −

√
1− e−b. In

fact, ỹ and 2− ỹ are solutions of the equation g�y�2− y� = b. Hence (B3) is
satisfied with p = 0. Moreover, �*�ỹ�2 − ỹ��1/2 = e−b. It can be shown that
ξ�ỹ�2− ỹ� = ξ�2− ỹ� ỹ� = ξb and, therefore, by Theorem 2,

P�g�Sn/n� > b
 ∼ √2/π ξbn
−1/2e−bn+b�

ξb = e−b�2�1− e−b�
−1/2�
(3.8)

Except for the difference between the multiplicative constants ξbe
b and

�2b�−1/2, the large deviation approximation (3.8) to the tail probability of
2ng�Sn/n� agrees with that of the chi-square distribution with 1 degree of
freedom:

P�χ21 > 2bn
 ∼
√
2/π �2bn�−1/2e−bn as n→∞�(3.9)

This is in contrast to the case of simple null hypotheses in one-parameter
exponential families, for which g = φ and P�φ�Sn/n� > b
 ∼ P�χ21 > 2bn
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[cf. Jensen (1995), page 118]. On the other hand, conditional large deviation
probabilities of GLR statistics given the values of ancillary statistics have
valid chi-square approximations after suitable Bartlett-type adjustments [cf.
Section 5.2 and, in particular, pages 123–124 of Jensen (1995)].
We next consider the Type II error probability at �λ1� λ2� such that λ2 >

λ1 and g�λ1� λ2� > b. Without loss of generality we shall take λ1 = 1. Let
λ = λ2�> 1�. Since the underlying density function is λ−1e−z/λe−y, the rate
function φ now has the form

φ�y� z� = − log y− log z− 2+ log λ+ y+ z/λ�

For fixed α > 0� φ�y�αy� attains its minimum value m�α� � = 2 log�1 +
α/λ� − log �α/λ� − 2 log 2 at y = 2/�1 + α/λ�. Moreover, m�α� is decreasing
in α < λ and g�1� α� = 2 log��1 + α�/√α� − 2 log 2 is decreasing for α < 1
and increasing for α > 1. Let z = α1y and z = α2y �y > 0� be the two
rays of N = ��y� z�:g�y� z� = b
, noting that g�y� z� = g�1� z/y�, where
α1 = eb�2 − ỹ�2 and α2 = ebỹ2 are the roots of the equation α + 1 = 2eb/2

√
α,

or equivalently of g�1� α� = b. Note that α1 > α2 and 1 < α1 < λ, since
g�1� λ� > b. It then follows that

inf�φ�y� z�: g�y� z� ≤ b
 = inf�φ�y� z�: g�y� z� = b
 =m�α1��
Let g̃�y� z� = g�1� λ� − g�y� z� and b̃ = g�1� λ� − b. Then (B1)–(B5) hold with
g̃� b̃ replacing g� b and with b̃/r =m�α1�� p = 0 andM consisting of the single
point µ̃ = �2/�1+α1/λ��2α1/�1+α1/λ��. Hence Theorem 2 yields the following
approximation to the Type II error probability:

Pλ1=1� λ2=λ�g�Sn/n� ≤ b
 ∼ �2πn�−1/2ξ�µ̃��*�µ̃��−1/2e−m�α1�n�
(C) Theorems 1 and 2 can also be applied to analyze error probabilities of

tests that are not based on likelihood ratio statistics. For example, consider
the repeated t-test of Example 1 when the underlying distribution is actu-
ally nonnormal. Here g�y� v� = − 1

2 log�1 − y2/v� is an increasing function of
�y�/√v, which increases as v decreases. Thus exponential tilting for the proba-
bilities in (2.3) can be restricted to ��θ1� θ2�: θ2 < 0
, on which Eeθ1Y+θ2Y

2
<∞

without any moment conditions on Y. We shall therefore assume only that Y
is nondegenerate and nonlattice. In this general setting,

φ�y� v� = sup
γ∈R
λ>0

�γy− λv− logEeγY−λY
2
 for v ≥ y2�

Write g�y� v� = G��y�/√v�. For 0 ≤ t ≤ 1, define F�t� = inf v>0φ�t
√
v� v� =

φ�t√vt� vt�. Then
sup
v≥y2

g�y� v�/φ�y� v� = sup
0≤t≤1

�G�t�/min�F�t��F�−t�
��

In the normal case considered in Example 1, G = F since v − 1 − log v has
minimum value 0. For non-normal Y, suppose r = sup0≤t≤1�G�t�/min�F�t�,
F�−t�
� is attained at t∗ ∈ �0�1� and a−1 < G�t∗� < δ−1. Then (A1)–(A5)
hold with q = 0 and Mε = ��t∗√vt∗� vt∗ �
, or ��−t∗√vt∗� vt∗ �
, or ��t∗√vt∗� vt∗ �,
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�−t∗√vt∗� vt∗ �
 according as F�t∗� < F�−t∗�, or F�−t∗� < F�t∗�, or F�t∗� =
F�−t∗�. Hence application of Theorem 1 yields a large deviation approximation
to P�Tc ≤ ac
 even when the underlying distribution to which the repeated
t-test is applied does not have finite pth absolute moment for any p > 0.
Results of this kind have been obtained recently for fixed sample size tests

by Shao (1997). With the same notation as in Theorem 1, consider the one-
sided t-test that rejects H0 if

√
n�Yn/�

∑n
1�Yi − �Yn�2
1/2 > b/�1 − b2�1/2, or

equivalently if g̃�Sn/n� > b, where g̃�y� v� = y/
√
v and 0 < b < 1. When

the t-test is applied to a nondegenerate distribution satisfying either EY = 0
or EY2 = ∞, Shao (1997) showed that n−1 logP�g̃�Sn/n� > b
 converges, as
n→∞, to

κ �= sup
σ>0

inf
γ>0

logE exp�γσY− γb�Y2 + σ2�/2
�

He derived this result from large deviation bounds for

P

{
sup
σ>0

n∑
i=1
�σYi − b�Y2

i + σ2�/2� > 0
}

�= P�g̃�Sn/n� > b
��

Assume thatY is nonlattice, withEY2 <∞ andEY = 0. We can apply The-
orem 2 to give a more transparent derivation of Shao’s result and strengthen
it into

P�g̃�Sn/n� > b
 ∼ �2πn�−1/2Ceκn�(3.10)

where the constant C is given by the integral in Theorem 2 that will be made
more specific later. First note that for 1 ≥ t > 0,

−F�t� = log
{
sup
v>0

inf
γ∈R

inf
λ>0

EeγY−λY
2−γt√v+λv

}
= log

{
sup
v>0

inf
γ>0

E exp
(
γY− γt

2
√
v
Y2 − γt

√
v+ γt

2

√
v

)}

= log
{
sup
σ>0

inf
γ>0

E exp
(
γσY− γt

Y2 + σ2

2

)}
�

where the third equality follows by setting v = σ2 and replacing γ by γσ and
the second inequality comes from solving the equations ∂/∂λ = 0, ∂/∂γ = 0,
∂/∂v = 0 (yielding λ = γt/2

√
v), associated with the optimization problem that

defines −F�t�. Clearly −F�t� is decreasing in t and, therefore,

inf�φ�y� v�: g̃�y� v� ≥ b
 = inf�F�t�: t ≥ b
 = F�b� = −κ�
Assumptions (B1)–(B5) hold with d = 2, p = 0 and M = ��b√vb� vb�
, where
vt is the minimizer of φ�t

√
v� v� defined earlier. Hence Theorem 2 gives the

desired conclusion (3.10). When Y is normal, C = b−1�1 − b2�−1/2 and κ =
1
2 log�1− b2�, which can also be derived from the tail probability of Student’s
t-distribution with n− 1 degrees of freedom:

P�tn−1 > �n− 1�1/2b/�1− b2�1/2
 ∼ �2πn�−1/2b−1�1− b2��n−1�/2 as n→∞�
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(D) Theorem 3 can be used to evaluate the Type II error probability of the
sequential test that rejects H0 if kg�Sk/k� > c for some k ≤ ac. Suppose
g�µ0� > a−1. Then the Type II error probability of the test at the alternative
with EX1 = µ0 can be expressed in the form

Pµ0

{
max
k≤n

kg�Sk/k� ≤ c

}
= Pµ0

{
min
k≤n

�ng�µ0� − kg�Sk/k�� ≥ ng�µ0� − c

}
= Pµ0

{
min
k≤n

��n− k�β+ kg̃�Sk/k�� ≥ bn

}
�

to which Theorem 3 is applicable, where β = g�µ0�, g̃ = g�µ0� − g and b =
g�µ0� − a−1.

Example 4. With the same notation and assumptions as Example 1, con-
sider the Type II error probability of the repeated t-test at the alternative
where E�Yi� = γ �= 0 and Var�Yi� = 1. Thus E�Y2

i � = 1 + γ2. Suppose γ > 0
and g�γ�1+ γ2� > a−1. Let b = g�γ�1+ γ2� − a−1,

g̃�y� v� = g�γ�1+ γ2� − g�y� v� = �log�1+ γ2� − log�v/�v− y2��
/2�
Since the logarithm of the underlying density function is −�y − γ�2/2 − log
�√2π�, the rate function now takes the form

φ�y� v� = �v− 1− log�v− y2� − 2γy+ γ2�/2�
Since φ is strictly convex with its global minimum at �γ�1 + γ2� and since
g�γ�1 + γ2� > a−1, the minimum of φ over the region ��y� v�:g�y� v� ≤ a−1

occurs at v = αy2 with α satisfying g�1� α� = a−1, or equivalently α/�α− 1� =
e2/a. Since φ�y�αy2� = �αy2−1− log�α−1�− log y2−2γy+γ2
/2 is minimized
at ya �= �γ +

√
γ2 + 4α�/2α, (B1) holds with g̃ in place of g and b/r = φ�µa�

and (B3) holds withM consisting of the single point µa �= �ya� αy
2
a). Moreover,

(B2), (B4) and (B5) also hold (with g̃ in place of g). Hence Theorem 3 can be
applied to give

Pγ

{
max
2≤k≤ac

kg�Sk/k� ≤ c

}
∼ �2πac�−1/2ξ�µa�w�µa��*�µa��−1/2e−acφ�µa�

as c → ∞. The proof of Theorem 3 actually shows that Pγ�maxδc≤k≤ac kg
�Sk/k� ≤ c
 ∼ Pγ�max2≤k≤ac kg�Sk/k� ≤ c
 and, therefore, the preceding
asymptotic formula also yields the Type II error probability of the repeated
t-test.

(E) In the case Xi = log�f1�Yi�/f0�Yi�� and g�x� = x, Theorems 1 and 3
can be used to give large deviation approximations to the error probabilities
of truncated sequential probability ratio tests of H0:f = f0 versus H1:f =
f1, where f is the common density function of the Yi with respect to some
measure ν. In particular, supposeH0 is true. Let eψ�θ� = EeθX1�= ∫ fθ

1f
1−θ
0 dν�.

Then ψ�0� = ψ�1� = 0. Let µ∗ = dψ/dθ�θ=1. If a−1 < µ∗ < δ−1, then (A1)–(A5)
hold with r = 1� q = 0 and Mε = �µ∗
.
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3.2. Proof of Theorems 1–3. We preface the proof of the theorems by the
following lemma, which gives uniform convergence over compact subsets of �o

in the local limit theorem for
∑n

i=1X
�µ�
i , where X�µ�

i is defined in the sentence
before Theorem 1. The proof of the lemma is a refinement of Stone’s (1965)
arguments, and the details are given in Chan (1998).

Lemma 1. For h > 0 and x = �x1� � � � � xd�′ ∈ Rd, let K�x�h� = �y ∈
Rd:xi ≤ yi ≤ xi + h for all 1 ≤ i ≤ d
. Suppose F is nonlattice. Let
C be a compact subset of �o. Then there exist positive numbers h0�n� with
limn→∞ h0�n� = 0 such that as n→∞� ε→ 0 and h→ 0 with h ≥ h0�n�,

P

{ n∑
i=1

X
�µ�
i ∈K�µn+ ε

√
n�h�

}
= ��2π�−d/2�*�µ��−1/2 + o�1�
�h/√n�d�

where the o�1� term is uniform in µ ∈ C.

Proof of Theorem 1. Replacing g by g/r and c by c/r, we shall assume
without loss of generality that r = 1. Suppose first that X1 has a bounded
continuous density. Then P�Tc ≤ ac
 = ∫

Rd f�µ� dµ, where f is defined in
(2.7). Let t = �c1/4� and

fn�µ� = P�Sn/n ∈ dµ

×P

{
jg�Sj/j� ≤ c for all n− t ≤ j < n�Sn/n = µ

}
�

(3.11)

Let Uη�ε be the tubular neighborhood of Mε with radius η, that is, Uη�ε is
defined by (2.9) withMε in place ofM0. It will be shown in the Appendix that

P�Tc ≤ ac
 =
∫
Uc−1/2 log c�c−1/2

{ ∑
n>c/g�µ�
δc+t≤n≤ac

fn�µ�
}
dµ+ o�cq/2e−c��(3.12)

Note that for µ ∈ Mε, g�µ� = φ�µ� and µ′∇g�µ� − g�µ� = ψ�θµ�. Let Sn�k =∑n
i=n−k+1Xi, so Sn = Sn−k + Sn�k. It follows from (A4) that maxδc+t≤n≤ac� 1≤k≤t

S2
n�k/n

P→0 and that

�n− k�g(�nµ−Sn�k�/�n− k�)
= ng�µ� − {�∇g�µ��′Sn�k − k�µ′∇g�µ� − g�µ��}+O�S2

n�k/n��
(3.13)

and therefore an argument similar to Lemmas 1 and 2 of Woodroofe (1978)
can be used to show that uniformly in δc+t ≤ n ≤ ac and in µ ∈ Uc−1/2 log c� c−1/2 ,

P��n− k�g�Sn−k/�n− k�� ≤ c for all 1 ≤ k ≤ t�Sn/n = µ

= p�µ�ng�µ� − c� + o�1��

(3.14)
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where p�µ�x� = P�mink≥1Sk�µ� ≥ x
� Putting (2.6) and (3.14) into (3.11) and
setting x = ng�µ� − c, it follows from (3.12) that P�Tc ≤ ac
 is equal to∫

Uc−1/2 log c� c−1/2

{∫ ∞
0
�2π�−d/2��x+ c�/g�µ��d/2�*�µ��−1/2

× exp�−�x+ c�φ�µ�/g�µ�� p�µ�x� dx/g�µ�
}
dµ+ o�cq/2e−c��

(3.15)

Since M∗ defined in (2.4) is a compact subset of � and g = φ on M∗ ⊃Mε∗ , it
follows that uniformly in µ ∈ Uc−1/2 log c� c−1/2� g�µ� = φ�µ� + o�1� and therefore∫∞
0 p�µ�x�e−xφ�µ�/g�µ� dx = ∫∞

0 p�µ�x�e−x dx + o�1� = γ�µ� + o�1�, by the
definition of p�µ�x� and γ�µ�. Hence, (3.15) can be written as

�1+ o�1���c/2π�d/2e−c
∫
Uc−1/2 log c� c−1/2

�φ�µ��−d/2−1�*�µ��−1/2

× γ�µ�e−c�φ�µ�/g�µ�−1� dµ+ o�cq/2e−c��
(3.16)

We next evaluate the integral in (3.16) by making use of (2.10). For µ ∈
Uc−1/2 log c� c−1/2 , we can write µ = y + z with y ∈ Mc−1/2� z ∈ TM⊥

c−1/2�y� and
�z� ≤ c−1/2 log c; see (2.9). Since ∇φ�y� = ∇g�y� and φ�y� = g�y� for y ∈
Mc−1/2 , Taylor’s expansion around y ∈Mc−1/2 yields

φ�µ� − g�µ� = z′∇2ρ�y�z/2+ o��z�2�(3.17)

uniformly in µ ∈ Uc−1/2 log c� c−1/2 . Using the change of variables z = (⊥yv with
v ∈ Rd−q and applying (2.10), we can express the integral in (3.16) as

�1+ o�1��
∫
Mc−1/2

�φ�y��−d/2−1�*�y��−1/2γ�y�

×
∫
v∈Rd−q� �v�≤c−1/2 log c

exp�−cv′�(⊥y �′∇2ρ�y�(⊥yv/2g�y�
 dv dσ�y�

∼
∫
M0

�φ�y��−d/2−1�*�y��−1/2γ�y��2πg�y�/c��d−q�/2

×��(⊥y �′∇2ρ�y�(⊥y �−1/2 dσ�y�

in view of (A4). Since P�Tc ≤ ac
 is equal to (3.16), this proves Theorem 1
under the assumption that X1 has a bounded continuous density.
To replace this assumption by the much weaker one that X1 be nonlat-

tice, we shall use a tilting argument and Lemma 1 instead of the saddlepoint
approximation (2.6). Let hc = h0��ac�� and Kx = K�x�hc�, where h0 and
K�x�h� are given in Lemma 1. Let Pθ denote the probability measure under
which X1�X2� � � � are i.i.d. with

Pθ�Xi ∈ A
 =
∫
A
eθ

′x−ψ�θ�dF�x�(3.18)
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for all Borel subsetsA ofRd; in particular,P0 = P. ThusPθµ
is the distribution

of X�µ�
1 �X

�µ�
2 � � � � . For µ ∈ hcZd, where Z denotes the set of integers, let

f̄n�µ� = P�Sn ∈Knµ� jg�Sj/j� ≤ c for all n− t ≤ j < n
�
From the fact that dPθµ

/dP = enφ�µ�+θ
′
µ�Sn−nµ�, where Pθµ

and P are restricted
to the σ-field generated by X1� � � � �Xn, it follows that

f̄n�µ� = �1+ o�1��e−nφ�µ�

×Pθµ

{
Sn ∈Knµ� jg�Sj/j� ≤ c for all n− t ≤ j < n

}
uniformly in µ ∈ hcZd ∩Uc−1/2 log c� c−1/2 and δc + t ≤ n ≤ ac. In analogy with
(3.12), note that∑

µ∈hcZd

∑
δc+t≤n≤ac

f̄n�µ�I�inf ν∈Knµ
ng�ν/n�>c
 ≤ P�Tc ≤ ac
�1+ o�1��

≤ ∑
µ∈hcZd

∑
δc≤n≤ac

f̄n�µ� I�supν∈Knµ
ng�ν/n�>c
�

(3.19)

Moreover, an argument similar to that in the Appendix to prove (3.12) can be
used to show that replacing

∑
µ∈hcZd in (3.19) by

∑
µ∈hcZd∩Uc−1/2 log c�c−1/2

leads to

an error of at most o�cq/2e−c�. Define the events
In�µ =

{�n− k�g��ν −Sn�k�/�n− k��
≤ c for all ν ∈Knµ and 1 ≤ k ≤ t� �Sn� t� ≤ c1/3

}
�

I∗n�µ =
{�n− k�g��ν −Sn�k�/�n− k��
≤ c for some ν ∈Knµand all 1 ≤ k ≤ t� �Sn� t � ≤ c1/3

}
�

Applying Lemma 1 to Pθµ
�Sn−t ∈K�n−t�µ+ε√n−t
, we obtain that uniformly in

δc ≤ n ≤ ac and µ ∈ Uc−1/2 log c� c−1/2 ,

Pθµ
�Sn ∈Knµ�Xn� � � � �Xn−t+1

= �1+ o�1��hd

c �n/2π�d/2�*�µ��−1/2
(3.20)

on In�µ (or I∗n�µ). Using the fact that supν∈Knµ
n�g�ν/n� − g�µ�� = O�hc�, it

can be shown by a Taylor expansion as in (3.13) that uniformly in δc ≤ n ≤ ac
and µ ∈ Uc−1/2 log c� c−1/2 ∩ hcZd,

�Pθµ
�In�µ� − p�µ�ng�µ� − c��I�inf ν∈Knµ

ng�ν/n�>c
 = o�1��
�Pθµ

�I∗n�µ� − p�µ�ng�µ� − c��I�supν∈Knµ
ng�ν/n�>c
 = o�1��

(3.21)

where p�µ�x� is defined after (3.14). Combining (3.20) with (3.21), we obtain
from (3.19) [in which

∑
µ∈hcZd is replaced by *µ∈hcZd∩Uc−1/2 log c�c−1/2

with an error

of o�cq/2e−c�] that P�Tc ≤ ac
 is again equal to (3.15) so that we can proceed
as before to obtain the desired conclusion. ✷
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Proof of Theorem 2. Without loss of generality, we shall assume that
r = 1. Recall that e1�y�� � � � � ed−p�y� form an orthonormal basis of TM⊥�y�
and that ∇g�y� is a scalar multiple of e1�y�, for every y ∈ M. For y ∈ M

and max1≤i≤d−p �vi� ≤ �log n�−1, since g�y� = b and �∇g�y��′∑d−p
i=1 viei�y� =

v1�∇φ�y��/s, Taylor’s expansion yields

g

(
y+

d−p∑
i=1

viei�y�
)

= b+ v1�∇φ�y��/s+O�v21� + v′(′y∇2g�y�(y/2+ o��v�2�
> b if v1�∇φ�y��/s > c�v� + o��v�2� +O�v21��

(3.22)

where v = �v2� � � � � vd−p�′ and c�v� = −v′(′y∇2g�y�(yv/2. Let

Vn =
{
y+

d−p∑
i=1

viei�y�:y ∈M� max
1≤i≤d−p

�vi� ≤ �log n�−1� v1�∇φ�y��/s > c�v�
}
�

First assume that X1 has a bounded continuous density. Then by (2.6),
P�Sn/n ∈ Vn
 is equal to

�1+ o�1���n/2π�d/2
∫
Vn

�*�µ��−1/2e−nφ�µ�dµ�(3.23)

Note that ∇2φ�y� = *−1�y�. Let �a11�y�� � � � � a1�d−p�y�� be the first row of
J′y∇2φ�y�Jy, whereJy = �e1�y� � � � ed−p�y��. For y ∈M�φ�y� = b and Taylor’s
expansion yields

φ

(
y+

d−p∑
i=1

viei�y�
)

= b+ v1�∇φ�y�� + �a11�y�/2+ o�1�
v21 +
d−p∑
i=2
�a1i�y� + o�1�
v1vi

−sc�v� + v′(′y
{
*−1�y� − s∇2g�y�}(yv/2+ o��v�2��

(3.24)

Putting (3.24) in (3.23) and using the change of variables

u = n�v1 − sc�v�/�φ�y��
� w = √nv�
we can apply the infinitesimal change of volume function over tubular neigh-
borhoods as in (2.10) to show that (3.23) is equal to

�1+o�1���n/2π�d/2n−1−�d−p−1�/2e−bn
∫
y∈M

�*�y��−1/2

×
{∫ ∞

0
exp

(−u�∇φ�y��−n−1a11�y�u2/2−n−1/2ud−p∑
i=2

a1i�y�wi

)
du

}

×
{∫

Rd−p−1
exp

(−w′(′y�*−1�y�−s∇2g�y��(yw/2
)
dw2 ···dwd−p

}
dσ�y��

(3.25)
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setting
∫
Rd−p−1 = 1 if d = p+ 1. Making use of (B1), (B4), (2.6) and the Taylor

expansions (3.22) and (3.24), it can be shown that

P�g�Sn/n� > b
 = P�Sn/n ∈ Vn
 + o�n−qe−bn�(3.26)

for every q > 0. Combining (3.26) with (3.23) and (3.25) yields the desired
result when X1 has a bounded continuous density. To prove the result for
general nonlattice X1, we can proceed as in the proof of Theorem 1 by using
a tilting argument in conjunction with Lemma 1 to replace the saddlepoint
approximation (2.6). ✷

Proof of Theorem 3. First assume thatX1 has a continuous density and
use the same notation as in the proof of Theorem 2. For µ = y + n−1�u +
sc�w�/�∇φ�y��
+∑d−p

i=2 n−1/2wiei�y� ∈ Vn�ng�µ� = bn+u�∇g�y��+O�n−1/2�
as in (3.22), and therefore analogous to (3.14),

P
{
kβ+ �n− k�g�Sn−k/�n− k�� > bn

for all 0 ≤ k < n� Sn/n = µ
}

= q�µ�u�∇φ�y��� + o�1��
where q�µ�x� = P

{
max
k≥1

Wk�µ� < x
}
�

(3.27)

To derive (3.27), note that since nµ = Sn and θµ = ∇φ�µ� = s∇g�µ��

kβ+ �n− k�g�Sn−k/�n− k��
�= kβ+ �n− k�g�µ� + �∇g�µ��′�Sn−k − �n− k�µ�
�= kβ+ �n− k�g�µ� − θ′µ

n∑
i=n−k+1

�Xi − µ�/s�

which exceeds ng�µ� − u�∇g�y��� �= bn� if and only if

k�g�µ� − β� + θ′µ
n∑

i=n−k+1
�Xi − µ�/s < u�∇φ�y���/s�

The rest of the argument is similar to that of the proof of Theorem 2, except
that the integral

∫∞
0 in (3.25) is now replaced by

∫ ∞
0

exp
(
−u�∇φ�y�� − n−1a11�y�u2/2− n−1/2u

d−p∑
i=2

a1i�y�wi

)
×q�y�u�∇φ�y��� du�

which leads to the termw�µ� in (3.4). To prove the result for general nonlattice
X1, we can proceed as in the proof of Theorem 1. ✷
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4. Moderate deviation approximations and nearly optimal sequen-
tial GLR tests. In the large deviation approximations to error probabili-
ties of sequential tests in Section 3, we have considered events of the type
�Tc ≤ K
 with K/c approaching a positive limit as c → ∞. The asymp-
totic formula in Theorem 1 involves g and the rate function φ in the region
�a−1 < g < δ−1
, and it no longer holds if K/c → ∞. On the other hand, as
a → ∞ (or a−1 → 0), Theorem 1 suggests that the asymptotic result would
involve the behavior of g and φ in a neighborhood of µ0, noting that φ assumes
its minimum value 0 at µ0. Since φ�µ� ∼ �µ−µ0�′*−1�µ0��µ−µ0�/2 as µ→ µ0,
conditions of the type (A1) and (A2) would require the following: There exist
r > 0, 1 ≤ q < d and an open neighborhood D of µ0 such that

(C1) g is twice continuously differentiable on D and

g�µ0� = 0� ∇g�µ0� = 0� ∇2g�µ0� = rQ�Q*�µ0�Q
−1Q�

(C2) supµ∈D�µ�=µ0
g�µ�/φ�µ� = r, and M� = �µ ∈ D� g�µ� = rφ�µ�
 is a

smooth q-dimensional manifold,

where Q is a d×d projection matrix (symmetric and idempotent) so that Qx
is the orthogonal projection of x ∈ Rd into a q-dimensional linear subspace L
of Rd, and the inverse of the singular matrix Q*�µ0�Q refers to the Moore–
Penrose generalized inverse [cf. Rao (1973)].
In this section we consider the caseK/c→∞. Besides Tc, we also consider

NC = inf�n ≥mC:ng�Sn/n� ≥ h�n/C�
�(4.1)

in which C = ec and h�t� ∼ α log t−1 as t → 0 for some α > 0. Note that
if we replace h�n/C� in (4.1) by a function h�n�C� of both n and C, then
Tc is indeed a special case of (4.1) with h�n�C� = logC �= c�. On the other
hand, since the large deviation approximation in Theorem 1 restricts n to be
≤ ac �= a logC�, log�C/n� is asymptotically equivalent to logC and therefore
there is little to gain by replacing the constant boundary c in Tc by h�n/C�.
However, for the moderate deviation approximation considered in this section,
we take n to be much larger than c = logC but still to be o�C�, for which
�n/C� �Sn − nµ0�/

√
C� behaves like �t�Bt� and therefore ng�Sn/n� behaves

like �r/2��QBt/
√
t�′�Q*�µ0�Q�−1QBt/

√
t in view of (C2), where *−1/2�µ0�Bt is

Brownian motion. This explains why we choose a time-varying boundary of
the form h�n/C� in (4.1).
In fact, such time-varying boundaries in NC with g�x� given by (3.5) that

corresponds to GLR statistics for testing H0: θ ∈ �0 have been shown to
yield asymptotically optimal sequential tests in exponential families from both
Bayesian and frequentist viewpoints [cf. Lai (1988a, b, 1997) and Lai and
Zhang (1994a, b)]. By considering optimal stopping problems associated with
corresponding sequential testing problems for Brownian motion, Lai (1988a,
1997) showed that the optimal stopping boundaries satisfy an asymptotic
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expansion of the form

h�t� = α log t−1 − β log log t−1 + λ+ o�1� as t→ 0(4.2)

for some α > 0 and real numbers β�λ that depend on the loss function for
the wrong decision and the prior distribution, assuming a constant sampling
cost per unit time. Part (i) of the following theorem gives an asymptotic
approximation to the moderate deviation probability P�b−1m ≤ NC ≤ m

as m/ logC → ∞ but m/C → 0 when h satisfies (4.2) and g satisfies (C1)
and (C2). Part (ii) of the theorem gives an analogous result for Tc. Unlike
Theorems 1–3, X1 is no longer assumed to be nonlattice. Instead of inte-
grating the saddlepoint approximation (2.6) over a tubular neighborhood of
a manifold and using conditional arguments like (3.13) and (3.14) to handle
excess over the boundary, its proof uses a change-of-measure argument that
involves a mixture measure obtained by integrating Pθµ

over a tubular neigh-
borhood of µ0. Additional remarks on this approach and some applications of
the theorem will be given after its proof.

Theorem 4. Suppose that g:�→ R satisfies (C1) and (C2). Let b > 1.

(i) Suppose h satisfies (4.2) with α > 0. Define NC by (4.1). Then as C→∞
and m/ logC→∞ but m/C→ 0 with b−1m ≥mC,

P�b−1m < NC ≤m
 ∼ �m/C�α/r� log�m/C��β/r+q/2π−q/2�α/r�q/2e−λ/r

×
∫
u∈Rq:1≤�u�2≤b

�u�−2α/r−q du�

Consequently, if mC/ logC → ∞ and m/mC → ∞ but m/C → 0 as C → ∞,
then

P�NC ≤m
 ∼ ��α/r�q/2−1/Q�q/2��e−λ/r�m/C�α/r� log�m/C��β/r+q/2�
(ii) Define Tc by (2.2), with n0/c → ∞ as c → ∞. Then uniformly in

b−1m ≥ n0,

P�b−1m < Tc ≤m
 ∼ �log b��c/r�q/2e−c/r/Q�q/2�
as c→∞. Consequently, as m/n0 →∞ but log log�m/n0� = o�c�,

P�Tc ≤m
 ∼ �log�m/n0���c/r�q/2e−c/r/Q�q/2��

Proof. Replacing �g�h� by �g/r� h/r�, we can assume without loss of gen-
erality that r = 1. We shall also assume that

*�µ0� = Id� Q�Q*�µ0�Q
−1Q =
(
Iq 0
0 0

)
� µ0 = 0�(4.3)

where Ik denotes the k × k identity matrix. By using a nonsingular linear
transformation of µ− µ0, there is no loss of generality in assuming (4.3); see
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Rao [(1973), 1c.3(ii) ] and Chandra [(1985), page 101]. To prove part (i) of the
theorem, let

Uξ=
{
µ1 + µ2� µ1 ∈M�µ2 ∈ TM⊥�µ1��
max��µ1�2� �µ2�2� < ξαm−1 log�C/m�}�(4.4)

Let U = U4b� U∗ = U3b. Standard exponential tilting can be used to show
that

P� �Xn �∈ U∗ for some b−1m ≤ n ≤m


≤
d∑
i=1

P

{
max

b−1m≤n≤m
� �Xni − µ0 �≥ �3αbm−1 log�C/m��1/2

}
= o��m/C�6α/5��

(4.5)

see Lai and Zhang [(1994b), proof of Lemma 1] for a similar argument.
Let Im = �b−1m < NC ≤m� �XNC

∈ U∗
. We shall evaluate P�Im� by using
a change of measures,

P�Im� =
∫
Im

L−1NC
dP̃�(4.6)

where P̃�B� = ∫U Pθµ
�B� dµ for allB in the σ-field generated by �Xn� n ≤m
,

Pθµ
is defined in (3.18) and Ln is the mixture likelihood ratio

Ln =
∫
U
exp�θ′µSn − nψ�θµ�� dµ�(4.7)

Define the Kullback–Leibler information number

� �θµ� θ� = �θµ − θ�′µ− �ψ�θµ� − ψ�θ���(4.8)

Letting θ̂n = �∇ψ�−1� �Xn�, we can write

θ′µ �Xn − ψ�θµ�=φ� �Xn� − ��θ̂n − θµ�′ �Xn − �ψ�θ̂n� − ψ�θµ��

=φ� �Xn� −� �θ̂n� θµ��

Moreover, since *�µ0� = Id and µ0 = 0, � �θ̂n� θµ� ∼ � �Xn − µ�′� �Xn − µ�/2 as
�µ� + � �Xn� → 0. Hence on Im, as C→∞ and m/ logC→∞,

LNC
= eNCφ� �XNC

�
∫
U
exp�−NC� �θ̂NC

� θµ�� dµ

∼�2π/NC�d/2eNCg� �XNC
� exp�NC�φ� �XNC

� − g� �XNC
��
�

(4.9)

recalling the definitions ofU andU∗. Since ∇2φ�µ0� = *−1�µ0� = Id, it follows
from (C1), (C2) and (4.3) that for µ = µ1 + µ2 ∈ U,

φ�µ� − g�µ� = �µ2�2/2+ o��µ2�2��(4.10)

analogous to (3.17). Let tµ�m − �2α log�C/m�
/�µ1�2 for µ = µ1 + µ2 ∈ U.
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We have the representation �Xn = �X�1�
n + �X�2�

n if �Xn ∈ U, where �X�1�
n ∈M

and �X�2�
n ∈ TM⊥� �X�1�

N �. As C→∞ and m/ logC→∞ such that m = o�C�, it
follows from (C1) and (4.3) that

NCg� �XNC
� =NC

{� �X�1�
NC
�2/2+ o�� �XNC

�2�}�
Combining this with (4.1), (4.2) and (4.5) yields that for every δ > 0,

sup
µ∈U

Pθµ
��NC/tµ�m − 1� ≥ δ
 → 0�(4.11)

Moreover,
∑

b−1m≤n≤mPθµ
���n+1� �X�1�′

n+1 �X�1�
n+1−n �X�1�′

n �X�1�
n � ≥ δ
→0 and there-

fore ∑
b−1m≤n≤m

Pθµ

{��n+ 1�g� �Xn+1� − ng� �Xn�� ≥δ
 → 0�

uniformly in µ ∈ U. Hence

sup
µ∈U

Pθµ

{
NCg� �XNC

� − h�NC/C� ≥ δ
 → 0�(4.12)

Let η = 4bαm−1 log�C/m� and σ be the volume element measure of M. By
(4.6) and (2.10), as η→ 0,

P�Im� =
∫
U
Eθµ

�L−1NC
IIm

� dµ

∼
∫
M∩��µ1�2≤η


∫
TM⊥�µ1�∩��µ2�2≤η


Eθµ
�L−1NC

IIm
�dµ2 dσ�µ1��

(4.13)

Note that NCg� �XNC
� − h�NC/C� ≥ 0. Let Bm = �y ∈ Rq� 2α log�C/m� ≤

m�y�2 ≤ 2αb log�C/m�
 and let τy�m = �2α log�C/m�
/�y�2 for y ∈ Bm. From
(4.9)–(4.13), it follows that P�Im� is asymptotically equivalent to

�2π�−d/2
∫
M∩��µ1�2≤η


∫
TM⊥�µ1�∩��µ2�2≤η


×Eθµ

{
e−h�NC/C�Nd/2

C exp
[−�1/2+ o�1��NC� �X�2�

NC
�2]}dµ2 dσ�µ1�

∼ �2π�−d/2e−λ
∫
Bm

�τy�m/C�α�log�C/τy�m�
βτd/2y�m

×
{∫

z∈Rd−q��z�2≤4bαm−1 log�C/m�
exp�−�1/2+ o�1��τy�m�z�2�dz

}
dy�

Using the change of variables u = √m�2α log�C/m�
−1/2y� v = √mz in the
above double integral, it then follows that P�Im� is asymptotically equivalent
to

�2π�−d/2e−λ�m/C�α�log�C/m��β+q/2�2α�q/2
∫
1≤�u�2≤b

�u�−2α−d

×
{∫
�v�2≤4bα log�C/m�

exp�−�1+O�1���v�2/�2�u�2��dv
}
du
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∼ �2π�−d/2e−λ�m/C�α�log�C/m��β+q/2�2α�q/2�2π��d−q�/2

×
∫
1≤�u�2≤b

�u�−2α−qdu�

yielding the desired conclusion for P�b−1m < NC ≤m
.
Let J be the positive integer defined by b−�J+1�m < mC ≤ b−Jm. Since

P�NC ≤m
 = P�b−1m < NC ≤m
 +P�b−2m < NC ≤ b−1m

+ · · · +P�mC ≤NC ≤ b−Jm


and since m/mC →∞, the desired conclusion for P�NC ≤m
 then follows by
choosing b arbitrarily large, noting that

∫
�u�2≥1 �u�−2α−q du = πq/2/�αQ�q/2��.

The proof of part (ii) of the theorem is similar, replacing α log�C/m� through-
out the preceding argument by c. In particular, the bound in (4.5) now becomes
o�e−6c/5� and (4.11) holds with Tc in place of NC and tµ�m = 2c/�µ1�2. Letting
τy�m = 2c/�y�2, the analogue of (4.13) in the present case is

P�b−1m < Tc ≤m� �XTc
∈ U∗


∼ �2π�−d/2e−c
∫
Bm

∫
z∈Rd−q�m�z�2≤4bc

τd/2y�m exp�−�1+ o�1��τy�m�z�2/2�dydz

∼ �2π�−d/2e−c�2c�q/2

×
∫
1≤�u�2≤b

�u�−d
∫
�v�2≤4c

exp�−�1+ o�1���v�2/�2�u�2�� dv du

∼ π−q/2cq/2e−c
∫
1≤�u�≤√b�u∈Rq

�u�−qdu = 2�log
√
b�cq/2e−c/Q�q/2��

Note that unlike the situation in (i),
∫
�u�2≥1� u∈Rq �u�−q du = ∞. Taking b = e

in the preceding asymptotic formula, the desired conclusion for P�Tc ≤ m

follows from

P�Tc ≤m
 = P�e−1m < Tc ≤m
 + · · · +P�n0 ≤ Tc ≤ b−Jm
�
where e−�J+1�m < n0 ≤ e−Jm so that J ∼ log�m/n0�. ✷

The moderate deviation approximation in Theorem 4(ii) is a diffusion
approximation that approximates �n/m� �Sn − nµ0�/

√
m� by �t�Bt�, where

*−1/2�µ0�Bt is Brownian motion, for which

P��QBt�′�Q*�µ0�Q�−1QBt ≥ 2ct for some b−1 ≤ t ≤ 1

∼ �log b�cq/2e−c/Q�q/2�

(4.14)

as c → ∞. (If c were fixed as m → ∞, then the diffusion approximation
would be a consequence of the functional central limit theorem.) The same
change-of-measure argument involving a suitably chosen mixture measure
can be used to prove (4.14) for Brownian motion, showing the versatility of
the method for such moderate deviation calculations. On the other hand, the
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method of Section 3, which cannot be applied to Brownian motion, is also not
directly applicable to moderate deviation probabilities. As noted in the second
paragraph of this section, the moderate deviation approximation in Theorem
4(i) is a diffusion approximation that approximates �n/C� �Sn − nµ0�/

√
C� by

�t�Bt�. Putting ε = m/C in Theorem 4(i) suggests the following counterpart
for Brownian motion:

P�tg�Bt/t� ≥ h�t� for some t ≤ ε

∼ ��α/r�q/2−1/Q�q/2��e−λ/rεα/r� log ε�β/r+q/2

(4.15)

as ε→ 0, which can be proved by the same method used to prove Theorem 4(i).

5. Asymptotic expansions for GLR and perturbed χ2 statistics. In
this section we consider fixed sample size tests and give a moderate deviation
approximation to the probability P�2ng�Sn/n� ≥ rc
, where g satisfies (C1)
and (C2) and c → ∞ but c = o�n�. The moderate deviation probabilities
of 2ng�Sn/n� can be approximated by those of the chi-square distribution
with q degrees of freedom, in contrast with (3.8) and (3.9) in which the large
deviation probabilities of 2ng�Sn/n� and of the chi-square distribution differ
by a constant factor. The chi-square approximation can be derived by a tilting
argument similar to that used in the proof of Theorem 1. Moreover, if c =
o�n1/3� and X1 satisfies Cramér’s condition while g is sufficiently smooth in
a neighborhood of µ0, then we can refine the chi-square approximation into
asymptotic expansions for the moderate deviation probabilities. For the case
where c is assumed to be fixed (instead of tending to ∞ with n), Chandra
(1985) derived an Edgeworth expansion [under (C1)] for P�2ng�Sn/n� ≥ rc

as n→∞.

Theorem 5. Suppose that g� � → R satisfies (C1). Let 1 ≤ q < d and let
χ2�q� denote a chi-square random variable with q degrees of freedom.

(i) Suppose (C2) also holds. Then as n→∞ and c→∞ such that c = o�n�,
P�2ng�Sn/n� ≥ rc
 ∼ P�χ2�q� ≥ c
�(5.1)

(ii) Suppose g is of class C2J+2 in a neighborhood of µ0 for some positive
integer J. Let φQ�µ� = �µ − µ0�′Q�Q*�µ0�Q
−1Q�µ − µ0�/2, where Q is a

d×d projection matrix so that Qx is the orthogonal projection of x ∈ Rd into a
q-dimensional linear subspace of Rd. Suppose there exists a polynomial p�µ�
in the components of µ− µ0 such that p�µ0� = 1 and

g�µ�= rp�µ�φQ�µ� +O��φQ�µ− µ0��2�µ− µ0�2J+1��
�∇g�µ� − �∇pq��µ��=O��Q�µ− µ0���µ− µ0�2J+1�

(5.2)

as µ→ µ0. Assume furthermore Cramér’s condition

lim sup
y∈L

�y�→∞

�E exp�
√
−1y′Q�X1 − µ0��� < 1�(5.3)
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Take any c0 > 0 and cn →∞ such that cn = o�n1/3�. Then there exist constants
aij and nonnegative integers kj �j = 1� � � � � J� such that as n→∞,

P�2ng�Sn/n� ≥ rc
 = P�χ2�q� ≥ c
 +
J∑

j=1
n−j

kj∑
i=0

aijP�χ2�q+ i� ≥ c


+ o�n−JP�χ2�q+J� ≥ c
�
uniformly in c0 ≤ c ≤ cn.

Proof. Without loss of generality, we shall assume that r = 1 and that
(4.3) holds. Moreover, we shall also assume that µ0 = 0 for notational
simplicity.
To prove (i), first consider the case in whichX1 is nonlattice. Let hn = h0�n�

and Kx =K�x�hn�, where h0 and K�x�h� are given in Lemma 1, and define
the probability measure Pµ by (3.18). Let U be the tubular neighborhood of
M ∩ �µ� �µ� < �c/n�1/3
 with radius �c/n�1/3. By Lemma 1 applied to Pµ

together with a tilting argument similar to that used in the proof of Theorem
1, we obtain that as n→∞ and c/n→ 0,

P�Sn ∈Knµ
 = �1+ o�1��e−nφ�µ��n−1hn�d�n/2π�d/2

uniformly in µ ∈ n−1hnZd ∩U, noting that �*�µ�� = 1+ o�1� by (4.3). Hence∑
µ∈n−1hnZd∩U

2ng�µ�≥c

P�Sn ∈Knµ
 ∼ �n/2π�d/2
∫
U
e−nφ�µ�I�2ng�µ�≥c
dµ�(5.4)

The integral in (5.4) can be evaluated by making use of (2.10) and an argument
similar to that in the proof of Theorem 4 to analyze the double integral in
(4.13), together with the same composite transformation as in Chandra and
Ghosh (1979):

�√ny1� � � � �
√
nyq�

√
nz′� → �√n�y�� θ1� � � � � θq−1� v′�

→ �2ng�µ�� θ1� � � � � θq−1� v′��
(5.5)

in which y = �y1� � � � � yq�′ and z� v belong to Rd−q. The first transformation
in (5.5) is simply the polar coordinate representation of

√
ny. Letting w =

2ng�µ�, we can therefore write e−nφ�µ� = e−w/2 exp�−� 12 + o�1���v�2
. Making
use of the Jacobian of the transformation, we then obtain that the right-hand
side of (5.4) is asymptotically equivalent to∫ ∞

c
wq/2−1e−w/2 dw/�2q/2Q�q/2�
 = P�χ2�q� ≥ c
�

Since P� �Xn �∈ U
 = exp�−�1/2 + o�1���n/c�1/3c
, (5.1) follows. In the case
where X1 is lattice with span h, we can replace hn by h in the preceding
argument and (5.4) still holds.
To prove (ii) under Cramér’s condition (5.3), we first assume that X1 has

a bounded continuous density. Then the density function of Sn has a tilted
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Edgeworth expansion [cf. Section 4.3 and the Appendix of Barndoff-Nielsen
and Cox (1979)] and we can apply the change of variables (5.5) to this sad-
dlepoint (tilted Edgeworth) expansion. The same calculations as in Chandra
and Ghosh (1979) for the direct Edgeworth expansion then yield the desired
conclusion, noting that since c = o�n1/3�, the Taylor expansion of φ�µ� in
e−nφ�µ� combined with the Taylor expansion of �*�µ��−1/2 basically reduces the
saddlepoint expansion to the Edgeworth expansion. ✷

6. Computational issues and concluding remarks. The functions
γ�µ� in Theorem 1 and w�µ� in Theorem 3 can be computed by making use of
the fluctuation theory of random walks; see Siegmund [(1985), Chapter VIII]
and Woodroofe [(1982), Chapter 2], where these functions are expressed either
as infinite series involving the marginal distributions of Sn�µ� [or Wn�µ�� or
integrals involving the characteristic function of S1�µ� [or W1�µ�]. When M0
(or M) is of low dimension, standard numerical integration techniques can be
used to compute the integrals that appear as multiplicative constants in the
asymptotic approximations of Theorems 1–3. On the other hand, numerical
integration is computationally expensive for higher dimensions, particularly
in view of the fact that γ�µ� or w�µ� does not have closed-form expressions
and requires an extra layer of numerical integration (or series summation).
For multidimensional integrals, Monte Carlo or quasi-Monte Carlo methods
are widely used numerical methods. Instead of using Monte Carlo methods
to evaluate the integrals that appear in the large deviation approximations
in Theorems 1–3, it is more natural to consider Monte Carlo simulation of
these probabilities. However, since these (large deviation) probabilities are
very small, direct simulation can be prohibitively difficult and importance
sampling is needed. Specifically, for any stopping rule τ (which also includes
the fixed sample size n in Theorem 2), Wald’s likelihood ratio identity yields

P�A� = EQ�L−1τ IA� for all A ∈ �τ�(6.1)

where �n is the σ-field generated byX1� � � � �Xn andLn is the Radon–Nikodyn
derivative (likelihood ratio) ofQ��n

with respect to P��n
. The basic idea behind

importance sampling is to choose the measure Q suitably so that L−1τ IA has
a smaller variance under Q than that of IA under P.
For the event A considered in Theorem 2 or Theorem 3, our asymptotic

formula and its proof suggest choosing Q as the mixture
∫
MPθµ

dσ�µ�. Since
σ has compact support, σ�M� is finite. We can therefore choose Q = ∫

MPθµ

dσ̃�µ�, where σ̃ = σ/σ�M� is a probability measure on M. Similarly, for the
event A considered in Theorem 1, define Q = ∫M0

Pθµ
dσ̃�µ�. Corresponding to

this choice of Q, the mixture likelihood ratio Ln in (6.1) can be expressed as

Ln =
∫
exp�θ′µSn − nψ�θµ�� dσ̃�µ��(6.2)

where the integral is over M0 or M. The integral in (6.2) may be difficult to
compute when M0 or M is a high-dimensional manifold. To get around the
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numerical integration involved in (6.1), we can treat µ as a random variable
with distribution σ̃ and replace (6.1) by

P�A� = Eσ̃�Eθµ
�exp�−θ′µSτ + τψ�θµ��IA�
�(6.3)

which suggests the following Monte Carlo method to compute P�A�:
(i) Generate µ from the distribution σ̃ , treating it as a random variable.
(ii) Given µ, generate i.i.d. d-dimensional vectors X1�X2� � � � �Xτ from

Pθµ
.

(iii) Compute P�A� as the average B−1
∑B

i=1 Ii exp�−θ′µ�i�S
�i�
τ�i� + τ�i�×

ψ�θµ�i��
 over B independent samples �µ�i��X�i�
1 � � � � �X

�i�
τ�i��� i = 1� � � � �B,

where S
�i�
τ�i� = X

�i�
1 + · · · + X

�i�
τ�i� and Ii = 1 if A occurs for the ith sample

and Ii = 0 otherwise.

As explained in Chan and Lai (1999), it is sometimes useful to decompose
the event A into a union of disjoint sets A1� � � � �Ak and to evaluate P�A� as a
sum

∑k
j=1P�Aj�, so that the manifold M�j� associated with Aj is a connected

subset of Rd and is considerably smaller than M (or M0). Further details of
this importance sampling procedure are given in Chan and Lai (1999), where
a theory similar to that of Siegmund (1976) for the sequential probability ratio
test is also developed. The following two examples illustrate the implementa-
tion of this procedure and use it as a benchmark to compare the numerical
results computed from the analytic approximations of Theorems 1 and 2.

Example 2 (Continued). Woodroofe (1979) used an alternative approach
to derive an asymptotic approximation to the Type I error probability of the
sequential GLR test of the equality of two exponential means. When λ1 =
λ2 = 1, his asymptotic approximation has the form

√
c e−c

∫ δ−1

a−1
t−1κ�t� dt�(6.4)

where t = − log�y�2 − y��� u = �1 − e−t�1/2 and κ�t� = �πt−1u2�1 + u2�
−1/2×
ν�y�2−y�. He has also shown that ν�y�2−y� = �1+u�−1�2t−1�1−e−t�−e−t
.
Comparing (6.4) with (3.7) shows that Woodroofe’s formula has an extra fac-
tor �1 + u2�−1/2 = �2 − e−t�−1/2 = �2 − y�2 − y��−1/2 in his integrand. This
explains the discrepancy between his results and ours in Table 1, where we
take δ0 = �n0 − 1

2�/c and a = �N + 1
2�/c to introduce a continuity correction

in (3.7) and (6.4) for greater accuracy. Also given in Table 1 are the Monte
Carlo estimates of the Type I error probability using importance sampling
(mean ± standard error) and the direct Monte Carlo estimates. Each Monte
Carlo estimate is based on 10,000 simulation runs. Table 1 shows that (3.7) is
markedly nearer to the importance sampling result than Woodroofe’s approx-
imation (6.4). It also shows the advantage of importance sampling over direct
Monte Carlo, especially when the actual probability is very small, for which
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Table 1
Asymptotic approximations and Monte Carlo estimates of P�n0 ≤ Tc ≤N


c n0 N (6.4) (3.7) Importance sampling Direct MC

5 5 25 8�50× 10−3 9�96× 10−3 �11�23± 0�21� × 10−3 �11�40± 1�06� × 10−3
5 5 50 1�26× 10−2 1�44× 10−2 �1�59± 0�02� × 10−2 �1�63± 0�13� × 10−2
5 5 100 1�72× 10−2 1�91× 10−2 �1�94± 0�03� × 10−2 �2�17± 0�15� × 10−2
5 3 50 1�49× 10−2 1�74× 10−2 �1�81± 0�03� × 10−2 �1�72± 0�13� × 10−2
5 13 50 7�99× 10−3 8�70× 10−3 �10�56± 0�21� × 10−3 �9�10± 0�95� × 10−3
10 10 50 7�84× 10−5 9�16× 10−5 �9�57± 0�16� × 10−5 0
10 10 100 1�18× 10−4 1�34× 10−4 �1�41± 0�02� × 10−4 �1�00± 1�00� × 10−4
10 10 200 1�62× 10−4 1�79× 10−4 �1�83± 0�02� × 10−4 �2�00± 1�41� × 10−4
10 5 100 1�45× 10−4 1�65× 10−4 �1�71± 0�03� × 10−4 �1�00± 1�00� × 10−4
10 25 100 7�68× 10−5 8�37× 10−5 �9�20± 0�16� × 10−5 0

the standard error of direct Monte Carlo is too large relative to the actual prob-
ability. Following Chan and Lai (1999), we have decomposed A = �Tc ≤ N

prior to performing importance sampling into 10 subsets of the form

Aj =
{
Tc ≤N� αj−1 ≤

( Tc∑
i=1

Zi

)/( Tc∑
i=1

Yi

)
< αj

}
�

Aj+5 =
{
Tc ≤N� αj−1 ≤

( Tc∑
i=1

Yi

)/( Tc∑
i=1

Zi

)
< αj

}
for 1 ≤ j ≤ 5�

where α0 = 0, αj = �1− βj�/�1+ βj� and

βj = �j/5��1− e−1/a�1/2 + �1− j/5��1− e−1/δ�1/2 1 ≤ j ≤ 5�

Example 3 (Continued). Table 2 compares the asymptotic formula (3.8)
with the result computed by Monte Carlo using importance sampling after

Table 2
Asymptotic approximations and Monte Carlo estimates of P�g�Sn/n� > b


n b (6.5) (3.8) Importance sampling Direct MC

50 0�1 1�67× 10−3 1�74× 10−3 �1�58± 0�03� × 10−3 �1�90± 0�44� × 10−3
50 0�2 7�83× 10−6 8�51× 10−6 �8�28± 0�18� × 10−6 0
50 0�5 1�50× 10−12 1�77× 10−12 �1�70± 0�05� × 10−12 0
50 1 1�52× 10−23 1�94× 10−23 �1�90± 0�06� × 10−23 0
50 2 2�34× 10−45 3�19× 10−45 �3�37± 0�11� × 10−45 0
100 0�1 7�93× 10−6 8�30× 10−6 �7�80± 0�17� × 10−6 0
100 0�2 2�51× 10−10 2�73× 10−10 �2�89± 0�07� × 10−10 0
100 0�5 1�47× 10−23 1�73× 10−23 �1�73± 0�06� × 10−23 0
100 1 2�07× 10−45 2�64× 10−45 �2�46± 0�09� × 10−45 0
100 2 6�15× 10−89 8�40× 10−89 �8�33± 0�33� × 10−89 0
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decomposing A = �g�Sn/n� > b
 into two subsets of the form
A1 = A ∩ ��*n

1Yi�/�*n
1Zi� > �2− ỹ�/ỹ
�

A2 = A ∩ ��*n
1Yi�/�*n

1Zi� ≤ �2− ỹ�/ỹ
�
so that their associated manifolds are M�1� = ��2 − ỹ� ỹ�
 and M�2� =
��ỹ�2 − ỹ�
. Example 1 of Woodroofe (1978) derived from his Theorem 1 on
large deviation probabilities of GLR statistics the following formula for this
example:

P�g�Sn/n� > b
 ∼ �πb−1�1− e−b��2− e−b�
−1/2�nb�−1/2e−nb�(6.5)

which differs from (3.8) by an extra factor of �2 − e−b�−1/2. Table 2 also com-
pares (6.5) with the exact values computed by Monte Carlo using importance
sampling, showing that this extra factor should not be included. Also given in
Table 2 are the direct Monte Carlo estimates. Each Monte Carlo result (mean
± standard error) is based on 10,000 simulations.

APPENDIX: PROOF OF (3.1) AND (3.12)

Proof of (3.1). Fix y ∈ M. Then g�y� = b and φ�y� = b/r. For all suffi-
ciently small ε > 0� g�y+ε∇g�y�� = b+ε�∇g�y��2+O�ε2� > b, and therefore
by (B1),

b/r ≤ φ�y+ ε∇g�y�� = b/r+ ε�∇g�y��′∇φ�y� +O�ε2��
showing that �∇g�y��′∇φ�y� ≥ 0. By (B3), ∇g�y� �= 0. We next show that
infµ∈M �∇φ�µ�� > 0. In view of (B2),M is a compact subset of �o and therefore
it suffices to show that ∇φ�µ� �= 0 for all µ ∈M, which follows from the fact
that ∇φ is a diffeomorphism with ∇φ�µ0� = 0 and φ�µ0� = 0 (so µ0 �∈M).
Suppose ∇φ�y� �∈ TN⊥�y�. Then there exists z∈TN�y� such that z′∇φ�y�<

0. Since z′∇g�y� = 0,

g�y+ ε∇g�y� + ε2/3z� = b+ ε�∇g�y��2 +O�ε4/3� > b

for all sufficiently small ε > 0. Therefore by (B1), φ�y+ε∇g�y�+ε2/3z� ≥ b/r,
which contradicts

φ�y+ ε∇g�y� + ε2/3z� = b/r+ ε�∇g�y��′∇φ�y� + ε2/3z′∇φ�y� +O�ε4/3� < b/r�

✷

Proof of (3.12). Since (A1) holds with r = 1� g ≤ φ on �a−1 < g <
δ−1 + ε0
. Moreover, φ > δ−1 + ε1 on �g > δ−1 + ε0
 by (A3). Since

P�Tc ≤ ac
 = ∑
δc≤n≤ac

P
{
ng�Sn/n� > c� mg�Sm/m� ≤ c

for all δc ≤m < n
}
�
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it then follows that for all large c,

� P�Tc ≤ ac
 −
∫
Rd

∑
n>c/g�µ�
δc+t≤n≤ac

fn�µ� dµ �

≤ ∑
δc≤n≤δc+t

P�ng�Sn/n� > c


+ ∑
δc≤k≤ac

P�kφ�Sk/k� > c+ c1/5
(A.1)

+ ∑
δc+t≤n≤ac

P�nφ�Sn/n� > c and c+ c1/5

≥ kφ�Sk/k� > c for some δc ≤ k ≤ n− t
�
Making use of the saddlepoint approximation (2.6) (recalling that X1 is
assumed to have a bounded continuous density in this part of the proof of
Theorem 1), it can be shown that∑

δc≤k≤ac
P�kφ�Sk/k� > c+ c1/5
 = o�e−c��(A.2)

The last term in (A.1) can be expressed as the left-hand side of∑
δc+t≤n≤ac

∑
δc≤k≤n−t

∫
c<kφ�µ�≤c+c1/5

P�nφ�n−1Sn� > c�k−1Sk = µ


×P�k−1Sk ∈ dµ
 = o�e−c��
(A.3)

To prove (A.3), first note that by (A3) there exists b > δ−1 such that B �=
�µ:φ�µ� ≤ b
 is a compact subset of �o. From large deviation bounds [cf.
Dembo and Zeitouni (1998)], it follows that

∑
n≥k≥δc P�n−1Sn �∈ B or k−1Sk �∈

B
 = o�e−c�. In view of (2.6), it suffices to show that for every p > 1,

sup
{
P�n−1Sn ∈ B� nφ�n−1Sn� > c�k−1Sk = µ� �
µ ∈ B� n− k ≥ t� k ≥ δc� kφ�µ� ≤ c+ c1/5

}= o�c−p��
(A.4)

Without loss of generality we shall assume that µ0 = 0. Note that

P�n−1Sn ∈ B� nφ�n−1Sn� > c�k−1Sk = µ

= P�Yµ ∈ B� nφ�Yµ� > c
�

(A.5)

where Yµ = �kµ+
∑n

i=k+1Xi�/n. Moreover, µ−Yµ = �nYµ −
∑n

i=k+1Xi�/k−
Yµ = k−1�n−k�Yµ−k−1

∑n
i=k+1Xi, andY′

µ∇φ�Yµ� = Y′
µθYµ

= φ�Yµ�+ψ�θYµ
�

by (2.1). Since φ is convex,

φ�µ� ≥ φ�Yµ� + �µ−Yµ�′∇φ�Yµ�
= φ�Yµ� + k−1�n− k��φ�Yµ� + ψ�θYµ

�


− k−1
( n∑
i=k+1

Xi

)′
∇φ�θYµ

��
(A.6)
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Since ψ�0� = 0 and ∇ψ�0� = µ0 = 0 and ψ is convex, ψmin:= inf�ψ�θy� � a−1 ≤
φ�y� ≤ b
 > 0. It then follows from (A.6) that

kφ�µ� ≥ nφ�Yµ� + �n− k�ψmin −
∥∥∥∥ n∑
i=k+1

Xi

∥∥∥∥maxy∈B
�∇φ�y�� on �Yµ ∈ B
�

From this and (A.5), it follows that the left-hand side of (A.4) is majorized by

sup
n−k≥c1/4

P

{∥∥∥∥ n∑
i=k+1

Xi

∥∥∥∥maxy∈B
�∇φ�y�� ≥ �n− k�ψmin − c1/5

}
�

which is o�exp�−ζc1/4�� for some ζ > 0, since EXi = µ0 = 0, proving (A.4).
Noting (A.2) and that fn�µ�dµ ≤ P�Sn/n ∈ dµ
, we next show that∑

δc≤n≤ac
P�c+ c1/5 ≥ ng�Sn/n� > c� n−1Sn �∈ Uc−1/2 log c� c−1/2
 = o�e−c��(A.7)

From (A5) together with continuity and compactness arguments [noting that
(2.4) is compact], it follows that there exist α > 0 and ε > 0 (sufficiently small)
such that lim infµ→∂�φ�µ� > δ + 2ε and β �= infη∈Uα�ε

λmin�∇2ρ�η��/2 > 0,
where λmin�·� denotes the minimum eigenvalue of a nonnegative definite
matrix. Analogous to (3.17), for every µ �= y+z� ∈ Uα�ε, there exists ηµ ∈ Uα�ε

such that φ�µ� − g�µ� = z′∇2ρ�ηµ�z/2 and therefore φ�µ� ≥ g�µ� + β�z�2.
Moreover, infµ �∈Uo

α� ε�a
−1≤g�µ�≤δ−1+ε�φ�µ� − g�µ�� > 0 by (A1) and compactness

arguments. Hence the saddlepoint approximation (2.6) yields∑
δc≤n≤ac

P�c+ c1/5 ≥ ng�Sn/n� > c� n−1Sn �∈ Uα�c−1/2
 = o�e−c��(A.8)

noting that c + c1/5 ≥ ng�µ� > c and δc ≤ n ≤ ac ⇒ δ−1 + δ−1c−4/5 ≥
g�µ� > a−1. It also yields∑

δc≤n≤ac
P�n−1Sn ∈ Uα�c−1/2 but n

−1Sn �∈ Uc−1/2 log c� c−1/2
 = o�e−c��(A.9)

since �z�2 ≥ c−1�log c�2 if µ�= y+ z� �∈ Uc−1/2 log c� c−1/2 .
The first term on the right-hand side of (A.1) can be analyzed by making use

of (A.2), (A.7) and arguments similar to (3.15)–(3.17), in which the manifold
Mc−1/2 is now replaced byMc−1/2 ∩�µ: δ−1+δ−1c−4/5 ≥ g�µ� > c/�δc+ t�
. Since
t = �c1/4�, (A4) then yields∑

δc≤n≤δc+t
P�ng�Sn/n� > c


= ∑
δc≤n≤δc+t

P
{
c+ c1/5 ≥ ng�Sn/n� > c�n−1Sn ∈ Uc−1/2 log c� c−1/2

}
+ o�e−c�

= o�cq/2e−c��

(A.10)

From (A.1), (A.2), (A.3), (A.7) and (A.10), (3.12) follows. ✷
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