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INVARIANT NORMAL MODELS WITH RECURSIVE
GRAPHICAL MARKOV STRUCTURE

By Jesper Madsen

University of Copenhagen

An extension of the class of GS-LCI normal models introduced by
Andersson and Madsen is defined and studied. The models are defined
in terms of symmetry restrictions given by a finite group and conditional
independence restrictions given by an acyclic directed graph. Maximum
likelihood estimation of the parameters in the models is discussed.

1. Introduction. Andersson and Madsen (1998) [referred to hereafter as
AM (1998)] introduced a class of normal models combining group symmetry
(GS) restrictions and conditional independence (CI) restrictions, the so-called
GS-LCI models. In the present paper we define and study a larger class of
normal models with GS and CI restrictions, the GS-ADG models, extending
the GS-LCI models in the following two ways:

1. The CI restrictions are given by an acyclic directed graph (ADG) instead of
a finite distributive lattice as in the case of the GS-LCI models. This exten-
sion is straightforward since the class of normal models with CI restric-
tions given by ADGs in a natural way extends the normal models with CI
restrictions given by finite distributive lattices [see Andersson and Perlman
(1998), Remark 4.1].

2. The condition on the interplay between the GS and the CI restrictions is
relaxed such that GS restrictions between variables that appear in the CI
restrictions are allowed. In the case of the GS-LCI models, GS restrictions
are only allowed to operate within each of the multivariate variables that
appear in the CI restrictions [see AM (1998), Section 2.4], and clearly, this
condition is restrictive. A simple example of a GS-ADG model which is not a
GS-LCI model due to this condition is where we consider a trivariate normal
distributed variable (xa� xb� xc) with the CI restriction that xb and xc are
conditionally independent given xa, and the GS restriction that (xa� xb� xc)
has the same distribution as (xa� xc� xb). A possible application of this model
could be where xa� xb� xc are measurements of some variable on objects
a� b� c, where b and c are symmetric (≡ interchangable in the sense that
labeling of the two is arbitrary) and connected to each other only through
a. The ML estimation properties of this example were discussed in detail
in AM (1998), Example 6.1. A generalization to the multivariate case is
presented in Examples 6.1 and 7.1 of this paper.
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Hylleberg, Jensen and Ørnbøl (1993) combine GS restrictions given by a
subgroup of permutations with CI restrictions given by an undirected graph.
Andersen, Højbjerre, Sørensen and Eriksen (1995) combine the special sym-
metry given by the complex numbers; that is, the GS condition given by the
group �±1�±i�, with the CI restrictions given by an undirected graph. In both
cases the models become special cases of the GS-ADG models when the graph
considered is decomposable; however, these are not special cases of the GS-
LCI models. When the graph is not decomposable, results on ML estimation
similar to those presented in this paper (Theorem 7.1, Proposition 7.2) cannot
be obtained in general.

The GS-ADG models seem to have statistical properties very similar to the
GS-LCI models. In this paper we consider the problem of maximum likelihood
(ML) estimation.

The general definition of the GS-ADG models is given in Section 6, and
some fundamental properties of the models are listed. In particular we obtain
an interpretation of the models in terms of certain symmetry restrictions on
the conditional covariances and regression coefficients (Theorem 6.1).

In Section 7 a generalization of Theorem 3.1 in AM (1998) is presented. This
means that we give a necessary and sufficient condition for the existence and
uniqueness of the ML estimator for a fixed observation x ∈ �I together with
an almost explicit expression for the ML estimator (Theorem 7.1). Moreover, a
generalization of Proposition 3.2 in AM (1998) is obtained; that is, it is shown
that either the ML estimator exists and is unique with probability 1, or else,
it does not exist or it is not unique (Proposition 7.2).

The basic notation used in this paper is similar to that of AM (1998) and
is explained in Section 2. In Section 3, which is an extract of Section 2 in
Andersson and Perlman (1998) [hereafter AP (1998)], the notation and con-
cepts of acyclic directed graphs are described. A short introduction to normal
models with GS restrictions (GS models) is given in Section 4. This section
is a copy of Section 2.2 of AM (1998). In Section 3 we give an introduction to
normal models with CI restrictions given by ADGs (ADG models). This section
is based on definitions and results from Sections 4, 7 and 10 of AP (1998).

2. Notation. Let I be a finite index set and let �I be the vector space
of all families x = �xi � i ∈ I	 of real numbers indexed by I. We define
�
 = �0�. For K ⊆ I, denote by xK the canonical projection of x on �K; that
is, xK = �xi � i ∈K	 ∈ �K.

Let J be (another) finite index set, and let M�I × J	 ≡ �I×J denote the
vector space of all I × J matrices. The algebra M�I × I	 is denoted by M�I	.
For A ∈ M�I×J	 let A′ ∈ M�J× I	 denote the transposed matrix. The group
of all nonsingular I × I matrices, the group of all orthogonal I × I matrices,
the cone of all positive semidefinite I×I matrices, and the cone of all positive
definite I×I matrices are denoted by GL(I), O(I), PS(I) and P(I), respectively.
The I× I identity matrix is denoted by 1I.

For A = �aii′ � �i� i′	 ∈ I × I	 ∈ M�I	 and L�K ⊆ I, let ALK denote the
L ×K submatrix of A; that is, ALK = �aii′ � �i� i′	 ∈ L ×K	 ∈ M�L ×K	.
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Let A′
LK denote �ALK	′. Note that A′

LK = �A′	KL. The submatrix AKK is
denoted by AK. If AK is nonsingular, then A−1

K denotes the inverse matrix
�AK	−1.

For a covariance matrix � ∈ P�I	 and disjoint subsets L�K of I, we define
the corresponding conditional covariance �L·K = �L − �LK�−1

K �KL ∈ P�L	.
For ξ ∈ �I and � ∈ P�I	 let N�ξ��	 denote the normal distribution on �I

with expectation ξ and covariance matrix �. Let N��	 denote N�0� �	.

3. Acyclic digraphs (ADGs). A directed graph (digraph) D is a pair
(V�E) where V is a finite set (the set of vertices) and E ⊆ V×V is a binary
relation (the set of directed edges) such that

∀u� v ∈ V� �u� v	 ∈ E⇒ �v�u	 �∈ E�

For u� v ∈ V we write u→ v whenever (u� v	 ∈ E, and we write u < v if u→ v
or if there exists v1� � � � � vk ∈ V, where k ∈ �, such that u→ v1 → · · · → vk →
v. The hereby defined relation < on V is transitive.

An acyclic directed graph (ADG) is a directed graph D = �V�E	 with the
property that v �< v for all v ∈ V. In this case the relation ≤ on V given by
u ≤ v if and only if u < v or u = v�u� v ∈ V, is a partial ordering on V; that
is, it is reflexive, antisymmetric and transitive.

For an ADG D = �V�E	 and v ∈ V we define pa�v	 = �u ∈ V � u→ v� (the
parents of v), de�v	 = �u ∈ V � v < u� (the descendants of v) and nd�v	 = �u ∈
V � v �≤ u� (the nondescendants of v).

Let D1 = �V1�E1	 and D2 = �V2�E2	 be two ADGs. A mapping f� V1 →
V2 is called an ADG homomorphism if u1 → v1 ⇒ f�u1	 → f�v1	 for all
u1� v1 ∈ V1. Usually we write f� D1 → D2 for such an ADG homomorphism.
For an ADG D = �V�E	, the set of all bijective ADG homomorphisms D→ D
is denoted by Aut�D	.

4. The group symmetry model. Let I be a finite index set, G a finite
group and ρ� G → O�I	 an orthogonal group representation of G on �I; that
is, ρ�1	 = 1I and ρ�g1g2	 = ρ�g1	ρ�g2	 for all g1� g2 ∈ G. Let MG�I	 denote
the subalgebra of all matrices A ∈ M�I	 that commute with ρ�G	; that is,
Aρ�g	 = ρ�g	A for all g ∈ G. The group of all nonsingular matrices, the
cone of all positive semidefinite matrices and the cone of all positive definite
matrices in MG�I	 are denoted by GLG�I	, PSG�I	, and PG�I	, respectively.
Note that � ∈ PSG�I	 if and only if � ∈ PS�I	 and � is G-invariant; that is,
ρ�g	�ρ�g	′ = �. The statistical model

�N��	 � � ∈ PG�I		(4.1)

with observation space �I and parameter space PG�I	 is called the group
symmetry (GS) model given by G. An algebraic theory containing a complete
solution to the likelihood inference problem for these models was developed
by Andersson, Brøns and Jensen in the years 1972–1985. A summary of the
basic theory together with a complete list of references is given in AM (1998),
Appendix A.
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The smoothing (≡ averaging) mapping

ψG
I � PS�I	 → PSG�I	

S �−→ 1
�G�

∑�ρ�g	Sρ�g	′ � g ∈ G	�
(4.2)

is fundamental for likelihood inference for group symmetry models. In fact,
ψG

I �xx′	 becomes, under a certain regularity condition, the unique maximum
likelihood estimator of � ∈ PG�I	 based on the random observation x ∈ �I.
When, I, G or both are subsumed we denote ψG

I by ψG�ψI and ψ respectively.

5. Normal ADG models. Let D ≡ �V�E	 denote an ADG (cf. Section 3)
and let Iv, v ∈ V, denote nonempty finite index sets. We define the (entire)
index set to be

I = ∪̇�Iv � v ∈ V	�(5.1)

and for any subset A of V we define IA = ∪̇�Iv � v ∈ A	. Furthermore, for
v ∈ V, define the following three subsets of I:

�v� = Iv� �v� = Ipa�v	� �v	 = Ind�v	\pa�v	
(cf. Section 3). A covariance matrix � ∈ P�I	 is said to have conditional inde-
pendence (CI) restrictions wrt D if and only if for every v ∈ V, x�v� and x�v	
are conditional independent given x�v� [in short: x�v� ⊥ x�v	 � x�v�] whenever
x ∈ �I follows N��	. The set of all such covariance matrices is denoted by
PD�I	. The statistical model

�N��	 � � ∈ PD�I		(5.2)

with observation space �I and parameter space PD�I	 is called the normal
ADG model determined by D; compare AP (1998), Section 6.

Let A ∈ M�I	. For u� v ∈ V, let A�u� v� and A�u� v� denote A�u��v� and A�u��v�,
respectively. For v ∈ V, A�v� and A�v� then denotes A�v� v� and A�v� v�, respec-
tively (cf. Section 2). For u� v ∈ V let A�u� v� and A�u� v� denote A�u��v� and A�u��v�,
respectively, and similarly for convenience let A�v� and A�v� denote A�v��v� and
A�v��v�, respectively. For v ∈ V, we thus have

A�v�∪̇�v� =
(
A�v� A�v�
A�v� A�v�

)
�

where A�v� ∈ M��v�	, A�v� ∈ M��v�×�v�	, A�v� ∈ M��v�×�v�	, and A�v� ∈ M��v�	.
Furthermore, define the vector space MD�I	 ⊆ M�I	 by A ∈ MD�I	 if and only
if A�u� v� = 0 for all u� v ∈ V where v �= u and v �∈ pa�u	 [cf. AP (1998),
Section 10].

For a covariance matrix � ∈ P�I	 and v ∈ V we use the short notation ��v�·
for the corresponding conditional covariance ��v�·�v� ∈ P��v�	 (cf. Section 2). The
family of matrices((

��v��
−1
�v�� ��v�·

)
� v ∈ V

)
∈ ×�M��v� × �v�	 × P��v�	 � v ∈ V	

is called the family of D-parameters of � ∈ P�I	 [cf. AP (1998), Definition 4.1].
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In the solution to the likelihood inference problems for the model (5.2),
the family of D-parameters plays an important role since both the likelihood
function (LF) and the parameter space (PS) factorizes into products of LFs
and PSs for simple MANOVA models indexed by V. The factor corresponding
to v ∈ V is equivalent to the MANOVA model on the sample space ��v� given
by the mean value subspace

�R�v�x�v� � R�v� ∈ M��v� × �v�	��
where x�v� ∈ ��v�, and the covariance matrix ��v� = ��v�· ∈ P��v�	. [For a brief
review of the MANOVA model, see AP (1998), Section 6.] This fact follows
from the following three fundamental results for normal ADG models:

1. The mapping

PD�I	 → ×�M��v� × �v�	 × P��v�	 � v ∈ V	
� �→ ����v��−1

�v�� ��v�·	 � v ∈ V	�
is bijective [AP (1998), Proposition 4.1].

2. � ∈ PD�I	 if and only if

tr��−1xx′	 =∑�tr��−1
�v�·
(
x�v� − ��v��

−1
�v�x�v�	�· · ·	′

) � v ∈ V	�(5.3)

for all x ∈ �I [AP (1998), Proposition 4.2].
3. For � ∈ PD�I	,

det��	 =∏�det���v�·	 � v ∈ V	(5.4)

[AP (1998), Proposition 4.2].

We notice, that (2) could equivalently be stated as

4. � ∈ PD�I	 if and only if

tr��−1S	=∑�tr��−1
�v�·�S�v� −S�v��

−1
�v���v�

−��v��
−1
�v�S�v� + ��v��

−1
�v�S�v��

−1
�v���v�		 � v ∈ V	�

(5.5)

for all S ∈ PS�I	.
Another important property of the normal ADG models which we shall use

is the following:

5. The mapping

MD�I	 → ×�M��v� × �v�	 ×M��v�	 � v ∈ V	
A �→ ��A�v��A�v�	 � v ∈ V	

is bijective [AP (1998), (10.4)].
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6. Normal GS-ADG models. Let I be a finite set, D = �V�E	 an ADG,
and let I = ∪̇�Iv � v ∈ V	 be a partitioning of I in nonempty finite index sets
Iv, v ∈ V (cf. Section 5).

Let G be a finite group and ρ�G→ O�I	 an orthogonal group representation
of G on �I. We denote by PG�D�I	 the intersection PG�I	 ∩ PD�I	; that is,
PG�D�I	 is the set of covariance matrices with both GS restrictions given by
G and CI restrictions given by D.

The corresponding normal statistical model with observation space �I is
thus

�N��	 � � ∈ PG�D�I		�(6.1)

Now let

G→Aut�D	�
g �→ �v �→ gv	�

(6.2)

be a representation of G on D; that is, �g1g2	v = g1�g2v	 and eGv = v for all
g1� g2 ∈ G and v ∈ V, where eG denotes the one-element in G.

We have thus introduced two different representations of the group G, one
on �I and one on D. This is done in order to specify the restriction on the inter-
play between the GS restrictions and the CI restrictions used in the definition
of the GS-ADG model (cf. Lemma 6.1 and Definition 6.1 below).

Lemma 6.1. For g ∈ G the following conditions are equivalent:

(i) ∀ x ∈ �I ∀ v ∈ V� x�v� = 0 ⇒ �ρ�g	x	�gv� = 0;

(ii) ∀ x ∈ �I ∀ v ∈ V� �ρ�g	x	�gv� = ρ�g	�gv� v�x�v�;
(iii) ∀ u� v ∈ V� u �= gv⇒ ρ�g	�u� v� = 0.

Proof. (ii) ⇒ (i) is trivial. To show (iii) ⇒ (ii), let x ∈ �I and v ∈ V. Then

�ρ�g	x	�gv� =
∑�ρ�g	�gv� u�x�u� � u ∈ V	 = ρ�g	�gv� v�x�v��

To show (i) ⇒ (iii), consider u� v ∈ V with u �= gv and choose x ∈ �I such that
x�t� = 0 for t ∈ V where t �= v,

ρ�g	�u� v�x�v� =
∑�ρ�g	�u� t�x�t� � t ∈ V	 = �ρ�g	x	�u� = �ρ�g	x	�g�g−1u	� = 0�

where the last equation follows by assumption since g−1u �= v and hence
x�g−1u� = 0. The assertion now follows since the choice of x�v� ∈ ��v� was
arbitrary. ✷

Definition 6.1. Under the assumption that the three equivalent condi-
tions of Lemma 6�1 hold for all g ∈ G, the model (6.1) is called the normal
GS-ADG model determined by G and D.

For the remainder of the section we shall assume that the three equivalent
conditions of Lemma 6.1 hold.
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Remark 6.1. It follows from (iii) of Lemma 6.1, that

ρ�g	�gv� v� = ρ�g	�gv� v� = 0�(6.3)

for all g ∈ G and v ∈ V. From the fact that the CI-conditions given by a
finite lattice (ring) of subsets of the index set I equivalently can be given by a
transitive ADG [see Andersson, Madigan, Perlman and Triggs (1995a, b)], it
then follows that the GS-LCI models [cf. AM (1998), Section 2.4] correspond
to the special case of the GS-ADG models where D is transitive and (6.2) is
trivial; that is, gv = v for all g ∈ G and v ∈ V. (The latter condition implies
that the GS-restrictions only operate inside each of the multivariate nodes.)

Remark 6.2. Another special case is where the GS-restrictions are given
only by the permutations (6.2) of the nodes in D. This means that in (5.1)
we assume Iv = Igv for all g ∈ G and v ∈ V, in which case (6.2) induces
a representation ρ of G on �I simply by permutation of the (multivariate)
variables according to the permutation of the nodes in the graph; that is,

ρ�g	��xv � v ∈ V		 = �xg−1�v	 � v ∈ V	�
for g ∈ G and x = �xv � v ∈ V	 ∈ �I ≡ ×��Iv � v ∈ v	.

The formulas (6.4)–(6.17) below are fundamental and used several times in
calculations further on in the paper.

Let g ∈ G, u� v ∈ V, and A ∈ M�I	. We have by (ii) of Lemma 6.1 that

�ρ�g	A	�gu� v� = ρ�g	�gu�u�A�u�v��(6.4)

and hence also

�Aρ�g	′	�v� gu� = A�v� u�ρ�g	′�gu�u��(6.5)

From the fact that ρ�g−1	 = ρ�g	−1 = ρ�g	′, we get from (6.4) replacing g by
g−1 and u by gv, that

1�v� = ρ�g	′�gv� v�ρ�g	�gv� v��(6.6)

Since �u� = ∪̇��u′� � u′ ∈ pa�u		 and �v� = ∪̇��v′� � v′ ∈ pa�v		, we similarly
obtain the identities

�ρ�g	x	�gv� = ρ�g	�gv� v�x�v��(6.7)

�ρ�g	A	�gu� v� = ρ�g	�gu�u�A�u�v��(6.8)

�Aρ�g	′	�v�gu� = A�v�u�ρ�g	′�gu�u��(6.9)

1�v� = ρ�g	′�gv� v�ρ�g	�gv� v��(6.10)

�ρ�g	A	�gu� v� = ρ�g	�gu�u�A�u�v�(6.11)

and

�Aρ�g	′	�v�gu� = A�v� u�ρ�g	′�gu�u��(6.12)

respectively.
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Let � ∈ P�I	, v ∈ V and g ∈ G. From (6.8) and (6.9), it follows that

�ρ�g	�ρ�g	′	�gv� = ρ�g	�gv� v���v�ρ�g	′�gv� v��
and then by (6.10),

�ρ�g	�ρ�g	′	−1
�gv� = ρ�g	�gv� v��−1

�v�ρ�g	′�gv� v��(6.13)

From (6.11) and (6.12) we get that

�ρ�g	�ρ�g	′	�gv� = ρ�g	�gv� v���v�ρ�g	′�gv� v��(6.14)

and then by (6.13) and (6.10),

�ρ�g	�ρ�g	′	�gv��ρ�g	�ρ�g	′	−1
�gv� = ρ�g	�gv� v���v��−1

�v�ρ�g	′�gv� v��(6.15)

In a similar way we obtain the equations

�ρ�g	�ρ�g	′	�gv�· = ρ�g	�gv� v���v�·ρ�g	′�gv� v��(6.16)

�ρ�g	�ρ�g	′	−1
�gv�· = ρ�g	�gv� v��−1

�v�·ρ�g	′�gv� v��(6.17)

We shall now give a characterization of the GS-ADG models in terms of cer-
tain invariance restrictions on the D-parameters (cf. Section 5). The charac-
terization is given in Theorem 6.1 and uses Proposition 6.1 and Definition 6.2
below.

Proposition 6.1. If � ∈ PD�I	 and g ∈ G, then ρ�g	�ρ�g	′ ∈ PD�I	.

Proof. Let � ∈ PD�I	, g ∈ G and x ∈ �I. We show that (5.3) holds for
ρ�g	�ρ�g	′. Thus

tr��ρ�g	�ρ�g	′	−1xx′	
= tr��−1�ρ�g−1	x	�ρ�g−1	x	′	
=∑�tr��−1

�v�·��ρ�g−1	x	�v� − ��v��
−1
�v��ρ�g−1	x	�v�	�· · ·	′	 � v ∈ V	

=∑�tr��−1
�v�·�ρ�g−1	�v�gv�x�gv� − ��v��

−1
�v�ρ�g−1	�v�gv�x�gv�	�· · ·	′	 � v ∈ V	

=∑�tr��ρ�g	�ρ�g	′	−1
�gv�·�x�gv�

− �ρ�g	�ρ�g	′	�gv��ρ�g	�ρ�g	′	−1
�gv�x�gv�	�· · ·	′	 � v ∈ V	

=∑�tr��ρ�g	�ρ�g	′	−1
�v�·�x�v�

− �ρ�g	�ρ�g	′	�v��ρ�g	�ρ�g	′	−1
�v�x�v�	�· · ·	′	 � v ∈ V	�

where the second equality is just (5.3), the third follows from (ii) of Lemma 6.1
and (6.7), the fourth follows from (6.15), (6.17), (6.6) and the fact that ρ�g−1	 =
ρ�g	−1 = ρ�g	′, and the fifth since the mapping V → V�v �→ gv	 is
one-to-one. ✷
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Definition 6.2. (i) The family

�R�v� � v ∈ V	 ∈ ×�M��v� × �v�	 � v ∈ V	
is called invariant wrt G if and only if

R�gv� = ρ�g	�gv� v�R�v�ρ�g	′�gv� v��
for all v ∈ V and g ∈ G.

(ii) The family

���v� � v ∈ V	 ∈ ×�M��v�	 � v ∈ V	
is called invariant wrt G if and only if

��gv� = ρ�g	�gv� v���v�ρ�g	′�gv� v��
for all v ∈ V and g ∈ G.

(iii) If both �R�v� � v ∈ V	 ∈ ×�M��v� × �v�	 � v ∈ V	 and ���v� � v ∈ V	 ∈
×�M��v�	 � v ∈ V	 are invariant wrt G, then the family ��R�v�� ��v�	 � v ∈ V	 is
called invariant wrt G.

Theorem 6.1. The mapping � �→ ����v��−1
�v�� ��v�·	 � v ∈ V	 [cf. �1	 of

Section 5] constitutes a one-to-one correspondence between PG�D�I	 and fami-
lies of D-parameters which are invariant wrt G.

Proof. Let � ∈ PD�I	 and g ∈ G. By (1) of Section 5, Proposition 6.1,
and the fact that the mapping V → V�v �→ gv	 is one-to-one, it follows that
� = ρ�g	�ρ�g	′ if and only if

��gv��
−1
�gv� = �ρ�g	�ρ�g	′	�gv��ρ�g	�ρ�g	′	−1

�gv�

and

��gv�· = �ρ�g	�ρ�g	′	�gv�·�
for all v ∈ V. The theorem now follows since the right-hand side of these
equations are given by (6.15) and (6.16), respectively. ✷

Theorem 6.1 states that the GS-ADG model can be interpreted in terms of
invariance restrictions on the D-parameters. In words, these restrictions imply
that vertices which are equivalent under the action (6.2) have D-parameters
which are one-to-one functions of each other. Hence, the D-parameters are
not variation independent in general, which is the case for the GS-LCI models
[cf. AM, Theorem 2.1]. Furthermore, Theorem 6.1 implies that there may be
certain invariance restrictions on each of the marginal D-parameters. In order
to characterize these restrictions further, we need the following definition. (The
characterization is important and used to state and prove our main result on
maximum likelihood estimation, Theorem 7.1.)
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Definition 6.3. For v ∈ V, let Gv denote the isotropy group corresponding
to the action (6.2), that is,

Gv = �g ∈ G � gv = v��
Furthermore, denote by MGv

��v�×�v�	 the vector space of all �v�×�v� matrices
R�v� satisfying that ρ�g	�v�R�v�ρ�g	′�v� = R�v� for all g ∈ Gv, and by PGv

��v�	 the
cone of all �v�×�v� covariance matrices ��v� satisfying that ρ�g	�v���v�ρ�g	′�v� =
��v� for all g ∈ Gv.

For v ∈ V and � ∈ PG�D�I	, it is now easily verified that the invariance
restrictions of the marginal D-parameters R�v� = ��v��

−1
�v� and ��v� = ��v�· (cf.

Theorem 6.1) are given as R�v� ∈ MGv
��v� × �v�	 and ��v� ∈ PGv

��v�	.

Remark 6.3. In the case where (6.2) is trivial (cf. Remark 6.1), we have
Gv = G for all v ∈ V, and hence all invariance restrictions on the
D-parameters (cf. Theorem 6.1) are given as R�v� ∈ MG��v� × �v�	, and ��v� ∈
PG��v�	, v ∈ V, that is, the restrictions are given only in terms of addi-
tional restrictions on each of the marginal D-parameters [compare AM (1998),
Theorem 2.1].

Remark 6.4. The opposite (dual) case of the one in Remark 6.3 is where the
representation of Gv on ��v� (≡ subrepresentation of ρ) is trivial for all v ∈ V.
In this case, the invariance restrictions on the D-parameters (cf. Theorem 6.1)
are given as

R�u� = ρ�g	�u� v�R�v�ρ�g	′�u� v�� ��u� = ρ�g	�u� v���v�ρ�g	′�u� v��
for all u� v ∈ V and g ∈ G where u �= v and u = gv; that is, the restric-
tions are all given in terms of one-to-one relations between some of the D-
parameters. In particular for v ∈ V, the marginal D-parameters R�v� and ��v�
are unrestricted.

Many, but not all, of the special cases mentioned in Remark 6.2 are of this
type (cf. Examples 6.1–6.4 below).

A series of seven simple examples will illustrate the result obtained in
Theorem 6.1. In Examples 6.1–6.4 the restrictions are given as in Remark 6.2;
that is, the GS-restrictions are induced by permutations of the vertices in D.
Additionally, Examples 6.1–6.3 are of the type where the representation of
Gv on ��v� is trivial for all v ∈ V (cf. Remark 6.4). Example 6.5 is of the
type where Gv = G for all v ∈ V (cf. Remark 6.3). In this example D is not
transitive, hence this is not a GS-LCI model (cf. Remark 6.1). Examples 6.6
and 6.7 are not of any of the special types mentioned in Remarks 6.1–6.4.
About the notation: for u� v ∈ V we denote by (u� v) the transposition of u
and v; that is, the simple permutation of V only interchanging u and v. For
u1� v1� u2� v2 ∈ V� �u1� v1	�u2� v2	 denotes the composite of the two transposi-
tions. The identity mapping of V [the one-element in � �V	] is denoted by 1V.
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Example 6.1. Let V = �1�2�3�, and let D = �V�E	 be the ADG below:

2 3
1 �

Furthermore, let J and L be finite sets, and define I1 = J, I2 = I3 = L and

I = I1∪̇I2∪̇I3�

Then �I consists of families (x1� x2� x3) of multivariate observations where
x1 ∈ �J and x2� x3 ∈ �L.

Let G be the subgroup �1V� �2�3	� of � �V	. Consider the representations
of G on D and �I, respectively, given by Remark 6.2.

The only nontrivial CI restriction given by D is that x2 and x3 are condi-
tionally independent given x1 (in short: x2 ⊥ x3 � x1), and the only nontrivial
GS restriction given by G is that the joint distribution of x1� x2� x3 is invari-
ant under the permutation of x2 and x3; that is, (x1� x2� x3) has the same
distribution as (x1� x3� x2) [in short: �x1� x2� x3	 =� �x1� x3� x2	�.

From (1) of Section 5 it follows that � ∈ PD�I	 is uniquely determined by
the D-parameters,

R2 = ��2��
−1
�2�� R3 = ��3��

−1
�3��

�2 = ��2�·� �3 = ��3�·�

�1 = ��1�· = ��1��

where �2� = �3� = I1. The hypothesis � ∈ PG�D�I	 could then by Theorem 6.1
be expressed in terms of the additional restrictions

R2 = R3 = R� �2 = �3 = ��

that is, � ∈ PG�D�I	 is uniquely determined from the parameters �1� �, and
R, respectively.

Example 6.2. Let V = �1�2�3�4�, and let D = �V�E	 be the ADG below:

3 4

1 2

Furthermore, let J and L be finite sets, and define I1 = I2 = J, I3 = I4 = L,
and

I = I1∪̇I2∪̇I3∪̇I4�

Then �I consists of families (x1� x2� x3� x4) of multivariate observations where
x1� x2 ∈ �J and x3� x4 ∈ �L.

Let G be the subgroup �1V� �3�4	� of � �V	. Consider the representations
of G on D and �I, respectively, given by Remark 6.2.
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The CI restrictions given by D are

x1 ⊥ x2� x3 ⊥ x4 � �x1� x2	�
and the only nontrivial GS restriction given by G is that �x1� x2� x3� x4	 =�

�x1� x2� x4� x3	.
From (1) of Section 5, it follows that � ∈ PD�I	 is uniquely determined by

the D-parameters

R3 = ��3��
−1
�3�� R4 = ��4��

−1
�4��

�3 = ��3�·� �4 = ��4�·�

�1 = ��1�� �2 = ��2��

(6.18)

and we have �3� = �4� = I1 ∪ I2. The hypothesis � ∈ PG�D�I	 could then by
Theorem 6.1 be expressed in terms of the additional restrictions

R3 = R4 = R� �3 = �4 = ��

that is, � ∈ PG�D�I	 is uniquely determined from the parameters �1� �2�R
and �, respectively.

Example 6.3. Let D and I be as in Example 6.2. Instead consider the
subgroup G = �1V� �1�2	�3�4	� of � �V	, analogously with the representations
of G on D and �I, respectively, given by Remark 6.2. The only nontrivial
GS restriction given by G is that �x1� x2� x3� x4	 =� �x2� x1� x4� x3	. As in
Example 6.2, � ∈ PD�I	 is uniquely determined by the D-parameters (6.18).
The hypothesis � ∈ PG�D�I	 could then by Theorem 6.1 be expressed in terms
of the additional restrictions

R3 = �A�B	�
R4 = �B�A	�
�3 = �4 = �34�

�1 = �2 = �12�

where A�B ∈ M�L×J	; that is, � ∈ PG�D�I	 is uniquely determined from the
parameters A�B��34 and �12, respectively.

Example 6.4. Let D and I be as in Example 6.2. Instead consider the
subgroup G = �1V� �1�2	� �3�4	� �1�2	�3�4	� of � �V	, analogously with the
representations of G on D and �I, respectively, given by Remark 6.2. The GS
restrictions given by G are

�x1� x2� x3� x4	 �= �x2� x1� x3� x4	 �= �x1� x2� x4� x3	 �= �x2� x1� x4� x3	�
As in Example 6.2, � ∈ PD�I	 is uniquely determined by the D-parameters
(6.18). The hypothesis � ∈ PG�D�I	 could then by Theorem 6.1 be expressed
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in terms of the additional restrictions

R3 = R4 = �B�B	�
�3 = �4 = �34�

�1 = �2 = �12�

where B ∈ M�L × J	; that is, � ∈ PG�D�I	 is uniquely determined from the
parameters B��34, and �12, respectively.

Example 6.5. Let V = �1�2�3�4�, and let D = �V�E	 be the ADG below:

4

1 −→ 3 ←− 2 �

Furthermore, let Jl, l = 1� � � � �4, be finite sets; let Jlk = Jl, l = 1� � � � �4,
k = 1�2, let

Il = Jl1∪̇Jl2�(6.19)

l = 1� � � � �4, and define

I = I1∪̇I2∪̇I3∪̇I4�

Then �I consists of families (x11� x12� x21� x22� x31� x32� x41� x42) of multivariate
observations where xl1� xl2 ∈ �Jl , l = 1� � � � �4.

Let σ denote the permutation of �I where xl1 and xl2 are permuted simul-
taneously for l = 1� � � � �4. We then consider G = �1I� σ� with the trivial (≡
vacuous) representation on D.

The CI restrictions given by D are

�x11� x12	 ⊥ �x21� x22	�
�x11� x12� x21� x22	 ⊥ �x41� x42	 � �x31� x32	�

and the only nontrivial GS restriction given by G is

�x11� x12� x21� x22� x31� x32� x41� x42	
�= �x12� x11� x22� x21� x32� x31� x42� x41	�

From (1) of Section 5, if follows that � ∈ PD�I	 is uniquely determined by the
D-parameters

R3 = ��3��
−1
�3�� R4 = ��4��

−1
�4��

�3 = ��3�·� �4 = ��4�·�

�1 = ��1�� �2 = ��2��
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where �3� = I1 ∪ I2 and �4� = I3. The hypothesis � ∈ PG�D�I	 could then by
Theorem 6.1 be expressed in terms of the additional restrictions

R3 =
(
A31 B31 A32 B32
B31 A31 B32 A32

)
� R4 =

(
A43 B43
B43 A43

)
�

�3 =
(
A3 B3
B3 A3

)
� �4 =

(
A4 B4
B4 A4

)
�

�1 =
(
A1 B1
B1 A1

)
� �2 =

(
A2 B2
B2 A2

)
�

(6.20)

where A31�B31 ∈ M�J3 ×J1	, A32�B32 ∈ M�J3 ×J2	, A43�B43 ∈ M�J4 ×J3	
and Al�Bl are Jl ×Jl matrices, l = 1� � � � �4; that is, � ∈ PG�D�I	 is uniquely
determined from these parameters.

Example 6.6. Let V = �2�3�4�, and let D = �V�E	 be the ADG below:

3 4
↖ ↗

2
�

Furthermore, let J and L be finite sets and define

I2 = J1∪̇J2�(6.21)

where J1 = J2 = J; let I3 = I4 = L, and let

I = I2∪̇I3∪̇I4�

Then �I consists of families (x1� x2� x3� x4) of multivariate observations where
x1� x2 ∈ �J and x3� x4 ∈ �L.

Let σ12 denote the permutation of �I given by the permutation of x1 and x2,
and similarly, let σ34 denote the permutation of x3 and x4. We then consider
G = �1I� σ12 ◦ σ34� with the representation on D given such that σ12 ◦ σ34
corresponds to �1�2	 �3�4	.

The only nontrivial CI restriction given by D is that

x3 ⊥ x4 � �x1� x2	�

and the only nontrivial GS restriction given by G is that �x1� x2� x3� x4	 =�

�x2� x1� x4� x3	. From (1) of Section 5, it follows that � ∈ PD�I	 is uniquely
determined by the D-parameters

R3 = ��3��
−1
�3�� R4 = ��4��

−1
�4��

�3 = ��3�·� �4 = ��4�·�

�2 = ��2��

(6.22)
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where �3� = �4� = I2. The hypothesis � ∈ PG�D�I	 could then by Theorem 6.1
be expressed in terms of the additional restrictions

R3 = �A�B	�
R4 = �B�A	�
�3 = �4 = ��

�2 =
(
% &
& %

)
�

where A�B ∈ M�L×J	, and %�& are J×J matrices.

Example 6.7. Let D and I be as in Example 6.6. Instead consider the
larger group G = �1I� σ12� σ34� σ12 ◦ σ34�, with the representation on D such
that σ12 corresponds to �1�2	� σ34 to �3�4	, and (hence) σ12 ◦σ34 to �1�2	 �3�4	.
The GS restrictions given by G are that

�x1� x2� x3� x4	 �= �x2� x1� x3� x4	 �= �x1� x2� x4� x3	 �= �x2� x1� x4� x3	�
As in Example 6.6, � ∈ PD�I	 is uniquely determined by the D-parameters
(6.22). The hypothesis � ∈ PG�D�I	 could then by Theorem 6.1 be expressed
in terms of the additional restrictions

R3 = R4 = �A�A	�
�3 = �4 = ��

�2 =
(
% &
& %

)
�

where A ∈ M�L×J	, and %�& are J×J matrices.

We close the section with a characterization of the intersection MG�D�I	 of
the two algebras MG�I	 and MD�I	 (cf. Sections 4 and 5, respectively). The
characterization is used in the proof of our main result on ML estimation
(Theorem 7.1).

Proposition 6.2. If A ∈ MD�I	 and g ∈ G, then ρ�g	Aρ�g	′ ∈ MD�I	.

Proof. Consider u� v ∈ V such that u �= v and v �∈ pa�u	. Since the
mapping V→ V�v �→ g−1v	 is a bijective ADG homomorphism, it follows that
g−1u �= g−1v and g−1v �∈ pa�g−1u	, and hence by assumption, A�g−1u�g−1v� = 0.
Then by (6.4) and (6.5),

�ρ�g	Aρ�g	′	�uv� = ρ�g	�u�g−1u�A�g−1u�g−1v�ρ�g	′�v� g−1v� = 0� ✷

Theorem 6.2. The mapping A �→ ��A�v��A�v�	 � v ∈ V	 constitutes a one-
to-one correspondence between MG�D�I	 and families of matrices which are
invariant wrt. G [cf. Definition 6�2, (iii)].
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Proof. Let g ∈ G. By (5) of Section 5, Proposition 6.2, and the fact that
the mapping V→ V�v �→ gv	 is one-to-one, it follows that A = ρ�g	Aρ�g	′ if
and only if

A�gv� = �ρ�g	Aρ�g	′	�gv�
and

A�gv� = �ρ�g	Aρ�g	′	�gv��
for all v ∈ V. The theorem now follows since the right-hand side of these
equations can be calculated using (6.4), (6.5), (6.11) and (6.12), respectively. ✷

7. ML estimation in GS-ADG models. In this section we shall consider
ML estimation in the GS-ADG model

�N��	 � � ∈ PG�D�I		(7.1)

(cf. Definition 6.1). We start with some basic and probably well-known results.
Let I1 and I2 be finite sets and assume that

I = I1∪̇I2�(7.2)

Lemma 7.1. Let S ∈ PS�I	 and let

S =
(
S11 S12
S21 S22

)
be the partitioning of S according to �7�2	.

The equation

S21 = R21S11�(7.3)

has a solution R̂21 for R21 ∈ M�I2×I1	. Furthermore, the matrix S22− R̂21S12

does not depend on the choice of solution R̂21 to �7�3	.

Proof. Choose y ∈ M�I	 such that S = yy′, and let

y =
(
y1
y2

)
be the partitioning of y according to (7.2); that is, y1 ∈ M�I1 × I	 and y2 ∈
M�I2 × I	, respectively. Let P2 ∈ M��I2 × I	 × �I2 × I		 denote the orthogonal
projection matrix onto the subspace

L2�y1	 = �R21y1 � R21 ∈ M�I2 × I1	�
of �I2×I (wrt the usual inner product on �I2×I). We can choose R̂21 ∈ M�I2×I1	
such that

R̂21y1 = P2y2�(7.4)

Then for every R21 ∈ M�I2 × I1	,
0 = tr��R21y1	′�y2 − R̂21y1		 = tr�R′

21�S21 − R̂21S11		�(7.5)
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which implies that S21 − R̂21S11 = 0; that is, R21 is a solution to (7.3). On the
other hand, if R̂21 is a solution to (7.3), then by the last equation in (7.5),

tr��R21y1	′�y2 − R̂21y1		 = 0�

for all R21 ∈ M�I2 × I1	, and hence R̂21y1 = P2y2. In this case

�y2 −P2y2	�y2 −P2y2	′ = �y2 − R̂21y1	�y2 − R̂21y1	′

= S22 − R̂21S12%

that is, S22 − R̂21S12 does not depend on the solution R̂21 to (7.3). ✷

It follows from Lemma 7.1 that for S ∈ PS�I	 with the partitioning accord-
ing to (7.2) as above, the matrix S22 − R̂21S12, where R̂21 is any solution to
(7.3) is well defined; that is, it exists and is independent of the choice of solu-
tion R̂21. This matrix is denoted by S2◦1. Note that in the case where S11 is
nonsingular, S2◦1 = S2·1 = S22 −S21S

−1
11 S12.

Proposition 7.1. Let S ∈ PS�I	 and let

S =
(
S11 S12
S21 S22

)
be the partitioning of S according to �7�2	. Furthermore, let α > 0 and consider
the function

L�R21� �2	 = det��2	−α/2 exp
(− 1

2 tr��−1
2 �S22 −S21R

′
21

−R21S12 +R21S11R
′
21		

)
�

where �R21� �2	 ∈ M�I2 × I1	 × P�I2	.
Then L has a maximum if and only if S2◦1 is nonsingular. In this case all

maximas are given as pairs (R̂21� �̂2) where R̂21 is a solution to the equation

S21 = R21S11�(7.6)

and �̂2 = �1/α	S2◦1.
A maximum for L is unique if and only if the equation

R21S11 = 0(7.7)

only has the solution R21 = 0 for R21 ∈ M�I2 × I1	.

Proof. Let y, P2 and L2�y1	 be as in the proof of Lemma 7.1. Then for
arbitrary �R21� �2	 ∈ M�I2 × I1	 × P�I2	,

L�R21� �2	 = det��2	−α/2 exp
(− 1

2tr
(
�−1

2 �y2 −R21y1	�y2 −R21y1	′
))
�
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and it follows that for fixed value of �2 ∈ P�I2	, L�R21� �2	 is maximized for
any solution R̂21 to (7.4), or equivalently, to (7.6). In this case

L�R̂21� �2	 = det��2	−α/2 exp
(− 1

2 tr��−1
2 S2◦1	

)%
that is, L�R̂21� �2	 does not depend on the choice of solution R̂21 to (7.6).
Moreover, L�R̂21� �2	 has a maximum for �2 ∈ P�I2	 if and only if S2◦1 is
nonsingular [cf. Andersson (1984), Lemma 3.2.2]. In this case the maximum
is unique and given as �̂2 = �1/α	S2◦1. A maximum (R̂21� �̂2) for L is thus
unique if and only if (7.6) has a unique solution, or equivalently, if and only
if (7.7) only has the null-solution. ✷

Corollary 7.1. There exists a unique maximum for L if and only if S is
nonsingular.

Proof. It follows that (7.7) only has the null-solution if and only if S11 is
nonsingular. In this case S2◦1 = S2·1 = S22 −S21S

−1
11 S12, and S is nonsingular

if and only if S11 and S2·1 are nonsingular [cf. Rao (1973), Problem 1.2.4]. ✷

For the model (7.1) we now consider the problem of existence and unique-
ness of the ML estimator based on an observation x ∈ �I.

Theorem 7.1. In the model �7�1	, the maximum likelihood estimator �̂ =
�̂�x	 of � ∈ PG�D�I	 for the observation x ∈ �I exists if and only if the matrices
ψ�xx′	�v�◦� v ∈ V, all are positive definite.

In this case, there is a one-to-one correspondence between all families of

solutions �R̂�v� � v ∈ V	 to the equations

ψ�xx′	�v� = R�v�ψ�xx′	�v��(7.8)

where R�v� ∈ MGv
��v� × �v�	, v ∈ V, and all ML estimators �̂ = �̂�x	 given by

the equations

�̂�v��̂
−1
�v� = R̂�v�� �̂�v�· = ψ�xx′	�v�◦�(7.9)

v ∈ V. The maximum likelihood estimator �̂ = �̂�x	 is then unique if and only
if the equations

R�v�ψ�xx′	�v� = 0�

where R�v� ∈ MGv
��v� × �v�	, v ∈ V, only have the solutions R�v� = 0, v ∈ V.
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Proof. From (A.1) in AM (1998) and (5.5) it follows that the likelihood
function L� PG�D�I	 →�0�∞� can be calculated as follows:

L��	=det��	−1/2 exp�− 1
2tr��−1xx′		

=det��	−1/2 exp�− 1
2tr��−1ψ�xx′			

=∏�det���v�·	−1/2

× exp�− 1
2tr��−1

�v�·��ψ�xx′	�v� −ψ�xx′	�v��−1
�v���v�

− ��v��
−1
�v�ψ�xx′	�v� + ��v��

−1
�v�

×ψ�xx′	�v��−1
�v���v�			 � v ∈ V	�

(7.10)

Thus from Theorem 6.1, it follows that it suffices to consider the problem of
maximizing ∏�Lv�R�v�� ��v�	 � v ∈ V	�(7.11)

where

Lv�R�v�� ��v�	=det���v�	−1/2 exp�− 1
2tr��−1

�v� ��ψ�xx′	�v� −ψ�xx′	�v�
×R′

�v� −R�v�ψ�xx′	�v� +R�v�ψ�xx′	�v�R′
�v�			�

(7.12)

for all families

��R�v�� ��v�	 � v ∈ V	 ∈ × �M��v� × �v�	 × P��v�	 � v ∈ V	�

which are invariant wrt G.
For each v ∈ V, there exists by Lemma 7.1 R̃�v� ∈ M��v� × �v�	 such that

ψ�xx′	�v� = R̃�v�ψ�xx′	�v��(7.13)

By (5) of Section 5, there exists a matrix R̃ ∈ MD�I	 such that its �v� × �v�
submatrix equals R̃�v�, v ∈ V. Now define

R = 1
�G�

∑�ρ�g	R̃ρ�g	′ � g ∈ G	�(7.14)

Then for v ∈ V, it follows from (6.11) and (6.12) that

R̂�v� =
1
�G�

∑��ρ�g	R̃ρ�g	′	�v� � g ∈ G	

= 1
�G�

∑�ρ�g	�v� g−1v�R̃�g−1v�ρ�g	′�v�g−1v� � g ∈ G	�
(7.15)
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and hence

R̂�v�ψ�xx′	�v�

= 1
�G�

∑�ρ�g	�v� g−1v�R̃�g−1v�ρ�g	′�v�g−1v�ψ�xx′	�v� � g ∈ G	

= 1
�G�

∑�ρ�g	�v� g−1v�R̃�g−1v�ψ�xx′	�g−1v�ρ�g	′�v�g−1v� � g ∈ G	(7.16)

= 1
�G�

∑�ρ�g	�v� g−1v�ψ�xx′	�g−1v�ρ�g	′�v�g−1v� � g ∈ G	

= 1
�G�

∑�ψ�xx′	�v� � g ∈ G	 = ψ�xx′	�v��

where the second equation follows from (6.8), (6.9) and the fact that ψ�xx′	 ∈
PG�I	, the third follows from (7.13) and the fourth from (6.11) and (6.12) and
the fact that ψ�xx′	 ∈ PG�I	. Obviously, R̂ ∈ MG�I	, and from Proposition 6.2
and the fact that MD�I	 is a vector space, it follows that R̂ ∈ MD�I	. From
Theorem 6.2 it then follows that the family (R̂�v� � v ∈ V) is invariant wrt G.

Since ψ�xx′	�v�◦ = ψ�xx′	�v� − R̂�v�ψ�xx′	�v�, v ∈ V, it then follows from (6.4),
(6.5), (6.11), (6.12) and the fact that ψ�xx′	 ∈ PG�I	, that �ψ�xx′	�v�◦ � v ∈ V	
is invariant wrt G. Thus, from Proposition 7.1 it follows that if the matrices
ψ�xx′	�v�◦, v ∈ V, all are nonsingular, then ��R̂�v�� ψ�xx′	�v�◦	 � v ∈ V	 is a
maximum for (7.11), which is invariant wrt G.

Conversely, assume that there exists u ∈ V such that ψ�xx′	�u�◦ is singular.

For n ∈ � and v ∈ V, let R
�n	
�v� = R̂�v�, where R̂ is defined as in (7.14), and

let �
�n	
�v� = n−11�v� + ψ�xx′	�v�◦. Then ��R�n	

�v� � �
�n	
�v� 	 � v ∈ V	 is invariant wrt G,

n ∈ � and

lim
n→∞Lv�R�n	

�v� � �
�n	
�v� 	 = ∞

and hence

lim
n→∞

∏(
Lv

(
R
�n	
�v� � �

�n	
�v� �Lv

(
R
�n	
�v� � �

�n	
�v�
) � v ∈ V

) = ∞�

This hereby proves the “existence” part of the theorem.
For the uniqueness of �̂ exists; that is, the matrices ψ�xx′	�v�◦, v ∈ V, are

all nonsingular. Then first assume that for each v ∈ V, the equation

ψ�xx′	�v� = R�v�ψ�xx′	�v�(7.17)

has a unique solution R̃�v� for R�v� ∈ MGv
��v� × �v�	. Defining R̂ as in (7.14),

then for v ∈ V, R̂�v� is a solution to (7.17) [cf. (7.16)], and since R̂�v� ∈ MGv
��v�×

�v�	 we must have R̃�v� = R̂�v� by the uniqueness assumption. In particular,

�R̃�v� � v ∈ V	 is invariant wrt G.
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Conversely, assume that �R̃�v� � v ∈ V	 is a family of solutions to the
equations (7.17), v ∈ V, which is unique among all families of solutions in
×�M��v� × �v�	 � v ∈ V	 that are invariant wrt G. Then for each v ∈ V, R̃�v� is
a unique solution to (7.17), for R�v� ∈ MGv

��v� × �v�	. To show this, let u ∈ V,
and choose any R�u� ∈ MGu

��u�×�u�	 such that ψ�xx′	�u� = R�u�ψ�xx′	�u�· Then
define

R̂�gu� = ρ�g	�gu�u�R�u�ρ�g	′�gu�u��(7.18)

for g ∈ G and let

R̂�v� = R̃�v��(7.19)

for v ∈ V where v �= gu for all g ∈ G. First notice that (7.18) is well defined;
for g1� g2 ∈ G where g1u = g2u we have g−1

2 g1 ∈ Gu and hence by (6.4)
and (6.8),

R�u� = ρ�g−1
2 g1	�u�R�u�ρ�g−1

2 g1	′�u�
= ρ�g−1

2 	�u�g2u�ρ�g1	�g2u�u�R�u�ρ�g1	′�g2u�u�ρ�g−1
2 	′�u�g2u��

which by assumption and (6.6) implies that

ρ�g2	�g2u�u�R�u�ρ�g2	′�g2u�u� = ρ�g1	�g1u�u�R�u�ρ�g1	′�g1u�u��

The family �R̂�v� � v ∈ V	 defined by (7.18) and (7.19) is clearly invariant
wrt G. From (6.8), (6.9), (6.11) and (6.12), and the fact that ψ�xx′	 ∈ PG�I	, it
follows that

R̂�gu�ψ�xx′	�gu� = ρ�g	�gu�u�R�u�ρ�g	′�gu�u�ψ�xx′	�gu�
= ρ�g	�gu�u�R�u�ψ�xx′	�u�ρ�g	′�gu�u�
= ρ�g	�gu�u�ψ�xx′	�u�ρ�g	′�gu�u� = ψ�xx′	�gu��

for all g ∈ G, and hence we must have R̂�v� = R̃�v�, v ∈ V. In particular

R̃�u� = R�u�.
From the fact that (7.17) has a unique solution for R�v� ∈ MGv

��v� × �v�	,
if and only if the equation R�v�ψ�xx′	�v� = 0 only has the null-solution for
R�v� ∈ MGv

��v� × �v�	, we have thus proved the last part of the theorem. ✷

Remark 7.1. According to Theorem 7.1, there is a one-to-one correspon-
dence between the MLE �̂ and families �R̂�v� � v ∈ V	 of solutions to (7.8). It
should be pointed out that in some cases there could in fact be several families
of solutions to (7.8) such that the MLE exists but is not unique.

Remark 7.2. It follows from Theorem 7.1 and (7.10) that the maximum of
the likelihood function for the observation x ∈ �I is∏�det�ψ�xx′	�v�◦	−1/2 � v ∈ V	 exp

(
−�I�

2

)
�(7.20) ✷



INVARIANT GRAPHICAL MARKOV MODELS 1171

Remark 7.3. The explicit expression for �̂�x	 may be obtained from (7.9)
by means of the reconstruction algorithm given in AP (1998), Section 5.

Corollary 7.2. In the model �7�1	, the maximum likelihood estimator �̂ =
�̂�x	 of � ∈ PG�D�I	 for the observation x ∈ �I exists and is unique if the
matrices ψ�xx′	�v�∪̇�v�, v ∈ V, all are positive definite.

In this case, �̂ is determined by

�̂�v��̂
−1
�v� = ψ�xx′	�v�ψ�xx′	−1

�v�� �̂�v�· = ψ�xx′	�v�·�(7.21)

v ∈ V.

Proof. Let v ∈ V. If ψ�xx′	�v�∪̇�v� is positive definite, then ψ�xx′	�v� is
positive definite and then the equation R�v�ψ�xx′	�v� = 0 implies R�v� = 0.
Furthermore ψ�xx′	�v�◦ = ψ�xx′	�v�· is positive definite. ✷

Remark 7.4. Note that Theorem 7.1, Remarks 7.2 and 7.3, and
Corollary 7.2 are generalizations of Theorem 3.1, Remarks 3.2 and 3.3, and
Corollary 3.1, respectively, in AM (1998).

Remark 7.5. In many cases, the condition for existence and uniqueness
of the ML estimator in Corollary 7.2 is also necessary. In particular, this is
always the case when we consider the situation where the representation of
Gv on ��v� is trivial for all v ∈ V (cf. Remark 6.4), since in this case R�v� is
unrestricted for all v ∈ V. The condition in Corollary 7.2 may typically not be
fulfilled in situations where both the GS restrictions and the CI restrictions
imply independence relations between some of the variables considered.

We shall prove (cf. Proposition 7.2 below) that either the ML estimator
exists and is unique with probability 1 wrt all N��	, � ∈ PG�D�I	, or else it
will not exist or it will not be unique for any x ∈ �I. For this, define for v ∈ V
the sets

,ex�v	 = �x ∈ �I � det�ψ�xx′	�v�◦	 �= 0�
and

,un�v	 = �x ∈ �I � ∀ R�v� ∈ MGv
��v� × �v�	� R�v�ψ�xx′	�v� = 0 ⇒ R�v� = 0��

respectively, and let

, = ∩�,ex�v	 ∩,un�v	 � v ∈ V	�(7.22)

Thus, from Theorem 7.1, it follows that the ML estimator �̂ = �̂�x	 for x ∈ �I

exists and is unique if and only if x ∈ ,.

Proposition 7.2. The set , is either empty or else the complement �I\,
has Lebesgue measure zero.
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Proof. Let v ∈ V and x ∈ �I. It follows that x ∈ ,un�v	 if and only if the
linear mapping

MGv
��v� × �v�	→MGv

��v� × �v�	�
R�v� �→R�v�ψ�xx′	�v�

(7.23)

is bijective. This mapping clearly is the restriction of

M��v� × �v�	→M��v� × �v�	�
R�v� �→R�v�ψ�xx′	�v��

(7.24)

which is represented by the Kronecker product matrix I�v� ⊗ ψ�xx′	�v� when
considered as a mapping ��v�⊗�v� → ��v�⊗�v�. Since each entry of ψ�xx′	�v� is
a polynomial in the coordinates of x, each entry of the matrix representing
(7.23) in any basis for MGv

��v� × �v�	 is also a polynomial, and hence, the
determinant of (7.23) is a polynomial. Thus if ,un�v	 is nonempty; the com-
plement �I\,un�v	 consists of the zeros of a nonnull polynomial, and hence
this set has Lebesgue measure zero [see, e.g., Bourbaki (1963), Chapter VII,
Section 3, number 3, Lemma 9].

Now assume that x ∈ ,un�v	. Since each entry of the matrix representing
(7.23) is a polynomial in the coordinates of x, this is also the case for the unique
solution R̂�v� to (7.8). Therefore the same statement holds for ψ�xx′	�v�◦, and
hence det�ψ�xx′	�v�◦	 = pv�x	 where pv� �I → � is a polynomial.

From the definition of ,ex�v	 it then follows that

,ex�v	 ∩,un�v	 = ,0�v	 ∩,un�v	�
where ,0�v	 = �x ∈ �I � pv�x	 �= 0�. If ,ex�v	 ∩,un�v	 �= 
 then both ,0�v	 �=

 and ,un�v	 �= 
. In this case �I\,0�v	 and �I\,un�v	 have Lebesgue mea-
sure zero since both sets consist of the zeros of a nonnull polynomial. Hence
the complement �I\�,ex�v	∩,un�v		 = ��I\,0�v		∪��I\,un�v		 has Lebesgue
measure zero. The proposition now follows from (7.22). ✷

Remark 7.6 (Independent repetitions). Let n ∈ � and define N = �1� � � � �
n�. Now consider n independent repetitions of the GS-ADG model (7.1). In a
similar way to that of the GS-LCI models in AM (1998), Section 5.1, it fol-
lows that (except for a reparametrization) this model is a GS-ADG model on
the sample space �I×N. As a consequence, Theorem 7.1 and Corollary 7.2
hold when xx′ is replaced with the normed empirical covariance matrix S =
�1/n	yy′, where y ∈ �I×N is the full observation matrix, the columns inde-
pendent and identically distributed according to the GS-ADG model (7.1).
Similarly Proposition 7.2 holds when replacing �I with �I×N and ,ex�v	,
,un�v	 with {

y ∈ �I×N � det
(
ψ

(
1
n
yy′

)
�v�◦

)
= 0

}
�
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and{
y ∈ �I×N � ∀ R�v� ∈MGv

��v� × �v�	� R�v�ψ
(

1
n
yy′

)
�v�
= 0 ⇒ R�v� = 0

}
�

respectively, v ∈ V.

Remark 7.7. For the GS-LCI models, AM (1998) gives explicit conditions
for the existence and uniqueness of the ML estimator with probability 1,
expressed in terms of the dimensions of the representation of G on each of
the multivariate vertices ��v�, v ∈ V; the so-called structure constants. (Recall
that the GS-LCI models correspond to GS-ADG models where the graph D is
transitive and where the symmetry conditions given by G are allowed only
to operate inside each multivariate vertex.) Several examples considered (see
Examples 7.1–7.7 below) suggest that such numerical conditions exist for the
GS-ADG models as well; however, it remains as an open question in what way
these conditions should be expressed in a general form.

We shall now continue the seven examples given in Section 6. We use the
notation from Remark 7.6; that is, y ∈ �I×N is the full observation matrix of
n i.i.d. random observations from the model (7.1), and S = �1/n	yy′ denotes
the normed empirical covariance matrix. In each of the six examples we first
determine the smoothing function ψ�S	, and second, we give an expression
of the likelihood function such that numerical conditions for the existence
and uniqueness of the ML estimator with probability 1 (cf. Remark 7.7), will
follow from the standard theory of MANOVA models or from the theory of GS
models [see AM (1998), Appendix A]. In all six examples the ML estimators
of the D-parameters then can be obtained from Corollary 7.2.

Example 7.1 (Continuation of Example 6.1). The smoothing function
ψ�S	 is given by

ψ�S	�11� = S�11��

ψ�S	�12� = ψ�S	�13� = 1
2�S�12� +S�13�	�

ψ�S	�22� = ψ�S	�33� = 1
2�S�22� +S�33�	�

ψ�S	�23� = 1
2�S�23� +S�32�	�

The likelihood function can be rewritten as

L�R����1	
= det��	−n exp

(− 1
2 tr��−1��y�2�� y�3�	 −R�y�1�� y�1�		�· · ·	′	

)
× det��1	−n/2 exp

(− 1
2tr��−1

1 �y�1�y′�1�		
)
�

From this expression, it can be seen that �̂ exists and is unique with prob-
ability 1 if and only if 2n ≥ �J� + �L� and n ≥ �J�.
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Example 7.2 (Continuation of Example 6.2). The smoothing function
ψ�S	 is given by

ψ�S	�11� = S�11�� ψ�S	�12� = S�12�� ψ�S	�22� = S�22��

ψ�S	�13� = ψ�S	�14� = 1
2�S�13� +S�14�	�

ψ�S	�23� = ψ�S	�24� = 1
2�S�23� +S�24�	�

ψ�S	�33� = ψ�S	�44� = 1
2�S�33� +S�44�	�

ψ�S	�34� = 1
2�S�34� +S�43�	�

The likelihood function can be rewritten as

L�R����1� �2	

= det��	−n exp
(
− 1

2 tr
(
�−1

(
�y�3�� y�4�	 −R

(
y�1� y�1�
y�2� y�2�

))
�· · ·	′

))
× det��1	−n/2 exp

(− 1
2 tr��−1

1 �y�1�y′�1�		
)

× det��2	−n/2 exp�− 1
2 tr��−1

2 �y�2�y′�2�			�

From this expression, it can be seen that �̂ exists and is unique with prob-
ability 1 if and only if 2n ≥ 2�J� + �L� and n ≥ 2�J�.

Example 7.3 (Continuation of Example 6.3). The smoothing function
ψ�S	 is given by

ψ�S	�11� = ψ�S	�22� = 1
2�S�11� +S�22�	�

ψ�S	�12� = 1
2�S�12� +S�21�	�

ψ�S	�13� = ψ�S	�24� = 1
2�S�13� +S�24�	�

ψ�S	�14� = ψ�S	�23� = 1
2�S�14� +S�23�	�

ψ�S	�33� = ψ�S	�44� = 1
2�S�33� +S�44�	�

ψ�S	�34� = 1
2�S�34� +S�43�	�

The likelihood function can be rewritten as

L�A�B��34� �1� �2	

= det��34	−n exp
(
− 1

2 tr
(
�−1

34

(
�y�3�� y�4�	 − �A�B	

(
y�1� y�2�
y�2� y�1�

))
�· · ·	′

))
× det��12	−n exp

(− 1
2 tr��−1

12 �y�1�� y�2�	�· · ·	′	
)
�

From this expression, it can be seen that �̂ exists and is unique with prob-
ability 1 if and only if 2n ≥ 2�J� + �L� and n ≥ �J�.
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Example 7.4 (Continuation of Example 6.4). The smoothing function ψ�S	
is given by

ψ�S	�11� = ψ�S	�22� = 1
2�S�11� +S�22�	� ψ�S	�12� = 1

2�S�12� +S�21�	�
ψ�S	�33� = ψ�S	�44� = 1

2�S�33� +S�44�	� ψ�S	�34� = 1
2�S�34� +S�43�	�

ψ�S	�13� = ψ�S	�14� = ψ�S	�23� = ψ�S	�24� = 1
4�S�13� +S�14� +S�23� +S�24�	�

The likelihood function can be rewritten as

L�B��34� �12	
= det��34	−n exp

(− 1
2 tr
(
�−1

34 ��y�3�� y�4�	 −B�y�1� + y�2�� y�1� + y�2�		�· · ·	′	
)

× det��12	−n exp
(− 1

2 tr��−1
12 �y�1�� y�2�	�· · ·	′	

)
�

From this expression, it can be seen that �̂ exists and is unique with proba-
bility 1 if and only if n ≥ �J� and 2n ≥ �J� + �L�.

Example 7.5 (Continuation of Example 6.5). Let
(
yl1
yl2

)
be the decomposi-

tion of y�l� according to (6.19), l = 1� � � � �4, and let

S�lm� =
(
S11

lm S12
lm

S21
lm S22

lm

)
�

such that S
ij
lm = yliy

′
mj, i� j = 1�2, l�m = 1� � � � �4, l ≤ m. The smoothing

function ψ�S	 is then given by

ψ�S	�lm� =
(

1
2�S11

lm +S22
lm	 1

2�S12
lm +S21

lm	
1
2�S12

lm +S21
lm	 1

2�S11
lm +S22

lm	

)
�

where l�m = 1� � � � �4, l ≤m.
The likelihood function can be rewritten as

L�R3� �3�R4� �4� �1� �2	
= det��3	−n/2 exp�− 1

2tr��−1
3 ��y�3� −R3y�3�	�· · ·	′			

× det��4	−n/2 exp�− 1
2 tr��−1

4 ��y�4� −R4y�4�	�· · ·	′			
× det��1	−n/2 exp�− 1

2tr��−1
1 �y�1�y′�1�			

× det��2	−n/2 × exp�− 1
2 tr��−1

2 �y�2�y′�2�			�

where the parameters R3� �3�R4� �4� �1� �2 have the additional restrictions
(6.20). From this expression, it can be seen that �̂ exists and is unique with
probability 1 if and only if n ≥ max��J1� + �J2� + �J3�� �J3� + �J4�	.
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Example 7.6 (Continuation of Example 6.6). Let
(y1
y2

)
be the decomposition

of y�2� according to (6.21) and let

S�22� =
(
S11 S12
S21 S22

)
� S�23� =

(
S13
S23

)
� S�24� =

(
S14
S24

)
�

where Sij = yiy
′
j, i� j = 1�2 and Sij = yiy

′
�j�, i = 1�2, j = 3�4. The smoothing

function ψ�S	 is given by

ψ�S	�22� =
(

1
2�S11 +S22	 1

2�S12 +S21	
1
2�S12 +S21	 1

2�S11 +S22	

)
�

ψ�S	�23� =
(

1
2�S13 +S24	
1
2�S14 +S23	

)
�

ψ�S	�24� =
(

1
2�S14 +S23	
1
2�S13 +S24	

)
�

ψ�S	�33� = ψ�S	�44� = 1
2�S�33� +S�44�	�

ψ�S	�34� = 1
2�S�34� +S�43�	�

The likelihood function can be rewritten as

L�A�B���%�&	

= det��	−n exp
(
− 1

2 tr
(
�−1

(
�y�3�� y�4�	 − �A�B	

(
y1 y2
y2 y1

))
�· · ·	′

))

× det
(
% &
& %

)−n/2

exp
(
− 1

2 tr
((

% &
& %

)−1

y�2�y
′
�2�

))
�

From this expression, it can be seen that �̂ exists and is unique with proba-
bility 1 if and only if n ≥ �J� and 2n ≥ 2�J� + �L�.

Example 7.7 (Continuation of Example 6.7). We use the same notation as
in Example 7.6. The smoothing function ψ�S	 is then given by

ψ�S	�22� =
( 1

2�S11 +S22	 1
2�S12 +S21	

1
2�S12 +S21	 1

2�S11 +S22	

)
�

ψ�S	�23� = ψ�S	�24� =
( 1

4�S13 +S14 +S23 +S24	
1
4�S13 +S14 +S23 +S24	

)
�

ψ�S	�33� = ψ�S	�44� = 1
2�S�33� +S�44�	�

ψ�S	�34� = 1
2�S�34� +S�43�	�
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The likelihood function can be rewritten as

L�A���%�&	
= det��	−n exp

(
− 1

2tr��−1��y�3�� y�4�	 −A�y1 + y2� y1 + y2		�· · ·	′	
)

× det
(
% &
& %

)−n/2

exp
(
− 1

2tr
((

% &
& %

)−1

y�2�y
′
�2�

))
�

From this expression, it can be seen that �̂ exists and is unique with prob-
ability 1 if and only if n ≥ �J� and 2n ≥ �J� + �L�.

8. Further discussion. Within the theory of the GS-ADG models, the
following problems are currently under investigation by the author.

Definition of structure constants. This problem is discussed in Remark 7.7.
Testing problems. Let C = �W�F	 be a second ADG with an associated

partitioning (Jw � w ∈ W) of I; that is, I = ∪̇�Jw � w ∈ W	, and let ϕ� D → C
be a surjective ADG homomorphism such that

Iv = ∪̇�Jw � w ∈W� ϕ�w	 = v	�
for all v ∈ V. (In many applications, V =W, E ⊂ F and ϕ is the identity map-
ping.) Furthermore, let H be a subgroup of G. By AP (1998), Proposition 3.1(i),
PD�I	 ⊆ PC�I	, and it is easy to see that PG�I	 ⊆ PH�I	. It then follows that
PG�D�I	 ⊆ PH�C�I	, and hence the problem of testing the model

�N��	 � � ∈ PG�D�I		(8.1)

versus the model

�N��	 � � ∈ PH�C�I		(8.2)

is well defined [cf. AM (1998), Section 4, and AP (1998), Section 9].
It may be shown that if the model (8.2) is regular; that is, the ML estimator

exists and is unique with probability 1 (cf. Proposition 7.2), then the model
(8.1) is also regular [cf. AM (1998), Proposition 4.1]. Thus if the model (8.2)
is regular, it follows from (7.20) that the likelihood ratio test statistic Q for
testing (8.1) against (8.2) exists with probability 1 and is given by

Q�x	 =
(∏�det�ψH�xx′	�w�◦	 � w ∈W	∏�det�ψG�xx′	�v�◦	 � v ∈ V	

)1/2

�

where x ∈ �I. Furthermore, it is possible to show that under the model (8.1),
Q and the family of ML estimators (̂��v�◦ � v ∈ V) are mutually independent
[cf. AM (1998), Theorem 4.1, and AP (1998), Proposition 9.2]. A characteriza-
tion of the central distribution of Q generalizing that of the GS-LCI models
[cf. AM (1998), Section 4], may then be possible. Note however, that the gen-
ralization is not straightforward since in the case of the GS-ADG models, the
ML estimators �̂�v�◦, v ∈ V, are not mutually independent.
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Nonzero mean-value hypotheses. The assumption that the expectation of the
normal distributions in the model (7.1) is zero can be removed. Thus if L ⊆ �I

is an MG�D�I	-subspace, that is, MG�D�I	L = L, ML estimators for the model

�N�ξ��	 � �ξ��	 ∈ L× PG�D�I		
can be derived explicitly [cf. AP (1998), Definition 6.2(iii) and Section 7].
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