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The logarithm of the relative risk function in a proportional hazards
model involving one or more possibly time-dependent covariates is treated
as a specified sum of a constant term, main effects, and selected inter-
action terms. Maximum partial likelihood estimation is used, where the
maximization is taken over a suitably chosen finite-dimensional estima-
tion space, whose dimension increases with the sample size and which is
constructed from linear spaces of functions of one covariate and their tensor
products. The Ly rate of convergence for the estimate and its ANOVA com-
ponents is obtained. An adaptive numerical implementation is discussed,
whose performance is compared to (full likelihood) hazard regression both
with and without the restriction to proportional hazards.

1. Introduction. In survival analysis, a popular approach for treating
the relationship between the survival time and the covariates is through the
use of Cox’s proportional hazards regression model [Cox (1972)]. Kalbfleisch
and Prentice (1980), Cox and Oakes (1984), Fleming and Harrington (1991)
and Andersen, Borgan, Gill and Keiding (1993) discuss this approach in con-
siderable detail. An important issue that has been overshadowed by the pop-
ularity of the Cox model is the assumption of linearity of the covariate effects,
which may or may not be valid in practice. If it is violated, then the corre-
sponding estimates will be biased. One remedy is the use of nonparametric
modeling, in which covariate effects are estimated without imposing a pre-
specified parametric form. Nonparametric modeling provides more flexibility
than Cox’s original approach, but when there are multiple covariates its direct
implementation is subject to the “curse of dimensionality,” which refers to the
difficulty caused by data sparseness in high dimensions. This difficulty can be
ameliorated by using functional analysis of variance (ANOVA) models, where
the overall effect of the covariates is modeled as a specified sum of a con-
stant effect, main effects (functions of one covariate) and selected low-order
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interactions (functions of a few covariates). Such ANOVA models can be used
to achieve dimensionality reduction and at the same time retain the flexibility
of nonparametric modeling.

A comprehensive review of one approach to functional ANOVA modeling is
given in Stone, Hansen, Kooperberg and Truong (1997). The main objective
of the present paper is to conduct a theoretical investigation of this approach
in the context of proportional hazards regression. To this end, let 7', C and
X = X(-) have a joint distribution, where T and C are nonnegative random
variables and X(¢) is a random vector of possibly time-dependent covariates
X1(2), ..., X1(¢) (some of which could also be vector valued). In survival anal-
ysis, T and C are referred to as the survival time (or failure time) and censor-
ing time, respectively. Set Y = min(7, C) and 6 = ind(7T" < C). The indicator
random variable 6 equals 1 if failure occurs on or before the censoring time
(i.e., if T < C), and it equals 0 otherwise. The observable time Y is said to be
uncensored or censored according as 6 = 1 or 6 = 0. Instead of observing the
triple (7', C, X), we only observe (Y, §, X).

The covariate process X is assumed to be external, that is, not directly
involved with the failure mechanism [see page 123 of Kalbfleisch and Prentice
(1980)]. For identifiability, it is assumed that 7" and C are conditionally inde-
pendent given X. Let F(t | X) = P(T <¢|X) and F(¢t | X) = P(T > t | X)
denote the conditional distribution function and conditional survival function,
respectively, of T given X. The conditional density function f(¢ | X) is assumed
to exist, and the conditional hazard function is given by A(¢ | X) = f(¢ |
X)/F(t | X). The proportional hazards assumption is that the log-hazard func-
tion has the form log A(¢ | X) = ag(¢) + a(X(¢)), where Ay = expaj and « are
referred to, respectively, as the baseline hazard function and log relative risk
function (log of the relative risk function). Here the log-hazard at time ¢ is
assumed to depend only on the current values of the covariates. Note that
in the above expression for log A(¢ | X), if one adds a constant to «y(¢) and
subtracts the same constant form «(X(¢)), then log A(¢ | X) does not change.
Hence we say that the function «(+) is not identifiable and some identifiability
constraint needs to be imposed to make «(X(¢)) uniquely defined. [In the Cox
model the usual constraint is a(0) = 0.] The goal is to estimate the log relative
risk function «(-).

The functional ANOVA approach involves the choice of a special form for
the log relative risk function. Suppose, for example, that L = 3 and consider
the model

(1) aX(?)) = a1(X1(8)) + ag(Xo(8)) + ag(X3(8)) + g, o( X1(2), Xo(2)),

which omits the three-factor interaction and contains exactly one of the three
possible two-factor interactions. In order to make the representation in (1)
unique, we need to impose some identifiability constraints on the various com-
ponents in the representation. Given a random sample, we can use maximum
partial likelihood estimation to obtain an estimate & having the same form
as (1), where the partial log-likelihood is defined in (3) of Section 2 and the
maximization is carried out in a suitably chosen finite-dimensional estimation
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space, whose dimension increases with the sample size. If the components of
the ANOVA decomposition of a are accurately estimated by the corresponding,
similarly constrained, components of &, then examination of the components
of & should shed light on the relationship of the survival time T to X through
the log relative risk function a.

In this paper the estimation spaces are constructed from linear spaces
of functions of one variable and their tensor products while respecting the
ANOVA structure of the target function «. In particular, polynomial splines
and their tensor products can be used as building blocks for the estimation
spaces. We will give conditions under which & converges to « and, more impor-
tant, the components of & converge to the corresponding components of a.
Rates of convergence are also studied.

Technically speaking, the theory developed in this paper does not depend on
the validity of the assumed form of the ANOVA model for the log relative risk
function. In particular, if (1) is invalid, then & can be viewed as an estimate
of the function «* having the form

2) o (X(2)) = (X 1(1)) + a5(Xp(2)) + a3(X5(2)) + aip(X1(2), X5(2))

that maximizes the expected partial log-likelihood as defined in (4) in
Section 2. In fact, the proofs do not even depend on the validity of the propor-
tional hazards assumption. If this assumption is invalid, then (2) corresponds
to an approximation to A(¢ | X) having the form given by log A*(¢ | X) =
aj(t) + a*(X(2)).

Cox’s model with nonparametric or additive covariate effects has been a
very useful exploratory tool for analyzing survival data. There are several
methodological approaches. For example, O’Sullivan (1998) and Gray (1992)
used smoothing splines. Tibshirani and Hastie (1987) considered the local like-
lihood method. Sleeper and Harrington (1990) and Gentleman and Crowley
(1991) employed regression spline methods. LeBlanc and Crowley (1999) devel-
oped an adaptive regression spline method for fitting additive and general
interaction models. Gu (1996) developed a smoothing spline approach to (non-
proportional) hazard regression that has similarities to the HARE methodol-
ogy of Kooperberg, Stone and Truong (1995a). Wahba, Wang, Gu, Klein and
Klein (1995) discussed ANOVA decompositions for smoothing spline models in
a general context, but did not treat hazard regression explicitly. In theoretical
papers, O’Sullivan (1993) studied rates of convergence of the penalized meth-
ods (smoothing spline approach) for saturated models and Dabrowska (1997)
considered a partly linear model in which a kernel method is used to adjust
for the nonparametric covariate effects while obtaining the usual n~1/2 rate
of convergence for the parametric effect. Neither paper considered additive
models or more generally functional ANOVA models. The current paper gives
a rather complete theoretical account of functional ANOVA models for maxi-
mum partial likelihood estimation over finite-dimensional estimation spaces.
Similar results for other methods have yet to be established.

An alternative approach to functional ANOVA modeling in proportional haz-
ards regression is to model the entire hazard function, including the baseline



964 HUANG, KOOPERBERG, STONE AND TRUONG

hazard and the covariate effects, and to maximize the full likelihood to fit the
data. Theoretical accounts of this approach have been given in Kooperberg,
Stone and Truong (1995b) and Huang and Stone (1998); Kooperberg, Stone
and Truong (1995a) developed an adaptive hazard regression methodology
(HARE). In comparison with the full likelihood approach, a theoretical obsta-
cle that arises in maximum partial likelihood estimation is the lack of identi-
fiability of the relative risk function when the baseline hazard function is not
modeled. This obstacle causes difficulties in establishing the existence of the
best approximation in the model space (see the proof of Theorem 1). The lack
of identifiability also causes the lack of negative definiteness of the Hessian of
the partial log-likelihood and expected partial log-likelihood functions, which
is handled by using orthogonality to constant functions as an identifiability
constraint [see (5) and Section 2.2]. To ensure that the identifiability constraint
does not destroy the nice structure of the ANOVA decompositions of the model
space and estimation space, the theoretical inner product is used to impose
the identifiability constraint on the target function while the empirical inner
product is used for the estimate (see Section 2.3). The imposition of these con-
straints necessarily complicates the analysis. Another technical obstacle we
overcome here is that, due to the special features of partial log-likelihood, the
empirical inner product cannot be expressed as a summation over iid random
variables, so the theory in Huang (1998a) cannot be used directly as in Huang
and Stone (1998).

The rest of the paper is organized as follows. In Section 2, we present the
main theoretical results. Section 2.1 contains the theoretical set-up, in which
the partial log-likelihood function is defined and the unknown log relative risk
function is modeled in a general linear function space, referred to as the model
space. Theorem 1 establishes the existence and uniqueness of the function o*
in the model space that maximizes the expected partial log-likelihood. This
function should be viewed as the target of our estimate. Under the assumption
of proportional hazards, a* can be thought of as the best approximation in the
model space to the log relative risk function a. A general result (Theorem 2) on
the rate of convergence of the maximum partial likelihood estimate is given
in Section 2.2 Section 2.3 is devoted to functional ANOVA modeling, where
the ANOVA decompositions of the estimate and target function are formally
defined. The convergence properties of the maximum partial likelihood esti-
mate and its ANOVA components are given in Theorem 3. Section 2.4 treats
functional ANOVA modeling when polynomial splines and their tensor prod-
ucts are used as the building blocks in constructing the estimation spaces;
here Theorem 3 is applied to obtain the rate of convergence of the correspond-
ing estimate. Section 3 describes some experience with a numerical adap-
tive implementation of proportional hazards regression, which is compared
to HARE both with and without a restriction to consider only proportional
hazards models. This material should be regarded as merely suggestive, not
as an attempt at a thorough study of the methodological issues that comple-
ment the present, mainly theoretical, investigation. Some discussion is given
in Section 4. The proofs of Theorems 2 and 3 are given in Section 5 and 6,
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respectively. The proofs of Theorem 1 and several of the lemmas in Section 5
are collected in the Appendix.

2. Main results.

2.1. Theoretical set-up. Let 1 be a fixed positive number and suppose that
censoring automatically occurs at time 7 if it has not occurred prior to that
time; that is, P(C < 7) = 1. Suppose also that each of the random vectors
X(2), t € [0, 7], takes values in a fixed compact set 2" of some Euclidean
space. Conditions similar to the following one are used in Kooperberg, Stone
and Truong (1995b) and Huang and Stone (1998).

ConDITION 1. (i) P(C = 7 | X) is bounded away from zero uniformly
in X; (ii) the density function of X(t) exists and is bounded away from zero
and infinity on 2" uniformly over t € [0, 7]; (iii) the conditional log-hazard
log A(t | X) is bounded uniformly over t € [0, 7] and X.

tand T < C). It follows from Condition 1 that E(Z(¢)|X) = P(Y > ¢X)
P(T > ¢t | X)P(C = t | X) is bounded away from zero uniformly over ¢ € [0, 7].

Consider a random sample (7', C1,X;), ..., (T,, C,,X,) from the distribu-
tion of (7,C,X). For 1 < i < n, set Y; = min(T;, C;), §; = ind(T; < C;),
Z;(t) = ind(Y; > t), and N;(t) = ind(§; = land T; < ¢t) = ind(T; <
tand T; < C,). Also, set N(t) = n='Y; N,(¢). Then, up to a term that does
not depend on A, the normalized partial log-likelihood £(%) corresponding to
the candidate A for the log relative risk function can be written as

@ (=% [ hXi0) N (o) - [ 1og E 3 Zi(t)exp h(Xi(t))} AN (t)

Set Z(¢) = ind(Y > ¢t) and N(¢) = ind(6 = 1land T < ¢t) = ind(T <

[see Cox (1972), Andersen and Gill (1982) and O’Sullivan (1993)]. The asymp-
totic value of £(h) as n — oo is given by

4) A(h) = E fo " R(X(#)) dN(t) - /0 "log E[Z(¢)"*DdEN(¢),

which we refer to as the expected partial log-likelihood. It follows as in the
proof in Section A.1 of the second conclusion of Theorem 1 below that, under
the assumption of the proportional hazards model, the actual log relative risk
function @ maximizes A(-) over all integrable functions 4.

Let Hy, referred to as the model space, be a finite- or infinite-dimensional
linear space of integrable functions on £°. For convenience in starting the iden-
tifiability constraint, we require that this linear space contain the constant
functions. We envision that the space H, incorporates structural, assumptions
on « and we construct our estimate pretending that « is a member of H,. For
example, the original Cox model for the log relative risk function amounts to
choosing Hj, to be the space of linear functions on 2°. The additive model for the
log relative risk function amounts to choosing Hj to be the space of integrable
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functions of the form A¢(x;)+ ---+ hr(x;), where 2° = 27 x --- x 27, and x;
ranges over 2; for 1 < < L. Appropriate choices of H, also yield functional
ANOVA models that will be discussed in detail in Section 2.3.

Note that A(h) = A(h +¢) for c € R and & € H,, so the space H, is not
identifiable. We impose the following identifiability constraint on functions
h e Hy:

6))

T E[A(X(?))Z(2)] _
fo B2 GE[N(2)] = 0.

E[Z(1)]

The identifiability constraint can be imposed in different ways. However, the
way used here makes it convenient to study functional ANOVA models (see
Section 2.3).

Set H = {h € Hy: A satisfies (5)}. The theorem below states that there is
an essentially unique function «* € H that maximizes the expected partial
log-likelihood over H. When the proportional hazards assumption is valid but
a is not a member of H, we think of o* as the “best” approximation in H to a.
In general, we think of o* as the target of our estimate regardless the validity
of the proportional hazards assumption.

THEOREM 1. Suppose H, is closed in the following sense: if h, € Hy, hisan
integrable function on 2", and h,, — h in measure as n — oo, then h € Hy. In
addition, suppose Condition 1 holds. Then there exists an essentially uniquely
determined function a* € H such that A(a*) = max;, .y A(h). If the proportional
hazards assumption is valid with a € H, then o* = a almost everywhere.

In the statement of this theorem, “essentially uniquely determined” means
that any two such functions are equal almost everywhere relative to Lebesgue
measure on £°. The proof of the theorem will be given in Section 7.1. The
closedness requirement on H, is obviously satisfied by the original Cox model.
According to Lemma 4.1 of Stone (1994), additive models, or more generally
functional ANOVA models (Section 2.3), also satisfy this closedness
requirement.

Before proceeding further, it is convenient to introduce some notations. For
any function 2 on 27, set | A||,, = supgcy |A(X)| and if & is square-integrable,
set ||h||%2 = [, h*(x)dx. Given positive numbers a, and b, for n > 1, let
a,<b, mean that a,/b, is bounded and let a, ~ b, mean that ¢, <b, and
b, <a,. Given random variables W, for n > 1, let W, = Op(b,,) mean that
lim,, ., limsup, P(|W,| > ¢b,) = 0 and let W,, = 0p(b,) mean that limsup,,
P(|W,| = ¢b,) = 0 for all ¢ > 0. For a random variable V, let E, denote the
expectation relative to its empirical distribution, that is, E, (V) =n"1Y, V,,
where V;, 1 <i < n, is a random sample from the distribution of V. We use
M, M, M,, ..., todenote generic constants which may vary from one context
to another.

2.2. Maximum partial likelihood estimation. From now on we restrict our
attention to square-integrable functions. Let us first introduce the theoretical
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and empirical inner products on the space of such functions. The corresponding
norms will be used to measure the distance between the estimate and the
target function. These inner products will play a critical role in the study of
functional ANOVA models below. For a square-integrable functions /; and A,
on 4, set

E, [ (X(9)hy(X(2)) Z(1)]
E,[Z(2)]

(E7 hyhs)(t) =

and
E[hl(X(t))hZ(X(t))Z(t)]‘

(E?hyhy)(t) = E[Z(D)]

Define the empirical and theoretical inner products by
(h1s ho)y =fO(th1hz)(t)d1\7(t) and  (hy, hy) = /0 (E? hyhy)(t) dE[N(2)].

The corresponding norms are given by |||2 = (h, h), and |2|?> = (h, h). It
will be shown in Lemma 1 (Section 5) that || is equivalent to |-|,, the L,
norm relative to Lebesgue measure on 2°. Note that the empirical inner prod-
uct and norm are determined by the data and thus do not depend on unknown
quantities. For a square-integrable function A, the identifiability constraint (5)
can be written in terms of the theoretical inner product as (A, 1) = 0.

We estimate « by using maximum partial likelihood over an appropri-
ately chosen space. Let G, = G, ,, C Hj be a finite-dimensional linear space
of bounded functions on 2", which we refer to as the estimation space. It
is assumed that this space contains all constant functions and hence has
dimension N, > 1. We also require that it be theoretically identifiable: if
g € Gy and || g|| = 0, then g identically equals zero. This requirement is used
to rule out the pathological cases. The space G is said to be empirically iden-
tifiable if g € Gy and | g|,, = 0 implies that g identically equals zero.

Note that ¢(g) = ¢(g + ¢) for ¢ € R and g € G,. We need to restrict our
attention to a subspace of the estimation space to get a unique maximizer of
£(-). To this end, an identifiability constraint is introduced similar to that for
the model space, but defined in terms of the empirical inner product so that
it is determined by the data. Specifically, set G = {g € G,: (g, 1),, = 0}. Also,
set @, = argmax ,.{(g), which we refer to as the maximum partial likelihood
estimate.

The function «*, shown to exist in Theorem 1, is guaranteed to be integrable,
but not necessarily square-integrable or smooth. In the context of the next
theorem we require that a* be bounded and we set p,, = inf ;g g — " and

A, =supgeg tllgl/llgle,} = 1.

THEOREM 2. Suppose Condition 1 holds and that

limA,p, =0 and lim A%2max(N,,logn)/n=0.
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Then, except on an event whose probability tends to zero as n — oo, &g is
empirically identifiable and &, exists and is uniquely defined. Moreover, || &, —
a*[|* = Op(p; + N,/n) and IIa — |3 = Op(p} + N, /n).

REMARKS.

1. If H, is the space of linear functions on 2, we can choose Gy = H,. Then A,
and N, are constants not depending on n and p,, = 0. Applying Theorem 2,
we get that | &, — @*||2> = Op(1/n), which is the parametric rate of conver-
gence.

2. For nonparametric cases, the estimation space G, is usually chosen such
that logn < N,,; if so, then the assumption lim, A2 max(N,,logn)/n = 0
reduces to lim, A2N,/n =0

3. The conclusion that G, is empirically identifiable does not depend on the
assumption that lim, A, p,, = 0; see Lemma 3 in Section 5.1.

Theorem 2 gives a very general treatment of the rate of convergence for
the maximum partial likelihood estimate, which is parallel to the result on
least squares estimation for the regression context established in Theorem 1
of Huang (1998a). The two terms that govern the magnitude of the error
&, — o* have intuitively appealing explanations: N, /n is just the inverse of
the number of observations per parameter, and p,, is the best possible approx-
imation rate in the estimation space to the target function. In the statement
of the theorem, the constant A, is a measure of the irregularity of the esti-
mation space, while for a specific choice of the estimation space, the rate of
decay of p,, reflects a smoothness assumption on o*. As elaborated in the cited
paper, the magnitudes of the constants A, and p, are easily found for the
linear estimation spaces that are commonly used in approximation theory.
As a consequence, we can obtain rates of convergence when the estimation
spaces are built up from polynomials, trigonometric polynomials, and polyno-
mial splines. We will use this theorem to study the rates of convergence for
functional ANOVA models in the next subsection.

2.3. Functional ANOVA models. In this subsection we first give the pre-
cise definition of functional ANOVA decompositions and then state the main
result for functional ANOVA models. The ANOVA decomposition of the tar-
get function is constructed in such a way that each nonconstant component
is orthogonal to the proper lower-order components relative to the theoretical
inner product defined in the previous section. The ANOVA decomposition of
the estimate is defined by a similar orthogonality requirement relative to the
empirical inner product defined in that section. We shall see that not only does
the estimate converge to the target function, but the components of the esti-
mate also converge to the corresponding components of the target function. In
addition, we shall see that, when the ANOVA model for the target function is
invalid, the estimate will converge to its best approximation having the indi-
cated ANOVA form. This result is important since in practice the functional
ANOVA model is usually only an approximation.
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Suppose 2" is the Cartesian product of compact sets 27, ..., 2}. Forx € 2,
write X = (x4,...,x7), where x; € 2; for 1 <l < L. It is convenient to use
subset notation to denote the various components in an ANOVA decomposi-
tion. Let Hy denote the space of constant functions on 2°. Given a nonempty
subset s of {1,..., L}, let H, denote the space of square-integrable functions
on 2" that depend only on the variables x;, [ € s. Also, set

H® = {h € H,: h L H, for every proper subset r of s };

here h L H, means that (A, h,) =0 for A, € H,.

Let ./, be a nonempty collection of subsets of {1, ..., L}. It is assumed that
/g is hierarchical: if s € ./ and r C s, then r € /. Set Hy = {>;c ,, hs: Ay €
H,}. Under Condition 1, every function ~ € H, can be written in an essentially
unique manner as ) . , h,, where A, € H? [see Lemma 3.1 of Stone (1994)]. We
refer to ) .. , h, as the theoretical ANOVA decomposition of h corresponding
to the inner product (-, -) and to h,, s € . as the components of A is this
decomposition. The component %, is referred to as the constant component
if #(s) = 0, as a main effect component if #(s) = 1 and as an interaction
component if #(s) > 2; here, #(B) denote the cardinality (number of members)
of a set B.

In order to use H, to model the log relative risk function, we impose the
identifiability constraint (5). This turns out to be very convenient, since impos-
ing (5) is equivalent to setting the constant component in the theoretical
ANOVA decomposition of A~ € H, to be zero. (This is actually the motiva-
tion for choosing that particular form of identifiability constraint.) Now, set
S = A\{Btand H={h e Hy: h L 1} = {> ., hy: h, € H’}. We say that ./
specifies a functional ANOVA model. Different choices of .» provide different
models. For example, choosing . = {{1}, ..., {L}} gives an additive model.
A square-integrable function given by (1) could be described as a member of
H by setting .7 = {{1}, {2}, {3}, {1, 2}}.

Let Gy denote the space of constant functions on 2°, which has dimen-
sion Ny = 1. Given [ € {1,...,L}, let G; C H; denote a linear space of
bounded functions, which can vary with the sample size and has finite, pos-
itive dimension N;. Given a subset s of {1,..., L}, let G, denote the tensor
product of G;, [ € s, which is the linear space of functions on 2" spanned by
functions g of the form g(x) = [];c, 8;(x;), where g; € G, for [ € s. Also, let
N, =[1;es N; denote the dimension of G,, set N = [];.,(N; — 1) and observe
that N, =Y, ., N°. Set

Gg ={g € G, g L, G, for every proper subset r of s};

here g L, G, means that (g, g,), = 0 for g € G,. If G, is identifiable, then
G? is identifiable and it has dimension N?; moreover, G, is the direct sum
of GY, r Cs.

Consider the estimation space Gy = {} . , &5' &5 € G, for s € ./}, which
has dimension N, = >, .N 9 Observe that max, 4~ Ng < N, <

#(./p) max,. , N, where #(./;)) denotes the number of members of ./;. Sup-
pose G, is empirically identifiable. Then G, is empirically identifiable for
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s € ./ and G, is the direct sum of G, s € ./. We refer to g = Ysesy 8so

where g, € G? for s € ./, as the empirical ANOVA decomposition of g € G,.
Set G = {g € Gy: g L, 1}, which is the direct sum of G?, s € .”.

Suppose the maximum partial likelihood estimate &, in G exists and write
its empirical ANOVA decomposition as Y . ,a&,. Suppose also that
a* = argmax;, g A(h) exists as a member of H and write its theoretical ANOVA
decomposition as .. , ai. The similarity of the structures of G and H is cru-
cial in ensuring the convergence of &, to o} for s € ..

In the next theorem it is required that the components o, s € .7, of the

target function «* be bounded. Set p, = inf s ||g — ajlls for s € ./ and
As = SupgeGs{”g”oo/”g”Lz} > 1, and set Pn = 2se.r Ps-

THEOREM 3. Suppose Condition 1 holds and that
limA,p, =0 and lim A?max(N,,logn)/n =0, s,s € .7.

Then, except on an event whose probability tends to zero as n — 0o, G is empir-
ically identifiable and @&, exists. Moreover, ||&, —a*|?2 = Op(p2 + N, /n), |&, —
&2 = Op(p2 + N,/n) and ||, — a%|? = Op(p2 + N,/n) and |, — a2 =
Op(p2 + N, /n) for s e ./.

The results in the above theorem about the convergence properties of the
maximum partial likelihood estimate and its ANOVA components are parallel
to that in Huang (1998a) for the regression context. Using this theorem, we
can obtain rate of convergence results when polynomials, trigonometric poly-
nomials, or splines and their tensor products are used as building blocks for
the estimation spaces. To get such results, we need only find upper bounds
for the constants A, and p, by employing results from approximation theory
literature. We shall illustrate this in the next subsection when the estimation
spaces are built from spline functions.

Note that we do not restrict any of the explanatory variables x4, ..., 27, to be
one-dimensional, so any of the main effect components (components depending
on one variable) in the ANOVA decomposition of the log relative risk function
could be bivariate or multivariate. This provides additional flexibility in func-
tional ANOVA modeling.

Suppose 2; ¢ R% with d; > 1. Set d = max,_,Y ;. d;. If d; = 1 for
1 <!l < L, then d = max,_ , #(s). Typically, the spaces G; are chosen such
that 5, =< N»”* and N, = n¥/@r+d_where p is a suitable defined measure of
smoothness of a}. Correspondingly, the rate of convergence in the theorem is
given by p2 + N, /n = O(n=2P/2r+d)) which is of the standard form; see Stone
(1982, 1994) and Huang (1998a).

2.4. Application to spline estimation. Let 2" be the Cartesian product of
compact intervals 27,...,2; in R. Without further loss of generality, we
assume that each of these intervals equals [0, 1]. Let 0 < 8 < 1. A func-
tion A on Z" is said to satisfy a Holder condition with exponent g if there is
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a positive number y such that |h(x) — h(x)| < y|x — x,|? for x;, x € 27; here
x| = (XF; x2)"/2 is the Euclidean norm of x = (x4,...,%;) € 2. Given an
L-tuple i = (iy,...,1;) of nonnegative integers, set [i] =1, +---+i; and let
Di denote the differential operator defined by

po_
dx - &leL

Let % be a nonnegative integer and set p = k& + B. A function on £" is said to
be p-smooth if it is k times continuously differentiable on 2" and D' satisfies
a Holder condition with exponent B for all i with [i] = k.

Let J be a positive integer, and let ¢y, ¢;, ..., ¢z, £;,1 be real numbers with
0=ty <t <--- <ty <ty =1 Partition [0, 1] into J + 1 subintervals
Ij=[tj,tj1), j=0,...,J—1,and I; =[t;,¢;,1]. Let m > 0 be an integer.
A function on [0, 1] is a spline of degree m with knots ¢4, ..., t; if the following
hold: (i) it is a polynomial of degree m or less on each interval I ;, j =0, ..., J;
(i1) (for m > 1) it is (m — 1)-times continuously differentiable on [0, 1]. Such
spline functions constitute a linear space of dimension J + m + 1. A spline
of degree m = 0 is just a piecewise constant function. The splines are called
linear, quadratic or cubic splines according as m = 1,2 or 3. For detailed
discussions of univariate splines, see de Boor (1978), Schumaker (1981) and
DeVore and Lorentz (1993).

Assume that the components af,s € ./ of the target function «* are
p-smooth for some positive number p. Let m > p — 1 be an integer. For
l=1,...,L, let G; be the space of splines of degree m with J = J, knots.
Suppose that

maxoj<jm(tjimi1 — ;)

(6)

ming. j<y m(¢jime1 — ;)

for some positive constant 7. Then A, =< J**)/2, N, =< J*®) and p, < J 7 for
s € .//; see Huang (1998a).

Set d = max,_, #(s) and suppose that p > d/2 and J%¢ = o(n). Then the
conditions in Theorem 3 are satisfied. Thus, ||a, — a}||> = O ,(J/n+ J~2P) for
se ./ and |&, = a*|? = Op(J¢/n + J~2P). Taking J =< nl/2P+d we get that
& — k|2 = Op(n=2P/2P+d) for s € .77 and ||&, — *||2 = Op(n=2P/2P+d)) The
rate n—2P/2r+d) ig the optimal rate for estimating a p-smooth, d-dimensional
function; see Stone (1982). This result shows that, by using models with only
main effects and low-order interactions, we can ameliorate the curse of dimen-
sionality that adversely affects the saturated model (d = L). For instance, by
considering additive models (d = 1 < L) or by allowing interactions involving
only two factors (d = 2 < L), we can get faster rates of convergence than by
using the saturated model. The results in this section are parallel to those in
Kooperberg, Stone and Truong (1995b) and Huang and Stone (1998), where
the baseline hazard is modeled as a smooth function and the maximum (full)
likelihood estimate is used.
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3. Software implementation and examples. For a fixed linear estima-
tion space G, the problem of finding the maximum partial likelihood estimate
is reduced to the estimation of finite number of coefficient parameters after a
basis of G is chosen. Specifically, given a collection {B;, j =1,..., p} of basis
functions that span G, the estimate has the form

P
(7 aX(2) = Y. B,;B(X()),
j=1

where the coefficients Bi,..., Bp are estimated from the available data by
maximum partial likelihood. Thus, if the set of basis functions or, equivalently,
the estimation space is manually selected by the user, then the estimate can be
obtained by using any statistical package that can fit parametric proportional
hazards models by defining new “covariates” that are equal to the basis func-
tions. In practice, the manual selection of appropriate spline basis functions
by users is typically infeasible, so additional code for the automatic, adaptive
selection of such basis functions is required.

In the following we will describe an adaptive implementation of proportional
hazards regression (PHARE), which we have designed as similarly as possi-
ble to the hazard regression (HARE) implementation of Kooperberg, Stone
and Truong (1995a). In this implementation, linear splines and their tensor
products are used to build the estimation spaces. We assume throughout the
remainder of this section that the covariates are all time independent. (Time-
dependent covariates increase the complexity of the program, but they do not
make the calculations more time-consuming.)

Adaptive implementation. In the adaptive implementation, one important
issue to be resolved is the choice of the linear space G. Following Kooperberg,
Stone and Truong (1995a) and Stone, Hansen, Kooperberg and Truong (1997),
we select G from a family ¢ of allowable spaces through a process of stepwise
addition and deletion of basis functions. We refer the reader to these two
papers for motivation of the allowable spaces and further discussion of the
stepwise procedure; here we restrict ourselves to listing the basis functions
that we consider and indicating when these basis functions can be in G. As in
HARE, we require that the basis functions all depend on at most two of the
covariates. Let (x), = x when x > 0 and 0 otherwise. The basis functions that
we consider are:

1. Basis functions that are linear in one of the covariates, B(X) = X;, can
always be in G.

2. Basis functions that model a knot in one of the covariates, B(X) = (X;—r),,
for some value of r within the range of X; are only allowed in G when
B(X) = X is also in G.

3. Basis functions that are tensor products of two different linear basis func-
tions, B(X) = X; X , are only allowed in G when B(X) = X; and B(X) =
X, are also in G.

4. Basis functions that are a tensor product of a linear basis function and a

basis function depending on a knot in a different covariates, B(X) = X
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(Xj,—r),,are only allowed in G when B(X) = X; X; and B(X) = (X;,—r),
are also in G.

5. Basis functions that are a tensor product of two basis functions depending
on knots in different covariates, B(X) = (X, —ry) + (Xj, — rg),, are only
allowed in G when B(X) = (X; —ry); X;, and B(X) = X (X, —ry), are
also in G.

In our adaptive implementation we initially fit the model with p = 0
and G = {0}. Then we proceed with stepwise addition. Here we successively
replace the (p — 1)-dimensional allowable space G, by a p-dimensional allow-
able space G containing G, as a subspace, choosing among the various candi-
dates for a new basis function by a heuristic search designed approximately to
maximize the corresponding Rao (score) statistic; see Kooperberg, Stone and
Truong (1995a) for details. Upon stopping the stepwise addition stage with
p = P, basis functions we proceed with stepwise deletion. Here we succes-
sively replace the p-dimensional allowable space G by a (p — 1)-dimensional
allowable subspace G, until we arrive at p = 0, at each step choosing the
candidate space G, so that the Wald statistic for a basis function that is in G
but not in G, is smallest in magnitude.

During the combination of stepwise addition and deletion, we get a sequence
of models indexed by v, with the vth model having p, parameters. Let £, be
the fitted partial log-likelihood for the vth model, and let AIC, , = —20, +ap,
be the AIC with penalty parameter a. We select the model corresponding to
the value of » that minimizes AIC, ,. As for HARE we take a = logn, as in
BIC [Schwarz (1978)].

By design, the PHARE methodology under consideration is very similar to
the HARE methodology, the main differences being that HARE also models the
(baseline) hazard function and the parameters in HARE are estimated using
the full likelihood function. In practice, this means that HARE also allows for
basis functions that are linear splines in time and for basis functions that are
tensor products of a basis function in time and a basis function in a covariate.
When such tensor product basis functions are included in the model, it is
no longer a proportional hazards model. The basis functions in HARE are
constructed such that the conditional hazard function A(¢ | X) is constant in
the right tail for all X. See Kooperberg, Stone and Truong (1995a) for more
details. Kooperberg and Clarkson (1997) extend the HARE methodology to
include cubic splines, interval-censored data and time-dependent covariates.

An alternative way to fit proportional hazards model is to use existing
HARE software, but to restrict the allowable models in HARE to exclude any
tensor product basis functions that depend on time and at least one covariate,
which we refer to as HARE-ph. Thus PHARE and HARE-ph have the same
collection of basis functions to model the covariate effects, but the latter has
additional candidate basis functions to model the baseline hazard. While the
parameters in PHARE are estimated using maximum partial likelihood, those
in HARE-ph are estimated by maximizing the full likelihood. In the examples
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below we will see that these two different ways of fitting proportional hazards
regression models give surprisingly close results.

ExXAMPLES. Our first example uses the breast cancer data of Gray (1992),
which was also discussed in Section 9.3 of Kooperberg, Stone and Truong
(1995a). The data come from six breast cancer studies conducted by the
Eastern Cooperative Oncology Group. There were 2404 patients in this study,
for whom the response is survival time (years) since surgery. There are six
covariates: estrogen receptor status (ER 0 is negative, 1 is positive), the loga-
rithm of the number of positive axillary lymph nodes, tumor size (in cm), age
(in years), body mass index (BMI), and menopause (0 is premenopause, 1 is
postmenopause). See Kooperberg, Stone and Truong (1995a) for more details.

Initially we applied three algorithms to the data: HARE, HARE-ph, and
PHARE. The results are summarized in Table 1. Observe the similarity of
the three fitted models. In particular, the only differences between HARE
and HARE-ph are two basis functions that involve both time and a covariate
that are in the HARE model but not in the HARE-ph model (in other exam-
ples, the proportionality restriction on HARE does lead to major changes in
the other basis functions). The fact that nonproportional hazards models fit
the data better than proportional hazards models was already observed by
Gray (1992) and Kooperberg, Stone and Truong (1995a). The only difference
between the HARE-ph model and the PHARE model is the location of the knot
in age; even the coefficients for those basis functions that do not involve age
or menopause, which is highly correlated with age, are very similar in the two
models. When we move the knot from the location of one model to the location
of the other model and refit all coefficients, the coefficients for HARE-ph and
PHARE are indistinguishable: the largest difference in a coefficient is 0.0033
and the largest difference in a standard error is 0.00004.

Clearly small implementation differences can cause the algorithm that
searches for a location of a knot [see Section 11.3 of Kooperberg, Stone and
Truong (1995a)] to yield different knot locations. To examine further the effect
of knot location, we fitted models similar to the HARE-ph model and the
PHARE model in Table 1, in which we varied the location of the knot in age
over the observed range of age in the data. In Figure 1 we plot the resulting
(partial) log-likelihood as a function of the location of the knot in age; that is,
for each value of the location of this knot we estimated all coefficients for a
HARE-ph model and a PHARE model like the one in Table 1. We lined up the
maximum value of the log-likelihood and the partial log-likelihood in this fig-
ure. Note that the two curves are almost identical. HARE-ph almost finds the
location of the left mode, while PHARE finds the location of the right mode.
The heights of the two modes are nearly equal, so we cannot say that one
algorithm does a better job than the other. The dip between the two modes is
explained by the presence of a menopause basis function in the model: this
basis function is 0 for almost all women under 48, and 1 for almost all women
over 55.
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TABLE 1
Summary of three different models for the breast cancer data

HARE HARE-ph PHARE
Basis function Coefficient SE Coefficient SE Coefficient SE
1 —3.4048  0.4279 —2.5881  0.3990 NA NA
ER 1.0600  0.2046 —-0.3001  0.0629 -0.3019  0.0630
log(nodes) 0.6879  0.0700 0.6593  0.0700 0.6506  0.0698
size 0.1588  0.0354 0.1801  0.0348 0.1813 0.0347
age —0.0405  0.0092 —0.0397  0.0092 —-0.0214  0.0052
(age — 43), 0.0413  0.0115 0.0402  0.0115 NA NA
(age — 65.25) NA NA NA NA 0.0557  0.0152
menopause 0.4036  0.1050 0.4063 0.1049 0.6087 0.1075
log(nodes) x size -0.0653  0.0180 —-0.0562  0.0181 —0.0545 0.0181
(0.44 —t), —5.7430 1.0201 —5.5785 1.0152 NA NA
(1.89 —1t), —-0.9662  0.1501 —0.5145  0.0894 NA NA
(795 —1t), 0.3653 0.0351 0.1892 0.0214 NA NA
(1.89 — t), x size 0.1050  0.0321 NA NA NA NA
(795 —-t), x ER —0.2586 0.0360 NA NA NA NA

Thus, for the breast cancer data, for which the underlying model appears to
have nonproportional hazards, HARE-ph and PHARE give virtually identical
results. This has been our experience with a number of examples: differences
between the results from these two methods are either at the noise level or
can be traced back to tiny implementation details that differ between the two
methodologies.

One might suspect, however, that for more extreme nonproportional haz-
ards models HARE-ph and PHARE would give different results. To investigate
this suspicion we generated an extremely high signal to noise dataset (in sur-
vival analysis the signal to noise ratio is usually much lower). This dataset
involves a single covariate X, which is uniformly distributed on [0.5, 2.0],
and an uncensored survival time 7', whose conditional distribution given that
X = x coincides with the distribution of Z* with Z having the exponential
distribution with mean 1 (which conditional distribution is a Weibull distri-
bution). The corresponding conditional hazard function is given by

log AM(t| X = x) = (l — 1) log ¢t — log x.
x

The dataset consisted of a random sample of size n = 10,000 from the joint
distribution of 7" and X. To keep the set-up of this example simple, we did not
censor the data.

We applied HARE, HARE-ph and PHARE to this dataset. In Figure 2 we
show the true and the fitted hazard rates for the values 0.6, 1.0 and 1.8 of the
covariate X. Note that both axes are logarithmic, so the true hazard function
is a straight line. As can be seen, HARE does a good job of fitting the hazard
functions, except in the extreme tails of the distribution. The HARE model
includes five knots in time, a knot in X and five basis functions that depend
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Fic. 1. Log-likelihood for HARE-ph (solid) and partial log-likelihood for PHARE (dotted) as a
function of the location of the knot in age for the model for the breast cancer data.

on time and X. The largest knot in time is beyond the plotted region; beyond
this last knot the fitted hazard functions are constant. The HARE-ph model
is forced to fit a proportional hazards model, which clearly does not fit the
data. The fitted HARE-ph model has six knots in time (again, the last one
is beyond the plotted region), but X occurs only linearly in the model. The
coefficient of the basis function X is —0.2600 with a standard error of 0.0244.
The fitted PHARE model has X linearly as its only basis function, models
with knots in X have higher AIC values. The coefficient of this linear basis
function is —0.2599 with a standard error of 0.0245. Since PHARE does not
yield an estimate for the baseline hazard function, we cannot provide a plot
like that of Figure 2 for this method.

4. Discussion. The difference between our general proportional hazards
model and Cox’s original model is that the log relative risk function is now
allowed to have a more flexible form than linear. The role of the baseline
hazard in our model is similar to that in Cox’s model. After the proportional
hazards model is fit, one can use Breslow’s estimator [Breslow (1972)] to esti-
mate the baseline hazard.

There are two approaches in fitting a proportional hazards model: maximum
partial likelihood with the baseline hazard function not modeled (PHARE)
or, maximum full likelihood with the baseline hazard function modeled as
a smooth function (HARE-ph). Theoretically speaking, the two approaches
cannot be distinguished in terms of rates of convergence of the resulting esti-
mates, but the first approach has the advantage of not requiring a smoothness
assumption on the baseline hazard function. More precisely, provided that the
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FiG. 2. True and fitted (with bullets) hazard functions for the simulated data for three different
values x of the covariate X: x = 0.6 (solid), x = 1.0 (dotted) and x = 1.8 (dashed). (Note that both
axes are logarithmic.)

baseline hazard is reasonably smooth, the same rates of convergence can be
achieved by both approaches under the same smoothness conditions on the
log relative risk function; compare the results in Section 2.4 with those in
Kooperberg, Stone and Truong (1995b). This seems to be consistent with the
observation in the data examples in the previous section. For both the breast
cancer data and the simulated data the results that we obtained from PHARE
and HARE-ph are extremely similar. Maybe this should have been anticipated
since Breslow (1974) pointed out that if the hazard function is approximated
by a step function with jumps at each observed failure time (which is a spline
of order one), then the partial likelihood estimates are identical to the full
likelihood estimates.

For proportional hazards models with parametric covariate effects, Efron
(1977) showed through an information calculation that using Cox’s partial
likelihood has full asymptotic efficiency over using full likelihood. A similar
result should hold in our nonparametric framework. However, to make a math-
ematically rigorous statement, one needs to establish an asymptotic distribu-
tion theory and especially to determine biases due to spline approximations.
This is an interesting area for future research.

There are some computational advantages of PHARE over HARE-ph. An
equivalent implementation of PHARE requires far less cpu time than that for
HARE. Indeed, a count of the number of addition and multiplication operations
suggests that for a dataset the size of the breast cancer data, HARE with linear
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splines would require 5-10 times as many floating operations as PHARE,
due primarily to the integration that is required for HARE. (This integration
may be done analytically, but requires many floating point operations. HARE
with higher order splines requires numerical integration and is thereby much
more computationally intense.) The intellectual, effort to write a program for
PHARE is much smaller than that required to write one for HARE, as many
more standard routines for fitting Cox models and computing corresponding
score functions and Hessians are available. The subtleties of integration are
an added complexity for HARE.

However, the computational advantages of PHARE over HARE may not
be serious for a user that has access to a computationally efficient version of
HARE. (HARE software, written in C with an interface to S-Plus is publically
available from the second author http://bear.fhcrc.org/ clk/soft.html;
PHARE software is currently not available.) Perhaps the main advantage of
PHARE over HARE is its familiarity. There is a large body of literature on
using Cox’s partial likelihood. Within the biomedical community using partial
likelihood is conventional, so a statistician may have an easier time convincing
a scientist who is interested only in covariate effects to use or accept results
from PHARE than from HARE. There are also several advantages of HARE
over PHARE. When a (smooth) estimate for the baseline hazard function is
desired, using HARE-ph (rather than PHARE and some post hoc technique
to estimate a smooth baseline hazard) makes much more sense. In addition,
HARE can be used to examine the assumption of proportional hazards.

5. Rates of convergence. We prove Theorem 2 in this section and
assume that the conditions of this theorem hold throughout. We decompose
the error into approximation error and estimation error and then treat them
separately. Recall that &, = argmax,; ¢(g). Since G is random and may not

be contained in H, it is convenient to introduce a proxy of G in H: G = {g €

Gy, (g,1) = 0} C H. When it exists, we refer to af = argmax , gz A(g) as the

best approximation to « in G. Recall that o* = argmax;y A(h). We have the
decomposition &, —a* = (af —a*)+ (@&, — o), where the first term on the right
side of this equation is referred to as the approximation error and the second
term as the estimation error.

5.1. Preliminary lemmas. This section collects some useful lemmas. To
simplify our presentation, we introduce two ancillary inner products and
norms in parallel to the theoretical and empirical ones defined in Section 2.
Specifically, we set

(Frs Fodon = [ BZU(Fr ~ EZF0(F> ~ EX£2)|dN
and

(1. £2)0 = [ E*((f1 = E*£1)(f> ~ E* )] dEN



PROPORTIONAL HAZARDS REGRESSION 979

The corresponding squared norms are given by | f|2, = (f, f)o. and ||f]% =
(f, o- In the proof of Theorem 2, these two norms will serve as bridges to
build the relationships between the Hessian of the expected log-likelihood and
the theoretical norm and between the Hessian of the log-likelihood and the
empirical norm.

The following results on the equivalence of norms play important roles in
the proofs of Theorems 2 and 3. Lemma 1 establishes the equivalence of the
theoretical norm and the Ly norm on H,. Lemma 2 establishes the equivalence
of the ancillary theoretical norm and the L, norm on H.

LEMMA 1. Under Condition 1, ||f| ~ ||fz, uniformly in f € H,.

Proor. It follows from Condition 1 that E[Z(t)] ~ 1 and
E[f*X(1)Z(t)] = E[f*X@)E(Z(t)X)] ~ E[fAX()] ~ [IfIIZ,-
Consequently,

" E[f*(X(1))Z(1)]
1P = Bz

dEIN(®)] ~ IfI3,EIN™] ~ £,
uniformly in f € Hy. O
LEMMA 2. Under Condition 1, |f o ~ |If |z, uniformly for f € H.
PROOF. Observe that
1713 = [ TEZ(f ~ B )*)(0) dEIN ()

_ [ g BUEO) -2 (0)]
0 c:c(t) E[Z(t)]

dE[N(t)]

~ | inf BI(F(X(2)) ~ ¢)* Z(£)] dE[N(1)]
uniformly in f € H; here, we use the fact that E[Z(¢)] is bounded away from
zero and infinity uniformly in ¢. Arguing as in the proof of Lemma 1, we obtain
that
inf E[(f(X(t)) — ¢)*Z(t)] ~ inf/ (f(x) — c)*dx.
c c Jg

On the other hand,

(f,1) = [ EZ(f)dEN = [ f(x)p(x)dx,

0 @

where

px)= [ Fx®)E(Z(@)X(1) = x)

i EZ 0] dE[N(®)].
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Thus [, f(x)p(x)dx = 0 for f € H. note that p(x) is bounded away from zero
and infinity. Hence

1713 ~inf [ (F) =’ px)dx= [ PpE)dx~[fIf,. O

The equivalence of the empirical and theoretical norms is implied by the
next two results. Lemma 3 reveals that the empirical inner product is uni-
formly close to the theoretical inner product on the estimation space G, while
Lemma 4 is the analogue of Lemma 3 for the ancillary inner products. The
proofs of these two lemmas and of Lemma 5 are given in the Appendix.

LEMMA 3. Suppose Condition 1 holds and that lim, A2 max(N,,logn)/
n =0. Then

(fl»fQ)n_<f1’f2>
£l 2l

Consequently, G, is empirically identifiable except on an event whose proba-
bility tends to zero as n — oo.

sup =0,(1).

f1, F2€Gy

LEMMA 4. Suppose Condition 1 holds and that lim, A%2 max(N,,logn)/
n=0. Then

(f1, Fa)on = {F1, Falo
17110l 7210

sup

B =0,(1).
f1,f2€G

LEMMA 5. Let {¢;} be an orthonormal basis of G relative to (-, -), and let
h,, n > 1, be uniformly bounded functions on 2". Then

> [ 1A @ih,) ~ EX@ )P AN = 0p( 7).

_n
n

LEMMA 6. Let h,,n > 1, be uniformly bounded functions on 2". Then

of2))

Proor. Note that (g, h,,), — (g, h,) = I, + I, where

I, = [ [EZ(gh,) - E%(gh,)|dN

(g’ hn)n — <g7 hn)
£l

sup
8€Gy

and

I,= /0 E%(gh,)(dN — dEN).
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Let {¢;} be an orthonormal basis of (3 relative to (-, -). Observe that if g € G,
then g =Y ,a,;¢, and | g|? =Y, a . Thus, by the Cauchy—Schwarz inequality,

;]
Jyi=sup —— <
g€G, ”g”

12
(Z/ [E2(éiha) - EX(@ih,)P N )
and

J, = sup 12| 1| < (/ EZ(¢;h,)(dN — dEN)) )1/2.

g€, ”g” -

Applying Lemma 5, we get that J; = Op((N,/n)¥?). On the other hand,

E(J2) = % ZVM(/OT E%($;h,) dN)

1 ey 2
=X [ LE#(6:h,)] dEN

1 T Z .2 _1 2 Ny
S S X[ BU@HAEN = DR 1ol = 2

Thus, by the Markov inequality, J, = Op((N,/n)Y?). This completes the
proof. O

5.2. Approximation error.

LEMMA 7. The best approximation o to a in G exists and is uniquely
defined for n sufficiently large, |, — a* |2 = O(p2), llay — a*[2 = Op(p2),
and limsup, ||a}, || = [l&" -

To prove the above lemma, we need the following result.

LEMMA 8. Let U be a positive constant. Then there are positive constants
M, and M, such that

—M,|h—a*||* < A(h) — A(a*) < —My|h — a*|?, h e Hwith |h|l, <U.

PROOF. Given A € H with |A||, < U and given u € [0, 1], set A(®) =
(1 —-u)a* + uh. Then

d
— A(B® -0
au (R™)

u=0

and, by integration by parts,

2
A(h) — A(a*) = /01(1 - u)%/\(h(“))du.
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Now

&P o[BI - X)) exp(h X)) Z(1)]
e ==[| Elexp(hO(X(0)Z(0)]
(Bl — &) (X(0) exp(hO (X)) Z ()]
( Elexp(h(X(0)Z(0)] ) Jemvon
[ Bl - o — 02(X(0) exp(h(K()) Z(0)]
=y, o Elexp(h®X())Z(1)] dE[N(®)]

Note that o* is bounded and ||2| ., < U. Thus, by Condition 1 and Lemmas 1
and 2,

& [ El(h—a = ) (X(£)Z(1)]
Zaz )~ = [ inf 20 dE[N(1)]

2 2
=—lh=a’g~ =lh = 7|

The desired result follows. O

PRrROOF OF LEMMA 7. By the strict concavity of A(-) on H, «} is uniquely

defined if it exists. In fact, if both o) and &} maximize A(-) over G, then
(d?/du®)A((1 — u)at + uds) =0, 0 < u < 1. This implies that |a} — & = 0
and hence o], = @;. (See also the proof of Lemma 8.)

Since o* is bounded, by a compactness argument, there is a function gj € G,
such that | g§ — &l = pp- Set g* = g5 — (g5, 1)/(1,1). Then g* € G, || g* —
@l < 2p, (note that («*, 1) = 0), and [|g"—a*|| < [[g5—a"| < [[go—" [ = Pp-
Thus, for n sufficiently large, [|g%(| < 8" — a*[|c + [[@" [l =1+ [[@"|o- Let
¢ denote a positive constant (to be determined later). Choose g € G with
g — *|| = c¢p,- Then, by Lemma 1 and the triangle inequality, || g — g%, <
A,llg - g1 S Ayp,. Thus, for n sufficiently large, |glle S Aupp + &0 <
1+ ||a*||o- Now applying Lemma 8 with U = 1 + ||&*|», we get that, for n
sufficiently large,

®) A(g") — A(a*) > —M,p?
and
) A(g) — A(a*) < —Mycpr,

forall g G with | g—a*|| = cp,. Let c be chosen such that ¢ > \/M;/M,. Then
lg* — | < ¢p,, and it follows from (8) and (9) that, for n sufficiently large,
A(g) < A(g*) for all g € G with ||g — a*|| = ¢p,. Therefore, by the definition
of ! and the concavity of A(g) as a function of g, a! exists and satisfies
ot — a*||? < cp, for n sufficiently large. Thus, || — *||> = O(p?). This
result together with the inequality ||g* — a*| < 2p,, the triangle inequality
and Lemma 3 implies that ||a% — a*||2 = Op(p2). The last part of the lemma
follows from the first part, lim, A, p, = 0, and the inequalities ||} — a*||,, <
Ayl — &1+ o — g'lloe = Ay(la — @[ + o — g*) + " — gl D
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5.3. Estimation error.

LEMMA 9. Except on an event whose probability tends to zero as n — oo,
the maximum partial likelihood estimate @&, exists. Moreover, |&, — o |?

PROOF. Note that the approximation space G depends on the random sam-

ple. It is easier to work with an “estimate” in the space (NS, which does not vary
with the sample. Thus, suppose that @, = argmax _x £(g) exists. Then

geG
(an’ 1>n
(1,1),
is the unique maximum partial likelihood estimate in G. [Suppose another
estimate @) maximizes ¢(g) over G. Then (d?/du?)¢((1 — w)a, + ual) = 0,
0 < u < 1, and hence ||&, — &}[lop, = 0; see (12) below. Thus, by Lemmas 1,

2 and 4, & = &, except on an event with probability tending to zero.] Since
(a,,1) = 0, we have that

(1,1), =01, e Il

Suppose that ||&,| = Op(1). Then it follows from Lemma 6 that

A ) N\ 2
liw -l = 05((52) ).

Note that &, — o} = (&, — &,) + (&, — o). In light of Lemma 6, it remains to
prove that a, exists and ||&@, — | = Op((N,/n)"?).

Let {¢;, 1 < j < N,} be an orthonormal basis of G relative to the the-
oretical inner product (-,-). Then each g € G can be represented uniquely
as g = ) ;B;¢;, where B; = (g,¢,) for j =1,...,N,. Let B denote the
N, -dimensional vector with entries ;. To indicate the dependence of g on
B, we write g(-) = g(;B). Let || denote the Euclidean norm of vectors.
Then | g(:;B)Il = [B|. Let B and B* be given by a,(-) = g(;B) and aj(-) =
8(;B"). Then |la, — ajll = |B — B

The corresponding partial log-likelihood function is given by

a, =a, —

(B)= 3 [ X, (:B) AN ()

- [ 10g (5 D2 Oexp s 0B AN (o)
Let

S(B) = %e(r&)
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denote the score at B; that is, the IV,-dimensional vector whose entries are
given by

a(B) 1 r
B; ;;/0 ¢ ;(X;(¢)) dN;(2)
T(1/n) ¥ ¢,(Xi(2)Zi(¢) exp gX(¢);B) | =
Let
_ PUg)
D(B) = Yy

denote the Hessian of £(g). Then the following identity holds:

(B = t(B") + (B~ BYS(B)
(10) .
+B - 8)7(([[@ - 0D + 0B - B du )8 - B,

To complete the proof, we need the following results, the proofs of which
will be given shortly.

LEMMA 10. For any positive constant M,
N\ 12
lim lim sup P<|S(B*)| > Ma(—”) ) =0.
a—=%0  psoo n

LEMMA 11. There is a positive constant M such that, for any fixed positive
constant a,

1
(8= B ([ (1 DB +u(B - B du ) B - B
N\ 12
<—-M|B—-B** for all B with |p —B*| = a(T'l)
on an event Q,(a) with lim, P(Q,(a)) = 1.

Since £(B) is a concave function of B8, we conclude from (10) and Lemma 11
that

y ) N o\ 2
{Bexistsand|B—B*|<a< n”) }ﬂﬂn(a)

N\ 2
D {E(B) —¢(B*) < 0 for all B with |B — B*| = a<7n> } NQ,(a)

> {|S(|3*)| < Ma<1\;”>1/2} nQ,(a).
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Hence, by Lemma 10,

) ) N\ L2
lim lim inf P(B exists and | — B*| < a( n”) )

a—>0o0 n—>oo

> lim liminf {P<|S(B*)| < Ma<%>l/2> + P(Q,(a)) - 1} =1

a—oc n—oo
Consequently, @, = g(-, B) exists with probability tending to one; moreover,
& — I = Op(N,,/n).
This completes the proof of Lemma 9. O
Proor oF LEMMA 10. Note that

S8 =3 X [ ¢, (0)dN(0)

X0 Xi(0))Zi(t) expap (Xi(t)
0o Y Zihespa XKy @

By the definition of %, (¢/dB8;)A(B") = 0 for each j; that is,

/T E[(/)j(X(t))Z(t) exp o (X(2))]

B( [ e,munane) - [ EZ()expar(X()]  CPNOI=0.

Thus, S](B*) = Il] — 12] — Isj, Where

By= 5 X[ s@an o - B( [ 6,%@)aNw),

1 = [[ (BUEOZO X0
2i = J, > Z(t) exp ax (X;(2))
E[¢ ;(X(2))Z(t)exp aj;(X())]\ , —
© E[Z(t)expai(X(2))] >dN(t)
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and

7. — / E[¢;(X(2))Z(2) exp a;,(X(2))]
Vb BlZ () expa;(X()]
Hence, [S(8*)? < ¥ ;(13, + I3, + I3)).
Now let us deal with Y°; I3 ;- We have that

(dN(t) — dE[N(1))).

1 T 1 7 1
B < B [ #X0)aN® ) ~ 1 [ BAR@)de~ L1605,
Thus
1 N,
B(T1) sy Sio =T
and hence }; I%j = Op(N,/n). To deal with }; Igj, by the Cauchy—Schwarz
inequality,
5 T 2i &,X())Z;(1) exp a7, (X;(2))
REPY (F 5 Zewm® )
_ E[¢;(X(2))Z(t) exp a;,(X(?))]
E[Z(t) exp o, (X(2))]

Note that «} is bounded uniformly in n. Using the same argument in the
proof of Lemma 5, we obtain that 3 ; I 2 ; = Op(N,/n). The argument used in

handling J3 in the proof of Lemma 6 leads to Y, I3; = Op(N,/n). O

)2 AN ().

ProoF oF LEMMA 11. Choose M, > |a¢*| and let a > 0. It then follows
from Lemma 7 that, for n sufficiently large, || g|. < [a} |+ A, lg—ak| < M,

for all g € G with || g—a || = a(N,/n)"2. We now prove that there is a positive
constant M, such that, except on an event whose probability tends to zero as
n — oo,

d2
(11) W“&‘*‘u(é’z — g1) < —M,llg, — gal?)

for 0 <u <1 and all g, g, € G with | g1|l < M; and | g5, < M;. Indeed,
2

%Z(&‘i‘u(gz—gﬁ)
/T[(1/n)2iZi(t)[(gz—gl)zexp(g1+u(g2—gl))](Xi(t))
0 (1/n)3; Z;(t)exp(g1+u(g2—g1))(X;(?))
(/)3 Zi(0)[(82— 81)exp(81+| u(82— 81))I(Xi(?)) 1.~
(R Demnte tate ey ) JaNe
__ 5 (1/n)Y; Zi()[(82— g1—c))*exp(g1+u(g2 — g)IXi(1) ;=
== Gy Zenlarum— e &y

(12)
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Since || g1llc < M7 and | gzl < My,

d2
We(éﬁ +u(gs — &1))

(U Y Z(0@K(0) — g1 (Ka(0) — P
~ [, inf (1/n) s Z:(2) aNG)

=—|lgs — gl”%n ~ —|lgg — g1||(z) ~ —|lgg — g1||2,

except on an event whose probability tends to zero as n — oo; here we use
Lemmas 1, 2 and 4 to obtain the equivalence of the norms. This completes the
proof of (11). _

Choose g € G such that ||g — a}||? = a(N,/n)2. Then by the definition of
A, and Lemma 1,

lg = anlloe < Anllg = allz, ~ Aullg — apll = Aya(N,/n)'? = o(1).

Moreover, o is bounded uniformly in n by Lemma 7. Hence it follows from
(11) that, except on an event whose probability tends to zero as n — oo,

2

d
T +u(g —a)) = —Ms g — o

for 0 <u < 1and all g € G with || g — a*|| = a(N,,/n)"2. Equivalently,
(B~ B) DB +u(B — BB~ B") < —M,|p— B
for0 < u < 1andall B € R with |B—B*| = a(N,,/n)Y? or an event Q,,(a) with

lim, P(Q,(a)) = 1. The desired result follows with M = M, fol(l —u)du =
M,/2. O

6. Convergence in functional ANOVA model. The proof of Theorem 3
is given in this section. Note that N, ~ > .., N, and p, < p,. It follows
from the Cauchy—Schwarz inequality that A, < (X, , A?)V/2; see the proof of
Theorem 2 of Huang (1998a). The first part of the theorem then follows from
Theorem 2.

We have the ANOVA decompositions &, = > .. , &, and a* = )", , o, where
&, € G? and a, € HY for s € .”. To prove the second part of Theorem 3, we need
the following result from Huang (1998b). (We have customized the notation.)

THEOREM 4. Suppose that (i) k| ~ ||kl uniformly in h € Hy; (i) sup,eg,
llgl./lgll — 1| = op(1); and (iii) for every sequence f,, n > 1, of uniformly
bounded functions on &,

sup <fn,g>n—<fn,g>'wp((g)”), ser

geG, ”g” n

Then ||é, — a;|* = Op(|&—a*||* +p; + N, /n) and ||a,— o} = Op(|la—a*|*+
p2+ N,/n) for se /.
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Conditions (i) and (ii) hold because of Lemmas 1 and 3, respectively. Condi-
tion (iii) follows from Lemma 6 with G, replaced by G, for s € .. Consequently,
Theorem 3 follows from Theorems 2 and 4.

APPENDIX

A.1. Existence of the best approximation. This section contains the
proof of Theorem 1. The proof is rather involved due to the identifiability
constraint. We first give some ancillary results.

LEMMA 12. Let W be a random variable with P(c; < W < ¢y) = 1, where
0 < ¢y <cg <00, and let WZ have mean zero. Then

1/ ¢, \"? c
z (=L 1
log E(We )z210g<1+2<202> E|Z|>+log 5

PROOF. Suppose first that E(Wel?!) < oo and define the function £ on [0,1]
by f(s) = E(We’?). Then f(0) = EW, f/(0) =0 and

_[EWZ)P _ [E(W|Z|)]

17 _ 2 _sZ 2
f'(s) = E(WZ%e**) > E(WZ%) > W AEW 0<s<l1.
Consequently,
Zy _ [E(W|Z)]?
E(We?)=f(1)> EW + SEW
c1(E|Z))?
> c1<1+ e,

Cq 1 Cq 12 2
— 14+ = — E\Z
= 2< +2<2c2> | ')’

which yields the desired result. The general result now follows from the mono-
tone convergence theorem and an elementary truncation argument. O

COROLLARY 1. Let W be a random variable with P(c; < W < ¢g) = 1,
where 0 < ¢; < ¢y < 00, and let Z have finite mean. Then

E(WZ) 1/ ¢\ ¢
log E(We?)— ——"2>2log|(1+=-(-—) E|Z-EZ log 2.
og E(We?) W > 0g< +4(2c2) | | ] +log 5

ProOF. Let ¢ € R. Then |EZ —¢| < E|Z —¢|, so E|Z — EZ| < 2E|Z — ¢|.
The desired result now follows from Lemma 12 and the previous inequality
with ¢ = E(WZ)/EW. O
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COROLLARY 2. Let W, and W4 be random variables with P(c; < W; <
cg) = 1 and P(Wy > ¢;) = 1, where 0 < ¢; < ¢y < 00, and let Z have finite
mean. Then

E(W,Z) 1/ ¢ \"? e
log E Zy 1% s 9190 (14 (L) E|Z-EZ log L.
og E(W,;Wye”) EW, > og< +4(202) | I)+ g 5

Let A be an integrable function on 2°. Then
E /0 " R(X(#)) dN(t) = E[E( /0 " R(X(#)) dN(t) ‘x)]

.y fo X)) dE(N(H)X)
and
E[Z(t)e"®®)] = E(E[Z(t)eh(x(t))|X]> - E(eh<X<f>>E(Z(t) | X)).

Note that E(Z(¢)X) = p(¢ | X) and dE(N(¢) | X) = (¢ | X) dt where

p(t|X):exp<—/0t)\(u |X)du>P(Cz t | X)

and y(¢ | X) = p(¢ | X)A(t | X). It follows from Condition 1 that p(¢ | X) and
v(t | X) are bounded away from zero and infinity uniformly over ¢ € [0, 7]
and X.

Set Wi(t) = v(¢t | X) and Wy(¢) = 1/A(¢ | X), and let ¢, c5 be such that
0 <cy <cy <ooand P(e; < Wi(t) < cg) =1 and P(Wy(t) > ¢;) = 1 for
O<t<r.

Now we are ready to prove the first conclusion of Theorem 1. Choose h ¢ H
and observe that

A = [ {ERE @)W, ()]

“log (E[eh(x(t))Wl(t)WZ(t)])E[Wl(t)]] dt.

(13)

It follows from Condition 1 that

" E[AX(B)Z(1)]
J ~Ez) CEWN@I= [ r@u)dx=0.  heH,

where the positive function ¢ is bounded away from zero and infinity on 2"
Thus, by Corollary 2 and Condition 1 (see the proof of Corollary 1), there are
positive constants C;, Cy and C5 such that

(14) A(h) < —C4 log (1 + sz |h(x)] dx) +Cy, heH,
a

and hence A(h) < C3 for h € H. Consequently, the numbers A(h), A € H,
have a finite least upper bound L. Choose &, € H such that A(A4,) > —oco and
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A(h,) — L as n — oo. Observe that the numbers [,.|h,(x)|dx, n > 1, are
bounded. It follows from (13) and Condition 1 that

(15) lim lim sup h,(x)dx=0
M—oo nosoo J{xe2: h,(x)>M}

We will prove that an appropriately translated version of 4, converges and
that the limit is the desired best approximation.

Let |A| denote the Lebesgue measure of a subset A of 2°. Let ¢, > 0 be
sufficiently large that |2\ A,,,(co)| < |2°|/2 [and hence A,,, (cy) > |27|/2] for
m, n > 1, where

A, (c)={xe 2" |h,(X)] <cand |h,(X)| < c}, c> 0.

Set ¥, (v)=A((1—-u)h, +uh,,) for 0 <u < 1. Then ¥,,, is bounded above
by L, and it follows from Holder’s inequality that this function is concave. Set
hp, = h,, — h,, let ¢ > ¢y, and set

o) = (1 oo P

We claim that there is a positive constant M such that (uniformly in )
(16) v (u) < M (A (X) = Py (€)]? dx, m,n > 1.
mn(c

Observe that ¥, (3) < L. Choose 6 > 0. Then ¥,,,(0) > L —§ and ¥,,,(1) >
L — 6 for m, n> 1. Also,

(17) U, (3) = 0,,,(0) = 29, (3)

since ¥’  (u) is a nonincreasing function of u. Moreover, we conclude from

(16) that
1 , 1
(18) 1
- W A, (0 [ mn(x) mn(c)] dX, m,n > L
It follows from (17) and (18) that
Vn(0) + ¥, (1)
2
SR - [ (X) — By ()P dx,  myn> 1
_— mn 2 16M Am"(C) mn mn b b ’

and hence that
/ () = By (OF dx < 165M, . n > 1.
A

Since 6 can be made arbitrarily small, we conclude that
lim [hmn(x) - }_Lmn(c)]z dx =0
(e)

m,n—>00JA (¢
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Consequently, for n > 0,

hlll |{X € Amn(c): |hmn(x) - }_lmn(c)| = 77}| =0.

m, n—oo

In particular,

i € Ay(e0): () = B(eg)] = 1} = 0.
Also,

i € Ay (e0): (%) = By(€)] 2 m} = 0

since A,,,(co) C A,,(c). Thus, for m,n > 1, there is an x € A,,,(c)
such that |h,,,(X) — A,,,(co)] < m and |hmn(x) h,n(c)] < m and hence
|hmn(c) Rmn(co)| < 2m. Since n can be made arbitrarily small, lim,, ,_, .,

[2n(€) = Pppn(co)] = 0, from which we conclude that

lim |{X € Amn(c): |hmn(x) - hmn(CO)l = 77}| = 07 n> 0.

m, n— 00

Since ¢ can be made arbitrarily large and hence lim sup,,, ,, .., |2\ A,,,(c)| can
be made arbitrarily small, it follows that

lim |{X S |hmn(x) - hn(x) - }_lmn(CO)| = ”’)}| =0, n > 0.

Let U be uniformly distributed on 2° and set U,, = h,(U). Then U,, —
U, — h,,,(cy) converges in probability to zero as m,n — oo. Moreover, U,,
n > 1, are bounded in probability. Thus, by a compactness argument, there is
an increasing sequence (n ;) of positive integers such that U,  has a limiting
distribution. Consequently, U, .—U,, converges in probability to zero as j,l —
oo. Therefore, there is an 1ntegrab1e functlon a* such that 4, n;, = o* in measure
as j — oo. It follows from Condition 2 that o* € H,. By adding a constant to o*
if necessary, we can assume that o* € H. It follows from (13), (15) and Fatou’s
lemma that A(a*) > L and hence that A(«*) = max;,y A(R). Similarly, if
h € H and A(h) = A(a*), then & = o* almost everywhere. Therefore, the first
statement of the theorem is valid.

In order to verify (16), set

Wone(u) = exp(h, (X(2)) + wh,y,, (X(£))) W1 (2) Wo(2).
Then V), (1) = [y Yi..(w)E[W(¢)]dt where

mnt
E[R3,, X)W i (u)] (E[hmn(x(t))Wmnt(U)]>2]
For fixed m, n and ¢, let Y have the distribution given by

W) = -|

E[¢(Y)] =
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Then V)  .(u) = —var(Y). Let V have the distribution given by

E[¢(RyunX()))W e (u)ind(X(2) € A,,())]
E[Wmnt(u)lnd(x(t) € Amn(c))] ’

and set w = EY and v = EV. Then

E[¢(V)] =

Var(Y)E[Wmnt(u)]
[Wne(0)ind(X(2) € Ayyy(c))]

— \I,;;int(u)E[Wmnt(u)]
— E[W,(w)ind(X(2) € A,,,(c))]

There is a positive constant M; such that

E[W e (w)ind(X(¢) € App(c))] 1

var(V) < B[(V - w)’] = &

— 1

EW ()] S

and hence such that
1
(19) v (w) < ——var(V), m,n > 1.
M,

There is a positive constant M, such that

1 -
(20) vme)z-——/" [h,,(X)—h, (c)2dx, m,n> 1

My /a0

Inequality (16) follows from (19) and (20).
To prove the second statement of the theorem, suppose that A(¢|X) = Ay(%)
X)) where A, = exp ;. Then dE(N(t)|X) = p(t|X)Ao(£)e*X®) d¢, so

Ah)=E / ’ Rh(X(£))e*ED) p(¢ | X)Ag(2) dt
~ [ tog (L") p(2 1 X)]) E[e" ™ p(e | X)lAo(e) dt.

Set g =h — «a and

X p(¢ | X)

w(t|X) = E[ec®0)p(¢|X)]"

Then we can write
A() = (@) = [ m() Ele"™Dp(e | X)]Ao(t) e,
where
7(8) = ELgX(O)(t|X)] - log (E[X (¢ |X)]).

It follows from Jensen’s inequality that 7,(g) < 0 and that 7,(g) < 0 unless
g is essentially constant on 2°. This yields the desired result.



PROPORTIONAL HAZARDS REGRESSION 993

A.2. Proofs of Lemmas 3, 4 and 5.

ProOF OF LEMMA 3. For f, fy € G, write

(Fifoln—f1sfo) =11+ Iy + I,
where
1= [ B EOREOZ0N 55051~ w20 VO

I /f E,[f1(X(0)fo2X(£)Z(t)] — E[f1(X(8))fo(X() Z(2)]
2= E[Z(t)]

dN(t)

and

L /f E,[f1(X(2)f2(X() Z(2)]
° o E[Z(1)]

By Lemma 10 of Huang (1998a),

(dN(t) — dE[N(1))).

sl _
su =
f1. 2660 | F1lll Foll

We can write Iy = I5; + I99, where

1 7 AKX Z(0) = ELf1 X () K (0) Z (1))
zzl=ﬁjz/0 o, o AN (o)

(2D

Op(l)

and

1o 1 o AR Za)
P k%( 0 E[Z(2) N 1)

* B (Ru(0) (K1) Z4(0)]
-/, E[Z(2)] N f‘”)]

By Lemma 1 and the definition of A,

I 1 £ 1llcll Folloo N i(7) _ AZ
1151 <ﬁz sup 1 2 122 < — (1),

u ~J ~Y
f1. f2¢6o | F1lllF2ll T fifaet, Il f2l, n

By Lemma 10 of Huang (1998a), we can show that (proof will be given shortly)

| Z52|

(22) su =
f1. 2660 | F1lll F2ll

op(1).
Thus we have that

(23) up L) op(1).

S —— = Op
f1. £2<6o | FLlllIF2ll
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Observe that
|11| = |11(f1, f2)|

"E X)) Z®)] oo\
Sl ( [ 22 ame)

, 12
« ([ BLZO)- Bz aN o)
It follows from (21), (23) and the definition of ||f4||? that

' fo {E.[f3X($)Z(t))/E[Z(t)]} dN(t)
fact | 17211

|
1i =0 P(]')
Moreover, by checking moments and using the Markov inequality, we get that

T — 1
[ BL20)- ELZ@) aN ) = 04 )

Thus, by the definition of A, and Lemma 1,

LEL ( 1 ) 1f1llsollFal (A)
Sllp —_— T = O —_— Sup 7 ool 20 O —0 1 ‘
f1, f2€Gy ”fl””fZ” P «/ﬁ 1, F2€Go ”fl”LZ“fZ” p \/ﬁ P( )

This completes the proof. O

PrROOF OF (22). Let C denote an upper bound of 1/E[Z(t)] and fix ¢ > 0.
For each 1 < j < n, by conditioning on N ;(-) and applying Lemma 10 of
Huang (1998a) [we use the exponential bound in its proof], we obtain that
uniformly in f, fy € Gy,

1 F1X()f2X(2)) Z,(2)
n—1 Z(o E[Z4(t)] aN

k#j
BLF1(Ke(0) Fo(Ke (D) Z4(0)]
-/ E(Z,(0)] N ))

([ EAEOZ0] o\ EAEOIZ0] o\
—e(fo E[Z,(0)] de) (/0 EZyo) N >

except on an event with probability bounded by
o 2 [ n\/1\/3\%
Py o] - 550 (5 (36)(3) |
3¢ ( n\[/1\/3\
tep| ~1ec\az )\6)\2) |J
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Thus, except on an event with probability bounded by nP,, which tends to
zero as n — oo under the assumption that lim,, A2(logn)/n =0,

1 Z( 1 Z( OT F1Xe ()oK () Z(2) dN,

na\n-1% E[Z,(1)]
* B[ (X (0) 5 (Ka(0) Z4(0)]
-/, E[Z4(0)] N ))‘
_ ([ ELAREZi®)] N\ (7 EFAE@)Z(0)] 2\
—‘9(/0 EZy(0)] dN) (/0 EZ,(0)] dN) ’

uniformly in f{, fs € Gy. This together with (21) yields the desired result. O

PrOOF OF LEMMA 5. Note that

(E7(diha))(t) = (BZ (d;h,))()
_ (En = E)(¢:iX()h,(X(2)) (1))
E,[Z(1)]

+ E[cﬁi(X(t))hn(X(t))Z("‘)]( E [;(t)] - E[Zl(t)])'

Hence
[ (EZ(0ihy) ~ B (dih,)* N

- 2/7 [(E, — E)(¢:X()h,X() Z(t)]*
~ b {E[Z2(D)]}

dN(t)

2
2 f E{[qbi<X(t>>hn<X<t>>Z<t>12}( T E[Zl(t)]) aN ().

Observe that 1/E[Z(t)] < 1/E[Z(7)] < o0 and 1/E,[Z(t)] < 1/E, [Z(7)] =
Op(1) for 0 < ¢t < 7. Moreover, the functions 4,,, n > 1 are uniformly bounded.
Consequently,

S [ (EXih,) ~ EX($ih)F AN = Op(Jy + ).
where

Jy= Z/O [(E, — E)(¢:(X(2))h,(X(2))Z(2))]* dN(t)
and

Ty =3 [(E*6D(NE[Z()] - EIZO) dN (o).
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We have that J; < 2J; + 2J 5, where

EDNIW A E M CLACIEADEND

k#j

2
- Em(ka)hn(xk(tnzk(t)]}) dN (1)
and

Ja=¥ L > (1 O X020

2
—E[qsi<xj<t>>hn<xj<t>>zj(t>1}) dN (1)

By independence and the fact that E[Z(¢)] is bounded away from zero and
infinity uniformly in ¢ € [0, 7],

B = 2 "D

[ E(1.XE)hX)Z(0)

- E[¢i(X(t))hn(X(t))Z(t)]}Z) dE[N(t)]
(n

= [ B O, X@)Z()P} dEIN ()]

n

=2

T . 2
s w1 [ EKOLO 1

1 2 Nn
o =2
On the other hand,

E(1) = ¥ o B( [ (9:X,0)h,(X,(0)Z,(0)
~ Bl () k(K () Z,01)) AN (0))

< 5 o BING)

A? 9
S 25 Iz, EIN(0)]
By Lemma 1, this is bounded above by a constant multiple of
> HIsPEING) = o 223 ) = o 2,

n
i
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provided that A2/n = O(1). Consequently, E(J;) = O(N,/n) and hence J; =
Op(N,/n). Similarly, we have that

1 N
E <N 22 = 22
(DS DI ==
and hence that Jy = Op(N,/n). This completes the proof of the lemma. O

PROOF OF LEMMA 4. Note that G ¢ H = {A € Hy, (k, 1) = 0}. Since
EZ[(f1— Ef)(fa— EZf3)] - EZ[(f1— E*f1)(f2— E? )]
=—(Elf1— E*f1)(ELfs— E*[>),
we have that

(F1> fadon — (f1> f2)o =11 + Iy,

where
I, = —/0 (Eff1—E?f1)(Effy— E?f3)dN
and

I = [ B2(f1~ E2£1)(f2 — E*f2)]dN

— [ E#L(fy = E“£1)(f> — E*£,)| EN.

The same argument as in the proof of Lemma 3 gives that
I
sup _ sl =0,(1).
AN

It remains to show that

|14
(24) sup 1l oy,
1, f2€G I £1lloll £2llo P

Let {¢;} be an orthonormal basis of G relative to (-,-). For fi,fq € G,
write f1 =3 a;¢; and fy = Y, b;¢;. Thus [|f1]|*> = 2; o} and ||f5]* = X; 7.
Applying the Cauchy—Schwarz inequality twice, we obtain that

L= | Saib, [ (B26, - B20)(ELe, - B%0,)dF|
LJ

1/2

172 7 N2
{xraw) s ([@2o.- 20080, - 820 pan) |
L J i J

< IANI70 S [ (B2 6 — EZ,)* .
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Thus, by Lemmas 1 and 2,

I ; B
sup ¢§ 2/ (B2, — EZ¢,)?dN
f1, F2€G I £1llollf2llo Y0
and hence (24) follows from Lemma 5. This completes the proof. O
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