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The genetic distance between two loci on a chromosome is defined as
the mean number of crossovers between the loci. The parameters of the
crossover distribution are constrained by the parameters of the distribution
of chiasmata. Ott (1996) derived the maximum likelihood estimator (MLE)
of the parameters of the crossover distribution and the MLE of the mean. We
demonstrate that the MLE of the mean is pointwise less than or equal to the
empirical mean number of crossovers. It follows that the MLE is negatively
biased. For small sample sizes the bias can be nonnegligible. We recommend
reduced bias estimators.

Generalizations to many other problems involving linear constraints on
parameters are made. Included in the generalizations are a variety of problems
involving simplex constraints as studied recently by Liu (2000).

1. Introduction. The probabilistic relationship between chiasmata and cross-
overs dates back to Mather (1933). This relationship assumes that at each chiasma
a crossover occurs with probability 1/2. Thus, for a given number C = ¢ of
chiasmata on a chromosome, the number K of crossover points on a gamete
follows a binomial (c, 1/2) distribution. The distribution of K can be obtained
from the distribution of C by

N
(1.1 P(K=k)=ZP(k|c)P(C=c),

c=0
where N is the maximum number of chiasmata that can occur. Thus, if we let pi
denote P(K =k),k=0,1,..., N, and let g. denote P(C =c¢),c=0,1,..., N,
we have that p = (po, p1,..., py) and q = (qo, ..., gn) are related by

(1.2) p=Aq,

where A is an (N + 1) x (N + 1) triangular matrix with (k, ¢) element (;)(1/2)°
if Kk <c, and 0 if k > ¢. Mather (1938) is credited with defining the genetic
distance between two loci on a chromosome as the average (mean) number of
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crossover points (per gamete) between them. Ott (1996) used this definition and
the relation (1.2) to derive the maximum likelihood estimators (MLE’s) of the
parameters of the crossover distribution p, the chiasma distribution q and the
mean number of crossovers u (i.e., the genetic distance). These estimators are
based on samples of size n, say, and on frequencies xx, k =0,..., N, of k
crossovers. The relationship (1.2) implies restrictions on the components of p
since 0 < g, <1 foreach ¢c=0,1,..., N. Thus the empirical frequencies, xi/n,
as potential estimators of pi, may correspond to an invalid set of estimators of
the elements of q. Hence the empirical relative frequencies are not the MLE’s
of the pi’s. Ott (1996) implicitly and realistically did not assume N is known.
He proposed an iterative method, equivalent to the EM algorithm, for obtaining
MLE’s of crossover distributions via MLE’s of . Using form (1.2), the current
setting is seen to belong to a larger class of important models, some of which were
recently discussed in Liu (2000). We will return to this issue later.
In this paper we offer the following:

1. Let N* be the largest index i such that x; > 0. Let N *Abe the largest index i such
that p; > 0, where p; is the MLE of p;. Note that N* > N*. We demonstrate
that the MLE of u = ZZNZO ipi, denoted by 1 = ZlN:*Oi pi, is pointwise less
than or equal to the empirical mean denoted by g = ZIN:O ix;/n. This implies
that the MLE is a negatively biased estimator of ©. We will also demonstrate
numerically that this bias can sometimes be nonnegligible. This result (which
we will see to be true in much greater generality) is unexpected. See, for
example, Ott’s (1996) comment that the MLE of genetic length is sometimes
larger and sometimes smaller than the empirical mean.

2. We offer an alternative method of estimating p, « and q. The alternative method
has the following advantages:

a. The estimator of p, call it fi, is pointwise greater than or equal to ft. Despite
the fact that i < g pointwise, its bias is considerably less than that of /i.

b. For N known, i is easier to compute than [t. Note Mather (1933) assumed N
is known when studying Drosophila melanogaster. He claimed that N = 4
(even though N =5 might be possible for some abnormal species).

c. When N is known, the estimators we propose not only have less bias, but
also appear to have slightly better mean square error properties. The latter
claim is based on numerical work.

3. We generalize the preceding results for this genetics problem in several
directions.

a. Our results carry over to the case where the (k, c) element (,i)2_C of the
matrix A is replaced by ({)7*(1 — 7)°*. Here 0 < 7 < 1. Analogous
results hold for the columnwise stochastic matrix A whose (k, ¢) element is
1/(c+1)ifk<cforc=0,1,...,N.

b. Letu= (ug, uy,...,uy) bean (N + 1) x 1 vector of constants and let x =
(x0, x1, ..., xn) be the vector of observed frequencies. We find sufficient



204 A. COHEN, J. H. B. KEMPERMAN AND H. SACKROWITZ

conditions under which the MLE of u'p is pointwise less than or equal to
the empirical estimator u'x/n. Of course, u =u'p foru=(0,1,2,...,N)
is a special case.

c. Further generalizations involving different matrices A will be indicated.

4. Comparable results are obtainable for a wide variety of models dealing with
discrete distributions with simplex constraints. Liu (2000) discussed a variety
of problems in which an m x 1 vector of parameters 0, say, is related to another
m x 1 vector of parameters &, say, by

(1.3) 0 = A«x,

where A is an m x m known matrix of nonnegative elements and the
components of & are nonnegative. Here m is known. In particular, suppose 8 in
(1.3) represents a vector of means of independent Poisson variables. Or suppose
0 is a vector of multinomial probabilities. Then analogs of our general theorems
are developed. For some of the applications in Liu (2000), we give sufficient
conditions for a vector u such that the maximum likelihood estimators of u’6
are pointwise greater than or equal to the usual unbiased estimators of u’d. For
example, in one of Liu’s examples the MLE of the average age at death exceeds
the unbiased estimator of the average age at death.

Now we define the notion of reversal for an estimator of the mean. Suppose
there exist x and y such that yg(x) < wg(y), where ug(-) is the empirical mean.
If i(x) > 1(y), then we say the MLE reverses. From a practical point of view,
reversing might be regarded as a somewhat negative property. We note, in fact,
that the MLE of the mean reverses for the genetics model and for many of the
other models in this paper. For the case of known N, the estimator we propose
does not reverse.

In Section 2 we pose an abstracted mathematical problem in a fairly general
form. The underlying distribution of the data is multinomial. General mathematical
results are developed with proofs deferred to the Appendix. The claimed results
regarding the bias of the MLE of the mean of the multinomial distribution will fall
out as a special case of the general results. This will be given in Section 3 where
we also discuss an alternative estimation procedure for p, q and p. The alternative
estimator [t of u satisfies g > @ > [ and so its bias will be less than that of fi.
The rationale for the alternative estimation procedure is discussed. In Section 4
we discuss generalizations. Section 5 contains numerical work which gives some
indication of the magnitude of the bias of it and fi. Furthermore, mean square
errors are presented for both the genetics model and the Poisson model.

2. General mathematical problem. Let C be a random variable taking
values in {0, 1, ..., N} with probability P(C = j) =g¢;, j =0,1,..., N. Fur-
thermore, let K be a random variable taking values in {0, 1,..., M} and put
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P(K=i)=p;,i=0,1,...,M. Let p= (po, p1,-.., pm), 4= (qo, ..., qn)’
and assume
2.1 p=Aq,

where A is a known (M + 1) x (N + 1) matrix such that each of the columns
of A represents a discrete probability distribution (i.e., Zf‘io ajj =1, a;j >0,

j=0,1,...,N). Let Sy denote the M-dimensional simplex consisting of all
vectors w = (wp, wy, ..., wy) with w; >0, Zf‘io w; = 1. Similarly define Sy .
Based on data x, we seek MLE’s of p and q. That is, we seek p maximizing

M
(2.2) f®)=)_Bilogpi,

i=0

subject to p = Aq with q € Sy, where f; = x;/n. Note that maximizing the
underlying multinomial likelihood is the same as maximizing f (p). We recognize
that 8; are the empirical estimators of p;, which would be the MLE’s of p; if there
were no restrictions as those imposed by (2.1). Maximizing (2.2) is equivalent to
maximizing the concave function

M N
(2.3) g@=> B log<2 a,-jqj)»
i=0 j=0

subject to q € Sy. Denoting q as the vector which maximizes g(q), we have
from (2.1) that

(2.4) P = Aq,

where P is the vector which maximizes (2.2) subject to p = Aq for some q € Sy .
In this section N is considered to be a fixed known quantity. Since N is unknown
in the genetics application, some additional argument will be needed in that case.
This will be explained more thoroughly later.
Returning to maximizing (2.3), we define g(q) = —oo when any index i exists
such that §; > 0 and p; = Zﬁ”:o aijqj = 0. Hence the MLE of p will be such

that p; = Z?/I:o a;jq; > 0 whenever B; > 0. Thus g(¢) is always a finite number.

Furthermore, if p; = Z?’:O aisqs = 0, then B; = 0 with probability 1. This allows
us to define y; = B;/p; when p; > 0 and for concreteness y; = 0 whenever p; = 0.
Thus

M
2.5) yiz0 and ) piyi=1.
i=0
Now let u = (uq, uy,...,up) be a given vector in RM+1 We seek sufficient

conditions in order that

oM Mo M
(2.6) A=Y uipi<y, . = uifi = e
i=0

i=0 i=0
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for every possible vector 8 = (Bo, B1, .-, Bm) -
Let

M
(2.7) eg:=1-> yiais, s=0,1,...,N.
=0

LEMMA 2.1. A necessary and sufficient condition for the concave function
g(q) to be maximal at q € Sy is that

2.8) es=0 ifGs>0, &>0 ifg=0,5s=01,...,N.

‘We restate condition (2.6) as

M M
(2.9) A=Y piui <Y piuiyi =pe
i=0 i=0

each time y; satisfy (2.5) and (2.8) [with the understanding that the &; depend on y;
exactly as in (2.7)].

THEOREM 2.2. Let q € Sy be given and put p = Aq so that p € Sy.
A sufficient condition, in order that (2.5) and (2.8) together imply (2.9), is the
existence of real numbers z5, s =0, 1, ..., N, satisfying both

(2.10) zs >0 whenever g; =0

(zs € R is arbitrary when ¢, > 0) and

N
(2.11) > aisze=pi(i—u;)  foralli.
s=0
THEOREM 2.3. For fixed ¢ (and p = AQ) satisfying (2.5) and (2.8), a
sufficient condition for (2.9) is that there exist real numbers &, s =0,1,..., N,
satisfying
(2.12) & >0 whenever g =0, s =0,1,..., N,
and
(2.13) > aikg=—piu;  foralli=0,1,....M.

THEOREM 2.4. A sufficient condition, in order that (2.9) holds for each choice
of q € Sy satisfying (2.5) and (2.8), is the existence of a matrix H = (hg; : 5,1 =
0,1,...,N) of size (N + 1) x (N + 1) satisfying

(2.14) hg <0 whenever s #t, s,t=0,1,...,N
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and
(2.15) AH = DA,
where D = diag (ug, u1, ..., upy). Thus (2.13) is equivalent to

N
(2.16) > aishg =ujay,  i=0,1,...,M; t=0,1,...,N.
s=0

The following is an important special case of Theorem 2.4.

THEOREM 2.5. Suppose M = N and further assume A is invertible. Thus
H = (hy) is uniquely determined by (2.15) as H = BDA, where B = (b;j) =
AL That is,

M
(2.17) hye =Y bgjujaj,  s,t=0,1,...,M=N.
j=0

Consequently, a sufficient condition that (2.9) holds is that numbers defined by
(2.17) satisfy hgy <0 whenever s #t.

3. Estimating genetic distance. In this section we start by demonstrating that
the MLE [ of u is pointwise less than or equal to the empirical mean pg. Since
W E is an unbiased estimator of w, it follows that [i is negatively biased. In the next
section we demonstrate numerically that sometimes this bias can be nonnegligible.
In light of this we propose an alternative estimator of .

Now consider the model of the previous section with M = N.

THEOREM 3.1. Let the jth column of A = (a;;) correspond to the binomial
distribution with parameters j and w, where w € (0, 1) is fixed. Thus

3.1) a,,:(

Then (2.9) holds, that is, i < uE.

J

i

)nql_ny4, =01, N ay =0 ifj <i.

COROLLARY 3.2. Under the assumptions of Theorem 3.1, when m = 1/2,
A=< uE.

The conclusion of Corollary 3.2 is that for known N the MLE of the genetic
distance between two loci on a chromosome is pointwise less than or equal to the
empirical estimator. However, the more realistic model is where N is unknown.
In this case the MLE’s can be found by maximizing (2.2) or (2.3) for each fixed
value of N. Since N must be greater than N*, the value of the empirical estimator
of u is the same regardless of the value of any choice of N. Note further that
n<pu E for any N > N*, regardless of which N is true. The conclusion is that

p=SNyipi <ne.
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THEOREM 3.3. Under the assumptions of Theorem 3.1, N* <[N*/m]-1,
where [-] denotes the smallest integer greater than or equal to.

REMARK 3.4. Forthe case m = 1/2, Theorem 3.3 is given in Yu and Feingold
(2001).

REMARK 3.5. The result of Theorem 3.3 can be useful in the designing of
algorithms for obtaining the MLE’s. Ott (1996) used 20 dimensions as a “safe”
bound to begin his algorithm. However, for his data N* =6 and = = 1/2 so that
only N*/m = 12 dimensions are needed.

In the Introduction we noted that analogous results to those in Section 2 hold for
the columnwise stochastic matrix A whose (k, ¢) elementis 1/(c+1)if0 <k <c.
Namely, it follows easily from Theorem 2.5 that

N N N
l A
Z”i<_) = Zuipi,
i=0 n i=0
whenever u; is increasing in i. Equivalently, the distribution (po, ..., pn) is
stochastically smaller than the distribution (xq, ..., xy)/n.

Actually, this result is known. For observe that p = Aq for some g € Sy holds
iff p € Sy in such a way that p; decreases in i. Thus our MLE distribution
(Po, ..., pn) is nothing but the (discrete version of the) classical MLE of a
decreasing density. And as is well known [see Robertson, Wright and Dykstra
(1988), page 328], the graph of the associated d.f. F(x) is precisely the smallest
concave majorant of the graph of the empirical d.f. F;(x). In particular, F(x) >
F, (x), showing that the distribution (py, ..., pn) is stochastically smaller than the
distribution (xo, ..., xy)/n. For instance, the former has a smaller mean.

At this point we propose an alternative estimator for u, p and q. The rationale
for our choice is based on several considerations. We want an estimator of pu,
call it fi, that is less biased than the MLE. We want estimators of p and q that
are consistent with fi. We want the estimator of u to be pointwise greater than
or equal to the MLE. We want estimators of p, q and x to be computationally
feasible. Furthermore, we want an estimator of w that does not reverse when used
in the N known setting.

An estimator of p satisfying all these properties when N is unknown is the
projection of the sample point x onto the space Sz, N{p: = e}

The resulting estimator of u is

(3.2) i =min((N* — 1)/2, ug).

For fixed N, replace Sy. by Sy. The resulting estimator has all the desirable
properties.
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4. Generalizations. Liu (2000) discussed a variety of models in which X is
a random vector of order m x 1 with expectation parameter @ and, as in (1.3),
0 = Aa, where A is an m X m matrix of nonnegative elements and & is an unknown
vector of parameters that are assumed nonnegative. Liu sought the maximum
likelihood estimator of @ under several different distributional assumptions on X.
In one particular example, X = (X1, ..., X;,) and X; are independent Poisson
variables with parameter 6;. Furthermore, A is a matrix that reflects the fact that
the 6; are increasing and a convex function of age. Liu (2000) specified the A
matrix as

11 0 0
(4.1) A=|1 2 1 0 0
1 m—=1 (m—=2) - - 1

If one seeks an estimator of ¢ = u’@ for this model (e.g., '@ could reflect the
average age at death in Liu’s example), then an analog to our Theorem 2.5 applies
and is stated as follows: Let H = (hy;) = A~ DA, where D = diag(uy, ..., Um),
and let ¥/ = '@ denote the MLE of .

THEOREM 4.1. Suppose X;, i =1, ...,m, are independent Poisson variables
with means 0; satisfying 0 = Aa, where A has all nonnegative elements and
a;>0,i=1,....m. If hyy >0 for all s # t, then ¥ > wX. It follows that Vr
is a positively biased estimator of V.

REMARK. Theorem 4.1 generalizes to the situation where one has n; > 1 in-
dependent observations x;, on X; ~ P(6;),i =1, ..., m. In fact, as is easily seen,
Theorem 4.1 remains valid provided D is replaced by D* = diag(vy, ..., um),
where v; = u;/n;, i = 1,...,m. The conclusion would be 1/A/ > 3" ui X

Oory xir /).

Now we apply Theorem 4.1 to the case where A is given in (4.1). Call the
inverse matrix of A, B and note

1 1 0 0

1 =2 1 0 - 0

(4.2) B=| o 1 2 1 o0 0
0 -+ -« 0 1 =21

The matrices A and B essentially appear in Cohen, Kemperman and Sackrowitz
(1994), where a hypothesis-testing problem is considered.
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Next we calculate H. We have

LEMMA 4.2. Given A as in (4.1), H is such that
hik =G —k)(uj —2u;—y +ui—2) + (i —ui—3) if2<k<i,
(4.3)  hi=ui —2uji—1+ui— ifi=3, ha1 =uz —uy,
hij=u; foralli>1, hjy, =0 ifi<k.

THEOREM 4.3. A sufficient condition for 1& > w'X is that the function i — u;
on{l,2,...,m} be increasing (nondecreasing) and convex.

As an application of Theorem 4.3, consider estimating the average age at death
for Liu’s example. If the u’s (ages) are equally spaced and increasing, then clearly
the MLE of the average age at death is pointwise greater than or equal to the usual
unbiased estimator. One might consider an alternative estimator whose bias is less
than that of the MLE. An alternative estimator could be one that is mean preserving
and lies in the restricted space.

We note that the phenomenon of the bias of the MLE is typical in many
order-restricted parameter problems. Nevertheless, the pointwise stochastic order
of the estimators, the direction of the bias and the amount of bias are important
issues. As another example, suppose the mean parameters (61, ..., 6;,) are simply
nondecreasing. The distribution of X; can be any one-parameter exponential
family as in Robertson, Wright and Dykstra (1988), page 34. Then, using the PAVA
algorithm, one can demonstrate that the MLE of iy = u'@ is positively biased
for any vector u = (uy, ..., u,) such that u; < u;41, with strict inequality for
some i. Similar results are obtainable for cones other than the simple-order cone
determined by the nondecreasing 6;. Included is when the parameters are in the
tree order cone, that is, the one in which 01 > 6;,i =1, ..., m. One can use these
methods to demonstrate that the MLE is a positively biased estimator of ;. Lee
(1988) demonstrated that this bias can be substantial, especially if m is large. In
fact, the bias tends to oo as m — o0.

The methods of this paper may also be suitable for the other models considered
in Liu (2000) and for other order-restricted models in Robertson, Wright and
Dykstra (1988).

5. Numerical bias and mean square error calculations. In this section we
study the models of Theorem 3.1 with & = 1/2 and the model of Section 4 with A
given in (4.1). We offer numerical calculations, sometimes exact (dimension 3)
and sometimes simulated (dimension > 3; 5000 iterations), of bias, relative bias,
bias ratio and mean square error. The mean to be estimated is denoted by wu, the
empirical mean by u g, the MLE by /1 and the reduced bias estimator by . If T is
an estimator, then its bias is (ET — u), the relative bias is |(ET — )|/ and the
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bias ratio is (E ft — ) /(E ft — ). The mean square error (MSE) is E(T — w)?. The
calculations are carried out for selected parameter points and some sample sizes.
Parameter points, for the most part, are chosen to be on the boundary of the set to
which the parameters are restricted. The order of the bias, as it relates to sample
size n, should be higher on boundary points. This is the case in simpler problems
when bias can be expressed in a closed form. In the problems of this paper,
however, where the estimators do not have closed forms and require algorithms
to compute, exact bias formulas are not available. When feasible, a cross section
of parameter points is chosen on the boundary. Since, in the genetics model, the
MLE is a “shrinker,” some parameter points with small means are chosen and
some with larger means are chosen. For the Poisson model, a similar selection of
parameter points is made.

The numerical study consists of five cases. The first two cases are concerned
with the genetic length model assuming N is known with N =4 and N = 6.
The next two cases are concerned with the Poisson model where there are three
populations and five populations, respectively. The fifth case is concerned with the
genetics model when N is assumed to be unknown.

The genetic length model is considered in Table 1, where N is assumed to be
known and set equal to 4. Sample sizes 8 and 15 are offered. Expected values
of [, i1, relative bias (RB) for i, ji, bias ratio (BR) and MSE for fi, i1 are given.
The entries are obtained by simulation carried out on 5000 iterations. We note
that the bias in [t is nonnegligible and is as high as 0.21 with a relative bias of
10%. Bias ratios can be very high. As expected the MSE for [ is smaller for larger
values of i (u =2, 1.75, 1.5) and the MSE for & is smaller for smaller values of 1
(nw =1.25,1,0.5). For the parameter points chosen, the difference in MSE, for
and [ is slightly higher when [t has the smaller MSE, thus favoring i somewhat.
In summary for this case, unless one had prior information that w is relatively
small, i is the preferred estimator because it is much easier to compute, has less
bias and has slightly better MSE properties.

The genetic length model is also considered in Table 2, where again N is
assumed known and set equal to 6. Fewer parameter points are chosen and only
a sample of size 8 is considered. In addition to bias and MSE calculations, we
include a column denoting the proportion of times, say P, that j differs from wp.
One expects P to be large for p large and small for i smaller. The pattern in bias
and MSE is similar to the case where N = 4, although we did not choose parameter
points for which u < 1.5. However, for parameter points with p < 1.25, we predict
a smaller MSE for /. In Table 2 we note larger differences in the MSE for /& and
[, favoring fi. As predicted P is somewhat large (0.44) when u = 3 and is down
to 0 when p = 1.5. Our conclusion for this case is to prefer t to fi.

The Poisson model for three populations is considered in Table 3. The quantity
to be estimated is again labeled ., where u =u’v, v = 6/A, 6 is the mean vector of
the independent Poisson variables, A = 6 + 6, + 03 and w’ = (0, 1, 2). The choice
of u really reflects equal spacing of a covariate (say, age) because one could add a
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TABLE 1
Genetic length model

q'=1(0,0,0,0,1), p’ = (0.0625, 0.2500, 0.3750, 0.2500, 0.0625)

n " EQ EQL RBA RBj BR MSEf MSE#
8 2 1.79 1.86 0.10 0.07 1.47 0.10 0.06
15 2 1.85 1.89 0.08 0.05 1.43 0.06 0.03
q' =(0,0,0,0.5,0.5), p’ = (0.0938,0.3125,0.3750, 0.1875, 0.0312)
n " EQ EQ RBj RBj BR MSEj MSEji
8 1.75 1.62 1.71 0.07 0.03 2.83 0.11 0.08
15 1.75 1.67 1.73 0.05 0.01 4.85 0.06 0.05
q =(0,0,0.5,0,0.5), p’ = (0.1563,0.3750,0.3125, 0.1250, 0.0312)
n M EQ EQL RBA RBj BR MSEf MSEf
8 15 1.40 1.49 0.07 0.01 12.85 0.12 0.11
15 15 1.43 1.49 0.05 0.00 12.03 0.07 0.06
q =(0,0.5,0,0,0.5), p’ = (0.2813,0.3750,0.1875, 0.1250, 0.0312)
n M EQ EQ RBA RBj. BR MSE. MSEji
8 1.25 1.15 1.24 0.08 0.01 14.03 0.14 0.14
15 1.25 1.18 1.25 0.06 0.00 24.64 0.08 0.08
q =(0.2,0.2,0.2,0.2,0.2), p’ = (0.3875,0.3250, 0.2000, 0.0750, 0.0125)
n " EQ EQ RBj RBj BR MSE. MSEjL
8 1 0.93 1.00 0.07 0.00 87.84 0.12 0.13
15 1 0.96 1.00 0.04 0.00 29.58 0.06 0.07
q =(0.5,0,0.5,0,0), p’ = (0.625,0.250,0.125,0, 0)
n M EQ EQL RBA RBj BR MSEf MSE#
8 0.5 0.47 0.50 0.05 0.00 16.80 0.05 0.06
15 0.5 0.48 0.50 0.04 0.00 23.16 0.03 0.03

Expected values, MSE, relative bias (RB) bias ratio (BR) for & and fi; N =4 known, sample size n;
parameter point q' = (9o, 41, 42: 43, 94)> P’ = (Po, P1. P2+ P3: P4)-

TABLE 2
Genetic length model

q n EL ER RBL RBiZ BR MSEi MSEi P
(0,0,0,0,0,0,1) 3 276 283 008 006 140 0.14 009 044
(0,0,0,0,0,0.5,0.5) 2.75 259 267 006 003 204 015 011 023
(0,0,0,0.25,0.25,0.25,0.25) 2.25 2.14 223 004 001 7.03 018 017 0.03
(0,0,0,1,0,0,0) 1.50 141 150 0.06 0.00 4925 0.0 009 0.00

Expected values, MSE, RB, BR; P = probability i differs from ug; N = 6 known; sample size

n=_.
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TABLE 3
Poisson model

v n Ei  Efi  RBi  RBQ BR MSEi  MSEQ
(15.15.2) 175 178 175 002 000 15338 0.04 0.04
©.4% 167 174 167 004 000 0.00 0.01 0.03
(4.4.%H 150 155 151 003 0.0 9.42 0.06 0.07
(5.4 7% 150 156 150 004 000 32.79 0.05 0.05
(4.%.%) 133 140 135 005 001 4.66 0.06 0.06
G.4hH 125 133 128 006 0.03 2.44 0.06 0.06
(3.%.%) 100 115 L1l 015 0.l 1.31 0.06 0.04

Expected values, MSE, RB, BR; v/ = (0'/A) = (v, 12, 13); S=8; u=u'v,u' = (0, 1,2).

constant to all components of u and also multiply u by a constant to generate other
relevant linear combinations of the 6;’s. If one is interested in a linear combination
of the 6;’s and not the v;’s, then one multiplies the estimator of © by S, where
S = X1+ X+ X3. (See Section 4.) Thus the bias and MSE entries in Table 3 (and
Table 4) would need to be adjusted if one were interested in a linear combination
of Poisson means. The bias would be § times the bias in the table. The MSE
would be S? times the MSE in the table. The entries in Table 3 are based on exact
calculations opposed to simulation.

For the Poisson model, the MLE is an “expander” (i.e., overestimates the mean)
and so in terms of the MSE it should do better than & for large values of w and
[ should do better for small values of w. This is precisely the pattern in the MSE
entries. In terms of bias, i has a relative bias as high as 15%.

Table 4 has simulated entries for the Poisson model for five populations and
S = 8. The MLE has a relative bias as high as 15%. Furthermore, the MSE for [
is quite a bit higher than the MSE for j& for smaller values of u. For large values
of u, the MSE for f1 is better than that for f but the discrepancy is not nearly as
large as when fi is preferred.

TABLE 4
Poisson model

v w E4  Eip  RB@ RBi  BR  MSEx  MSEQ
(35 35 250 2. %) 3.5 359 350 003 000 8196 0.1 0.16
(59035 5) 25 269 253 008 001 556 0.24 0.17
@Gl 2 230 220 015  0.10 153 022 0.12

Expected values, MSE, RB, BR; v/ = (v1, v2, V3,14, V5); S=8; u =u'v;u= (0, 1,2, 3,4).
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Based on Tables 3 and 4, unless one had prior information that u is large, [t is
preferred to fi. It is much easier to compute and has superior bias and, in some
sense, better MSE properties.

Table 5 is concerned with the genetic length model when N is unknown.
This makes the evaluation complicated since parameter points can lie in different
dimensional simplexes. For parameter points in small dimensional spaces, the
MLE tends to make up for its underestimating u by somewhat overestimating
N. This helps it somewhat in MSE. Yet for parameter points in higher dimensions,
it does not seem to overestimate N as much and thus its underestimation is not
compensated for. In Table 5 we recognize, as expected, that the bias in the MLE is
nonnegligible (relative bias as high as 9%). Furthermore, for w large, [t has smaller

TABLE 5
Genetic length model

n=3 Iz Iz
q u E{} RB MSE E{} RB MSE BR
0,0,1,... 1.0 091 0.09 0.06 0.97 0.03 0.07 3.9
0,0,0,1,... 1.5 1.41  0.06 0.10 148 0.02 0.09 4.1
0,0,0,0,0,0,1,... 3.0 291  0.03 0.19 297 0.01 0.18 3.0
0.5,0.5,... 025 025 0.00 0.02 0.25 0.00 0.02 1.0
0.5,0,0.5,... 050 047 0.05 0.06 0.50 0.01 0.06 6.6
0.5,0,0,0.5,... 075 0.71 0.05 0.11 0.75  0.00 0.12 00
0,0,0.5,0.5,... 1.25 1.16 0.07 0.09 1.23  0.02 0.09 4.6
0,0,0.5,0,0.5, ... 1.50 141 0.06 0.14 148 0.01 0.13 4.8
0,0.5,0,0,0.5, ... 1.25 1.19  0.05 0.15 1.24  0.00 0.16 12.0
0,0,0,0,0.5,0.5,... 225 216 0.04 0.16 222 0.02 0.15 2.9
0,0,0,0,0,0.5,0.5,... 275 265 0.04 0.19 272  0.01 0.18 2.9
0,0,0,0.25,0.25,0.25,0.25, ... 225 216 0.04 0.19 223 0.01 0.18 3.5

n=15 n m
q © E{} RB MSE E{}] RB MSE BR
0,0,1,... 1.0 0.92 0.08 0.03 0.98 0.02 0.03 3.7
0,0,0,1,... 1.5 1.43  0.05 0.05 1.49  0.01 0.05 5.0
0,0,0,0,0,0,1,... 3.0 293  0.02 0.11 298 0.01 0.10 33
0.5,0.5,... 025 025 0.00 0.12 0.25 0.00 0.12 1.0
0.5,0,0.5,... 050 048 0.04 0.03 0.50 0.00 0.04 o0
0.5,0,0,0.5,... 075 0.72 0.05 0.06 0.75 0.00 0.06 10.8
0,0.5,0,0,0.5, ... 1.25 1.21 0.03 0.08 1.29  0.00 0.08 30.5
0,0,0.5,0.5,... 075 0.71 0.05 0.03 0.74  0.02 0.03 2.7
0,0,0.5,0,0.5, ... 1.50 145 0.04 0.07 149 0.00 0.07 11.1
0,0,0,0,0.5,0.5,... 225 218 0.03 0.08 224  0.01 0.08 4.6
0,0,0,0,0,0.5,0.5,... 275  2.69 0.02 0.10 273 0.01 0.10 4.0
0,0,0,0.25,0.25,0.25,0.25,... 225 219 0.03 0.10 223 0.01 0.09 3.9

Expected values, MSE, RB, BR; N unknown; n =8, 15.
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MSE, while for u small, /i has smaller MSE. The differences in MSE between (&
and [, regardless of which MSE is bigger, appear to be small. In conclusion, for
this case we can only assert that fi has less bias than fi. In terms of computation
and MSE, neither estimator has an advantage.

APPENDIX: PROOFS

PROOF OF LEMMA 2.1. Since the function g(g) on the simplex Sy =
{g:qs >0 (s =0,...,N); > gs = 1} as defined by (2.3) is concave, it takes
its maximal value at ¢ = ¢ € Sy if and only if no strictly larger value g(q)
can be obtained by increasing a single g; < 1 by a small amount § > 0 while
simultaneously decreasing a single ¢, > 0 by the same amount §. This in turn is
equivalent to the requirement that

0 . 0 . e n o
g(@)——g(@ =<0 ifg;<landg, >0.
dgs 0q;
Equivalently, there exists a value o such that
0 . e a . A
—g(@)=o0 ifg;>0, —8(@) <o ifg,=0.
0g; 0g;

Since, from (2.3),

3 ~ M dijg M
g(q):ZﬁlT_ZylaléW S:()’l’"'va
9s i=0 i=0

i ._

a

an equivalent condition is that, for some number o,

M M
> viais=o ifgy>0, > yiaig <o ifgy=0.
i=0 i=0

Multiplying by ¢s, summing over s and using Y a;sqs = p; and also (2.5), we see
that o = 1. Consequently, the above necessary and sufficient condition takes the
form (2.8). [

REMARK. The necessary and sufficient condition in Lemma 2.1 is related to
the Kuhn—Tucker condition in nonlinear programming. See Zangwill and Mond

(1969).

PROOF OF THEOREM 2.2. It suffices to show that (2.5), (2.8), (2.10) and
(2.11) imply (2.9). First, observe that (2.11) implies

N
(A1) 3 2, =0,
s=0
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Namely, sum (2.11) over i and use that Z,M ais =1, p;i = 1. Let & be as
in (2.7). From (2.8) and (2.10), z;&; > 0 for all s. Hence, using (A.1),

N N M N N
0> ZZS(_SS) = ZZS (_1 + Zyiais> = Zzs Z)’iais
s=0 s=0 i=0 s=0 =0

N M M
D aiszs =) yipi(l—ui) ==Y piuiyi.
i=0 i=0

M
= Zyi
i=0 s=0

Here we used (2.5) and (2.11), as well as Zf“io pivi=1.Thus i < ug. O

PROOF OF THEOREM 2.3. If & satisfy (2.12) and (2.13), then numbers z;
satisfying (2.10) and (2.11) are given by

(AZ) ZSZSS_{—[)“@S’ s=0717"'7N'

Namely, it is obvious that (2.10) and (2.12) are equivalent. Similarly, (2.11) and
(2.13) are equivalent since

N N
Zaisllés :ﬁzaisc}s = ,ll];, ]
s=0 s=0

PROOF OF THEOREM 2.4. Let H be as above. It suffices to show that
conditions (2.12) and (2.13) of Theorem 2.3 hold for the numbers &; defined by

N

(A3) §=—) hudr.  s=0,1,....N.
t=0

That (2.12) is true is obvious from (2.14) and g; > 0. Now (2.13) follows from
N N N N N
Zaisés = - Zais Zhstét = - Zc}l Zaishsl

s=0 s=0 t=0 t=0 s=0

N

= Zéruian = —pil;. m
t=0

PROOF OF THEOREM 2.5. This is a special case of Theorem 2.4. [J
PROOF OF THEOREM 3.1. We find B = (b;;) = A~ ! as
(A4) bij=(—1)7~" (J.)n—f(l —m) 7 by =0, if j <.
i

From (2.17),

N N
hs = stjujajt = Zd(S, t,juj,
j=0 j=0
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where

d(s,t,j) =bsjaj = (—=1)7~* (i )n‘f'(l — )l (t.)nf (1—m)'~
J

— <t>(1 _ n)l‘—S(_l)j—S<t._S>‘
N J—S

Hence the condition Ay < 0 whenever s # ¢ is equivalent to
t
oft—s
Z(—I)J ( )uij whenever0 <s <t < N.
j=s S
Letting g =s — ¢, k =t — s, this condition can be written as

k
k
(A.5) Z(—1)8< >us+g <0  whenever | <k <N, 0<S<N—k.
— 8
g=0

We recognize that the left-hand side of (A.5) is essentially a kth-order difference of
the function i — u(i) = u;, wherei € {0, 1, ..., N}. [See, e.g., Anderson (1971).]
In light of this, (A.5) can be expressed as

(A6) (—=DFAFu)(i)<0  wheneverl <k <Nand0<i <N —k,

where Au(i) = u;+1 — u; and AF represents a kth-order difference. Thus (A.6)
requires that (AXu)(i) > 0 if k is odd, k > 1; (A*u)(i) < 0 if k is even, k > 2.
For our problem u; =i,i =0,1,..., N, sothat (Au)(i) =u;+1 —u; =1 forall i;
hence (A*u)(i) = 0 for all i and all k > 2. Thus (A.6) is trivially satisfied and we
have i <ug. O

PROOF OF THEOREM 3.3. For any fixed x, the MLE’s of q are obtained by
finding values of N and q which maximize g(q) as given in (2.3) with M = N.
Some simple calculations show that a; ; > a; (j+1) forall j > [i /7] — 1. Thus

(A.7) aj j = ai[N*/n]—1 foralli =0,1,..., N*, Jj=> [N*/JT]

Consider any choice of q and N such that g; > 0 for some j > [N*/m]. Based
on this q, define r = (I’l, cee r[N*/n]—l) by ri=4qj, ] =0,1,..., [N*/JT] -2,
and r{y+/71-1 = Z?’:[N*/n]_l qj- The theorem now follows as (A.7) implies that
g(@=g. O

PROOF OF THEOREM 4.1. Let S=37",X;,A=>"7",6; and v=0/). The
likelihood may then be expressed as the product of the conditional density of X|S
as a function of v and the marginal density of S as a function of 1. The conditional
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density of X|S is multinomial with parameter vector v satisfying
(A.8) v=AB,

where 8 =a/A and §; > 0,i =1, ..., m. The marginal density of S is Poisson
with parameter A, 0 < A < co. As such the MLE of A is S, since A is unrestricted.
Now A may be taken to be columnwise stochastic without loss of generality. That
is, we may write v = Gy, where the elements of G are nonnegative and the sum
of the elements of any column of G equals 1. To see this, write

v=Ap
(A.9) =AAT'AB
frny Gy,
where G = AA™L, y = AB, A =diag(a,a2,...,a,) and a; =Y " ajj.
Since 1 =)7L, v;and ) ;" g;; =1, it follows that ;" ; y; = 1. Thus we have the
same multinomial model as in Section 2. Furthermore, note that if Ig =G 'DG,
then rg; > 0 is equivalent to hg > 0, s # t. Also recognize that § = Sv. This
means that the results of Section 2, in particular, the analog of Theorem 2.4,

apply. The analog being that i > ug if hg, > 0, s # t. This completes the proof of
Theorem 4.1. [

PROOF OF LEMMA 4.2. Since A and B are lower triangular, A; =0if i < k.
Since the diagonal elements of A and B are 1, it follows that 4;; = u;. Now let
1 <k<ifori>2. Since H=BDA, we have

(A.10) hik =bjjuiaix +bi —1ui_1a; 1 +bii_ou;_2a;_2

(where the last term vanishes when i = 2). In particular, if i =2 and k = 1, then
h21 = byuraz + bayuyary = uz — uy.
For i > 3, from the nature of B and (A.10) we have

(A.11) hik =u;ajk —2u;1a; 1 + Ui —2a; 2.

First, consider k = 1. Since a;1 =1 for all i, h;; = u; — 2u;—; +u;j_p if i > 3.
Finally, let k > 2, i > 3. Then, from (4.1) and (A.11),

hik =ui(i —k+1) —=2u; 1 (i —k)+ui2(i —k—1)
=@ —k)Wu —2uj—1 +ui—2) + (u; —u;i_3).

This completes the proof of the lemma. [

PROOF OF THEOREM 4.3. In light of (4.3), this is an immediate consequence
of Theorem 4.1. [
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