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LIKELIHOOD RATIO TESTS FOR MONOTONE FUNCTIONS

By Moulinath Banerjee1 and Jon A. Wellner2

University of Michigan and University of Washington

We study the problem of testing for equality at a fixed point in the
setting of nonparametric estimation of a monotone function. The likelihood
ratio test for this hypothesis is derived in the particular case of interval
censoring (or current status data) and its limiting distribution is obtained.
The limiting distribution is that of the integral of the difference of the
squared slope processes corresponding to a canonical version of the problem
involving Brownian motion + t2 and greatest convex minorants thereof.
Inversion of the family of tests yields pointwise confidence intervals for the
unknown distribution function. We also study the behavior of the statistic
under local and fixed alternatives.

1. Introduction. We shall consider likelihood ratio tests, and the corre-
sponding confidence intervals, in a class of problems involving nonparametric
estimation of a monotone function. The problem in each case involves testing
the null hypothesis H0 that the monotone function has a particular value at
a fixed point t0 in the domain of the function. Of course with each testing
problem there is a related problem of finding confidence intervals. Here are
some examples of the problems we have in mind.

Example 1 (Monotone density function). Suppose that X1�X2� � � � �Xn

are i.i.d. random variables from the unknown density f on �0�∞� that is as-
sumed to be decreasing (i.e., non-increasing). The maximum likelihood estima-
tor f̂n of f is the well-known Grenander estimator: it is the step function equal
to the left-derivative of the least concave majorant of the empirical distribu-
tion function �n; see Grenander (1956), Prakasa Rao (1969) and Groeneboom
(1985). For fixed t0 ∈ �0�∞� and θ0 ∈ �0�∞�, consider testing H0 � f�t0� = θ0
versus H1 � f�t0� 
= θ0. The corresponding interval estimation problem is to
find a 1− α confidence interval for f�t0� for fixed α ∈ �0�1�.

Example 2 (Interval censoring, current status data). Suppose that �Xi�Ti�,
i = 1� � � � � n, are i.i.d., where for each pair Xi and Ti are independent, and
Xi ∼ F and Ti ∼ G where F and G are distribution functions on �0�∞�.
For each pair we observe Yi = �Ti��i� where �i = 1
Xi ≤ Ti�. The goal is
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to make inference about the monotone (increasing) function F. The nonpara-
metric maximum likelihood estimator �n of F is well known; see, for example,
Ayer, Brunk, Ewing, Reid and Silverman (1955) or Groeneboom and Wellner
(1992). We are interested here in likelihood ratio tests of H0� F�t0� = θ0 ver-
sus H1� F�t0� 
= θ0 for t0 ∈ �0�∞� and θ0 ∈ �0�1� fixed. The corresponding
interval estimation problem is to find a 1− α confidence interval for F�t0� for
fixed α ∈ �0�1�.

Example 3 (Panel count data). Suppose that N1� � � � �Nn are i.i.d. count-
ing processes on R+ = �0�∞� with mean function ��t� ≡ EN1�t�. When the
counting processesNi are observed only at irregular (random) times 
Tij�Ki

j=1,
with perhaps a random number of observation timesKi for the ith individual,
Wellner and Zhang (2000) have referred to this type of data as “panel count
data,” and have studied the nonparametric maximum likelihood estimator of
the monotone functon �. Here our interest focuses on likelihood ratio tests of
H0� ��t0� = θ0 versus H1� ��t0� 
= θ0 t0 ∈ �0�∞� and θ0 ∈ R+ fixed. The cor-
responding interval estimation problem is to find a 1 − α confidence interval
for ��t0� for fixed α ∈ �0�1�.

Example 4 (Monotone hazard function with right-censored data). Suppose
that �Xi�Ti�, i = 1� � � � � n are i.i.d., and for each pair �Xi�Ti�, Xi and Ti
are independent with Xi ∼ F and Ti ∼ G where F and G are distribution
functions on �0�∞�. For each pair we observe Yi = �Xi ∧Ti��i� where �i =
1
Xi ≤ Ti�. Moreover, suppose that it is known that the distribution F has
monotone increasing hazard rate λ = f/�1−F�. The goal is to make inference
about the monotone (increasing) function λ. The nonparametric maximum
likelihood estimator λ̂n of λ has been studied by Huang and Zhang (1994),
Huang and Wellmer (1995), and, in the uncensored case, by Prakasa Rao
(1969). We are interested here in likelihood ratio tests ofH0� λ�t0� = θ0 versus
H1� λ�t0� 
= θ0 for t0 ∈ �0�∞� and θ0 ∈ R+ fixed. The corresponding interval
estimation problem is to find a 1 − α confidence interval for λ�t0� for fixed
α ∈ �0�1�.

Example 5 (Monotone regression function). Suppose that �Xi�Yi�, i = 1�
� � � � n, are i.i.d. with Yi = r�Xi� + εi where r� �0�1� → � is an unknown
monotone function and εi are i.i.d. Gaussian random variables with mean
zero, finite variance, and independent of Xi. The least squares estimator of r
was studied by Brunk (1970) (under more generality than the above assump-
tions). We are interested here in likelihood ratio tests ofH0� r�t0� = θ0 versus
H1� r�t0� 
= θ0 for t0 ∈ �0�∞� and θ0 ∈ � fixed. The corresponding interval
estimation problem is to find a 1 − α confidence interval for r�t0� for fixed
α ∈ �0�1�.

For further examples of this type, see Groeneboom and Wellner (2001).
A common theme in all of these examples is that (under modest assump-

tions) n1/3 times the difference between the maximum likelihood estimator at
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a point t0 and the true function at the same point converges in distribution
to a constant (depending on the particular problem) times the distribution of
the location of the minimum of two-sided Brownian motion plus a parabola.
Another equivalent description of the asymptotic distribution is as a constant
(the same constant as before divided by 2) times the slope at zero of the great-
est convex minorant of two-sided Brownian motion plus a parabola. Since we
have neither a

√
n convergence rate nor a Gaussian limiting distribution for

theMLE in any of these problems, we do not expect a limiting χ2 distribution
for the likelihood ratio statistic, as would be expected in regular paramet-
ric and certain semiparametric settings [see e.g. Murphy and Van der Vaart
(1997) for the latter].

For example, in Example 2, assuming that F and G have positive densities
f and g respectively at t0, it is known that

n1/3��n�t0� −F�t0��
d→
{
F�t0��1−F�t0��f�t0�

2g�t0�
}1/3

2�(1.1)

where � ≡ argmin�W�t� + t2� and W is two-sided Brownian motion starting
from 0; see Groeneboom and Wellner (1992).

Instead, one would expect the limiting distribution to be described by some
functional of two sided Brownian motion (in conformity with the limiting dis-
tribution of the MLE). This is indeed the case. The limiting distribution of
the likelihood ratio statistic is, instead of χ21, a fixed universal distribution de-
scribed briefly as follows: Let G be the greatest convex minorant of W�t� + t2
for a two-sided Brownian motion W, and let � denote the corresponding pro-
cess of slopes. Similarly, let G0 be the process which, for t ≥ 0, is the greatest
convex minorant ofW�t�+ t2 for t ≥ 0 subject to the constraint that its slopes
stay greater than or equal to zero, and, for t < 0, is the greatest convex mi-
norant of W�t� + t2 for t < 0 subject to the constraint that its slopes stay
less than or equal to zero. Let �0 denote the corresponding process of slopes.
Then the limiting distribution we expect for the the likelihood ratio statistics
in Examples 1-5 is exactly that of

� ≡
∫ {

�2�t� − �2
0�t�

}
dt�(1.2)

We deal here in complete detail with the interval censoring model discussed
above in Example 2. We show that the likelihood ratio statistic in this prob-
lem does indeed have limiting distribution given by � in (1.2) under the null
hypothesis. Note that this is, as for the usual χ2 limit obtained in regular
parametric problems, universal: it does not depend on θ0, t0, or any of the
parameters of the particular problem. The universality of the limiting distri-
bution is useful not only in devising an asymptotic test for the null hypothesis,
but is also important in constructing approximate level 1−α confidence sets for
the parameter of interest. Note that to construct an approximate confidence
interval for F�t0� from (1.1), we must contend with the awkward problem
of estimating the unknown parameter 
F�t0��1−F�t0��f�t0�/�2g�t0���1/3 ap-
pearing on the right side. This entails smoothing to estimate f�t0� and g�t0�.
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By forming the likelihood ratio statistic (which entails estimation of the distri-
bution function under the null hypothesis with no smoothing involved), we get
a universal limiting distribution, thereby completely avoiding the smoothing
issue. This is a strong advantage of the likelihood ratio method of constructing
confidence sets.

For use of likelihood ratio methods in a related problem involving monotone
functions, see Wu, Woodroofe and Mentz (2001).

The rest of the paper is organized as follows: Section 2 gives statements
of our results for the interval censoring problem, including the limiting dis-
tribution of the likelihood ratio statistic under both the null hypothesis and
local (contiguous) alternatives, and the consistency of the test under fixed al-
ternatives. Section 3 gives the distribution of � as estimated by Monte-Carlo
methods. Section 4 shows how we can use the results of Sections 2 and 3 to
obtain confidence intervals for F�t0� in the context of Example 2. In Section 5
we give a brief discussion of further results, a heuristic discussion of why we
expect the same limiting null distribution in Examples 1 and 3-5, and open
problems. Proofs or proof sketches for the results in Sections 2 and 4 are given
in Section 6.

2. The interval censoring problem: statements of results.

2.1. The model. The density of the pair �T��� with respect to the measure
G× Counting measure on the product space �+ × 
0�1� is given by

pF�t� δ� = F�t�δ �1−F�t��1−δ�
Hence the log-likelihood for n observations is given by:

logLn�F�Y1�Y2� � � � �Yn�

=
n∑
i=1

{
�i log F�Ti� + �1− �i� log �1−F�Ti��

}

=
n∑
i=1

{
��i� log F�T�i�� + �1− ��i�� log �1−F�T�i���

}
(2.1)

whereT�1�� � � � �T�n� are the orderedTi’s and ��i� is the indicator corresponding
to T�i�. Let �n denote the MLE of F under no constraints, and let �0n be the
MLE of F under the constraint that the value of F at the point t0 equals θ0.
The unconstrained MLE �n is well characterized in this situation; see e.g.
Groeneboom and Wellner (1992). Note that from the expression for Ln it is
clear that both �n and �0n are determined uniquely only up to their values at
the observed Ti ’s (of course �0n is determined at the point t0).

2.2. The estimators and the likelihood ratio. The likelihood ratio in this
problem is given by

λn = supF Ln �F�Y1�Y2� � � � �Yn�
supF�t0�=θ0 Ln �F�Y1�Y2� � � � �Yn�

= Ln ��n�Y1�Y2� � � � �Yn�
Ln ��0n�Y1�Y2� � � � �Yn�

�
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The log-likelihood ratio statistic, namely twice the log-likelihood ratio, can
therefore be writtten as:

2 log λn = 2 logLn��n�Y1�Y2� � � � �Yn� − 2 logLn��0n�Y1�Y2� � � � �Yn�(2.2)

In order to compute the likelihood ratio statistic we need to characterize the
MLE’s, �n (the unconstrained MLE) and �0n (the constrained MLE).

Characterization and computation of the unconstrained maximum likeli-
hood estimator �n is well understood; see e.g. Groeneboom and Wellner (1992),
pages 35–50. Our main object here is to briefly give a characterization of the
constrained maximum likelihood estimator. Because these finite sample re-
sults are important for an understanding of the corresponding asymptotic
versions of the problem, we give statements of them here. For the uncon-
strained problem 0 ≤ F�T�1�� ≤ F�T�2�� ≤ · · · ≤ F�T�n�� ≤ 1, and hence it
suffices to find 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn ≤ 1 so as to maximize:

φ�w� =
n∑
i=1

{
��i� log�wi� + �1− ��i�� log �1−wi�

}
�

For the constrained maximization problem we want to maximize the likelihood
(2.1) over the class of distributions F satisfying F�t0� = θ0. Recall that 0 ≤
θ0 ≤ 1. Let m be such that T�m� ≤ t0 ≤ T�m+1�. For any F in the above class
we then have F�T�m�� ≤ θ0 ≤ F�T�m+1�� and denoting F�T�i�� by wi as before
the problem reduces to maximizing

φ�w1�w2� � � � �wn� =
m∑
i=1

{
��i� log�wi� + �1− ��i�� log�1−wi�

}

+
n∑

i=m+1

{
��i� log�wi� + �1− ��i�� log �1−wi�

}
≡ φL�wL� +φR�wR�

over the set

0 ≤ w1 ≤ w2 ≤ · · · ≤ wm ≤ θ0 ≤ wm+1 ≤ · · · ≤ wn ≤ 1�

Note that m itself is random and that m/n tends to G�t0� almost surely. It
suffices to maximize φL and φR separately. In fact one only needs to address
the problem of maximizing φL, since maximizing φR can be reduced to a
corresponding “left” maximization problem. Note that to maximize φL we need
to address the following problem: Given indicators ��1�� � � � � ��m�, for some m
we need to find 0 ≤ w1 ≤ w2 ≤ · · · ≤ wm ≤ θ0 < 1 so as to maximize φL�wL�.

Necessary and sufficient conditions characterizing the unconstrained and
constrained maximizing vectors ŵ and ŵ0 are given by the following theorem:

Theorem 2.1 (Characterization of the unconstrained and constrained
MLEs). Suppose that ��1� = 1 and ��n� = 0. Then ŵ maximizes φ over w
satisfying 0 < w1 ≤ w2 ≤ · · · ≤ wn < 1 if and only if the following two con-
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ditions are satisfied (and further the maximizer ŵ is uniquely determined by
these two conditions):

∑
j≤i

{
��j�
ŵj

− 1− ��j�
1− ŵj

}
≥ 0� i = 1�2� � � � � n(2.3)

and

n∑
i=1

{
��j�
ŵj

− 1− ��j�
1− ŵj

}
ŵj = 0 �(2.4)

Furthermore ŵL ≡ �ŵ0
1� � � � � ŵ

0
m� maximizes φL over w satisfying 0 < w1 ≤

w2 ≤ · · · ≤ wm ≤ θ0 if and only if the following two conditions are satisfied
(and further the maximizer ŵL is uniquely determined by these two conditions):

∑
j≤i

{
��j�
ŵ0
j

− 1− ��j�
1− ŵ0

j

}
≥ 0� i = 1�2� � � � �m�(2.5)

m∑
i=1

{
��j�
ŵ0
j

− 1− ��j�
1− ŵ0

j

}
ŵ0
j = θ0

m∑
i=1

{
��j�
ŵ0
j

− 1− ��j�
1− ŵ0

j

}
�(2.6)

Proof. The first part follows from Groeneboom and Wellner (1992), pages
39 -40. To prove the second part, let S0 = 0 and

Si ≡
∑
j≤i

{
��j�
ŵ0
j

− 1− ��j�
1− ŵ0

j

}
� i = 1� � � � �m�

Now by concavity of φL and convexity of VL ≡ 
w ∈ �m� 0 ≤ w1 ≤ � � � ≤ wm ≤
θ0�, ŵL maximizes φL over VL if and only if

d

dt
φL��1− t�ŵL + tw�

∣∣∣∣
t=0

=
m∑
j=1

{
��j�
ŵ0
j

− 1− ��j�
1− ŵ0

j

}
�wj − ŵ0

j�(2.7)

= −
m∑
i=1
Si

{
wi+1 −wi − �ŵ0

i+1 − ŵ0
i �
}

(2.8)

≤ 0 for all w ∈ VL �(2.9)

where (2.8) holds by summation by parts with ŵ0
m+1 = wm+1 = θ0. When

��1� = 1 (so ŵ0
1 > 0), let w = ŵL − ε1i ∈ VL where 1i = �1� � � � �1�0� � � � �0� is

the vector with 1 in the first i positions and 0 in the remainingm−i positions.
Taking this choice of w in (2.7) shows that Si ≥ 0; that is, (2.5) holds. Taking
wi = θ0 for all i in (2.8) shows that

∑m
i=1Si�ŵ0

i+1− ŵ0
i � ≤ 0, and together with

Si ≥ 0 and ŵ0
i+1 − ŵ0

i ≥ 0 this yields

m∑
i=1
Si

(
ŵ0
i+1 − ŵ0

i

) = 0�(2.10)
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But (2.10) is equivalent to (2.6) via summation by parts. For sufficiency, note
that (2.5) and (2.6) imply that (2.9) holds. For further details see Banerjee
(2000) and Banerjee and Wellner (2000). Alternatively, see Van Eeden (1957a),
Van Eeden (1957b), and Barlow, Bartholomew, Bremner and Brunk (1972),
pages 56–57. ✷

For both the unconstrained and the constrained MLE there are important
geometric interpretations which we now briefly describe: Define H) � �0� n� →
R as

H)�t� = sup
{
H�t� �H�i� ≤ ∑

j≤i
��j� for i = 0�1� � � � � n�H�0� = 0�H is convex

}
�

Here by convention ��0� = 0. The function H) is the Greatest Convex Mi-
norant (GCM) of the points �i�∑j≤i ��j�� on �0� n�. In other words it is the
greatest convex function on �0� n� whose graph lies below that obtained by
joining the points �i�∑j≤i ��j�� successively by means of straight lines (the
pointwise supremum of a collection of convex functions gives a convex func-
tion ). AlternativelyH) can also be thought of as the greatest convex minorant
of the left-continuous function H̃ which assumes the value 0 at the point 0
and on the interval �i − 1� i� assumes the value

∑
j≤i ��j�� Now let ŵi be the

left derivative of H) at i. Then �ŵ1� � � � � ŵn� is the unique vector maximizing
φ�w� subject to the monotonicity constraints. For a proof see Groeneboom and
Wellner (1992), page 41. Furthermore, an explicit expression for ŵ is given by
the following “max-min” formula:

ŵm = maxi≤mmink≥m

∑
i≤j≤k ��j�
k− i+ 1

�

The geometric interpretation of the solution ŵL is easily obtained in parallel
to the discussion of the unconstrained solution: Define H)

L � �0�m� → R as

H)
L�t� = sup

{
H�t� �H�i� ≤ ∑

j≤i
��j� for i = 0�1� � � � �m�

H�0� = 0�H is convex
}
�

Here by convention δ�0� = 0. The functionH)
L is the Greatest Convex Minorant

(GCM) of the points �i�∑j≤i ��j�� on �0�m�. In other words it is the greatest
convex function on �0�m� whose graph lies below that obtained by joining the
points 
�i�∑j≤i ��j���mj=1 successively by means of straight lines Now let w̃i be
the left derivative ofH)

L at i, and set ŵ0
i = min
w̃i� θ0�. Then �ŵ0

1� ŵ
0
2� � � � � ŵ

0
m�

is the unique vector maximizing φL�w� subject to the monotonicity constraints
and wm ≤ θ0. In words, we form the greatest convex minorant of the cumula-
tive sum diagram on �0�m� (corresponding to T�j�’s less than or equal to θ0),
and find the left derivatives thereof; when these slopes exceed θ0 we simply
truncate them to θ0. We will use the notation �̃n�t� for the function obtained
from �̃n�T�i�� = w̃i, i = 1� � � � �m, and �0n�t� for the function obtained from
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�0n�T�i��, i = 1� � � � �m, with corresponding natural definitions to the right of
t0. (For the interval �T�m�� t0�, we define both �̃n and �0n by extending the value
from T�m� and jumping to θ0 if necessary in the case of �0n.)

To maximize φR we are addressing the same problem as in maximizing
φL except for the fact that now the class of vectors over which we maximize
satisfies 0 < θ0 ≤ wm+1 ≤ wm+2 ≤ · · · ≤ wn ≤ 1. Now, setting uj = 1−wn+1−j
and γ�j� = 1 − ��n+1−j� we note that maximizing φR�wR� subject to 0 < θ0 ≤
wm+1 ≤ wm+2 ≤ · · · ≤ wn ≤ 1 is the same as maximizing φ̃R�u1� u2� � � � � un−m�,
where

φ̃R�u1� u2� � � � � un−m� =
n−m∑
i=1

{
γ�i� log ui + �1− γ�i�� log �1− ui�

}
subject to 0 ≤ u1 ≤ u2 ≤ · · · ≤ un−m ≤ 1 − θ0 < 1. Once the maximizer û
has been obtained, the corresponding ŵR can be recovered from the relation
wj = 1− un+1−j. So the constrained maximizer �0n is evaluated in two pieces;
�ŵ1� � � � � ŵm� and �ŵm+1� � � � � ŵn� being obtained separately. The key is the
geometric picture of the solution ŵR: form the greatest convex minorant of the
cumulative sum diagram 
�i�∑j≤i ��j���ni=m on �m�n�, and the corresponding
left derivatives. If these drop below θ0, we simply replace them by θ0.

These characterizations are illustrated by Figures 1 and 2. [These figures
were generated from F =Exponential�1�, G =Uniform�0�3� and n = 30. For
the constrained case we chose t0 satisfying F�t0� = 2/3. The estimators �n
and �0n turned out to be as follows:

�n� 2/5�1− 5��5/11�6− 16��4/5�17− 21��1�22− 30��
�0n� 2/5�1− 5��1/2�6− 11��2/3�12− 16��4/5�17− 21��1�21− 30���

2.3. Asymptotic properties of the estimators. To describe the asymptotic
properties of the unconstrained and constrained estimators �n and �0n, we
first describe several processes connected with the natural limiting problem.
Let W denote a standard two-sided Brownian motion process starting from
zero, and for positive constants a and b, define the process Xa�b by Xa�b�t� ≡
aW�t� + bt2. The greatest convex minorant Ga�b of Xa�b on R is characterized
by the following theorem.

Theorem 2.2 (Greatest convex minorant of Xa�b). The greatest convex
minorant Ga�b of Xa�b exists and is characterized by the following conditions:

(i) The function Ga�b is everywhere below the function Xa�b:

Ga�b�t� ≤Xa�b�t� for all t ∈ � �(2.11)

(ii) Ga�b has a monotone (right) derivative ga�b.
(iii) The function Ga�b and its (right) derivative ga�b satisfy∫

R

Xa�b�t� −Ga�b�t��dga�b�t� = 0�(2.12)
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Big dots: unconstrained estimator. Small dots: constrained estimator.
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The picture of Ga�b and ga�b which emerges from Theorem 2.2 is as follows:
The greatest convex minorant process Ga�b is piecewise linear with changes
of slope at isolated points where it touches Xa�b; thus the slope process ga�b
is piecewise constant, with jumps only at points s where Ga�b�s� =Xa�b�s�.

The slope process ga�b can be viewed as the unconstrained estimator of
the monotone function 2bt based on observation of Xa�b (which we can think
of as dXa�b�t� = 2bt + adW�t�). On the other hand, we can consider a con-
strained estimator g0

a� b of 2bt based on observation of Xa�b which uses the
knowledge that the “true” monotone function is zero at t = 0. The correspond-
ing “constrained convex minorants” of Xa�b are characterized in the following
theorem:

Theorem 2.3 (Constrained greatest convex minorants of Xa�b). The con-

strained greatest convex minorants G0
a� b of Xa�b exist and are characterized

by the following conditions:

(i) The function G0
a� b is everywhere below the function Xa�b:

G0
a� b�t� ≤Xa�b�t� for all t ∈ ��(2.13)

(ii) G0
a� b has a monotone (right) derivative g0

a� b satisfying g0
a� b�0� = 0.

(iii) The function G0
a� b and its (right) derivative satisfy

∫
R

{
Xa�b�t� −Ga�b�t�

}
dg0

a� b�t� = 0 �(2.14)

The picture of G0
a� b and g0

a� b which emerges from Theorem 2.3 parallels
the situation for the constrained estimator in Theorem 2.1 and is as follows:
for t ≤ 0 we form the greatest convex minorant G̃L�t� of the process Xa�b�t�,
t ≤ 0; when its corresponding slope process g̃L�t� exceeds zero, we replace the
slopes by 0 (and replace G̃L by the appropriate constant value from there to
t = 0). Similarly, for t > 0 we form the greatest convex minorant G̃R�t� of the
process Xa�b�t�, t > 0; when its corresponding slope process g̃R�t� decreases
below zero as t decreases to 0, we replace the slopes by 0 (and replace G̃R
by the appropriate constant value from there to t = 0). The resulting process
is G0

a� b with slope process g0
a� b. Note that g0

a� b�0� = 0 and, from results of
Groeneboom (1983), g0

a� b is continuous at 0 almost surely, while G0
a� b has a

jump discontinuity at 0.
Figures 3 and 4 illustrate Theorems 2.2 and 2.3.
Now we can describe the joint limiting distributions of the unconstrained

and unconstrained estimators �n and �0n. Here is our basic assumption:

Assumption A. Suppose that F and G are fixed distributions with contin-
uous (Lebesgue) densities f and g in a neighborhood of the fixed point t0 with
F�t0� ∈ �0�1�, 0 < f�t0� <∞ and 0 < g�t0� <∞.
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Fig. 3. The one-sided convex minorants G̃L and G̃R and W�t� + t2.

t
-0.4 -0.2 0.0 0.2 0.4 0.6

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

Unconstrained.
One-sided 
Constrained.

Fig. 4. Close-up view of G1�1, G̃L�R, G0
1�1 and W�t� + t2.
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Theorem 2.4 (Asymptotic distributions for the estimators). A. (At a point
t 
= t0.) Suppose that F and G have positive continuous densities f and g
respectively at t 
= t0). Then

(
n1/3��n�t� −F�t��� �n1/3��0n�t� −F�t��

) d→�����
where

� ≡
(
4F�t��1−F�t�f�t�

g�t�
)1/3

argmin 
W�h� + h2� �(2.15)

Consequently

n1/3
(
�n�t� − �0n�t�

) p→0�(2.16)

B. (In n−1/3 neighborhoods of t0.) Suppose Assumption A holds. Define pro-
cesses Xn and Yn by

Xn�t� = n1/3��n�t0 + tn−1/3� −F�t0��
and

Yn�t� = n1/3��0n�t0 + tn−1/3� −F�t0�� �
Then the finite dimensional marginals of the processes �Xn�t��Yn�t��, converge
to the finite dimensional marginals of the process �1/g�t0���ga�b�t��
g0
a� b�t�� where a ≡ √

F�t0��1−F�t0��g�t0�, b ≡ f�t0�g�t0�/2, and the slope

processes ga�b and g0
a� b are described in Theorems 2.2 and 2.3. Furthermore,

for p ≥ 1,

�Xn�t��Yn�t��
d→�1/g�t0�� �ga�b�t�� g0

a� b�t��
in � p�−K�K� ×� p�−K�K�, for each K > 0.

2.4. The likelihood ratio statistic under H0. Now we can state the main
theorem of this paper concerning the asymptotic distribution of the likelihood
ratio statistic 2 log�λn� given in (2.2) under the null hypothesis. For the par-
ticular values a = b = 1, the corresponding slope processes g1�1 and g0

1�1 in
Theorems 2.2 and 2.3 will be denoted by g1�1 ≡ � and g0

1�1 ≡ �0.

Theorem 2.5 (Asymptotic distribution of 2 log λn under H0). Suppose that
Assumption A holds. Suppose that F satisfies the null hypothesis H0 � F�t0� =
θ0. Then the likelihood ratio statistic 2 log�λn� given in (2.2) satisfies

2 log�λn�
d→
∫ (���z��2 − ��0�z��2)dz ≡ �

where g1�1 ≡ � and g0
1�1 ≡ �0 are as defined in Theorems 2.2 and 2.3.
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2.5. The likelihood ratio statistic under local (contiguous) alternatives. We
need some further assumptions to handle local alternatives:

Suppose that 
Fn� is a sequence of continuous distribution functions sat-
isfying the following conditions:

Assumption B(1). For some c > 0, Fn�t� = F�t� for all t with �t − t0� ≥
cn−1/3.

Assumption B(2). The functions An�t� = n1/3�Fn�t� −F�t�� satisfy
An�t0 + n−1/3z� ≡ Bn�z� → B�z� ≡ f�t0�K�z�

uniformly for z ∈ �−c� c�. [Thus B and K are continuous functions on �−c� c�
and both B and K vanish on �−c� c�c.]

Theorem 2.6. Suppose that F and G satisfy Assumption A, and 
Fn� is a
sequence of distribution functions satisfying Assumptions B(1) and B(2). Con-
sider the sequence of probability measures 
PnFn�G� and 
PnF�G�. Then, under

PnF�G, the local log-likelihood ratio

log�Ln�Fn�/Ln�F��
d→N�−σ2/2� σ2�

where

σ2 = g�t0�
F�t0��1−F�t0��

∫
B2�z�dz = f2�t0�g�t0�

F�t0��1−F�t0��
∫
K2�z�dz�(2.17)

This, in particular, implies that the sequence 
PnFn�G� and the sequence 
PnF�G�
are mutually contiguous.

To state our main result concerning the behavior of the likelihood ratio
statistic under local alternatives requires some further notation. First we de-
fine

8�z� =



g�t0�

∫ z∧c
0

B�y�dy� z ≥ 0

−g�t0�
∫ 0

z∨−c
B�y�dy� z < 0




=



f�t0�g�t0�

∫ z∧c
0

K�y�dy� z ≥ 0

−f�t0�g�t0�
∫ 0

z∨−c
K�y�dy� z < 0


 �

Clearly 8 is continuous and constant outside of �−c� c�. Also 8�0� = 0. Now
consider the processes

Xa�b�8�z� ≡ aW�z� + bz2 +8�z��
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we will be primarily interested in this process for 8 defined above,

a =
√
F�t0� �1−F�t0��g�t0�� b = f�t0�g�t0�/2�

and for the “canonical parameters” a = 1, b = 1, and 8 replaced by �b/a�4/3
8�·/�b/a�2/3�.

Our first limiting result under the local alternatives concerns the behavior
of the processes Xn and Yn as in Theorem 2.4.

Theorem 2.7. Suppose that the distribution functions F, G satisfy As-
sumption A, and the sequence of distribution functions 
Fn� satisfies Assump-
tions B(1) and B(2). Then the finite dimensional marginals of the process
�Xn�t��Yn�t�� , considered as a process in the space � p�−K�K�×� p�−K�K�
converge to the finite dimensional marginals of the process �1/g�t0�� �ga�b�8�t��
g0
a� b�8�t�� under the sequence of (contiguous) alternatives 
PnFn�G�. Further-

more it is also the case that under this sequence, for any p ≥ 1,(
Xn�t��Yn�t�

) d→(
1/g�t0�

) �ga�b�8�t�� g0
a� b�8�t��

in � p�−K�K� ×� p�−K�K�, for each K > 0.

With Theorem 2.7 in hand, we can state our result concerning the asymp-
totic behavior of the likelihood ratio statistics under local alternatives:

Theorem 2.8. Suppose that the hypotheses of Theorem 2.6 hold. Then, un-
der the local alternatives 
PnFn�G�, the likelihood ratio statistics converge in

distribution as follows:

2 log λn
d→ 1
g�t0�F�t0��1−F�t0��

∫
Da�b�8

(�ga�b�8�z��2−�g0
a� b�8�z��2

)
dz(2.18)

d=
∫ (�g1�1�80

a� b
�z��2−�g0

1�1�80
a� b

�z��2)dz�(2.19)

where

80
a� b�t� ≡ �b/a�4/38��a/b�2/3t��

2.6. The likelihood ratio statistic under a fixed alternative. In Section 2.4
we stated our main result for the asymptotic distribution of the log-likelihood
ratio when the underlying distribution belongs to the null hypothesis, or in
other words satisfies F�t0� = θ0. Here we study the behavior of the log-
likelihood ratio when the true distribution is in the alternative hypothesis.
Hence F�t0� 
= θ0. We will assume that t1 satisfies F�t1� = θ0 (and that this
point is unique).

Theorem 2.9 (Asymptotic behavior of 2 log λn under fixed alternatives).
Suppose that F�t0� 
= θ0, and there is a neighborhood A of t0 such that F
and G are continuously differentiable on A with densities f and g respec-
tively, and f�t0� and g�t0� are both positive. Moreover, suppose that there is
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some open interval �c� d� with �t0 ∧ t1� t0 ∨ t1� ⊂ �c� d� and each t ∈ �c� d� is a
support point of G. Then

2
n
log λn

p→ 2K�PF�G�PH�G� > 0(2.20)

= 2 inf
{
K�PF�G�PU�G�� U a d.f. with U�t0� = θ0

}
(2.21)

where K�P�Q� = EP log�dP/dQ� is the Kullback-Leibler discrepancy between
P and Q, and the distribution function H is described as follows:

H�t� =
{
F�t� ∨ θ0� t ≥ t0�
F�t� ∧ θ0� t < t0�

(2.22)

Theorem 2.9 yields consistency of the likelihood ratio test based on the
asymptotic critical values coming from Theorem 2.5: that is, let dα satisfy
P�� ≥ dα� = α for 0 < α < 1, and suppose that we reject H0 when 2 log λn >
dα.

Corollary 2.1. If the hypotheses of Theorem 2.9 hold, then the likelihood
ratio test given by (2.2) is consistent; that is,

PF�G�2 log λn ≥ dα� → 1�

3. The limiting distribution under H0: results via simulations. To
carry out the tests described in Section 2 or find confidence sets based on the
likelihood ratio statistic, we need to know the distribution of � described
in Theorem 2.5, or at least a few selected quantiles thereof. Although it may
be possible to use the methods and techniques of Groeneboom (1983) and
Groeneboom (1988) to find this distribution analytically, we will leave this
problem for future research. Here we give estimates of the distribution of �
by two different methods.

Simulation method 1. The first method involves simply estimating the
distribution of � by using Theorem 2.5: we simply compute the log-likelihood
ratio statistic many timesM = 104 for a large sample size n = 104. In the par-
ticular two cases we chose, the distribution F was Exponential�1� or Weibull
with shape parameter 2 and scale parameter 1, while the distribution G was
Uniform�0�2�, and we chose t0 = log�2� or t0 = �log�2��1/2, so that θ0 = 1/2 in
both cases. Table 1 gives the values of the various constants involved in the
two situations studied; we present results in Figure 5 for only the Exponential
case.

The resulting empirical distribution of the M = 104 values of the statis-
tic 2 log λn for the exponential case is shown in Figure 5, together with the
empirical distribution from method 2 as explained below.

Simulation method 2. In this method we generated discrete approxima-
tions to the Brownian motion process W by summing independent standard
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Table 1

F t0 �0 f �t0� g�t0� a b

Exponential�1� log�2� .5 .5 .5 .3536 .1250
Weibull�1�2� �log�2��1/2 .5 .8326 .5 .3536 .2081

normal random variables 
Zj�Z′
j� and forming the corresponding partial sum

processes

Wm�t� ≡m−1/2
{
1
t ≥ 0�

�mt�∑
j=1

Zj + 1
t < 0�
�m�−t��∑
j=1

Z′
j

}

form = 104 and−2 ≤ t ≤ 2. We then generated the process �m�t� ≡Wm�t�+t2
on a grid with step size � = �0002 = 1/m and found the greatest convex mi-
norant Gm, constrained (one-sided) greatest convex minorant(s) G0

m, and the
corresponding slope processes gm and g0

m. We then computed the correspond-
ing value of the random variable �m, repeating this processes M = 3 × 104

times. The resulting empirical distribution of allM = 3× 104 values of �m is
shown in Fig. 5.

Based on these estimators of the distribution of �, our corresponding es-
timators of several selected quantiles of F� are shown in Table 2. The last
(fifth) column of the table gives an estimate of the standard deviation of the

x

F
(x

)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Brownian
Exponential

Fig. 5. Empirical Distributions, Methods 1 and 2, F = Exponential.
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corresponding empirical quantiles (method 2) in column four. We favor (and
have been using) the quantile estimates produced via method 2. For more
complete tables, see Banerjee (2001) or Banerjee and Wellner (2000).

4. Pointwise confidence intervals for F�t0�. To form confidence sets
for F�t0�, we proceed by inverting the likelihood ratio tests for different values
of θ. That is, let λn�θ� denote the likelihood ratio for testing H0 � F�t0� = θ
versus H1 � F�t0� 
= θ. For 0 < α < 1, let dα be the upper α quantile of the
distribution of � : P�� > dα� = α. Then an approximate 1− α confidence set
Cn�α for F�t0� is given by

Cn�α ≡
{
θ� 2 log λn�θ� ≤ dα

}
�(4.1)

Suppose that F is the true distribution function and θ0 ≡ F�t0� is the true
value of F at t0. Then the following proposition guarantees that the coverage
probability of the sets Cn�α is approximately 1− α:

Proposition 4.1. Suppose that F and G have densities f and g which are
positive and continuous in a neighborhood of t0. Then

PF�G
(
F�t0� ∈ Cn�α

) → P
(
� ≤ dα

) = 1− α
as n→ ∞.

Proof. Note that

PF�G�F�t0� ∈ Cn�α� = PF�G�2 log λn�θ0� ≤ dα� → P�� ≤ dα� = 1− α
by Theorem 2.5. ✷

The following proposition guarantees that the sets Cn�α are closed intervals
bounded away from 0 and 1 if we observe a failure to the left of t0 and a
censored point to the right of t0.

Proposition 4.2. Fix α ∈ �0�1�. If
∑m
i=1 ��i� ≥ 1 and

∑n
i=m+1�1−��i�� ≥ 1,

then the set Cn�α defined in (4.1) is a closed bounded interval contained
in �0�1�.

For a proof of Proposition 4.2 and a study of the finite sample properties of
the confidence intervals, see Banerjee (2000). We illustrate the formation of the
confidence sets and Proposition 4.2 in Fig. 6 [in which n = 3000, d�05 = 2�269
from Table 2, and the “true” F�t0� = �5].

5. Discussion: further results and open problems. There are a num-
ber of interesting further results and open problems connected with the meth-
ods and approaches of this paper. The following paragraphs discuss several of
these.

A. Analytic structure of the distribution of �? In Section 3 we presented
Monte-Carlo estimates of the distribution of �. It would be very interesting to
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Fig. 6. Plots of θ �→ 2 log λn�θ� and resulting 95% confidence interval.

characterize the distribution of � analytically. This will undoubtedly involve
the methods used in both Groeneboom (1983) and Groeneboom (1988).

B. Testing at k > 1 points? If we consider testingH0�F�t1� = θ1� � � � �F�tk� =
θk for different time points t1 < · · · < tk, θ1 < · · · < θk, and k ≥ 2, then it
follows from methods similar to those used here that (under the assumption
that F and G have continuous positive derivatives f and g respectively at all
ti, i = 1� � � � � k)

2 log�λn�
d→�k(5.1)

Table 2
Estimated quantiles x̂p of the distribution of �

x̂p, Method 1 x̂p, Method 1 Method 2
p F = Exponential F = Weibull x̂p, Method 2 Ŝp

.25 0.06594 0.06204 0.06402 0.00161

.50 0.28310 0.27522 0.28506 0.00361

.75 0.81148 0.79449 0.80694 0.00806

.80 1.00587 0.96737 0.98729 0.00943

.85 1.24393 1.22480 1.22756 0.01178

.90 1.61669 1.61514 1.60246 0.01650

.95 2.24792 2.26465 2.26916 0.02374

.99 3.75947 4.02426 3.83630 0.05471
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where �k
d=Y1 + � � � + Yk and the Yj’s are i.i.d. as �. This is somewhat

analogous to the familiar results concerning limiting χ2k distributions for log-
likelihood ratio tests in regular parametric cases. For a proof of (5.1), see
Banerjee (2000).

C. Union-intersection tests: supremum of LR statistics? For completely ob-
served data, the supremum of point-wise (binomial-) likelihood ratio tests has
been studied by Berk and Jones (1979) and Owen (1995). The confidence bands
constructed by Owen by inverting these tests have some very desirable prop-
erties. It would be very interesting to study the asymptotic distribution of the
supremum of the log-likelihood ratio statistics 2 log λn�F0�t�� as a process in
t with a view toward construction of confidence bands for F by inversion of
the tests.

D. Other problems of this (monotone function) type? In the introduction we
introduced several other problems of the same basic type studied here. In
each of these problems, the unconstrained estimator is defined in terms of
the slopes of the greatest convex minorant of a certain cumulative-sum dia-
gram, and the limiting distribution of the unconstrained estimator at a fixed
point is (under a positive curvature assumption) that of a constant (typically
a �b/a�1/3 divided by a constant from the localization of the x−axis for the
cumulative-sum diagram) times the slope at zero of the greatest convex mino-
rant of the sum of two-sided Brownian motion and a parabola. We conjecture
that in problems 1 and 3–5 the behavior of the natural constrained estima-
tors will behave in a way which is (asymptotically at least) the same as the
constrained estimators in our current Example 2, and hence that the asymp-
totic distribution of the likelihood ratio statistic is the same as that obtained
in Theorem 2.5 for Example 2. Verification of this conjecture will depend on
careful analyses of the constrained estimators in the various examples; we
have not yet completed such a detailed study in any of these examples, but
have begun a detailed study of Example 1. It would be very interesting to have
some unified approach to all of these various problems.

E. Other problems of related type. Groeneboom, Jongbloed and Wellner
(2000b) have obtained limiting distributions for the estimation of convex func-
tions. What are the corresponding results for log-likelihood ratio statistics in
that (and other related) cases?

6. Proofs for Section 2.

6.1. Proofs for Subsection 2�3. Theorems 2.2 and 2.3 can be viewed as
natural “continuous” extensions of the two parts of Theorem 2.1 respectively.
The proofs proceed by considering the corresponding unconstrained and con-
strained optimization problems connected with estimation of a montone func-
tion based on observation of the Gaussian processes 
Xa�b�t�: t ∈ �−c� c��, and
then passing to the limit as c→ ∞ exactly as in Groeneboom, Jongbloed and
Wellner (2000a) in the case of convex function estimation. We will not give
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these proofs here; they are given in some detail in Wellner (2001). Instead we
will focus on the proofs of Theorems 2.4–2.9.

Two slightly different approaches have been developed for proving results
such as Theorem 2.4.

The first of these, a type of continuous mapping approach, was initiated by
Prakasa Rao (1969), used by Brunk (1970) and developed further by Leurgans
(1982), and Huang and Zhang (1994); in particular, see Leurgans (1982) [The-
orem 2.1, page 289] and Huang and Zhang (1994) [Lemma 4, page 1265]. This
approach has the merit of conceptual simplicity: the limiting distribution is
obtained by performing the same operations [namely taking (left-)derivatives
of the greatest convex minorant] on a limiting process corresponding to the
finite-sample cumulative-sum diagram which are used to form the estimators.

The second approach, developed in Groeneboom (1985), Groeneboom (1988)
and Kim and Pollard (1990), proceeds by “switching relations” which relate the
estimators to the maximum of a certain process, and then appeal to an argmax-
continuous mapping theorem. Systematic use of the switching relationships
allowed Groeneboom to study the distribution theory of the processesGa�b and
the slope process ga�b in great detail; see Groeneboom (1988). The resulting
limiting distribution is, by virtue of a corresponding switching relationship
for the limiting process, the same as that obtained by the continuous mapping
approach.

In any case, these types of results have become standard: see Kim and
Pollard (1990), Huang and Zhang (1994) and Huang and Wellner (1995), so
we will not present detailed proofs here. For complete proofs of Theorems 2.4
and 2.7 by way of switching relations and the argmax continuous mapping
theorem, see Banerjee (2000), Banerjee and Wellner (2000) and Banerjee and
Wellner (2001).

Here we give a heuristic sketch of the proofs of Theorems 2.4 and 2.7. For
0 ≤ t <∞ set

V�t� = P�1
T ≤ t� =
∫ t
0
FdG� G�t� = P1
T ≤ t��

so that

dV

dG
�t� = F�t�� or V′�t� = F�t�g�t�

if G has density g with respect to Lebesgue measure. Let 	n be the empirical
measure of the pairs ��1�T1�� � � � � ��n�Tn�. The empirical counterparts of the
functions V and G are defined, for 0 ≤ t <∞, by


n�t� = 	n�1
T ≤ t� = n−1
n∑
i=1
�i1
Ti ≤ t��

�n�t� = 	n1
T ≤ t� = n−1
n∑
i=1

1
Ti ≤ t��
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The estimators �n and �0n are defined in terms of slopes of various greatest
convex minorants of 
��n�t��
n�t�� � 0 ≤ t <∞�, as explained in Section 2.2.

Now for fixed t ∈ �0�∞� and 0 < K < ∞ we define localized versions

��locn �t� h��
locn �t� h�� � h ∈ �−K�K�� of the cumulative sum diagram at a
fixed t ∈ �0�∞� as follows:

�locn �t� h� ≡ n1/3��n�t+ n−1/3h� −�n�t�� �

locn �t� h� ≡ n1/3{n1/3(
n�t+ n−1/3h� − 
n�t�

)
− n1/3��n�t+ n−1/3h� −�n�t��F�t�

}
�

Note that

E�locn �t� h� = n1/3�G�t+ n−1/3h� −G�t�� → hg�t�

if g = G′ exists at t, while Var��locn �t� h�� = O�n−2/3�, so that �locn �t� h� p→
hg�t�. Furthermore


locn �t� h� = n2/3�	n −P���−F�t���1�0� t+n−1/3h��T� − 1�0� t��T��
+ n2/3P��−F�t���1�0� t+n−1/3h��T� − 1�0� t��T��(6.1)

⇒ aW�h� + bh2 ≡Xa�b�h�

where a = √
F�t��1−F�t��g�t�, b = f�t�g�t�/2, W is a two-sided Brownian

motion starting from zero, and the weak convergence is in l∞��−K�K�� for
each 0 < K <∞; see, for example, Van der Vaart andWellner (1996), page 299.

When t 
= t0, part A of Theorem 2.4 follows (at least heuristically) by the
“slope of Greatest Convex Minorant continuous mapping theorem” of Prakasa
Rao (1969) and Huang and Zhang [(1994), Lemma 4, page 1265] upon noting
that asymptotically the constraint at t0 has no effect at t 
= t0.

Similarly, when t = t0, part B of Theorem 2.4 follows from (6.1) at t = t0
(so a and b are as in (6.1) with t = t0), and the “slope of Greatest Convex
Minorant continuous mapping theorem” of Prakasa Rao (1969) and Huang
and Zhang (1994). Note that t0 has become 0 on the localized time scale,
while the constraint on slopes (= θ0 at t0) has become = 0 at h = 0. In
this case the constraint at t0 matters and the limiting process for the con-
strained estimator is as described in Theorem 2.3. The joint convergence in
� p�−K�K� × � p�−K�K� follows immediately from the finite-dimensional
convergence since the processes are monotone, as was noted by Huang and
Zhang (1994), Corollary 2, page 1260.

To lay the groundwork for Theorem 2.7, we rewrite the localized process

locn �t0� h� as


locn �t0� h� = n2/3�	n −PFn�G���−F�t0��
(
1�0� t0+n−1/3h��T� − 1�0� t0��T�

)
+n2/3�PFn�G −PF�G�

(
�−F�t0�

)(
1�0� t0+n−1/3h��T� − 1�0� t0��T�

)
(6.2)
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+ n2/3PF�G��−F�t0��
(
1�0� t0+n−1/3h��T� − 1�0� t0��T�

)
⇒ aW�h� +8�h� + bh2 ≡Xa�b�8�h�

under PFn�G by an adaption of the null hypothesis proof together with the fact
that

n2/3�PFn�G −PF�G�
(
�−F�t0���1�0� t0+n−1/3h��T� − 1�0� t0��T��

= n2/3
∫ t0+n−1/3h
t0

{�Fn�s� −F�t0�� − �F�s� −F�t0��
}
dG�s�

=
∫ h
0
n1/3

(
Fn�t0 + n−1/3z

)−F(
t0 + n−1/3z�)g(t0 + n−1/3z

)
dz

→ g�t0�
∫ h
0
B�z�dz = 8�h�

uniformly on compact subsets by Assumptions B(1) and B(2). Then Theorem
2.7 follows by appeal to the “slope of greatest convex minorant” continuous
mapping theorem. ✷

Another proof of (6.2) proceeds from joint convergence of 
locn and the local
likelihood ratio log�Ln�Fn�/Ln�F�� together with an application of (a general
version of) Le Cam’s third lemma; see Banerjee and Wellner (2001) for a proof
organized this way.

6.2. Proofs for Subsection 2�4�

Proof of Theorem 2�5. In what follows we denote the set on which �n
and �0n differ by Dn. We first note that:

logLn��n� − logLn��0n� = n
∫
Dn

(
K��n�t�� θ0� −K��0n�t�� θ0�

)
d�n�t��(6.3)

where

K�p� θ0� = p log
p

θ0
+ �1− p� log 1− p

1− θ0
�

We first sketch the proof of the identity (6.3). From the characterizations of
�n and �0n it follows that these are constant on blocks, and on each block �n
and �0n are equal to the average of the �i’s on that block, or, in the case of �0n,
constant and equal to θ0 on the entire block. Using these facts together with
elementary algebra yields (6.3). Thus the likelihood ratio statistic is

2 log λn = 2n	n
{(
K��n�T�� θ0� −K��0n�T�� θ0�

)
1Dn

�T�}�
Now set B�a� x� = a log�x� + �1− a� log�1− x�, and note that

K��n�T�� θ0� = B��n�T���n�T�� − B��n�T�� θ0��
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Expanding B��n�T�� θ0� around �n�T� gives
K��n�T�� θ0� = −B′ ��n�T���n�T���θ0 − �n�T��

− 1
2B

′′ ��n�T���n�T���θ0 − �n�T��2

− 1
6B

′′′ ��n�T���)n�T���θ0 − �n�T��3�
where �)n�T� is an intermediate point between �n�T� and θ0 and

B
′ ��n�T���n�T�� =

�n�T�
�n�T�

− 1− �n�T�
1− �n�T�

= 0�

B
′′ ��n�T���n�T�� = − �n�T�

�n�T�2
− 1− �n�T�

�1− �n�T��2
= − 1

�n�T� �1− �n�T��
and

B
′′′ ��n�T���)n�T�� = 2

(
�n�T�

��)n�T��3
− 1− �n�T�

�1− �)n�T��3
)
�

Thus,

K��n�T�� θ0� =
1
2

1
�n�T� �1− �n�T��

��n�T� − θ0�2

+ 1
6
B

′′′ ��n�T���)n�T����n�T� − θ0�3�

Similarly,

K��0n�T�� θ0� =
1
2

1
�0n�T� �1− �0n�T��

��0n�T� − θ0�2

+ 1
6
B

′′′ ��0n�T���) )n �T����n�T� − θ0�3

where �) )n �T� is an intermediate point between �0n�T� and θ0. Thus,
2 log λn = 2n	n

{(
K��n�T�� θ0� −K��0n�T�� θ0�

)
1Dn

�T�}
= n	n

(
1

�n�T� �1− �n�T��
��n�T� − θ0�2

− 1
�0n�T� �1− �0n�T��

��0n�T� − θ0�2
)
1Dn

�T�
(6.4)

+ n

6
	n

(
B

′′′ ��n�T���)n�T����n�T� − θ0�3

− B
′′′ ��0n�T���) )n �T����n�T� − θ0�3

)
1Dn

�T�
= Sn +Rn�

We now introduce the local variable h as before through the relation h =
n1/3 �T − t0�, and denote the transformed difference set in terms of the local
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variable by D̃n ≡ n1/3 �Dn − t0�. The processes Xn and Yn are as before. Now
it is easily shown that:

(a) For every ε > 0, there exists a Kε > 0 such that

lim inf
n

P�D̃n ⊂ �−Kε�Kε�� > 1− ε�
(b) For every ε > 0 andM> 0, there exists a B > 0 such that

lim sup
n

P

(
sup

z∈�−M�M�
�Xn�z�� > B

)
≤ ε

and

lim sup
n

P

(
sup

z∈�−M�M�
�Yn�z�� > B

)
≤ ε�

The above results along with the facts that �n and �0n converge almost surely
to F uniformly on some interval around t0, that F is continuous, that �)n�T� is
intermediate between �n�T� and θ0 and �) )n �T� is intermediate between �0n�T�
and θ0 and that �n�T� and �0n�T� are eventually bounded away from 0 and 1
with arbitraily high probability, entails that we can write,

Rn = n

6
	n

(
B

′′′ ��n�T�� θ0�
(
�n�T� − θ0

)3 − B′′′(
�0n�T�� θ0

)(
�n�T� − θ0

)3)1Dn
�T�

+ op�1��
The first term on the right side of the above display can be shown to be
Op�n−1/3� and hence is certainly op�1� showing that Rn = op�1�. Then from
(6.4) it follows that we only need to find the asymptotic distribution of

Sn = n	n
(

1
�n�T� �1− �n�T��

��n�T� − θ0�2 −
1

�0n�T��1− �0n�T��
��0n�T� − θ0�2

)

× 1Dn
�T��

But

Sn = n	n

(
1

θ0 �1− θ0�
{��n�T� − θ0�2 − ��0n�T� − θ0�2

})+ op�1�
(6.5)

= S̃n + op�1��
This follows from the facts that

an ≡ n	n

((
1

�n�T� �1− �n�T��
− 1
θ0�1− θ0�

)
��n�T� − θ0�2

)
1Dn

�T�

and

bn ≡ n	n

((
1

�0n�T� �1− �0n�T��
− 1
θ0 �1− θ0�

)
��0n�T� − θ0�2

)
1Dn

�T�

are both op�1�. In the case of an this can be seen as follows. Write

an = n	n f̃n = n�	n −P� f̃n + nPf̃n�
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Now

n�	n −P�f̃n = n1/3�	n −P�
((

1
�n�T��1− �n�T��

− 1
θ0�1− θ0�

)

× (
n1/3��n�T� − θ0�

)2)

= n1/3�	n −P�g̃n�

Now, g̃n eventually belongs to a uniformly bounded Donsker class of functions
with arbitrarily high probability, whence it follows that n �	n−P� f̃n = op�1�.
Also,

nPf̃n =
∫
D̃n

(
1

�n�tn�z���1− �n�tn�z���
− 1
θ0�1− θ0�

)
X2
n�z�g�tn�z��dz�

where tn�z� = t0+n−1/3 z. The boundedness in probability ofXn on D̃n and the
uniform convergence of �n�tn�z�� to θ0 on D̃n and the fact that D̃n is eventually
in a compact set, then entail that the expression in the above display is op�1�.
Thus an is op�1�.

Now write S̃n (refer to 6.5) as

S̃n = n	nũn = n�	n −P�ũn + nPũn = op�1� + nPũn�

That n �	n−P� ũn is op�1� can be established as before by arguing that n2/3 ũn
is (eventually) in a Donsker class of functions with arbitrarily high probability.
It remains to tackle nP ũn, which can be written as

nPũn = n 1
θ0�1− θ0�

P

{
��n�T� − θ0�2 − ��0n�T� − θ0�2

}
1Dn

�T�

= 1
θ0�1− θ0�

∫
D̃n

(
X2
n�z� −Y2

n�z�
)
g�tn�z��dz

= g�t0�
θ0 �1− θ0�

∫
D̃n

(
X2
n�z� −Y2

n�z�
)
dz+ op�1�

= Ln + op�1��

We will show that

Ln
d→La�b ≡

1
g�t0�θ0 �1− θ0�

∫
Da�b

(
g2
a� b�z� − �g0

a� b�z��2
)
dz �
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where Da�b is the set on which ga�b and g0
a� b differ. To this end it clearly

suffices to show that∫
D̃n

(
X2
n�z� −Y2

n�z�
)
dz

d→
∫
Da�b

�g2
a� b�z� − �g0

a� b�z��2�
g2�t0�

dz�(6.6)

To this end, we invoke the following lemma from Prakasa Rao (1969).

Lemma 6.1. Suppose that 
Xnε�� 
Yn� and 
Wε� are three sets of random
variables such that:

(i) limε→0 lim supn→∞P�Xnε 
= Yn� = 0;
(ii) limε→0P�Wε 
= Y� = 0;

(iii) For every ε > 0, Xnε

d→Wε as n→ ∞.

Then Yn
d→Y as n→ ∞.

Using result (a) together with the above lemma and Theorem 2.4, by choos-
ing Yn ≡

∫
D̃n

�X2
n�z� −Y2

n�z��dz,

Xnε ≡
∫
�−Kε�Kε�

(
X2
n�z� −Y2

n�z�
)
dz�

Wε ≡
∫
�−Kε�Kε�

(
g2
a� b�z� − �g0

a� b�z��2
)

g2�t0�
dz

and

Y ≡
∫
Da�b

(
g2
a� b�z� − �g0

a� b�z��2
)

g2�t0�
dz�

the convergence in distribution in (6.6) follows in a straightforward manner.
It remains to prove that

La�b
d≡
∫
D

(
�2�y� − �2

0�y�
)
dy ≡ ��

this gives the key universality of the limiting distribution promised in the
introduction. This proceeds by Brownian scaling. The first step is to note that

Xa�b�t� d= a�a/b�1/3X1�1��b/a�2/3t� ≡ a�a/b�1/3X��b/a�2/3t�(6.7)

as a process indexed by t ∈ �. This implies that

�Ga�b�t��G0
a� b�t��

d= a�a/b�1/3(G1�1��b/a�2/3t��G0
1�1��b/a�2/3t�

)
�(6.8)

as processes, which in turn yields(
ga�b�t�� g0

a� b�t��Da� b

) d= a�b/a�1/3(g1�1��b/a�2/3t
)
� g0

1�1��b/a�2/3t��
�a/b�2/3D1�1

)
(6.9)

≡ a�b/a�1/3(���b/a�2/3t)��0(�b/a�2/3t)� �a/b�2/3D�
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as processes indexed by t ∈ �. Thus by straightforward calculation it follows
that

La�b =
1

g�t0�F�t0��1−F�t0��
∫
Da�b

(
g2
a� b�z� − �g0

a� b�z��2
)
dz

d= 1
a2

∫
�a/b�2/3D1�1

a2�b/a�2/3(g2
1�1��b/a�2/3z� − �g0

1�1��b/a�2/3z��2
)
dz

=
∫
D

(
�2�y� − �2

0�y�
)
dy ≡ ��

completing the proof. ✷

6.3. Proofs for Subsection 2�5.

Proof of Theorem 2�6. The local log-likelihood ratio for the interval cen-
soring problem, is by expanding around F,

logLn�Fn� − logLn�F� = n	n
{
� log

Fn
F

�T� + �1− �� log 1−Fn
1−F �T�

}

= n	n
{
ψ���T�Fn� − ψ���T�F�

}

= n	n
{
ψ′���T�F��Fn −F��T�

}

+ 1
2
n	n

{
ψ′′���T�F��Fn −F�2�T�

}
+ 1

6
n	n

{
ψ′′′���T�F)n��Fn −F�3�T�

}
≡ In + IIn + IIIn

where

ψ���T�F� ≡ � logF�T� + �1− �� log�1−F�T���

ψ′���T�F� = �

F�T� −
1− �

1−F�T� �

ψ′′���T�F� = − �

F2�T� −
1− �

�1−F�T��2 �

ψ′′′���T�F� = 2
(

�

F3�T� −
1− �

�1−F�T��3
)
�

and F∗
n�T� is an intermediate point between Fn�T� and F�T�. Note that

E
{
ψ′���T�F�∣∣T} = 0(6.10)
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while

−E{
ψ′′���T�F� ∣∣T} = 1

F�T� +
1

1−F�T� = 1
F�T��1−F�T�� �

Consider now, the term In. We have

In = n	n

((
�

F�T� −
1− �

1−F�T�
)
�Fn −F��T�

)

= n2/3�	n −P�
((

�−F�T�
F�T��1−F�T��

)
An�T�

)

= √
n�	n −P��sn�

where

sn���T� = n1/6
�−F�T�

F�T��1−F�T��An�T��

Now E�sn���T�� = 0,

Var�sn���T�� = P�s2n���T��

= n1/3
∫ A2

n�t�
F�t��1−F�t��dG�t�

(6.11)
=

∫ B2
n�z�

F�t0 + n−1/3z��1−F�t0 + n−1/3z��g�t0 + n
−1/3z�dz

→ σ2

by Assumptions A, B(1) and B(2) where σ2 is as defined in (2.17). Moreover,
with

Mn ≡ sup
t� �t−t0�≤cn−1/3

{
1

F�t��1−F�t��
}
→ 1
F�t0��1−F�t0��

<∞�

we find that, for each ε > 0 we have

E
s2n1��sn�≥√nε�� ≤ Mnn
1/3

∫
�t� �An�t��≥εn1/3/Mn�

A2
n�t�dG�t�

≤ Mn

∫
�z� �Bn�z��≥εn1/3/Mn�

B2
n�z�g�t0 + n−1/3z�dz

→ 0

by Assumptions A, B(1), and B(2) again. Thus the Lindeberg condition holds,
and it follows from the Lindeberg–Feller central limit theorem that

In
d→N�0� σ2��
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We now treat the term IIn. Note that

IIn = −1
2
n1/3 	n

([
�

F2�T� +
1− �

�1−F�T��2
]
A2
n�T�

)
�

Thus we have

E�IIn� = −1
2
n1/3P

([
�

F2�T� +
1− �

�1−F�T��2
]
A2
n�T�

)

= −1
2
n1/3

∫ A2
n�t�

F�t��1−F�t�� dG�t�

= −1
2

∫ B2
n�z�

F�t0 + n−1/3z��1−F�t0 + n−1/3z��g�t0 + n
−1/3z�dz

→ −σ
2

2

as in (6.11), and, moreover,

Var�IIn� ≤ n−1/3P
{(

�

F2�T� +
1−�

�1−F�2�T�
)2

A4
n�T�

}

≤ n−1/3
∫ ( 1
F3�t� +

1
�1−F�t��3

)
A4
n�t�dG�t�

≤ �2Mn�2n−2/3
∫ B4

n�z�
F�t0+n−1/3z��1−F�t0+n−1/3z��g�t0+n

−1/3z�dz

= O�n−2/3��

Hence it follows that IIn
p→−�1/2�σ2.

It remains to deal with IIIn. Note that for each n, if F)n�T� lies between
F�T� and Fn�T�, then∣∣F)n�T� −F�T�∣∣ ≤ ∣∣Fn�T� −F�T�∣∣ �
Denote the set �t0 − cn−1/3� t0 + cn1/3� by Dn. Then

sup
Dn

∣∣F)n�T� −F�T�∣∣ ≤ sup
Dn

∣∣Fn�T� −F�T�∣∣ = n−1/3 sup
�−c�c�

Bn�z� → 0 �

so that F)n converges uniformly to F on the line (recall that F)n and F coincide
outside Dn).

Using this it follows easily that E�IIIn� = O�n−1/3� and Var�IIIn� =
O�n−4/3�, and consequently IIIn

p→0.
It follows that

logLn�Fn� − logLn�F�
d→N�−σ2/2� σ2��
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hence the sequence of alternatives 
PnFn�G� and 
PnF�G� are mutually contigu-
ous, by a direct application of Le Cam’s first lemma [see, e.g., Van der Vaart
and Wellner (1996), page 404]. ✷

Proof of Theorem 2.8. From the proof of Theorem 2.5 we have the follow-
ing representation of the likelihood ratio statistic under the null hypothesis:

2 log λn =
g�t0�

F�t0��1−F�t0��
∫
D̃n

(
X2
n�z� −Y2

n�z�
)
dz+ op�1� ≡ Ln + op�1��

Since terms that are op�1� underPnF�G continue be op�1� underPnFn�G by conti-
guity (which follows from Theorem 2.6), it follows that the same representation
holds under 
PnFn�G�, and it suffices to find the asymptotic distribution of Ln
under 
PnFn�G�. That Ln converges in distribution under 
PnFn�G� to the right
side of (2.18) follows from Theorem 2.7 together with Lemma 6.1 by steps
similar to the proof of Theorem 2.5.

The equality in distribution given by (2.19) follows from scaling arguments
similar to those used in Theorem 2.5. ✷

6.4. One Proof for Subsection 2�6.

Proof of Part of Theorem 2.9. The convergence in probability in (2.20)
is proved using consistency results of Schick and Yu (1999) for the uncon-
strained estimator �n together with corresponding results for the constrained
estimator �0n and Glivenko-Cantelli class arguments; see Banerjee (2000) for
the details. Here we will just prove the equality in (2.21).

By straightforward calculation, the limit Kullback–Leibler discrepancy
K�PF�G�PH�G� in (2.20) is given by

K�PF�G�PH�G� = PF�G
[
� log

F

H
�T� + �1− �� log 1−F

1−H �T�
]
�

To show that (2.21) holds, we only need to show that for any distribution
function U satisfying U�t0� = θ0,

Diff�U�H� ≡K�PF�G�PU�G� −K�PF�G�PH�G� ≥ 0�

But we can write

Diff�U�H� = PF�G
[
� log

F

U
�T� + �1− �� log 1−F

1−U�T�
]

−PF�G
[
� log

F

H
�T� + �1− �� log 1−F

1−H �T�
]

= PF�G
[
� log

H

U
�T� + �1− �� log 1−H

1−U �T�
]

=
∫ (
F�t� log H

U
�t� + �1−F�t�� log 1−H

1−U �t�
)
dG�t�
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=
∫
�t0� t1�c

(
H�t� log H

U
�t� + �1−H�t�� log 1−H

1−U �t�
)
dG�t�

+
∫
�t0� t1�

(
F�t� log H

U
�t� + �1−F�t�� log 1−H

1−U �t�
)
dG�t�

=
∫ (
H�t� log H

U
�t� + �1−H�t�� log 1−H

1−U �t�
)
dG�t�

+
∫
�t0� t1�

{
�F�t� −H�t�� log H

U
�t�

+ �H�t� −F�t�� log 1−H
1−U �t�

}
dG�t�

≡K�PH�G�PU�G� +S

where we have used the fact thatH and F coincide outside the interval �t0� t1�
(or �t1� t0� if t1 < t0�). Regarding the previous display, note thatK�PH�G�PU�G�
is always nonnegative (by Jensen’s inequality). To show that the second term S
is nonnegative, we show that the integrand is nonnegative. This follows easily
because on �t0� t1�, H�t� = θ0 identically whereas F�t� ≤ θ0 so that F�t� −
H�t� ≤ 0. Since U�t0� = θ0, U�t� ≥ θ0 on �t0� t1�, showing that log�H�t�/U�t��
≤ 0. But then

�F�t� −H�t�� log H
U

�t� ≥ 0�

Similarly, on �t0� t1�

�H�t� −F�t�� log 1−H
1−U �t� ≥ 0�

This shows thatK�PF�G�PU�G�−K�PF�G�PH�G� ≥ 0, and hence (2.21) holds.
✷
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