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LOCALLY ASYMPTOTICALLY OPTIMAL DESIGNS FOR TESTING
IN LOGISTIC REGRESSION

By M.C. Spruill and Renjin Tu

Georgia Institute of Technology and Columbus State University

Design measures maximizing local power of asymptotically uniformly
most powerful (AUMP) tests about the value of logitP outside the obser-
vation space are characterized.

1. Introduction. Suppose that for each n < ∞ and each collection
�xn1� � � � � xnn� of points in a compact set X an experiment can be performed
which results in observations of the independent random variables �Y�xn�1��
� � � �Y�xn�n��. The Y�x� are Bernoulli with success probability

P�Y�x� = 1 � θ� x� = eθ
′f�x�/�1+ eθ

′f�x���
where f′�x� = �f0�x�� � � � � fm−1�x�� is a vector of known continuous functions,
and θ is an unknown m-vector. If, for example, X = �a� b� is an interval and
c > b > a, then to test for some fixed k ∈ �0� � � � �m− 1� a hypothesis such as

H0 � �θ′f�x���k��x=c ≤ C vs. Ha � �θ′f�x���k��x=c > C�(1.1)

about the value of the kth derivative of logit(P) at some point x = c outside
the interval X, where C = �θ0

′f�x���k��x=c, what is a good choice of the x’s?
Such models arise in accelerated life testing and dose response studies where
one would like to make decisions about the probabilities P or their rates of
change outside the interval of observation.

The collection of x’s determines the design probability measure ξn on X by
dξn�x� = #�xn�i = x�/n so the question above is, “What is the optimal design
for executing this test?” Actually we shall let n grow and ask what sequences of
design measures are optimal for testing a hypothesis about the kth derivative
of logitP, for k fixed, under a sequence of alternatives getting closer to the null.
Optimality is in the sense of maximizing the local power of asymptotically
uniformly most powerful (AUMP) tests. In the spirit of optimal approximate
theory of designs we shall allow as design measures any probability measures
on X.

Under widely applicable assumptions (A1–A2), the locally optimal designs
to be derived here, assuming the parameter is close to θ0, are as follows. For
any given θ0 and k ∈ �0�1� � � � �m−1� there are points a ≤ x1 < x2 < · · ·xm ≤ b
which are the equioscillation points of the minimizer hk�x� −

∑
j �=k d

∗
jhj�x� of

�hk − ∑
j �=k djhj�2

�a�b��∞, and the design ξ0 which places masses at xu, u =
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1� � � � �m, proportional to �F�k�
xu �c��/ω�xu�, is the unique locally asymptotically

optimal design at θ0 for testing the hypothesis �1�1�. Here hj�x� = ω�x�fj�x�,
ω�x� = eθ

′
0f�x�/2�1+ eθ

′
0f�x��−1

is the standard deviation of Y at x under the
local parameter value θ0, and Fxi

�x� are the Lagrange interpolation polyno-
mials to the points xi in terms of the f’s.

To describe the tests and optimal design criterion more explicitly, we begin
more generally with a sequence of rational designs ξn, probability measures on
X placing integer weights ndξn�xn�j� at finite but not necessarily fixed collec-
tions of points xn�j in X, and converging to an arbitrary probability measure
ξ on X. These are designs which correspond to implementable experiments.
In accordance with assumption (A2) below, let f�k�

k �c� > 0. Furthermore, let

σ2
θ0
�ξ� = min

d

∫ b

a
�fk�x� −

∑
j �=k

djfj�x��2ω2�x�dξ�x��(1.2)

dj�ξ� be the dj’s in a vector d minimizing it, Ȳ�x� be the average of the
observations taken at x, and µ�x� = ω�x�eθ′0f�x�/2 be the mean of Y at x under
the local parameter value θ0. The tests which reject H0 of (1.1) if the test
statistics

τn = √
n
∫ b

a

(
fk�x� −

∑
i�=k

di�ξ�fi�x�
) [

Ȳ�x� − µ�x�]dξn�x�/σθ0
�ξ�

exceed zα are AUMP level α against the sequence of alternatives θn which can
be written under our assumptions (A1–A2) as θn = θ0 + ek+1/

√
n + γ/

√
n +

o�n−1/2�. Here ek+1 is the vector with zeros in all coordinates except a 1 in
coordinate k+ 1, and γ is in the nuisance parameter space.

Justification of the claim that the sequence of designs and test statistics is
optimal comes from an extension to the design setting of the results of Choi,
Hall and Schick (1996) on AUMP tests. It can be shown that for a sequence of
designs ξn which converge weakly to ξ and for parameter values θn converging
to θ0 above, the Pitman efficacy of the AUMP tests at θ0 is simply σ2

θ0
�ξ�, the

expression in (1.2). If the limiting design is chosen to maximize the expression
(1.2) over all probability measures ξ on X, then any corresponding sequence
of designs is optimal. We show under (A1-A2) that the design ξ0 described
above is the unique maximizer of σ2

θ0
�ξ� and that d∗

j = dj�ξ0�.
Little of the optimal design literature deals with hypothesis testing and

none with our problem directly. Familiar formulas reminiscent of D1 optimal
designs arise however. There are related design problems of estimation for
non-linear models. See, for example, Chaloner and Verdinelli (1995), Dette
and Sahm (1997) and Heiligers (1996). Using the technique here applied, for
example, to the multihit dose-response model yields the same design found by
Hoel and Jennrich (1979) who studied estimation.

2. Main result. We shall find the optimal design under the following con-
ditions on the functions fj.
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(A1) f0� � � � � fm−1 ∈ Cm−1�a� c� constitute a Chebyshev system on �a� c� and
for each k ∈ �0� � � � �m − 1� any function

∑m−1
j=0 ajf

�k�
j �x� not identically

zero has at most m− k− 1 zeros in �a� c�.
Condition (A1) is satisfied by the familiar ordinary polynomial powers fj�x� =
xj, j = 0� � � � �m − 1, on any interval. It can be shown that if f0� � � � � fm−1

satisfy (A1) and k ∈ �0� � � � �m − 1� then for some index j, f�k�
j �c� �= 0. So

given k ∈ �0� � � � �m− 1� we can and shall, by renumbering and with a linear
transformation, if necessary, assume that

(A2) f
�k�
k �c� > 0 whilef�k�

i �c� = 0 for i �= k.

For a ≤ x1 < · · · < xm ≤ c, let % be the determinant of the matrix whose
entry in the ith row and jth column is fi−1�xj� and %u�x� denote the deter-
minant of the matrix just described, but altered to have the entry fi−1�x�
in the ith row of the uth column, i = 1� � � � �m. As a consequence of the
f’s forming a Chebyshev system on �a� c�, the Lagrange interpolation poly-
nomials are Fxu

�x� = %u�x�/%, for u = 1� � � � �m. For any xj the function
Fxj

�x� has at most m − 1 zeros and since Fxj
�xi� = δij, it follows that the

sign of Fxj
�x� at c is the same as it is at xm + 0. One can prove that for

a ≤ x1 < · · · < xm ≤ b < c and k ∈ �0� � � � �m − 1�, if the assumption (A1) is
satisfied, then sgn�F�k�

xu �c�� = �−1�m−u.
Noting that ω�x� > 0 on �a� c� and hj�x� = ω�x�fj�x�, by Karlin and Stud-

den (1966a) it follows that the collection hi is also a Chebyshev system on
�a� c�. Let a ≤ x1 < · · · < xm ≤ b and let Hxi

�x� be the Lagrange interpolation
polynomials to the given points in terms of the h’s. The proof of Lemma 2.1
of Spruill (1987) shows that the collection of functions hi, i �= k, is also a
Chebyshev system on �a� b�. Finally, the polynomials in f are determined by
their values at m points and Hxi

�x�/ω�x� being such a polynomial entails
Hxi

�x�/ω�x� = Fxi
�x�/ω�xi�.

Theorem 2.1. In logistic regression, under the assumptions (A1–A2), for
any given θ0 and k ∈ �0�1� � � � �m−1� there are points a ≤ x1 < x2 < · · · xm ≤ b
which are the equioscillation points of the minimizer hk�x� −

∑
j �=k d

∗
jhj�x� of

�hk − ∑
j �=k djhj�2

�a�b��∞ and the design ξ0 which places masses proportional

to �F�k�
xu �c��/ω�xu� at xu, u = 1� � � � �m, is the unique locally asymptotically

optimal design at θ0 for testing the hypothesis (1.1).

Proof. Since σ2
θ0
�ξ� = mind

∫ b
a �hk�x�−

∑
j �=k djhj�x��2dξ�x�, using a min-

imax theorem [see, e.g., Karlin and Studden (1966b), page 807] it can be shown
that

max
ξ

σ2
θ0
�ξ� = min

d
�hk�x� −

∑
j �=k

djhj�x��2
�a�b��∞�(2.1)

Since for fixed k, hi, i �= k, form a Chebyshev system and hk is continuous,
the minimizing d∗

j result in the equioscillation of hk −
∑

j �=k d
∗
jhj at m points
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a ≤ x1 < · · · < xm ≤ b. Therefore, denoting the right hand side of (2.1) by B2,
we get, for some u, hk�x�−

∑
j �=k d

∗
jhj�x� = B

∑m
j=1�−1�j+uHxj

�x�. Noting that
fk�x� −

∑
j �=k d

∗
jfj�x� = B

∑m
j=1�−1�j+uFxj

�x�/ω�xj�, taking k derivatives on
both sides, and setting x = c one gets

f
�k�
k �c� = B

m∑
j=1

�−1�j+uF�k�
xj �c�/ω�xj� = ±BQ(2.2)

where Q = ∑m
i=1 �F�k�

xi �c��/ω�xi�. We claim that the design ξ0 which places
masses proportional to �F�k�

xi �c��/ω�xi� at the equioscillation points is optimal.
To check this we simply compute

min
d

∫ b

a

(
fk�x� −

∑
j �=k

djfj�x�
)2

ω2�x�dξ0�x�(2.3)

and show that it equals B2. Toward that end we employ a Lagrange multiplier
λ and use the fact that any function fk�x� −

∑
j �=k djfj�x� can be expressed

in terms of the Lagrange interpolation polynomials Fxi
�x� so that (2.3) is the

same as

min
g



∫ b

a

(
m∑
j=1

gjFxj
�x�

)2

ω2�x�dξ0�x� �
m∑
j=1

gjF
�k�
xj �c� = f

�k�
k �c�


 �

Thus �λ/2�Q sgn�F�k�
xj �c��/ω�xj� = g∗

j and the minimum value is

Q−1Q2�λ/2�2
m∑
j=1

�F�k�
xj �c��/ω�xj� = Q2�λ/2�2 = �f�k�

k �c��2/Q2

which we recognize from (2.2) as B2. This establishes the optimality of ξ0. To
see uniqueness, for any design on s points of �a� b�� s < m, we show

min
d

s∑
i=1

(
fk�xi� −

∑
j �=k

djfj�xi�
)2

ω2�xi�ξ�xi� = 0�

Since s < m consider the m points yi = xi, i = 1� � � � � s and augment the col-
lection with any other points yi, i = s+1� � � � �m in �a� b�. Then, setting ai = 0,
i = 1� � � � � s and choosing the remaining ai to achieve �∑m

j=1 ajF
�k�
yj

�c�� =
f
�k�
k �c�, we have

∑s
i=1�

∑m
j=1 ajFyj

�xi��2ω2�xi�ξ�xi� = 0 and consequently, any
design on fewer than m points is suboptimal. Now let ξ′ be any optimal de-
sign. Because of (2.1), the support of ξ′ must be contained in a set of points
x ∈ �a� b� at which a minimizer hk − ∑

j �=k d
∗
jhj attains its extreme values

whose magnitudes are the minimum in (2.1). The support must also contain
at least m points. By Theorem 3.1 of Spruill (1984) (taking η = ∞ there) for
example, this minimizer is unique, so we conclude that the support points
of ξ′ must coincide with those of ξ0. Our previous argument in this proof
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shows that the masses are determined once the support points are known, so
ξ0 = ξ′. ✷

The prescription for finding the optimal design is conceptually simple. The
equioscillation points are identified by solving the problem (2.1) from which
the prescribed masses at the equioscillation points are computed according to
Theorem 2.1.

Example 2.2. Take c = 1�2, X = �−1�1�, m = 5, k = 0, f′�x� = �1� x −
c� �x − c�2� �x − c�3� �x − c�4� and θ0

′ = �1�1�1�1�1�. Thus, we are testing
the null hypothesis that the probability of a favorable response at x = 1�2
is no greater than e/�1 + e� against the alternative that it is greater. The
design was found numerically by replacing the interval �−1�1� by a grid of
101 points and employing an algorithm of Barrodale and Phillips (1975) to
find the generalized polynomial solving (2.1) above. The support points of the
optimal design are x1 = −0�56, x2 = −0�1, x3 = 0�36, x4 = 0�80 and x5 = 1
and σθ0

�ξ0� = 0�043876. The corresponding optimal masses are 0.109, 0.078,
0.145, 0.334 and 0.334. The polynomial p0�x� = 1−∑m

j=2 d
∗
j�x−c�j−1 satisfying

ω�x�p0�x� = h1�x�−
∑m

j=2 d
∗
jhj�x� is depicted in Figure 1 below. There are no

polynomials p of degree m − 1 passing through �c�1� satisfying −B/ω�x� ≤
p�x� ≤ B/ω�x� for all x ∈ �−1�1� unless B ≥ σθ0

�ξ0�. There is one in the case
of equality, and p0 is proportional to it.

Maximization of the Pitman efficacy σ2
θ �ξ� over designs ξ can also be carried

out for some multiple covariate cases. Let X = �−1�1�m and logitP�Y =
1�α�β� x� = α + β′x, where α is an unknown scalar and β is an unknown
m-vector. Suppose it is desired to test for some fixed index j, Hj � βj =
0 against Kj � βj �= 0. For a vector v in Rm let v�j� denote the vector in

0

1

2

y

-1 -0.5 0.5x

Fig. 1.
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Rm−1 formed from the coordinates of v except the jth one. Utilizing again the
interplay provided by a minimax theorem one can prove the following.

Lemma 2.3. If S is any subset of �x�j� � x ∈ X� satisfying�
(i) s ∈ S implies −s ∈ S and
(ii) c′�j�s = 0 for all s in S entails c�j� = 0 then setting W = �x ∈ X � x�j� ∈

S�, the design ξ0 which places equal masses on the set W is locally optimal for
testing βj = 0 at �α0�0� � � � �0�.

It can be shown under the assumptions of Lemma 2.3 that for testing any
individual coordinate, an optimal design can be found as a uniform design on
4�m− 1� of the 2m points in X.

Example 2.4. Take m = 4, X = �−1�1�4, and θ0 = �α0�0�0�0�0�. It can
be checked that for testing H1 � β1 = 0 against K1 � β1 �= 0 the conditions
of Lemma 2.3 are satisfied for the set S = ��1�1�1�′� �−1�1�1�′� �1�−1�1�′�
�−1�−1�−1�′, �1�−1�−1�′� �−1�1�−1�′� and the design placing masses 1

12 at
each point of the set W = �x ∈ X � x�1� ∈ S� is locally optimal.

3. Robustness. Robustness issues include sensitivity to the local param-
eter, the extrapolation point c, and sample size.

How well does a test based on a design locally optimal at some θ0 behave
at other θ? For example, when f′�x� = �1� x − c� �x − c�2� � � � � �x − c�m−1�,
x ∈ �−1�1� and θ01 = log�p0/�1 − p0��, θ02 = · · · = θ0m = 0, it follows from
its expression through (2.1) that the Hoel-Levine design placing its masses at
the points

xj = − cos
( �j− 1�π

m− 1

)
� j = 1� � � � �m�(3.1)

is locally optimal. The performance of a design ξ at arbitrary θ is given by

σ2
θ �ξ� = min

d

∫ b

a

(
1−

m∑
j=2

dj�x− c�j−1

)2

ω2�x�dξ�x� = M11 −M12M
−1
22 M21

where M11 = ∫ b
a ω

2�x�dξ�x�, M has ijthF entry
∫ b
a �x − c�i+j−2ω2�x�dξ�x�,

i� j ∈ �1� � � � �m�, and Mij are the submatrices in the usual partition of M. For
m = 3 and θ on a grid ranging over plus or minus 0.2 in each free coordinate
about θ0 it was found that σ2

θ �ξθ0�/σ2
θ �ξθ� ≥ 0�9837, where ξθ is optimal at θ.

Little is lost here by using the simple design on the points (3.1).
More generally, one can prove the following based upon the proof of Theo-

rem 2.1.

Lemma 3.1. Let the design ξ0 be optimal at θ0 and have support x0
1 < · · · <

x0
m and θ be arbitrary. Then σ2

θ �ξ0� ≥ σ2
θ0
�ξ0�mini ω

2
θ�x0

i �/ω2
θ0
�x0

i �.
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Table 1
Power at �θ1�2�−1�

θ1 1.0 2.0 2.5 3.0

design

Uniform, n = 10 .0289 .0452 .0411 .0323
Optimal, n = 10 .0289 .0478 .0495 .0622
Uniform, n = 15 .0429 .1024 .0968 .0697
Optimal, n = 15 .0429 .0912 .0997 .1200

Lemma 3.2. Let the design ξc be optimal at θ0 with k = 0 and c > b
and have support x1 < · · · < xm. Then for c′ > b, σc′ �ξc� ≥ σc�ξc�mini�Fxi

�c�/
Fxi

�c′��2.

The latter relates how well a test based on a design locally optimal at some
θ0 for testing the hypothesis (1.1) about θ′f�c� does at c′.

To evaluate the small sample performance a simulation was run to compare
the optimal design for c = 1�2, X = �−1�1�, f′�x� = �1� x − c� �x − c�2� and
θ0

′ = �1�2�−1� with the uniform design on x = −1�0�1.
Table 1 shows the powers of the AUMP test, reject H0 � p ≤ 1/�1 + e−1�

if τn > 1�645 and the corresponding AUMP tests of the same size based on
the uniform design. Figures are computed based on 105 runs for each case.
Pitman efficiency, appropriate in large samples and locally, of the optimal to
the uniform is 5.43 here.

Comparisons with the UMPU tests are trivial since they reject H0 with
probability 0.03, regardless of the observations. It can be shown that the only
cases in which UMPU tests are non-trivial for n = 10 are for c = 2 or 3.
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