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de Compostela

This paper proposes a test for selecting explanatory variables in non-
parametric regression. The test does not need to estimate the conditional
expectation function given all the variables, but only those which are sig-
nificant under the null hypothesis. This feature is computationally con-
venient and solves, in part, the problem of the “curse of dimensionality”
when selecting regressors in a nonparametric context. The proposed test
statistic is based on functionals of a U-process. Contiguous alternatives,
converging to the null at a rate n−1/2 can be detected. The asymptotic null
distribution of the statistic depends on certain features of the data gen-
erating process, and asymptotic tests are difficult to implement except in
rare circumstances. We justify the consistency of two easy to implement
bootstrap tests which exhibit good level accuracy for fairly small samples,
according to the reported Monte Carlo simulations. These results are also
applicable to test other interesting restrictions on nonparametric curves,
like partial linearity and conditional independence.

1. Introduction. This paper proposes a testing procedure for choosing
significant variables in nonparametric regression. The test only needs a
smooth nonparametric estimator of the regression function depending on the
explanatory variables which are significant under the null hypothesis. In con-
trast to other alternative procedures, it is able to detect contiguous alterna-
tives converging to the null at the parametric rate n−1/2� The asymptotic null
distribution of the test depends on certain features of the data generating pro-
cess and, therefore, an asymptotic test is difficult to implement except in rare
circumstances. In order to estimate the critical values, we propose resampling
procedures based on wild bootstrapping of the nonparametric residuals. The
method can also be applied to test other restrictions on the nonparametric
regression curve, like partial linearity, monotonicity or additivity; and also
restrictions on other nonparametric curves. For example, conditional distribu-
tions might be tested for conditional independence.

There is a large literature on specification testing, consistent in the direction
of general alternatives (“lack-of-fit tests”) based on two leading methodologies.
On the one hand, tests have been proposed based on some distance between
the fitted nonparametric regression, using some smoother, and the paramet-
ric fit under the null hypothesis; see, for example, Eubank and Spiegelman
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(1990), Härdle and Mammen (1993) and the recent monograph by Hart (1997).
The test statistics have the form of degenerate U-statistics which, under the
null, converge to a standard normal. However, the convergence to the limiting
distribution is slow, and Härdle and Mammen (1993) have recommended im-
plementations bootstrap tests in practice. On the other hand, other authors
have proposed tests based on a comparison between the empirical integrated
regression and the estimated parametric integrated regression function un-
der the specification in the null; see, for example, Brunk (1970), Hong-zhy
and Bin (1991), Sue and Wei (1991) and Stute (1997). These tests are based
on a marked empirical process and, in general, their null asymptotic distri-
bution depends on certain features of the data generating process. The lim-
iting distribution can be tabulated when the distribution of the regressors is
known. Also Stute, Thies and Zhu (1998) and Koul and Stute (1999) suggest
a transformation of the underlying empirical process, when the regression de-
pends only on one variable, which is asymptotically distribution free under the
null. Transformations when the regression model depends on more than one
variable are still unexplored. However, asymptotic critical values can be accu-
rately estimated using bootstrap techniques, as suggested by Stute, González-
Manteiga and Presedo-Quindimil (1998). Related to this method are Bierens’
tests [see, e.g., Bierens and Ploberger (1997)]. The first testing methodology
resembles the goodness-of-fit tests of distribution functions based on the dis-
tance between nonparametric and parametric estimates of the probability den-
sity curve [see, e.g., Rosenblatt (1975)]. Tests of the second type resemble the
typical goodness-of-fit tests of distribution functions based on some distance
between the empirical distribution function and the fitted distribution func-
tion under the specification on the null. The two methodologies are not com-
parable from a theoretical viewpoint [see Hart (1997), Chapters 5 and 6, for
a discussion]. Tests based on marked empirical processes are able to detect
contiguous alternatives converging to the null at a rate n−1/2, such as H1n in
the next section, which are not detected by tests based on smoothers. However,
these last tests detect high frequency alternatives, such as those considered
by Rosenblatt [(1975), Section 3], which are not detected by the former tests.

The two methodologies discussed above, which have been developed for
specification testing of parametric regression functions, are applicable to test-
ing different restrictions on nonparametric regression curves. Significance
testing is a relevant example of restrictions to be tested, since the “curse of
dimensionality” may lead one to reduce the number of explanatory variables
in the regression curve as much as possible. Let �S�� �P� be the probabil-
ity space of the random vector χ = �Y�W�� where Y is scalar and W =
�X�Z��Xis �q-valued and Z is �p-valued. We want to test,

H0 � E �Y �W� =m �X� a.s.,

where m�·� = E�Y�X = ·�. The alternative hypothesis,H1� is the complement
ofH0. Fan and Li (1996) have proposed a significance test inspired by the first
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methodology discussed above. That is, with the null hypothesis expressed as,

H0 � E
{�E�Y �W� −m�X�	2η�W�} = 0�

where η is a suitable weight function which does not change its sign in the
support of W, the test statistic is an estimator of the above expectation,
which employes smoothers to estimate the nonparametric expectations and
the weight function η� involving the density function of X and W� in order
to avoid stochastic denominators. Hence, this testing procedure requires the
estimation of two nonparametric regression curves with q and p+q regressors
respectively, and the choice of two different bandwidths for each regression,
one converging to zero faster than the other. The resulting test statistic has
the form of a degenerate U-statistic with a standard normal limiting distri-
bution under the null. However, to the best of our knowledge, bootstrap tests
have not been justified in this context.

In this paper, we propose to apply another methodology, which only requires
one to estimate the regression function under the null using smoothers, as-
suming that the distribution of X admits a density, f say. Notice that

H0 � E �Y−m �X� �W	 = 0 a.s.,

is equivalent to

f �X�E �Y−m �X� �W	 = 0 a.s.,

using the fact that f �X� > 0 a.s., or

T �W� = 0 a.s.,

where, for w = �x� z� �
T �w� = E �f �X� �Y−m �X�	1w �W�� �(1)

where 1w �W� = 1x �X�1z �Z� � and 1v �V� = 1 �V ≤ v�, 1 �A� is the indicator
function of the event A� and for two vectors v and w of equal dimension, “v ≤
w” means that each coordinate of v is less than or equal to the corresponding
coordinate of w� Hence, (1) is the difference between the weighted integrated
regression function of Y givenW and of Y given X� The reason of writingH0
in this form is mainly technical, in order to avoid the random denominator
in the conditional expectation. Test statistics are suitable functionals of a T
estimate.

In next section, we study the asymptotic properties of test statistics. Asymp-
totic tests are difficult to implement, since the asymptotic distribution of the
statistic under the null depends on unknown features of the underlying dis-
tribution of χ. In Section 3, we propose consistent bootstrap tests, which are
easy to implement. A Monte Carlo study, in Section 4, illustrates the proper-
ties of the proposed bootstrap tests in practice. In Section 5, we propose the
extension of this testing methodology to other restrictions on nonparametric
curves, discussing in detail a test for partial linearity and a test for conditional
independence. Proofs of the main results are deferred to Section 6. They are
based on some lemmas, which are listed in Section 7.
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2. Significance testing. Let �n = �χi� i = 1� � � � � n� � χi = �Yi�Wi� �
Wi = �Xi�Zi�, be independent copies of χ = �Y�W�, which has probability
space �S�� �P� � The test is based on the T �w� estimate

Tn �w�=
1
n

∑
i

f̂ �Xi� �Yi − m̂ �Xi��1w �Wi�

= 1
n2

∑
i

∑
j

1
aq
Kij

(
Yi −Yj

)
1w �Wi�

(2)

where

m̂ �Xi� =
1

f̂ �Xi�
1
naq

∑
j

KijYj and f̂ �Xi� =
1
naq

∑
j

Kij�

whereKij =K
((
Xi −Xj

)
/a
)
� K �u� = ∏q

j=1 k
(
uj
)
� k is an univariate kernel

and a = a �n� ∈ �+ is a bandwidth. The test statistic is a functional of the
random element n1/2Tn, for instance, the Cramér-von Mises’ statistic of the
form

Cn =
∫ [
n1/2Tn �w�

]2
dFWn �w� =

∑
i

Tn �Wi�2 �

where, henceforth, Fζ is the distribution function of the real valued random
variable ζ� and Fζn its corresponding empirical distribution function� or the
Kolmogorov-Smirnov statistic of the form

Kn = sup
w

∣∣n1/2Tn �w�
∣∣ �

Tn is a U-process of the type considered by Stute (1994). We can write

Tn �w� =
�n− 1�
n

Un �w�∞�∞�∞� �

where

Un �s1� s2� =
1

n �n− 1�
∑
i�=j

ψa
(
χi� χj

)
1s1 �χi�1s2

(
χj
)
�

with sj =
(
wj�yj

)
� j = 1�2� and,

ψa
(
χi� χj

) = (Yi −Yj

) 1
aq
Kij�

Write

Un�s1�s2�=Ûn�s1�s2�+Rn�s1�s2��
where,

Ûn�s1�s2�

=
{
1
n

∑
i

1s1 �χi�
∫
1s2 �s̄�ψa�χi�s̄�P�ds̄�−E

[
ψa�χ1�χ2�1s1 �χ1�1s2 �χ2�

]}
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+ 1
n

∑
i

1s2 �χi�
∫
1s1 �s̄�ψa�s̄�χi�P�ds̄�

=Û�1�
n �s1�s2�+Û�2�

n �s1�s2�

is the Hájek projection ofUn and the remainder Rn = Un−Ûn is a degenerate
U-process. Assuming that ψa has second moments for each a ∈ �+ \ �0� � a
generalization of Stute [(1994), Theorem 1.1] to the multivariate case (see
Proposition 4 in Section 6) shows that, for each a ∈ �+ \ �0� �

E

[
sup
s1�s2

∣∣n1/2Rn �s1� s2�
∣∣2] ≤ C

1
n
E
[∣∣ψa �χ1� χ2�

∣∣2] �
where C is a constant independent of ψa. The next Proposition shows that
n1/2Rn vanishes in probability uniformly in �s1� s2� under fairly weak condi-
tions.

Proposition 1. Let supx f�x� <∞, supu �k�u��+
∫ �k�u��du <∞, E�Y2� <

∞ and �naq�−1 → 0 as n→∞� Then,

sup
s1�s2

∣∣Rn �s1� s2�
∣∣ = op

(
n−1/2

)
�

Thus, uniformly in w�

Tn �w� =
n− 1
n

[
Ū
�1�
n �w� + Ū�2�

n �w�
]
+ op

(
n−1/2

)
�

where, henceforth, Ū�j�
n �w� �= Û

�j�
n �w�∞�∞�∞� � j = 1�2� The empirical

processes Ū�1�
n and Ū�2�

n are of different natures. On one hand,

Ū
�1�
n �w� =

[
1
n

∑
i

1w �Wi�
∫
�Yi −m �x̄��f �x̄�

1
aq
K

(
Xi − x̄
a

)
dx̄

]

−E
[
1w �W1� �Y1 −m �X2��

1
aq
K12

]

is a centered classical marked empirical process, with marks depending on a�
which is expected, under H0� to be asymptotically equivalent to,

Ũ
�1�
n �w� = 1

n

∑
i

1w �Wi� �Yi −m �Xi��f �Xi� �

under suitable smoothness assumptions on f andm, which must be related to
the kernel order and bandwidth rate of convergence. Ũ�1�

n is very similar to the
empirical process considered by Stute (1997) for testing the simple hypothe-
sis E

(
Y
∣∣X = ·) = m �·� � with m known. He considers the process indexed

by a single parameter, showing that, conveniently normalized, it converges
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in distribution in the càdlàg functional space D �−∞�∞� endowed with the
Skorohod’s norm to a Gaussian element. On the other hand, under H0�

Ū
�2�
n �w� = 1

n

∑
i

∫
γw �Yi� x̄�

1
aq
K

(
Xi − x̄
a

)
dx̄�

where

γw �ȳ� x̄� = �m �x̄� − ȳ�1x �x̄� rz �x̄�f �x̄�
and rz �x̄� = Pr

(
Z ≤ z

∣∣X = x̄
)
� is a smoothed version of the empirical process,

Ũ
�2�
n �w� = 1

n

∑
i

γw �Yi�Xi� �

It is also expected that, under H0� n
1/2Ū

�2�
n and n1/2Ũ

�2�
n are asymptoti-

cally equivalent, assuming similar conditions than those needed to show the
asymptotic equivalence between n1/2Ū

�1�
n and n1/2Ũ

�1�
n � The following defini-

tions, introduced by Robinson (1988), are helpful in the presentation of these
regularity conditions. The first one defines a class of higher order kernels and
the second one defines a class of smooth functions.

Definition 1. �/, / ≥ 1 is the class of even functions of uniformly bounded
variation, k � �→ �� satisfying

k �u� = O
((
1+ |u|/+1+ε)−1) some ε > 0�

∫
�
uik �u�du = δi0� i = 0� � � � � /− 1�

where δij is Kroneker’s delta.

It is interesting that whereas the classes �/ play useful roles in bias-
reduction and widening the spectrum of admissible bandwidths in nonpara-
metric estimation, they are crucial in our problem, which requires dealing
with a greater (n1/2� norming than in the central limit theorem for q−variate
nonparametric estimators ((naq�1/2��

Definition 2. � α
β � α > 0� β > 0� is the class of functions g � �q → �

satisfying: g is uniformly �b−1�-times continuously differentiable, for b−1 ≤
β ≤ b; for some ρ > 0, there exists a function d such that

sup
v∈�uρ

∣∣g �v� − g �u� −Q �v�u�∣∣ / �v− u�β ≤ d �u� �

for all u� where �uρ = �v � �v− u� < ρ� � Q = 0 when b = 1� Q is a �b− 1�th
degree homogeneous polynomial in v − u with coefficients being the partial
derivatives of g at u of orders 1 through b − 1 when b > 1� and g �u� � its
partial derivatives of orders b−1 and less, and d �u�, have finite αth moments.



BOOTSTRAP SIGNIFICANCE TESTING 1475

The functions � α
β are thus expanded in a Taylor series with a local Lipschitz

condition on the remainder; �α�β� depending simultaneously on smoothness
and moment properties. Bounded functions in Lip �β� (the Lipschitz class of
degree β) for 0 < β ≤ 1 are in �∞

β � for β > 1� �∞
β contains the bounded

and �b− 1�−times boundedly differentiable functions whose �b− 1�th partial
derivatives are in Lip �β− b+ 1� � In applying � α

β to f� we take α = ∞� but
we allow for α < ∞ in Definition 2, because we have no wish that m is a.s.
bounded. The next set of regularity conditions are usually assumed for show-
ing the

√
n−consistency of semiparametric estimators.

A1. f ∈ �∞
λ � for some λ > 0�

A2. m ∈ � 2
τ � for some τ > 0�

A3. k ∈�/+t−1� where /− 1 < λ ≤ / and t− 1 < τ ≤ t�
A4. �naq�−1 + na2min�τ�λ+1� → 0 as n→∞�
A5. E��Y−m�X��2+δ	 <∞ for some δ > 0�

Assumptions A3 and A4 have to be satisfied simultaneously for λ and τ
satisfying the stated inequalities, so that, for example, when k ∈�2 only, the
lower bounds on a’s rate of decay are not better than na4 → 0� no matter the
degree of smoothness of m and f. A necessary condition for A4 is τ > q/2
and λ > q/2 − 1� Thus, a necessary condition for A3 is k ∈ �q−1� Fan and
Li (1996) assume four moments for the errors, while we only need more than
two. Additionally, they require smoothness conditions on the density ofW and
conditional moments of the regression errors, as well as, four moments for m�

Proposition 2. Under H0� if A1 to A5 hold,

sup
w

∣∣∣Ū�1�
n �w� − Ũ�1�

n �w�
∣∣∣ = op

(
n−1/2

)
�

In order to prove a similar result for Ū�2�
n − Ũ�2�

n � we need some smoothness
assumption on the family of functions � = �rz � z ∈ �p� �

A6. � ⊂ �∞
υ � some υ > 0�

Proposition 3. Under H0� if A1 to A6 hold,

sup
w

∣∣∣Ū�2�
n �w� − Ũ�2�

n �w�
∣∣∣ = op

(
n−1/2

)
�

Write

Ũn �w� �= Ũ
�1�
n �w� + Ũ�2�

n �w� = 1
n

∑
i

ξw �χi� �

where

ξw �χi� = �Yi −m �Xi��f �Xi�1x �Xi� �1z �Xi� − rz �Xi�	 �
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We interpret Ũn as a process indexed by a class of functions, rather than
indexed by two sets of parameters, x and z� Consider the family of functions
� �= �ξw � w ∈ �p+q� � Under A1 and A5, � ⊂ �2 �S�� �P� such that,

H �s� �= sup
h∈�

∣∣h �s�∣∣ <∞ for all s ∈ S�

sup
h∈�

∣∣Ph∣∣ < ∞�

where, henceforth, we use the abbreviation Qg = ∫ gdQ for any generic mea-
sure Q� Thus, the maps

δs � � �→ � given by δs �h� = h �s� �

P � � �→ � given by Ph =
∫
h �s�dP �s� �

are bounded. So, δs and P belong to /∞ �� � � the Banach space of real bounded
functions on � , equipped with the supremum norm, �t�� = suph∈�

∣∣t �h�∣∣ �
The empirical measure, defined as,

Pn =
1
n

∑
i

δχi�

induces a map from � to � given by, h �→ Pnh� That is, the empirical process
indexed by the class of functions � , �Ũn�w�� w ∈ �p+q� �= �Pnh � h ∈ � �
can be viewed as a random element with values in /∞�� �� Let �GPh � h ∈ � �,
the P-Brownian bridge indexed by � , be the centered Gaussian process with
covariance function,

E �GPgGPh	 = Pgh−PgPh� g�h ∈ � �

For any finite subset J ⊂ � �

�Png� g ∈ J� converges in distribution to �GPg � g ∈ J�
by the multivariate central limit theorem. This convergence is made “uniform”
over all � using the Hoffmann-Jørgensen (1984) definition: If �Sn�∞n=0 are
/∞ �� � random valued elements, and S∞ is measurable and has separable
support, then,

Sn converges in distribution to S∞ in /∞ �� � �
if and only if

E∗ �H �Sn�� → E �H �S∞��
for all H � /∞ �� � → � bounded and continuous. E∗ stands for outer expecta-
tion. We say that the process GP is sample continuous, or a P-tight Borel mea-
surable element of /∞ �� � � when it has a version with bounded ρP-continuous
trajectories, where

ρ2P �g�h� = E
[
�GPg −GPh�2

]
� g� h ∈ � ,
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which means thatGP is measurable and has support 	u �� � ρP� (	u =bounded
uniformly continuous functions), which is separable in �/∞ �� � � �·�� � �Hence-
forth, we use Dudley’s definition [Dudley (1999), page 94] of “CLT for the em-
pirical process uniform over � ”: � is a P-Donsker class if and only if:

(i) GP is sample continuous, and
(ii) n1/2 �Pn −P� converges in distribution to GP in /∞ �� �.
In Section 6 we show that� is aP-Donsker class. UnderH0� suph∈� �Ph� =

0� and GP
d= BP is a P-Brownian motion in /∞ �� � � a Gaussian process with

zero mean and E �BPgBPh	 = Pgh for g�h ∈ /∞ �� � � The following Theorem
is a direct consequence of Propositions 1, 2, 3 and the fact that� isP-Donsker.

Theorem 1. Under H0� if A1 to A6 hold,

n1/2Tn converges in distribution to BP in /∞ �� � �
where BP is sample continuous.

We can obtain the asymptotic distribution of any continuous functional ϕ �
/∞ �� � �→ �� under H0� applying the Continuous Mapping Theorem [e.g.,
Dudley (1999), Theorem 3.6.7, page 116]. That is, if � is P-Donsker and the
functional ϕ � /∞ �� � �→ � is continuous, under H0� for any continuous and
bounded function H � � �→ �,

E
(
H
(
ϕ
(
n1/2Tn

)))→ E �H �ϕ �BP��� �
since H ◦ ϕ is a continuous and bounded functional, and, therefore,

ϕ
(
n1/2Tn

)
converges in distribution to ϕ �BP� �

meaning standard convergence in distribution on the real line. Next Corollary
establishes the asymptotic distribution of Kn and Cn under the null.

Corollary 1. Under H0� if A1 to A6 hold,

Kn converges in distribution to �BPh��
and

Cn converges in distribution to
∫ ∣∣BPξw

∣∣2FW �dw� �

From Propositions 2 and 3, it is immediate that, uniformly in w� underH1�

Ū
�1�
n �w� = Ũ

�1�
n �w� −E �1w �W� �Y−m �X��f �X�	 + op

(
n−1/2

)
�

Ū
�2�
n �w� = Ũ

�2�
n �w� + 1

n

∑
i

∫
bw �x̄�f �x̄�

1
aq
K

(
Xi − x̄
a

)
dx̄+ op

(
n−1/2

)
�
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where bw �x̄� = E
[
1w �W� �Y−m �X��

∣∣X = x̄
]
� Thus, applying Proposition 1,

uniformly in w�

Tn �w� = Ũn �w� +
{
1
n

∑
i

∫
bw �x̄�f �x̄�

1
aq
K

(
Xi − x̄
a

)
dx̄−E �bw �X�f �X�	

}

+op
(
n−1/2

)
�

Since �bw · f�w ∈ �p+q� is P-Donsker (see the proof of Proposition 3 in Section
6), and applying Proposition 5 in Section 6, the second term on the right
hand side of the last expression is Op

(
n−1/2

)
� uniformly in w� under suitable

smoothness assumptions on bw (e.g., bw ∈ �∞
v for some v > 0 and all w.) Thus,

using the fact that � is P-Donsker, uniformly in w�

Tn �w� = E �ξw �χ�	 +Op

(
n−1/2

)
�

which guarantees the consistency of tests based on continuous functionals of
n1/2Tn� in particular those based on Cn and Kn� That is, given asymptotic
critical values,

cKα = inf
{
t � F�BP�� �t� ≥ 1− α

}
and

cCα = inf
{
t � F∫ |BPξw|2FW�dw� �t� ≥ 1− α

}
under H1� FKn

(
cKα
) = o �1� and FCn

(
cCα
) = o �1� � Under contiguous alterna-

tives of the form

H1n � E �Y �W� =m �X� + E �W�
n1/2

a.s.

applying a similar argument,

n1/2Tn�w� = n1/2Ũn�w�

+
{
1
n

∑
i

∫
ew�x̄�f�x̄�

1
aq
K

(
Xi−x̄
a

)
dx̄−E�ew�X�f�X�	

}
+op�1��

where ew �x̄� = E
[
1w �W�E �W�

∣∣X = x̄
]
�Under suitable smoothness assump-

tions on ew� uniformly in w�

n1/2Tn �w� = n1/2Ũn �w� + op �1� �
Noticing that

n1/2Ũn �w� = n1/2Pnξ
0
w +Pnξ

1
w�

where ξ0w �χ� =
(
Y−E (Y∣∣W))f �X�1x �X� �1z �Z� − rz �X�	 and ξ1w �χ� =

E �W�f �X�1x �X� �1z �Z� − rz �X�	 � and � 0 = {
ξ0w � w ∈ �p+q} is, like � �
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P-Donsker, it follows that

Kn converges in distribution to sup
w

∣∣BPξ
0
w +Pξ1w

∣∣ �
Cn converges in distribution to

∫ ∣∣BPξ
0
w +Pξ1w

∣∣2 dFW �w� �

Therefore, under H1n� FKn

(
cKα
) ≤ 1− α+ o �1� and FKn

(
cCα
) ≤ 1− α+ o �1�.

These test statistics are not asymptotically pivotal, and asymptotic tests
are difficult to implement in practice. This is why we propose bootstrap tests
in the next section.

3. Bootstrap tests. A bootstrap version of Ũn is

Ũ∗
n �w� =

1
n

∑
i

Vi �Yi − m̂ �Xi�� f̂ �Xi�
[
1w �Wi� − φ̂w �Xi�

]
�

where

φ̂w �Xi� =
1

naqf̂ �Xi�
∑
j

1w
(
Wj

)
Kij

is an estimate of

φw �Xi� = 1x �Xi� rz �Xi� �
and �Vi� i = 1� � � � � n� are random variables such that:

A8. �Vi� i = 1� � � � � n� are bounded, iid independent of �n = ��Yi� Wi�� i =
1� � � � � n�, such that E�V1� = 0 and E�V2

1� = 1�

From a computational view-point, it is worth noticing that Ũ∗
n can also be

written as

Ũ∗
n �w� =

1
n

∑
i

�ε̂∗i − ε̄∗i � f̂ �Xi�1w �Wi� �

where �ε̂∗i = Viε̂i� i = 1� � � � � n� is the bootstrap resample of the nonparametric
residuals ε̂i = Yi− m̂�Xi�� and ε̄∗i = �naqf̂�Xi��−1

∑
j ε̂

∗
jKij. Thus, if we have

a program for computing Tn� with input ��Yi�Wi�� i = 1� � � � � n�� we can use
the same program with input ��ε̂∗i �Wi�� i = 1� � � � � n� to compute Ũ∗

n� The
test statistic is the bootstrap version of ϕ�n1/2Ũn�� ϕ�n1/2Ũ∗

n�� for some given
continuous functional ϕ� Notice that

Tn �w� =
1
n

∑
i

�Yi −m �Xi�� f̂ �Xi�
[
1w �Wi� − φ̂w �Xi�

]

+ 1
n

∑
i

m �Xi� f̂ �Xi�
[
1w �Wi� − φ̂w �Xi�

]
�
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Hence, Ũ∗
n can be interpreted as a bootstrap version of the first term on the

right hand side of this last expression, neglecting the effect of the second term,
which can be interpreted as a bias term. The bootstrap analog of Tn is

T∗n �w� = Ũ∗
n +

1
n

∑
i

m̂ �Xi� f̂ �Xi�
[
1w �Wi� − φ̂w �Xi�

]

= 1
n

∑
i

�Y∗
i − m̂∗ �Xi�� f̂ �Xi�1w �Wi� �

where Y∗
i = m̂�Xi� + ε̂∗i and m̂

∗�Xi� = �naqf̂�Xi��−1
∑

i Y
∗
iKij� which takes

into account this bias term. That is,T∗n is the bootstrap version ofTn computed
with the “wild resample” ��Y∗

i �Xi�� i = 1� � � � � n�� This resampling procedure
was introduced by Wu (1986) in the context of estimation in heteroskedastic
linear models. In specification testing of a parametric regression functions,
the “wild bootstrap” has been applied by Härdle and Mammen (1993) in tests
statistics based on smoothers, and by Stute, González-Manteiga and Presedo-
Quindimil (1998) in test statistics based on estimates of the integrated regres-
sion function.

Bootstrap versions of Kn are

K∗
n = sup

w

∣∣∣n1/2Ũ∗
n �w�

∣∣∣ and K∗∗
n = sup

w

∣∣n1/2T∗n �w�
∣∣ �

and bootstrap versions of Cn are

C∗n =
∑
i

Ũ∗
n �w�2 and C∗∗n =

∑
i

T∗n �w�2 �

Because Ũ∗
n and T∗n have a random denominator, we need the following

assumption.

A9. Pr �f �X� > ϑ� = 1 for some ϑ > 0�

Assumption A9 rules out important distributions, like the Beta and Nor-
mal. However, from a practical view point, this assumption does not seem so
damaging, since truncated distributions can always be considered. Another
way of dealing with the random denominator problem, avoiding assumption
A9, consists of introducing some trimming as suggested by Robinson (1988).
It will imply the choice of a trimming parameter, whose rate of convergence
must be related to the bandwidth a� We also need stronger conditions on the
rate of convergence of a�

A4′.
(
na2q

)−1 + na2min�τ�λ+1�2λ� → 0 as n→∞�
Consider the infeasible version of Ũ∗

n �w� �

Ũ0∗
n �w� =

1
n

∑
i

Viξw �χi� �

The next two theorems establish that n1/2Ũ∗
n and n1/2T∗n are asymptotically

equivalent to n1/2Ũ0∗
n �



BOOTSTRAP SIGNIFICANCE TESTING 1481

Theorem 2. Under A1–A4′, A5–A9,

sup
w

∣∣∣Ũ∗
n �w� − Ũ0∗

n �w�
∣∣∣ = op

(
n−1/2

)
�

Theorem 3. Under A1–A4′, A5–A9,

sup
w

∣∣∣T∗n �w� − Ũ0∗
n �w�

∣∣∣ = op
(
n−1/2

)
�

The bootstrap empirical measure,

P∗n =
1
n

∑
i

Viδχi�

also induces a map from � to �, and �Ũ0∗
n �w� � w ∈ �p+q� �= �P∗nh� h ∈

� � can be viewed as a random element of /∞�� �� Since � is P-Donsker
with square integrable envelope, the almost sure conditional multiplier central
limit theorem [Ledoux and Talagrand (1988)] establishes that

n1/2Ũ0∗
n converges in distribution to BP in /∞ �� � a.s,

where BP is sample continuous [an excelent exposition of convergence of
bootstrap distributions is in Giné (1997)]. Thus, for a continuous functional
ϕ � /∞ �� � �→ ��

d

(
F∗
ϕ�n1/2Ũ0∗

n ��Fϕ�BP�

)
= o �1� a.s.,

where d is a distance metrizing weak convergence on the real line, and F∗

denotes the conditional distribution given the sample �n� Therefore, applying
Theorems 2 and 3,

d

(
F∗
ϕ�n1/2Ũ∗

n��Fϕ�BP�

)
= op �1� and d

(
F∗ϕ�n1/2T∗n��Fϕ�BP�

)
= op �1� �

and we say that,

ϕ
(
n1/2Ũ∗

n

)
and ϕ

(
n1/2T∗n

)
converge in distribution to ϕ �BP� in probability.

The next Corollary justifies the implementation of these tests in practice, using
as critical values the quantiles of the conditional distribution of the bootstrap
statistics given the sample �n�

Corollary 2. Under A1–A4′, A5–A9,

K∗
n and K∗∗

n converge in distribution to �BP�� in probability�

C∗n and C∗∗n converge in distribution to
∫ ∣∣BPξw

∣∣2 dFw �w� in probability.
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Let ηn be the statistic used for testing H0 �e.g., Cn or Kn� and η∗n the cor-
responding bootstrap statistic (e.g., C∗n, C

∗∗
n � K

∗
n or K∗∗

n ). Define the bootstrap
critical value cnα = inf�t � F∗η∗n�t� ≥ 1− α�� and let η∞ be the asymptotic dis-
tribution of ηn under H0. Corollary 1 and 2 implies that, if Fη∞ is continuous
at cα = inf�t � Fη∞�t� ≥ 1 − α�� under H0� Pr�ηn ≥ cnα��n� = α + op�1� and
also Pr�ηn ≥ cnα� = α+o�1�� Corollary 2 holds also underH1 andH1n� which
guarantees consistency, and power in the direction of contiguous alternatives
H1n� of the test based on critical values cnα� In practice, bootstrap critical
values cnα can be approximated, as accurately as desired, by Monte Carlo.
Beran, Le Cam and Millar (1987) justify this statement, showing that, when-
ever a bootstrapped limit theorem holds in probability, then, the empirical
distributions of the bootstrapped laws also converge in probability. The imple-
mentation of the tests is as follows. We generate B bootstrap residual samples,
��ε̂∗bi � i = 1� � � � � n�� b = 1� � � � �B�� according to our resampling procedure, and
the corresponding bootstrap statistics �η∗b� b = 1� � � � �B� are computed. Then,
cnα is approximated by cBnα = inf�t � B−1∑B

b=1 1�η∗b > t� ≥ 1− α�� the larger B
is the better is the approximation of cnα.

4. Monte Carlo. In this Monte Carlo study we provide evidence on the
sensitivity of the test to the bandwidth choice and the dimension of Z and X
in small samples. We choose a = Cn−1/3q for C = 0�25� 0�5� 1 and 2� which
is compatible with A4 and A4′. The bootstrap tests are compared with the
parametric asymptotic Wald’s test of significance of regressors Z in a linear
regression model. We consider the case q = 1�2 and p = 1�2 under different
designs. We choose the Epanechnikov’s kernel, k�u� = 1��u� ≤ 1��1 − u2�3/4�
of different orders, depending on q� as suggested by our sufficient conditions.
The Vi variables are the same as in Härdle and Mammen (1993) and Stute
et al. (1998). That is, we consider a two point distribution attaching masses
�√5 + 1�/2√5 and �√5 − 1�/2√5 to the points −�√5 − 1�/2 and �√5 + 1�/2�
respectively. The tables report the proportion of rejections in 2000 Monte Carlo
samples using 2000 bootstrap samples for approximating the critical values
by Monte Carlo. We only present simulation results for Cn� Simulation results
for Kn� which are not reported here, are very similar. Samples are generated
according to the model

Yi =m �Xi� + β sin
(
γZ

�1�
i

)
+Ui� i = 1� � � � � n�

where Ui ∼ N �0�1� and the regressors are iid U �0�1� � independent of Ui�
As γ increases, in the sine model, the regression curve has more oscillations
and the correlation between Yi and Z

�1�
i decreases.

Table 1 examines the behavior of the test under the null hypothesis (β = 0�
when q = 1 and p = 1�2. We consider a linear model m �x� = 1 + x and a
sinusoidal modelm �x� = 1+sin �10x� � As could be expected, the empirical size
of Wald’s test is very close to the theoretical one in all cases. The bootstrap tests
exhibit good level accuracy in the linear model for all the bandwidth choices.
However, for the sine model, which is more difficult to estimate due to the
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Table 1

Proportion of rejections in 2000 Monte Carlo samples, under H0: E�Y �W� = E�Y �X� a.s.,
p = 1�2 for the bootstrap test and an asymptotic t-ratio based on a linear regression model

m �x� = 1+ x� p = 1

α n = 50 n = 100

0�1 0.098 0.103
t-ratio 0�05 0.054 0.052

0�01 0.016 0.013

α\C 0�25 0�5 1 2 0�25 0�5 1 2

0�1 0.147 0.124 0.100 0.100 0.128 0.120 0.109 0.114
C∗∗n 0�05 0.080 0.062 0.049 0.059 0.073 0.061 0.054 0.056

0�01 0.011 0.009 0.007 0.007 0.016 0.011 0.011 0.010

0�1 0.153 0.128 0.105 0.129 0.132 0.123 0.114 0.143
C∗n 0�05 0.084 0.061 0.055 0.059 0.074 0.063 0.056 0.077

0�01 0.013 0.008 0.010 0.013 0.017 0.011 0.011 0.019

m�x� = 1+ x� p = 2

α n = 50 n = 100

0�1 0.126 0.105
t-ratio 0�05 0.070 0.053

0�01 0.021 0.016

α\C 0�25 0�5 1 2 0�25 0�5 1 2

0�1 0.152 0.120 0.100 0.095 0.142 0.113 0.097 0.093
C∗∗n 0�05 0.067 0.049 0.038 0.034 0.066 0.054 0.046 0.044

0�01 0.011 0.004 0.004 0.003 0.011 0.011 0.010 0.008
0�1 0.159 0.121 0.104 0.110 0.147 0.116 0.099 0.103

C∗n 0�05 0.073 0.053 0.043 0.049 0.070 0.057 0.047 0.058
0�01 0.011 0.005 0.004 0.007 0.012 0.010 0.009 0.011

m �x� = 1+ sin �10x� � p = 1

α n = 50 n = 100

0�1 0.099 0.106
t-ratio 0�05 0.052 0.054

0�01 0.012 0.011

α\C 0�25 0�5 1 2 0�25 0�5 1 2

0�1 0.153 0.130 0.142 0.310 0.129 0.120 0.127 0.509
C∗∗n 0�05 0.075 0.062 0.059 0.156 0.072 0.061 0.064 0.272

0�01 0.011 0.009 0.009 0.021 0.016 0.011 0.014 0.048

0�1 0.157 0.142 0.195 0.335 0.132 0.123 0.169 0.595
C∗n 0�05 0.082 0.070 0.093 0.181 0.074 0.063 0.080 0.348

0�01 0.012 0.011 0.013 0.031 0.017 0.011 0.021 0.075
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Table 1 (Continued)

m �x� = 1+ sin �10x� � p = 2

α n = 50 n = 100

0�1 0.132 0.111
t-ratio 0�05 0.076 0.055

0�01 0.019 0.015

α\C 0�25 0�5 1 2 0�25 0�5 1 2

0�1 0.155 0.121 0.110 0.177 0.138 0.114 0.110 0.238
C∗∗n 0�05 0.065 0.051 0.043 0.083 0.063 0.055 0.050 0.109

0�01 0.010 0.004 0.005 0.010 0.012 0.010 0.009 0.015

0�1 0.165 0.134 0.134 0.190 0.143 0.119 0.126 0.280
C∗n 0�05 0.073 0.061 0.062 0.095 0.067 0.059 0.062 0.109

0�01 0.011 0.005 0.007 0.012 0.012 0.010 0.013 0.015

Bootstrap tests are based on 2000 bootstrap samples, h = Cn−1/3 for C = 0�25�0�5�1�2� Model:
Yi = m�Xi� + εi� i = 1� � � � � n� Xi ∼ U�0�1�� Z�1�i ∼ U �0�1� � Z�2�i ∼ U�0�1�� εi ∼ N�0�1�
independent.

number of oscillations in the interval (0,1), higher bandwidth values produce
serious size distortions. As in other simulation studies for specification tests
of parametric functions based on smoothers, it seems advisable, in practice, to
undersmooth, rather than oversmooth, in order to obtain good level accuracy.
The size properties of the test are not very affected by the dimension of the
vector Z. We present simulation results for the two bootstrap procedures (i.e.,
C∗∗n and C∗n.) The bootstrap test based on C∗∗n performs slightly better than
the test based on C∗n�

Table 2 examines the power properties of the test under the alternative
(β = 1�� for q = 1 and p = 1�2� We consider γ = 5�10� The correlation
between Yi and Z

�1�
i is close to 1 when γ = 5 and to 0 when γ = 10. Therefore,

the power of the Wald’s test decreases as γ increases. When γ = 5� all the
tests are very powerful. When γ = 10� the power of the Wald’s test is very
close to the theoretical size. However, the bootstrap tests are still powerful,
though bigger sample sizes than in the previous case are needed. The results
are quite insensitive to the choice of smoothing parameter and the dimension
of the vector Z�

In Table 3, we examine the level accuracy of the bootstrap test under the
null (β = 0� when q = 2 and we only report results for p = 1� In this case, a
kernel of order higher than two is needed, according to our assumptions. In
order to illustrate the sensitivity of the test to the order of the kernel chosen,
we report simulations for Epanechnikov’s kernels of order 2 and 4. We consider
the linear model m �x� = 1 + x�1� + x�2�� We observe that the kernel of order
4 is less affected by extreme bandwidth choices. Here, we also report results
for n = 200. As it could be expected, greater sample sizes must be used when
q = 2 than when q = 1�
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Table 2

Proportion of rejections in 2000 Monte Carlo samples, under H1 � E �Y|W� �= E �Y|X� a�s�,
p = 1�2 for the bootstrap test and an asymptotic t-ratio based on a linear regression model

γ = 5� p = 1

α n = 50 n = 100

0�1 0.980 1.000
t-ratio 0�05 0.963 1.000

0�01 0.878 0.997

α\C 0�25 0�5 1 2 0�25 0�5 1 2

0�1 0.950 0.962 0.960 0.927 1.000 1.000 1.000 0.999
C∗∗n 0�05 0.901 0.921 0.922 0.866 0.998 1.000 1.000 0.998

0�01 0.661 0.724 0.734 0.643 0.988 0.991 0.990 0.982

0�1 0.954 0.964 0.962 0.933 1.000 1.000 1.000 0.999
C∗n 0�05 0.914 0.924 0.919 0.877 0.998 1.000 1.000 0.999

0�01 0.710 0.740 0.731 0.629 0.990 0.990 0.991 0.982

γ = 5� p = 2

α n = 50 n = 100

0�1 0.971 1.000
t-ratio 0�05 0.944 1.000

0�01 0.824 0.992

α\C 0�25 0�5 1 2 0�25 0�5 1 2

0�1 0.623 0.790 0.837 0.609 0.974 0.982 1.000 0.937
C∗∗n 0�05 0.437 0.672 0.728 0.476 0.942 0.969 1.000 0.880

0�01 0.138 0.316 0.409 0.222 0.812 0.903 0.997 0.688

0�1 0.766 0.826 0.844 0.656 0.976 0.985 1.000 0.968
C∗n 0�05 0.585 0.716 0.742 0.518 0.944 0.974 0.986 0.928

0�01 0.279 0.387 0.408 0.219 0.823 0.916 0.939 0.743

γ = 10� p = 1

α n = 50 n = 100

0�1 0.096 0.096
t-ratio 0�05 0.054 0.052

0�01 0.013 0.012

α\C 0�25 0�5 1 2 0�25 0�5 1 2

0�1 0.445 0.434 0.404 0.387 0.788 0.810 0.806 0.783
C∗∗n 0�05 0.252 0.247 0.226 0.218 0.603 0.610 0.607 0.590

0�01 0.058 0.057 0.047 0.046 0.238 0.236 0.230 0.227

0�1 0.464 0.444 0.421 0.430 0.798 0.812 0.814 0.823
C∗n 0�05 0.269 0.252 0.242 0.262 0.613 0.614 0.619 0.634

0�01 0.066 0.060 0.053 0.071 0.247 0.241 0.241 0.263
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Table 2 (Continued)

γ = 10� p = 2

α n = 50 n = 100

0�1 0.130 0.105
t-ratio 0�05 0.073 0.057

0�01 0.016 0.019

α\C 0�25 0�5 1 2 0�25 0�5 1 2

0�1 0.366 0.374 0.313 0.202 0.487 0.631 0.622 0.618
C∗∗n 0�05 0.167 0.205 0.167 0.090 0.315 0.421 0.419 0.418

0�01 0.020 0.026 0.020 0.013 0.088 0.123 0.111 0.116

0�1 0.585 0.427 0.339 0.219 0.616 0.656 0.638 0.742
C∗n 0�05 0.355 0.258 0.193 0.112 0.448 0.456 0.442 0.580

0�01 0.105 0.042 0.030 0.020 0.160 0.141 0.131 0.279

Bootstrap tests are based on 2000 bootstrap samples, h = Cn−1/3 for C = 0�25�0�5�1�2� Model
Yi = 1 + Xi + sin �γZi� + εi� i = 1� � � � � n� Xi ∼ U �0�1� � Z�1�i ∼ U �0�1� � Z�2�i ∼ U �0�1� �
εi ∼N �0�1� independent.

In Table 4, we report the proportion of rejections under the alternative
(β = 1� with q = 2�We considerm as in Table 3, and γ = 5 and 10, as in Table
2. The results are similar to the case where q = 1� though this comparison is
not fair, since the test over-rejects when q = 2�

5. Testing other restrictions on regression curves. Different restric-
tions on nonparametric regression curves can be tested applying the method-
ology developed in preceding sections. Suppose we want to test

H0 � E
(
Y
∣∣W) =m0 �W� a.s.,

where m0 is the regression function when certain restrictions have been im-
posed; for example, mean independence is the case considered before. Other
restrictions could be partial linearity, monotonicity, additivity, etc. The null
hypothesis can be alternatively be written as

H0 � T �W� = 0 a.s.,

where T �w� = E ��Y−m0 �W��η �W�1 �W ≤ w�	 � and η is a weight function
which does not change sign in the support of W� Let m̂0 and η̂ be suitable
estimates of m0 and η respectively. A test can be based on the U-process,

Qn �w� =
1
n

∑
i

�Yi − m̂0 �Wi�� η̂ �Wi�1w �Wi� �

The choice of η� the limiting distribution of Qn� and the construction of boot-
strap tests will depend on the particular testing problem. Here, we only dis-
cuss the implementation of this methodology for testing partial linearity and
conditional independence. However, application to tests of other restrictions
seems also possible.
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Table 3

Proportion of rejections in 2000 Monte Carlo samples, under H0 � E �Y|W� = E �Y|X� a�s�,
p = 1� for the bootstrap test and an asymptotic t-ratio based on a linear regression model

m �x� = 1+ x�1� + x�2� Kernel of order 2.

α n = 50 n = 100 n = 200

t− 0�1 0.115 0.101 0.098
ratio 0�05 0.057 0.045 0.050

0�01 0.012 0.009 0.010

α\C 0�25 0�5 1 2 0�25 0�5 1 2 0�25 0�5 1 2

0�1 0.262 0.158 0.114 0.338 0.248 0.118 0.127 0.629 0.211 0.123 0.128 0.790
C∗∗n 0�05 0.113 0.067 0.045 0.155 0.135 0.054 0.059 0.446 0.108 0.053 0.063 0.619

0�01 0.011 0.006 0.003 0.015 0.020 0.010 0.004 0.132 0.025 0.011 0.013 0.273

0�1 0.344 0.190 0.190 0.421 0.286 0.143 0.209 0.716 0.227 0.140 0.262 0.917
C∗n 0�05 0.185 0.095 0.100 0.219 0.159 0.065 0.117 0.601 0.120 0.065 0.146 0.844

0�01 0.037 0.010 0.019 0.047 0.028 0.014 0.004 0.324 0.030 0.014 0.043 0.616

m �x� = 1+ x�1� + x�2� Kernel of order 4.

α n = 50 n = 100 n = 200

t− 0�1 0.115 0.101 0.098
ratio 0�05 0.057 0.045 0.050

0�01 0.012 0.009 0.010

α\C 0�25 0�5 1 2 0�25 0�5 1 2 0�25 0�5 1 2

0�1 0.280 0.193 0.116 0.203 0.226 0.145 0.108 0.215 0.175 0.150 0.113 0.200
C∗∗n 0�05 0.118 0.085 0.048 0.092 0.119 0.074 0.045 0.103 0.098 0.074 0.050 0.102

0�01 0.011 0.009 0.004 0.009 0.022 0.013 0.006 0.013 0.030 0.017 0.010 0.018

0�1 0.504 0.235 0.134 0.312 0.331 0.163 0.165 0.380 0.229 0.157 0.123 0.425
C∗n 0�05 0.261 0.117 0.058 0.194 0.188 0.009 0.091 0.254 0.131 0.079 0.057 0.294

0�01 0.069 0.017 0.006 0.006 0.043 0.017 0.019 0.008 0.039 0.016 0.012 0.111

Bootstrap tests are based on 2000 bootstrap samples, h = Cn−1/6 for C = 0�25�0�5�1�2� Model: Yi = 1 +
m�Xi� + εi� i = 1� � � � � n� X�k�

i ∼ U �0�1� � Z�k�i ∼ U �0�1� k = 1�2� εi ∼N �0�1� independent.

5.1. Specification testing of partially linear models. The partially linear
model is a compromise between the linear and the nonparametric regression
model. It permits one to reduce the curse of dimensionality in the estimation
of a nonparametric curve. Estimators of this model have been proposed by
Heckman (1986), Robinson (1988) and Speckman (1988) among others. Con-
sider the null hypothesis

H0 � E �Y �W� = Z′θ0 + γ �X� a.s. for some θ0 ∈ K ⊂ �m�

where θ0 is an unknown parameter vector belonging to the parameter space
K� and γ is an unknown function. Henceforth, a′ means a transpose. Noticing
that γ �·� =m �·�−mZ �·�′ θ0� wheremZ �·� = E

(
Z
∣∣X = ·) � the null hypothesis
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Table 4

Proportion of rejections in 2000 Monte Carlo samples, under H1 � E �Y|W� �= E �Y|X� a.s.,
p = 1� for the bootstrap test and an asymptotic t-ratio based on a linear regression model

γ = 5

α n = 50 n = 100

0�10 0.969 1.000
t-ratio 0�05 0.944 1.000

0�01 0.847 0.997

α\C 0�25 0�5 1 2 0�25 0�5 1 2

0�10 0.623 0.790 0.837 0.609 0.837 0.982 0.995 0.937
C∗∗n 0�05 0.437 0.672 0.728 0.476 0.793 0.969 0.985 0.880

0�01 0.138 0.316 0.409 0.222 0.622 0.903 0.938 0.688

0�10 0.766 0.826 0.844 0.656 0.883 0.985 0.995 0.968
C∗n 0�05 0.585 0.716 0.742 0.518 0.842 0.974 0.986 0.928

0�01 0.279 0.387 0.408 0.219 0.684 0.916 0.939 0.743

γ = 10

α n = 50 n = 100

0�10 0.103 0.093
t-ratio 0�05 0.045 0.048

0�01 0.008 0.008

α\C 0�25 0�5 1 2 0�25 0�5 1 2

0�10 0.366 0.374 0.313 0.356 0.487 0.631 0.622 0.618
C∗∗n 0�05 0.167 0.205 0.167 0.191 0.315 0.421 0.419 0.418

0�01 0.020 0.026 0.020 0.027 0.088 0.123 0.111 0.116

0�10 0.585 0.427 0.339 0.447 0.616 0.656 0.638 0.742
C∗n 0�05 0.355 0.258 0.193 0.303 0.448 0.456 0.442 0.580

0�01 0.105 0.042 0.030 0.105 0.160 0.141 0.131 0.279

Bootstrap tests are based on 2000 bootstrap samples, h = Cn−1/6 for C = 0�25�0�5�1�2� Model
Yi = 1 +X

�1�
i +X

�2�
i + sin �γZi� + εi� i = 1� � � � � n� X�k�

i ∼ U �0�1� � Z�k�i ∼ U �0�1� � k = 1�2�
εi ∼N �0�1� independent.

can be also written as

H0 � E
(
Y−m �X� − �Z−mZ �X��′ θ0 �W

) = 0

a.s. for some θ0 ∈ K ⊂ �m�

Fan and Li (1996) have considered a test of H0 based on a distance between
the semiparametric model fit and the nonparametric fit using the whole set of
regressorsW� As in Section 2, we propose a test which only requires estimates
of conditional expectations given X� m �·� and mZ �·� � Given a

√
n−consistent

estimator of θ0� θ̂n say, as proposed by Robinson (1988), the test statistic is



BOOTSTRAP SIGNIFICANCE TESTING 1489

based on the U-process,

Gn �w� =
1
n

∑
i

ε̂sif̂ �Xi�1w �Wi� �

where ε̂si = �Yi − m̂�Xi� − θ̂′n�Zi − m̂Z�Xi�		 and

m̂Z �Xi� = �naq�−1
∑
j

ZjKij/f̂ �Xi�

estimatesmZ �Xi� � It seems fairly straightforward to obtain, under regularity
conditions in Robinson (1988) and the results in Section 2, that supw �Gn�w�
−Go

n�w�� = op�n−1/2�, where

Go
n�w� =

1
n

∑
i

εsif �Xi� �1w �Wi� −φw �Xi�	 �

with εsi =
[
Yi −m �Xi� − θ′0 �Zi −mZ �Xi��

]
� A bootstrap version of Ũs

n is

Go∗
n �w� =

1
n

∑
i

Viε̂
s
if̂ �Xi�

[
1w �Wi� − φ̂w �Xi�

]
�

Using similar conditions and arguments as in Theorem 2, it can be shown
that the resulting test is consistent. The bootstrap analog of the process can be
obtained from the resample � ∗

n = ��Y∗
i �Xi� � i = 1� � � � � n� �whereY∗

i = Z′
iθ̂n+

m̂ �Xi� − m̂Z �Xi�′ θ̂n +Viε̂
s
i� The consistency of the corresponding bootstrap

test can be proved using similar arguments as in Theorem 3, exploiting its
relationship with the previous bootstrap.

5.2. Testing conditional independence. Suppose we want to test that the
conditional distribution of Y given W does not depend on Z� That is, the null
hypothesis is

H0 � E
[
1y �Y�

∣∣W] = E
[
1y �Y�

∣∣X] a.s. ∀y ∈ SY�
where SY is the support of Y� In fact, we are testing the significance of Z�
for all y� in a nonparametric regression curve where the dependent variable
is 1y �Y�. The null hypothesis can be alternatively written as

H0 � L �Y�W� = 0 a.s.,(3)

where L �y�w� = E
[
f �X� (1y �Y� −F �y|X�)1w �W�] � and F �· � ·� is the dis-

tribution function of Y given X� Let ε̂i �y� = 1y �Y� − F̂n �y|X� be the esti-
mator of εi �y� = 1y �Yi� −F �y|Xi� � where

F̂n �y|Xi� =
1

f̂ �Xi�
1
naq

∑
i

1y �Yi�Kij�
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The curve L �y�w� is estimated by

Ln �y�w� =
1
n

∑
i

ε̂i �y� f̂ �Xi�1w �Wi� �

Thus, Ln is identical to Tn� but with ε̂i substituted by ε̂i �y� � Thus, reasoning
as in Section 2, supw�y

∣∣Ln �y�w� −L0
n �y�w�

∣∣ = op
(
n−1/2

)
, where

n1/2L0
n �y�w� =

1
n1/2

∑
i

εi �y�f �Xi� �1w �Wi� −φw �Xi�	 �

A bootstrap version of L0
n �y�w� is

L0∗
n �y�w� =

1
n

∑
i

Viε̂i �y� f̂ �Xi�
[
1w �Wi� − φ̂w �Xi�

]
�

The consistency of the resulting bootstrap test can be proved using similar
arguments than in the proof of Theorem 2. In order to take into account the
bias, we could also use

L∗n �y�w� = L0∗
n �y�w� +

1
n

∑
i

f̂ �Xi� F̂n �y|Xi�
[
1w �Wi� − φ̂w �Xi�

]
�

which takes into account the bias term, and its consistency is proved using
similar arguments to those in the proof of Theorem 3.

6. Proofs. The next two propositions and the lemmas in Section 7 pro-
vide the basic tools for proving the results in this paper. The first one is a
moment inequality for degenerated U-processes of any degree indexed by a
general class of functions, which is useful for showing that the remainder
term in the Hoeffding decomposition vanishes uniformly. The second propo-
sition is a general result for the asymptotic equivalence between perturbed
empirical processes indexed by general classes of functions, which appear in
the Hayék projections of the U-processes considered in this paper, and their
non-perturbed versions.

Let 
 = �g�ζ1� � � � � ζm�� be a class of real functions of m variables where
the ζi� i = 1� � � � � n are iid with common probability space �B���Q�, such
that its envelope, G = supg∈
 �g�� is measurable – otherwise take as G the
least measurable majorant of supg∈
 �g�� With the notation Q1× · · · ×Qmg =∫
gd �Q1 × · · · ×Qm� � the Hoeffding projections of g � Bm �→ � are defined as

πkg =
(
δζ1 −Q

)× · · · × (δζk −Q)×Qm−kg� k = 1� � � � �m�

If g is symmetric in its entries, these projections induce the Hoeffding decom-
position

U
�m�
n �g� −Qmg =

m∑
k=1

(
m

k

)
U
�k�
n �πkg�
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where

U
�r�
n �d� = 1

n �n− 1� · · · �n− r+ 1�
∑

1≤i1 �=···�=ir≤n
d
(
ζi1� � � � � ζir

)
�

A Vapnik-Červonenkins type (VC-type) class of functions is a class of functions
such that for every Q for which QG2 <∞� we have

� �ε�L2 �Q� �
 � ≤
(
A �G�L2�Q�

ε

)v
�(4)

where � �ε�L2 �Q� �
 � is the smallest number of L2 �Q� − balls of radius
less or equal to ε and centers in 
 needed to cover 
 � We call A and v the
VC-characteristics of the class. 
 might not be a VC-type for its envelope, but
for some other function J ≥ G [meaning (4) holds with J replacing G]. We
thank Evarist Giné for bringing the next proposition to our attention.

Proposition 4. Let 
 be a class of kernels of m variables with envelope G,
symmetric in their entries, which is VC-type, and let Q be the common law of
the iid ζi� i = 1� � � � � n variables �which take values in a measurable space B,
the g’s in 
 are Bm → ��� Suppose PmG2 < ∞� Then, there is a constant, C
say, that depends on the VC characteristics of 
 such that, for all k = 1� � � � �m�

E


supg∈


∣∣∣∣∣ 1
nk/2

∑
1≤i1 �=��� �=ik≤n

�πkg�
(
ζi1� � � � � ζik

)∣∣∣∣∣
2

 ≤ CQmG2�

Proof. We use decoupling, Rademacher randomization and the chaos in-
equalities in de la Peña and Giné [(1999), Corollary 5.1.8, page 221, together
with Lemma 5.3.5 and the results on page 246, and taking Remark 5.3.9 into
account]. A similar result can be found, form = 2� in Nolan and Pollard [(1987)
Theorem 6]; see also Sherman [(1994), main corollary on page 447-448] and
Ghosal, Sen and Van der Vaart [(2000), Theorem A1 and A2].

Proposition 5. Let 
 be a Donsker class of measurable functions that is
closed under translation, and let ζi� i = 1� � � � � n be independent copies of ζ
�taking values in a measurable space B� the g’s in 
 are B → ��. Let µn be
non-random, signed measures of uniformly bounded variation, that converge
to the Dirac measure at zero. Then

sup
g∈


∣∣∣∣∣ 1n
∑
i

∫
�g �ζi + y� − g �ζi�	µn �dy�

∣∣∣∣∣ = op
(
n−1/2

)
�

if and only if

sup
g∈


E

[(∫
�g �ζ + y� − g �ζ�	dµn �y�

)2]
= o �1�
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and

sup
g∈


∣∣∣E [∫ �g �ζ + y� − g �ζ�	dµn �y�]∣∣∣ = o
(
n−1/2

)
�

Proof. See the theorem in Van der Vaart (1994).

Proof of Proposition 1. Write

Rn �s1� s2� = U
�2�
n �π2βsa�

where s = �s1� s2� � and
βsa

(
χi� χj

) = 1
2ψa

(
χi� χj

) [
1s1 �χi�1s2

(
χj
)− 1s1

(
χj
)
1s2 �χi�

]
are symmetric functions depending on a� The set of functions �1s � s ∈ �p+q+1�
is VC-type [e.g., Example 2.6.1 in van der Vaart and Wellner (1996)] and
therefore, so is the class �ψa1s � s ∈ �p+q+1 × �p+q+1� for each a ∈ �+ \ �0�
[see, e.g., Lemma 2.6.18 (vi) in van der Vaart and Wellner (1996)], which has
envelope �ψa� and CV-characteristics independent of ψa� Now, if 
 = �g1+g2 �
g1 ∈ 
1 and g2 ∈ 
2� and 
1 and 
2 are VC with envelopes G1 and G2
respectively, then, 
1 + 
2 is also VC with envelope G1 +G2 [this statement
follows easily from the fact that if g1� � � � � gN are the centers of an ε/2−cover
of 
1 for L2�Q� and ḡ1� � � � � ḡN̄ are those for an ε/2− cover of 
2 for L2�Q��
then gi + ḡj� i = 1� � � � �N� j = 1� � � � � N̄� are centers of a cover of 
 by
a L2�Q�-ball of radius less or equal to ε]. Therefore, the class of functions
indexed by s� �βsa � s ∈ �p+q+1 × �p+q+1� for fixed a ∈ �+ \ �0�, which is
the sum of two VC-type classes, is also VC-type, with envelope �ψa� and VC
characteristics independent of ψa� Thus, applying Proposition 4, there exists
a constant C, which does not depend on a� such that

E

[
sup
s1�s2

∣∣n1/2Rn �s1� s2�
∣∣2] ≤ C

1
n
E
[
ψa �χ1� χ2�2

]

= C
1

na2q
E
[
�Y1 −Y2�2K2

12

]

= O

(
1
naq

)
�

by Lemma 3. ✷

Proof of Proposition 2. Write

ηa �ȳ� x̄� =
∫
�ȳ−m �x̃��f �x̃� 1

aq
K

(
x̄− x̃
a

)
dx̃− �ȳ−m �x̄��f �x̄�

and{
Ū
�1�
n �w� − Ũ�1�

n �w� � w ∈ �p+q
}
�= {�Pn −P�g� g ∈

{
1wηa � w ∈ �p+q}} �
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That is, reasoning as above, under H0� Ū
�1�
n − Ũ

�1�
n is a centered empirical

process indexed by a VC-type class of functions with VC characteristics in-
dependent of ηa and envelope

∣∣ηa∣∣. Therefore, applying Proposition 4 with
m = 1� there exists a constant C independent of a� such that

E

[
sup
w

∣∣∣n1/2
(
Ū
�1�
n �w� − Ũ�1�

n �w�
)∣∣∣2]

≤ CE
[
ηa �χ1�2

]

≤ 2CE

[∣∣∣∣E
(
�m �X1� −m �X2��

1
aq
K12

∣∣∣∣X1

)∣∣∣∣
2
]

+2CE
[∣∣Y1 −m �X1�

∣∣2 ∣∣∣∣E
(
f �X1� −

1
aq
K12

∣∣∣∣X1

)∣∣∣∣
2
]
�

The first term in this last expression is anO�a2min�λ+1�τ�� by Lemma 5, and, for
δ > 0� the second term is bounded, applying Hölder’s inequality by a constant
times

∣∣∣E (∣∣Y1 −m �X1�
∣∣2+δ)∣∣∣ 2

2+δ

∣∣∣∣∣E
(∣∣∣∣E

(
f �X1� −

1
aq
K12

∣∣∣∣X1

)∣∣∣∣
2+ 4

δ

)∣∣∣∣∣
δ

2+δ

= O
(
a2λ
)

by Lemma 4. ✷

Proof of Proposition 3. For any z1� z2 ∈ �p� E��rz1�X� − rz2�X��2	
≤ E��1z1�Z� − 1z2�Z��2	 by Jensen’s inequality, and hence,

sup
Q

� �ε�L2 �Q� ��� ≤ � �ε�L2 �R� � �1z � z ∈ �p�� �

where R is a fixed probability measure on the support of Z. That is, the
covering numbers of � = �rz � z ∈ �p� are bounded by the covering numbers
of the family of functions �1z � z ∈ �p� [see also Ghosal, Sen and Van der
Vaart (2000), Lemma A2, for a related result]. Therefore, � is VC-type with
absolute bounded envelope, and �rz ∧ 1x � z ∈ �p� x ∈ �q� is also VC-type [see
Van der Vaart and Wellner (1996), Lemma 2.6.18 (i)]. If g � S→ � is a fixed
function, such that Pg2 < ∞� ��1x ∧ rz	 · g � z ∈ �p� x ∈ �q� is P-Donsker
[see, e.g., Van der Vaart and Wellner (1996), Example 2.10.23]. Therefore,
taking into account that γw �ȳ� x̄� = �1x �x̄� ∧ rz �x̄�	 · �m �x̄� − ȳ�f �x̄� � and
supx f �x� < ∞� E

[
�Y−m �X��2

]
< ∞� �γw � w ∈ �p+q� is P-Donsker. Now,

notice that

Ū
�2�
n �w� − Ũ�2�

n �w� = 1
n

∑
i

∫
�γw �Yi�Xi + x̄� − γw �Yi�Xi�	

1
aq
K

(
x̄

a

)
dx̄

= 1
n

∑
i

∫
�γw �Yi + ȳ�Xi + x̄� − γw �Yi�Xi�	µn �dȳ� dx̄� �
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where

µn �B1 ×B2� = 1 �0 ∈ B1�
∫
y∈B2

1
aq
K
(y
a

)
dy�

is a non-random, signed measure of uniformly bounded variation, which is
degenerate at the first coordinate, and converges to the Dirac measure at
zero. Thus, applying Proposition 5, it suffices to show that

sup
w
E

[(∫
�γw �Y�X+ x̄� − γw �Y�X�	

1
aq
K

(
x̄

a

)
dx̄

)2]
= o �1�(5)

and

sup
w

∣∣∣∣
∫
E �γw �Y�X+ x̄� − γw �Y�X�	

1
aq
K

(
x̄

a

)
dx̄

∣∣∣∣ = o
(
n−1/2

)
�(6)

The left-hand side of (5) is bounded by twice

sup
w
E

{[∫
�m�X+x̄�−m�X���f·1x ·rz��X+x̄�

1
aq
K

(
x̄

a

)
dx̄

]2}
(7)

+sup
w
E

{
�Y−m�X��2(8)

×
[∫
��f·1x ·rz��X+x̄�−�f·1x ·rz��X�	

1
aq
K

(
x̄

a

)
dx̄

]2}
�

Equation (7) is bounded by

E

{[∫ ∣∣m �X+ x̄� −m �X�∣∣f �X+ x̄� 1
aq

∣∣∣∣K
(
x̄

a

)∣∣∣∣dx̄
]2}

= E

[∣∣∣∣E
(∣∣m �X2� −m �X1�

∣∣ 1
aq

∣∣∣∣K
(
X1 −X2

a

)∣∣∣∣
∣∣∣∣X1

)∣∣∣∣
2
]

= O
(
a2
)

by Lemma 6; and (8) is bounded, applying Hölder’s inequality, by[
E
(
�Y−m �X��2+δ

)] 2
2+δ

×
{
sup
x�z

E

[∣∣∣ ∫ ��f · 1x · rz� �X+ x̄� − �f · 1x · rz� �X�	
1
aq
K

(
x̄

a

)
dx̄
∣∣∣2+

4
δ
]} δ

2+δ
�

with δ > 0� Now, applying Jensen’s inequality, for α = 2+ 4/δ�

sup
x�z

E

[∣∣∣∣
∫
��f · 1x · rz� �X+ x̄� − �f · 1x · rz� �X�	

1
aq
K

(
x̄

a

)
dx̄

∣∣∣∣
α]

≤ C sup
x�z

∫
E
[∣∣�f · 1x · rz� �X+ x̄� − �f · 1x · rz� �X�

∣∣α] 1
aq

∣∣∣∣K
(
x̄

a

)∣∣∣∣dx̄�
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and this last expression is bounded by a constant times

sup
x�z

∫
E
[∣∣1x �X+ x̄� rz �X+ x̄� �f �X+ x̄� − f �X�	∣∣α] 1

aq

∣∣∣∣K
(
x̄

a

)∣∣∣∣dx̄
+ sup

x�z

∫
E
[∣∣f �X�1x �X+ x̄� �rz �X+ x̄� − rz �X�	

∣∣α] 1
aq

∣∣∣∣K
(
x̄

a

)∣∣∣∣dx̄
+ sup

x�z

∫
E
[∣∣f �X� rz �X� �1x �X+ x̄� − 1x �X�	

∣∣α] 1
aq

∣∣∣∣K
(
x̄

a

)∣∣∣∣dx̄
≤ C

∫
E
[∣∣f �X+ x̄� − f �X�∣∣] 1

aq

∣∣∣∣K
(
x̄

a

)∣∣∣∣dx̄(9)

+C sup
z

∫
E
[∣∣rz �X+ x̄� − rz �X�

∣∣] 1
aq

∣∣∣∣K
(
x̄

a

)∣∣∣∣dx̄
+C sup

x

∫
E
[∣∣1x �X+ x̄� − 1x �X�

∣∣] 1
aq

∣∣∣∣K
(
x̄

a

)∣∣∣∣dx̄
= O �a� �

applying Lemma 6, and noticing that

∫
E
[∣∣1x �X+ x̄� − 1x �X�

∣∣] 1
aq

∣∣∣∣K
(
x̄

a

)∣∣∣∣dx̄
≤

q∑
j=1

∫
E
[∣∣∣1x�j� (X�j� + x̄�j�

)
− 1x�j�

(
X�j�

)∣∣∣] 1
aq

∣∣∣∣K
(
x̄

a

)∣∣∣∣dx̄

≤ C
q∑

j=1

∫ ∣∣∣FX�j�

(
x�j� − x̄�j�

)
−FX�j�

(
x�j�

)∣∣∣ 1
a

∣∣∣∣∣k
(
x̄�j�

a

)∣∣∣∣∣dx̄�j��
where X = �X�1�� � � � �X�q��′� x = �x�1�� � � � � x�q��′� x̄ = �x̄�1�� � � � � x̄�q��′� and
that FX�j�� f and rz are Lipschitz. Finally, the left hand side of (6) is equal to

sup
x�z

∣∣∣∣
∫
E �m �X� −m �X+ x̄�	f �X+ x̄�1x �X+ x̄� rz �X+ x̄� 1

aq
K

(
x̄

a

)
dx̄

∣∣∣∣
= sup

x�z

∣∣∣∣E
[[
m �X1� −m �X2�

1
aq

]
K

(
X1 −X2

a

)
1x �X2� rz �X2�

]∣∣∣∣
≤ E

[∣∣∣∣E
[
�m �X1� −m �X2�	

1
aq
K

(
X1 −X2

a

)∣∣∣∣X2

]∣∣∣∣
]

= O
(
amin�λ+1�τ�

)
�

by Lemma 5. ✷
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Proof of Theorem 1.

sup
w

∣∣∣Tn �w� − Ũn �w�
∣∣∣

= sup
w

∣∣∣∣n− 1
n

(
Ūn �w� − Ũn �w�

)
− 1
n
Ũn �w� +

n− 1
n

Rn �w�∞�∞�∞�
∣∣∣∣

= op
(
n−1/2

)
since supw �Ũn�w�� = Op�1�� supw �Rn�w�∞�∞�∞�� = op�n−1/2� by Propo-
sition 1, and supw �Ūn�w� − Ũn�w�� = op�n−1/2� by Propositions 2 and 3.
The family of functions � = � 1+ � 2� where � 1 = �γw � w ∈ �p+q� and
� 2 = �ωw � w ∈ �p+q�� with ωw�χ� = 1w�W��Y −m�X��f�X�� In the proofs
of Proposition 1 and 3, we have seen that � 1 and � 2 are VC-type with com-
mon square P-integrable envelope proportional to �Y−m�X��� Since the sum
of two VC-type classes of functions is also VC-type with envelope the sum
of the envelopes (see the proof of Proposition 1), � is a VC-type class with
square P-integrable envelope and, therefore, is P-Donsker (see the proof of
Proposition 3). ✷

Proof of Corollary 1. Notice that the maps T �→ supw
∣∣T �w�∣∣ and T �→∫

T2 �w�dFW �w� are continuous, dFW being a bounded measure, and the T’s
being bounded functionals. Thus, convergence in distribution of Kn under H0
is a consequence of Theorem 1 and the Continuous Mapping Theorem (CMT).
By Propositions 1, 2 and 3,

Cn=
∫ ∣∣n1/2Tn�w�

∣∣2dFW�w�+
∫ [
n1/2Ũn�w�

]2
�dFWn�w�−dFW�w��+op�1��

The first term on the right hand side of the last expression converges in distri-
bution to

∫ ∣∣BPξw
∣∣2 dFW �w� by the Theorem 1 and the CMT, and the second

term is equal to
1
n2

∑
i�=j �=k

{
ξWk

�χi�ξWk

(
χj
)−E[ξWk

�χi�ξWk

(
χj
)∣∣χi�χj�j �=i �=k]}

+ 1
n2

∑
i�=k

{
ξWk

�χi�2−E
[
ξWk

�χi�2
∣∣∣χi�i �=k]}(10)

=op�1��
Since the first term of (10) is a completely degenerate U-statistic, noticing
that, under H0�

E
[
ξWk

(
χj
)∣∣χk� j �= k

]
= E

[
E
(
εj
∣∣Wj

)
f
(
Xj

)
1Xk

(
Xj

) (
1Zk

(
Zj

)− rZk

(
Xj

))∣∣χk� j �= k
] = 0�

and applying Proposition 4 version for U-statistics it is Op

(
n−1/2

)
. The second

term of (10) is centered at zero and, thus, it is an op �1� applying the LLN for
U−statistics [see, e.g., de la Peña and Giné (1999), Theorem 4.1.4]. ✷
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In order to simplify notation, henceforth, for any generic function γ� γi =
γ �χi� and γ̂i = γ̂ �χi� � also Piw = 1w �Wi� � rzi = rz �Xi�, φwi = φw �Xi� �=
1x �Xi� rz �Xi� � εi = Yi −mi and ε̂i = Yi − m̂i�

Proof of Theorem 2.

n1/2
[
Ũ∗
n �w� − Ũ0∗

n �w�
]
=
{

1
n1/2

∑
i

Viε̂if̂iPwi −
1
n1/2

∑
i

ViεifiPwi

}

−
{

1
n1/2

∑
i

Viε̂if̂iφ̂wi −
1
n1/2

∑
i

Viεifiφwi

}

= A1n �w� −A2n �w� �

It suffices to show that supw
∣∣Ajn �w�

∣∣ = op
(
n−1/2

)
� j = 1�2� Write

A1n �w� =
1
n3/2

∑
i�=j

[
ψa
(
χi� χj

)− εifi]ViPwi�

where ψa was defined in Proposition 1. Thus, reasoning as in the proof of
Proposition 1 and taking into account that Vi’s are iid and independent of the
sample �n,

sup
w

∣∣A1n �w�
∣∣ = sup

w

∣∣∣∣∣ 1
n1/2

∑
i

ViPwiηa �Yi�Xi�
∣∣∣∣∣+Op

(
1

n1/2aq/2

)
�

where ηa was defined in Proposition 2. The first term on the right hand side
of the last expression is Op�aλ� + Op�amin�λ+1�τ��, reasoning as in the proof
of Proposition 2, taking into account that Vi’s are iid and bounded with zero
mean and independent of the sample �n. Thus, supw �A1n�w�� = op�1�� Now
write

A2n �w� =
1
n1/2

∑
i

Viεi

[
f̂iφ̂wi − fiφwi

]
+ 1
n1/2

∑
i

Vi �mi − m̂i� f̂iφ̂wi

= A1
2n �w� +A2

2n �w� �

Now

A1
2n�w�=

1
n3/2

∑
i

Viεi

[
1
aq
K�0�Pwi−fiφwi

]
+ 1
n3/2

∑
i�=j

Viεi

[
1
aq
KijPwj−fiφwi

]
�

The first term on the right hand side of the last expression is bounded , uni-
formly in w, by a constant times n−3/2

∑
i

∣∣εi∣∣ = Op

(
n−1/2

)
by the LLN. Rea-
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soning as in Proposition 1, the second term is, uniformly in w� equal to

1
n1/2

∑
i

∫
�Viεiφw �x̄+Xi�f �x̄+Xi� −Viεiφw �Xi�f �Xi�	

1
aq
K

(
x̄

a

)
dx̄

+ op �1�

= 1
n1/2

∑
i

∫
�gw �Viεi� x̄+Xi� − gw �Viεi�Xi�	

1
aq
K

(
x̄

a

)
dx̄+ op �1�

= op �1� �
applying Proposition 5, as in the proof of Proposition 3, taking into account
that supw�x̄

∣∣E �gw �V1ε1� x̄��
∣∣ = 0� and

sup
w
E

[(∫
�gw �V1ε1� x̄+X1� − gw �V1ε1�X1�	

1
aq
K

(
x̄

a

))2]
= o �1� �

reasoning as in (9). Thus, supw
∣∣A1

2n �w�
∣∣ = op �1� � Write

A2
2n�w� =

1
n1/2

∑
i

1
fi
Vi�mi−m̂i�

(
fi−f̂i

)
f̂iφ̂wi+

1
n1/2

∑
i

1
fi
Vi�mi−m̂i�f̂2i φ̂wi

= A21
2n�w�+A22

2n�w��
Applying the Cauchy-Schwarz and Markov inequalities,

sup
w

∣∣A21
2n�w�

∣∣ = Op

({
nE
[
�m̂1−m1�2 f̂21

]
E

[(
f1−f̂1

)2]}1/2)
(11)

=Op

(
n1/2

(
1

n1/2aq/2
+amin�λ+1�τ�

)(
1

n1/2aq/2
+aλ

))
�

since

E
[
�m̂1 −m1�2 f̂21

]
= O

(
1
naq

+ a2min�λ+1�τ�
)

by Lemmas 3 and 5, and

E

[(
f1 − f̂1

)2]
= O

(
1
naq

+ a2λ
)
�

by Lemmas 2 and 4. Therefore, supw
∣∣A21

2n �w�
∣∣ = op �1� using A4′. Applying

Lemma 3 and the LLN, we obtain that, uniformly in w�

A22
2n�w�=

1
n5/2

∑
i�=j �=k

Vi

1
fi

(
mi−Yj

)
KijKikPwk+Op

(
1

aqn1/2

)
+Op

(
1

a2qn3/2

)
�

The first term on the right hand side of the last expression can be written,
according to the notation at the beginning of this section, as

�n− 2� �n− 1�
n2

n1/2U
�3�
n �ϕwa� �
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where

ϕwa

(
χ
†
i � χ

†
j� χ

†
k

)
= ViκijkPwk +VkκkjiPwi +VjκjikPwk

+VkκkijPwj +ViκikjPwj +VjκjkiPwi�

with χ†
i = �χi�Vi� � and

κijk = κa
(
χi� χj� χk

) = 1
6fia2q

KjiKik

(
mi −Yj

)
�(12)

The class of functions �ϕwa � w ∈ �q+p� is CV-type for each a ∈ �+ \ �0� � with
CV-characteristics independent of a� and envelope proportional to

Ga

(
χi� χj� χk

) = ∣∣κijk∣∣+ ∣∣κkji∣∣+ ∣∣κjik∣∣+ ∣∣κkij∣∣+ ∣∣κikj∣∣+ ∣∣κjki∣∣ �(13)

Thus,

P3G2
a ≤

C

a2q
E

{
�m1 −Y2�2

1
aq
K2

12E

[
1
aq
K2

13

∣∣∣∣X1

]}
(14)

= O

(
1
a2q

)
�

by Lemmas 2 and 3. Hence, applying Proposition 4,

E

[
sup
w

∣∣∣n1/2U
�3�
n �π3ϕwa�

∣∣∣2] ≤ O

(
1

n2a2q

)
�

E

[
sup
w

∣∣∣n1/2U
�2�
n �π2ϕwa�

∣∣∣2] ≤ O

(
1

na2q

)
�

Thus, by Markov’s inequality,

sup
w

∣∣∣n1/2U
�3�
n �ϕwa�

∣∣∣ = sup
w

∣∣∣∣∣
3∑

k=1

(
3
k

)
n1/2U

�k�
n �πkϕwa�

∣∣∣∣∣
= 3 sup

w

∣∣∣n1/2U
�1�
n �π1ϕwa�

∣∣∣+Op

(
1
naq

+ 1
n1/2aq

)
�

Finally,

3sup
w

∣∣∣n1/2U
�1�
n �π1ϕwa�

∣∣∣
=sup

w

∣∣∣∣∣ 1
n1/2

∑
i

Vi

1
fi
E

{
1
aq
Kij

[(
mi−mj

)−εj] 1aqKikPwk

∣∣∣∣χi�Vi�i �=j �=k
}∣∣∣∣∣

=sup
w

∣∣∣∣∣ 1
n1/2

∑
i

Vi

1
fi
E

{
E

[
1
aq
Kij

(
mi−mj

)∣∣∣∣Xi

]
1
aq
Kikφwk

∣∣∣∣Xi�i �=k
}∣∣∣∣∣
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≤C 1
n1/2

∑
i

∣∣∣∣E
{∣∣∣∣E

[
1
aq
Kij

(
mi−mj

)∣∣∣∣Xi

]∣∣∣∣
∣∣∣∣ 1aqKik

∣∣∣∣
∣∣∣∣Xi�i �=k

}∣∣∣∣
=O

(
n1/2amin�λ+1�τ�

)

by Lemmas 2 and 5 after applying Cauchy-Schwarz and Markov inequalities.
Hence, we have shown that supw

∣∣A22
2n �w�

∣∣ = op �1� � Therefore, we have proved
that, supw

∣∣A2n �w�
∣∣ = op

(
n−1/2

)
� ✷

Proof of Theorem 3. It suffices to show that supw �T∗n�w� − Ũ∗
n�w�� =

op�n−1/2� and then apply Theorem 2. Define m̃i = �naq�−1
∑

j mjKij/f̂i and
ε̃i = �naq�−1

∑
j εjKij/f̂i and write, using that

∑
i mif̂iφ̂wi =

∑
i m̃if̂iPwi�

n1/2
[
T∗n�w�−Ũ∗

n�w�
]

= 1
n1/2

∑
i

�m̂i−mi�f̂i
[
Pwi−φ̂wi

]
+ 1
n1/2

∑
i

mif̂i

[
Pwi−φ̂wi

]

= 1
n1/2

∑
i

�mi−m̃i�f̂iφwi+
1
n1/2

∑
i

ε̃if̂i�Pwi−φwi	

+ 1
n1/2

∑
i

�m̂i−mi�f̂i
(
fi−f̂i

)[
φwi−φ̂wi

]
fi

+ 1
n1/2

∑
i

ε̃if̂
2
i

[
φwi−φ̂wi

]
fi

+ 1
n1/2

∑
i

�m̃i−mi�f̂2i
[
φwi−φ̂wi

]
fi

=B1n�w�+B2n�w�+B3n�w�+B4n�w�+B5n�w��

So, it suffices to prove that, supw
∣∣Bkn �w�

∣∣ = op �1� � for k = 1�2�3�4�5� First,
supw

∣∣B1n �w�
∣∣ = op �1� mimicking the arguments in the proofs of Propositions

1, 2 and 3. Applying Lemma 3,

sup
w

∣∣B2n �w�
∣∣ = sup

w

∣∣∣∣∣ 1
n3/2

∑
i�=j

εj
1
aq
Kij �Pwi −φwi	

∣∣∣∣∣+Op

(
1
naq

)
�

The first term on the right hand side of the last expression is a completely de-
generateU-process, which, applying Proposition 4 and noticing that �Pw−φw �
w ∈ �p+q� is VC-type, has second moments bounded by a constant indepen-
dent of a times �na2q�−1E�ε21K2

12� = O��naq�−1�� Third, supw �B3n�w�� = op�1�
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reasoning as in (11). Fourth, applying Lemma 3, uniformly in w�

B4n �w� =
1
n5/2

∑
i�=j �=k

1
fi
εj

1
aq
Kij

1
aq
Kik �φwi −Pwk�

+Op

(
1

n1/2aq

)
+Op

(
1

n3/2a2q

)

= �n− 1� �n− 2�
n2

n1/2U
�3�
n �ρwa� +Op

(
1

n1/2aq

)
+Op

(
1

n3/2a2q

)

where

ρwa
(
χi� χj� χk

) = {ψijk �φwi −Pwk� + ψkji �φwk −Pwi� + ψjik
(
φwj −Pwk

)
+ψkij

(
φwk −Pwj

)+ ψikj (φwi −Pwj

)+ ψjki (φwj −Pwi

)}
and

ψijk = ψa
(
χi� χj� χk

) = 1
6
1
fi
εj

1
aq
Kij

1
aq
Kik�

The class of functions �ρwa � w ∈ �q+p� is CV-type, for each � a ∈ �+\�0� � with
CV-characteristics independent of a� and envelope

La

(
χi� χj� χk

) =∑
�6�

∣∣ψa (χi� χj� χk)∣∣ �
where

∑
�6� runs over all possible permutations of the integers �i� j� k�. By

Lemmas 2 and 3,

P3L2
a ≤ CE

[∣∣∣∣ε2 1
aq
K12

∣∣∣∣
2

E

(∣∣∣∣ 1
a2q

K2
13

∣∣∣∣
∣∣∣∣X1

)]
= O

(
1
a2q

)
�

Thus, taking into account that supw
∣∣P3ρwa

∣∣ = 0 and applying Proposition 5,

sup
w

∣∣∣n1/2U
�3�
n �ρwa�

∣∣∣ = sup
w

∣∣∣∣∣
3∑

k=1

(
3
k

)
n1/2U

�k�
n �πkρwa�

∣∣∣∣∣
(15)

≤ 3 sup
w

∣∣∣n1/2U
�1�
n �π1ρwa�

∣∣∣+Op

(
1
naq

+ 1
n1/2aq

)
�

Because of notational convenience, let us define

Ei

(
γ
(
χi� χj

)) = E
(
γ
(
χi� χj

)∣∣χi� i �= j
)
�

where γ is a generic function. Now,

3n1/2U
�1�
n �π1ρwa� =

1
n1/2

∑
i

εiEi

(
1
fj

1
aq
Kij

1
aq
Kjk

(
φwj −φwk

))

= 1
n1/2

∑
i

εi

(
φwifi −Ei

(
1
fj

1
aq
Kij

1
aq
Kjkφwk

))
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+ 1
n1/2

∑
i

εi

[
Ei

(
1
aq
Kijφwj

)
−φwifi

]

+ 1
n1/2

∑
i

εiEi

(
1
fj

1
aq
KijφwjEj

(
1
aq
Kjk − fj

))

= D1n �w� +D2n �w� +D3n �w� �
Next we show that supw

∣∣Djn �w�
∣∣ = op �1� � j = 1�2�3� First,

sup
w

∣∣D1n�w�
∣∣

=sup
w

∣∣∣∣∣ 1
n1/2

∑
i

εi

{
φw�Xi�f�Xi�

−
∫ ∫ 1

a2q
K

(
x̄−x̃
a

)
K

(
Xi−x̄
a

)
φw�x̃�f�x̃�dx̃dx̄

}∣∣∣∣∣
=sup

w

∣∣∣∣∣ 1
n1/2

∑
i

{∫
�εiφw�Xi�f�Xi�−εiφw�Xi+y�f�Xi+y�	

1
aq



(y
a

)
dy

}∣∣∣∣∣
=sup

w

1
n1/2

∣∣∣∣∣
∑
i

∫
�gw�εi�Xi�−gw�εi�Xi+x̄�	

1
aq



(y
a

)
dy

∣∣∣∣∣
=sup

w

∣∣∣∣∣ 1
n1/2

∑
i

∫
�gw�εi�Xi�−gw�εi+ū�Xi+x̄�	dµn�ū�x̄�

∣∣∣∣∣�
where gw �ε̄� x̄� = ε̄φw �x̄�f �x̄�, 
 �y� =

∫
K �u�K �u− y�du, and

µn �B1 ×B2� = 1 �0 ∈ B1�
∫
y∈B2

1
aq



(y
a

)
dy�

is a signed measure, degenerate in the first coordinate, which converges to the
Dirac measure at zero. Hence, applying Proposition 5, it suffices to show that

sup
w
E

[∣∣∣∣
∫
�gw �ε1�X1� − gw �ε1�X1 + x̄�	

1
aq



(y
a

)
dy

∣∣∣∣
2
]
= o �1� �

sup
w

[
E

∣∣∣∣
∫
�gw �ε1�X1� − gw �ε1�X1 + x̄�	

1
aq



(y
a

)
dy

∣∣∣∣
]
= o

(
n−1/2

)
�

which follows reasoning as in the proofs of (5) and (6), noticing that 
, likeK�
is a multiplicative kernel, which satisfies A3. Second, supw

∣∣D2n �w�
∣∣ = op �1�

applying Proposition 5 in the same way. Third, notice that

D3n �w� =
1
n1/2

∑
i

t̄wa �Yi�Xi� �
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where t̄wa �y�x� �=
∫ ∫

twa �y�x� x̄� x̃�dx̄dx̃� and
twa �y�x� x̄� x̃�

= �y−m �x�� 1
aq
K

(
x− x̄
a

)
φw �x̄�

[
1
aq
K

(
x̄− x̃
a

)
− f �x̄�

]
f �x̃� �

Since �twa � w ∈ �p+q� is VC-type with VC-characteristics independent of a
and envelope

Ma �y�x� x̄� x̃� =
∣∣y−m �x�∣∣ 1

aq

∣∣∣∣K
(
x− x̄
a

)∣∣∣∣
∣∣∣∣ 1aqK

(
x̄− x̃
a

)
− f �x̄�

∣∣∣∣f �x̃� �
�t̄wa � w ∈ �p+q� is also VC with VC-characteristics independent of a� applying
Lemma A2 in Ghosal, Sen and van der Vaart (2000) [see also Lemma 5 and 6
in Sherman (1994)] and it has envelope M̄a�y�x� =

∫ ∫
Ma �y�x� x̄� x̃�dx̄dx̃�

Therefore, by Proposition 4 applied with m = 1� there exists a constant C
independent of a such that,

E


sup

w

∣∣∣∣∣ 1
n1/2

∑
i

t̄wa �Yi�Xi�
∣∣∣∣∣
2

 ≤ CPM̄2

a

= O
(
a2λ
)
�

by Lemmas 2 and 4, after applying Hölder’s inequality. Therefore
supw

∣∣D3n �w�
∣∣ = O

(
aλ
)
by Markov’s inequality. Finally, applying Lemma 3,

B5n �w� =
1
n5/2

∑
i�=j �=k

1
fi

(
mi −mj

) 1
aq
Kij

1
aq
KjkPwiPwk

+Op

(
1

n1/2aq

)
+Op

(
1

n3/2a2q

)

= �n− 1� �n− 2�
n2

n1/2U
�3�
n �αwa� +Op

(
1

n1/2aq

)
+Op

(
1

n3/2a2q

)
�

where

αwa
(
χi� χj� χk

) = {Sijk �φwi −Pwk� + Skji �φwk −Pwi� + Sjik
(
φwj −Pwk

)
+Skij

(
φwk −Pwj

)+ Sikj (φwi −Pwj

)+ Sjki (φwj −Pwi

)}
and

Sijk = Sa
(
χi� χj� χk

) = 1
fi

(
mi −mj

) 1
aq
Kij

1
aq
Kik�

Notice that αwa is identical to ρwa� after substituting ψa by Sa� Therefore,
�αwa � w ∈ �q+p� is CV-type, for each a ∈ �+ \ �0� � with CV-characteristics
independent of a and envelope with second moments O

(
n−2q

)
� Therefore,

reasoning as in (15),

sup
w

∣∣∣n1/2U
�3�
n �αwa�

∣∣∣=sup
w

∣∣∣3n1/2U
�1�
n �π1αwa�+n1/2P3αwa

∣∣∣+Op

(
1
naq

+ 1
n1/2aq

)
�
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Now,

n1/2 sup
w

∣∣P3αwa
∣∣ = n1/2 sup

w

∣∣∣∣E
[
1
f1
�m1 −m2�

1
aq
K12

1
aq
K13

]∣∣∣∣
= n1/2 sup

w

∣∣∣∣E
[
1
f1
E1

(
�m1 −m2�

1
aq
K12

)
1
aq
K13

]∣∣∣∣
= O

(
n1/2amin�λ+1�τ�

)
�

by Lemma 5. Applying Lemma A2 in Ghosal, Sen and van der Vaart (2000),{
P2αwa � w ∈ �p+q} is also VC-type for each a ∈ �+ \ �0� � with VC-character-
istics independent of a, and envelope

Na�Xi� = Ei

[∣∣mj−mi

∣∣ 1
aq

∣∣Kji

∣∣ 1
aq
Ej

(∣∣Kjk

∣∣)+∣∣mk−mi

∣∣ 1
aq

∣∣Kki

∣∣ 1
aq
Ek

(∣∣Kkj

∣∣)

+Ej

(∣∣mj−mk

∣∣ 1
aq

∣∣Kjk

∣∣) 1
aq

∣∣Kji

∣∣]�
Therefore, by Proposition 4, applied with m = 1�

E

[
sup
w

∣∣∣n1/2U
�1�
n �π1αwa�

∣∣∣] ≤ CPN2
a

= O
(
a2
)

by Lemmas 2 and 6, which concludes the proof. ✷

Proof of Corollary 2. Write �Ũ0∗
n �w� � w ∈ �q+p� = �P∗ng � g ∈ � �

as a process indexed by functions in � � Since � is P-Donsker with squared
integrable envelope, and Vi are bounded, the conditional multiplier uniform
central limit theorem [see Ledoux and Talagrand (1988) and Theorem 2.9.7 in
Van der Vaart and Wellner (1996); see also Problem 5, page 186] establishes
that, n1/2P∗n converges in distribution to BP in /∞�� � almost surely, where
BP is sample continuous, and for a continuous funtional ϕ � /∞�� � �→ ��

d

(
F∗
ϕ�n1/2Ũ0∗

n ��Fϕ�BP�

)
= o �1� a.s.,

where d is a distance metrizing weak convergence on the real line, and F∗ is
the conditional distribution given the sample �n� Therefore, applying Theo-
rems 2 and 3,

d

(
F∗
ϕ�n1/2Ũ∗

n��Fϕ�BP�

)
= op �1� and d

(
F∗ϕ�n1/2T∗n��Fϕ�BP�

)
= op �1� �

Then, the Corollary follows reasoning as in the proof of Corollary 1. ✷
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7. Lemmas. Proofs of Lemmas 1 to 5 can be found in Robinson (1988).

Lemma 1. Let supu
∣∣k �u�∣∣ + ∫ ∣∣uγk �u�∣∣du < ∞� for some γ ≥ 0� Then,

uniformly in x� ∫
�q
�x− s�γ

∣∣∣K (x− s
a

)∣∣∣ds ≤ Caq+γ�(16)

Lemma 2. Let supx f �x� < ∞� supu
∣∣k �u�∣∣ + ∫ ∣∣k �u�∣∣du < ∞� Then uni-

formly in x�

E

∣∣∣∣K
(
X− x
a

)∣∣∣∣ ≤ Caq�

Lemma 3. Let supx f �x� <∞,E
(∣∣s �X�∣∣) <∞� supu ∣∣k �u�∣∣+∫ ∣∣k �u�∣∣du <

∞� Then,

E

[
s �X1�

∣∣∣∣K
(
X1 −X2

a

)∣∣∣∣
]
≤ Caq�

Lemma 4. Suppose λ satisfies l− 1 < λ ≤ l, where l ≥ 1 is an integer, and
let f ∈ �∞

λ � k ∈�l� Then, for α > 0�

E

[∣∣∣∣E
[
1
aq
K

(
X1 −X2

a

)∣∣∣∣X1

]
− f �X1�

∣∣∣∣
α]
= O

(
aαλ
)
�

Lemma 5. Suppose λ� τ satisfying l− 1 < λ ≤ l, t− 1 < τ ≤ t, where l ≥ 1�
t ≥ 1 are integers, let f ∈ �∞

λ and m ∈ � α
τ for some α > 0� k ∈�l+t−1� Then

E

{∣∣∣∣E
(
�m �X1� −m �X2�	K

(
X1 −X2

a

)∣∣∣∣X1

)∣∣∣∣
α}
= O

(
aα�q+min�λ+1�τ�	

)
�

Lemma 6. For t − 1 < τ ≤ t� t ≥ 1� supx f �x� < ∞� let s ∈ � α
τ � α > 0�

supu
∣∣k �u�∣∣+ ∫ ∣∣k �u�∣∣du <∞� Then

E

{∣∣∣∣E
(∣∣s �X1� − s �X2�

∣∣ ∣∣∣∣K
(
X1 −X2

a

)∣∣∣∣
∣∣∣∣X1

)∣∣∣∣
α}
= O

(
aα�q+min�1�τ�	

)
�(17)

Proof. Let Q�v� x� be a �t−1�− th homogeneous polynomial in v−x with
coefficients the partial derivatives of s at x of orders 1 through t − 1� when
t > 1� and Q = 0 when t = 1� Let d1 be a function like d in Definition 1, and
let d2 depend on the derivatives of s� Let L�γ� be the left hand side of (16). As
in Robinson’s (1988) proof of Lemma 5, the left hand side of (17) is bounded by∫

Sxρ

∣∣s �v� − s �x� −Q �v� x�∣∣ ∣∣∣K (v− x
a

)∣∣∣f �v�dv
+
∫
Sxρ

∣∣Q �v� x�∣∣ ∣∣∣K (v− x
a

)∣∣∣f �v�dv
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+
∫
S̄xρ

∣∣s �v� − s �x�∣∣ ∣∣∣K (v− x
a

)∣∣∣f �v�dv
≤ C

{
d1 �x�L �τ� + d2 �x�

t−1∑
i=1

L �i�

+ [∣∣s �x�∣∣+E (∣∣s �X�∣∣)]aq+1 sup
u

{
|u|q+1 ∣∣k �u�∣∣q}} �

where E
[∣∣d1 �X�

∣∣α + ∣∣d2 �X�
∣∣α] < ∞� Then, the lemma follows applying

Lemma 1 and dominated convergence. ✷
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