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We examine the way in which empirical bandwidth choice affects dis-
tributional properties of nonparametric density estimators. Two bandwidth
selection methods are considered in detail: local and global plug-in rules.
Particular attention is focussed on whether the accuracy of distributional
bootstrap approximations is appreciably influenced by using the resample
version ĥ∗, rather than the sample version ĥ, of an empirical bandwidth.
It is shown theoretically that, in marked contrast to similar problems in
more familiar settings, no general first-order theoretical improvement can
be expected when using the resampling version. In the case of local plug-
in rules, the inability of the bootstrap to accurately reflect biases of the
components used to construct the bandwidth selector means that the boot-
strap distribution of ĥ∗ is unable to capture some of the main proper-
ties of the distribution of ĥ. If the second derivative component is slightly
undersmoothed then some improvements are possible through using ĥ∗,
but they would be difficult to achieve in practice. On the other hand, for
global plug-in methods, both ĥ and ĥ∗ are such good approximations to
an optimal, deterministic bandwidth that the variations of either can be
largely ignored, at least at a first-order level. Thus, for quite different rea-
sons in the two cases, the computational burden of varying an empirical
bandwidth across resamples is difficult to justify.

1. Introduction. One interpretation of the manner in which bootstrap
methods work is that they model the relationship between the population and
the sample by that between the sample and a “resample,” drawn from the
sample by sampling randomly with replacement. A tenet of this viewpoint is
that, when constructing the bootstrap version of the population-sample rela-
tionship, each part of a “statistic” (we use the term in a general sense) that
depends on the population should be replaced by its sample version, and each
part that depends on the sample should be replaced by its resample counter-
part. If this nexus is broken then the quality of the approximation is likely to
be degraded.

Take, for example, the problem of estimating the distribution of the statis-
tic T = � �X −m�/S, where m denotes the population mean, �X = n−1∑

i Xi

is the sample mean, and S2 = n−1∑
i�Xi − �X�2 is the sample variance,

with both �X and S2 being computed from the sample � = �X1	 
 
 
 	Xn	.
Taking � ∗ = �X∗

1	 
 
 
 	X
∗
n	 to be a resample drawn by sampling randomly,
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with replacement, from� , we define �X∗ and �S∗�2 to be its mean and variance,
respectively. Percentile-t bootstrap methods [see, e.g., Hall (1992a), pages
15–16; Efron and Tibshirani (1993), pages 160–167; Davison and Hinkley
(1997), pages 29–30] suggest using the distribution of T∗ = � �X∗ − �X�/S∗,
conditional on � , as an approximation to the distribution of T. The approx-
imation is second-order accurate, in the sense that the two distributions are
within Op�n−1�, not just Op�n−1/2�, of one another. However, if we replace S∗

by S in the definition of T∗ then this property is lost, and the accuracy of the
approximation is only Op�n−1/2�.

The statistic T depends on a population quantity, m, and on the sample
quantities �X and S; and these should be replaced by the sample quantity �X
and resample quantities �X∗ and S∗, respectively, if performance is not to be
sacrificed. In this article we shall address a closely related problem in the
context of density estimation. The problem often arises when using the boot-
strap to estimate the variability of a density estimator, for example in terms
of confidence bands. We shall show that, for density estimation (and for curve
estimation more generally), the population-sample relationship is much more
complex than in more classical circumstances, and that in important, specific
cases there is little to be gained by adhering rigorously to the relationship
when developing a bootstrap approximation.

One of the problems we address is the following. Consider estimating a
probability density, f�x�, using a kernel estimator, f̂�x� = f̂�x
h�, determined
by a bandwidth h and computed from a data set � . In practice, h too would
be computed from � ; in that case we denote it by ĥ. Let h0 denote the theo-
retically optimal bandwidth that ĥ is attempting to capture. When using f̂�x�
in connection with bootstrap methods, for example with the aim of construct-
ing a confidence region for E�f̂�x
h0�	 or E�f̂�x
ĥ�	, we would compute the
estimator f̂ from a resample � ∗ rather than from � . Denote the resulting
estimator by f̂∗�x
h�. Experience in more conventional settings, such as the
percentile-t problem discussed earlier, suggests that f̂∗ should be computed
using the bootstrap version, h = ĥ∗, say, of ĥ. (The bandwidth ĥ∗ is the same
function of � ∗ as ĥ was of � .) In particular, we should calculate the bootstrap
distribution of f̂∗�x
ĥ∗� rather than that of f̂∗�x
ĥ�.

Analogously to the percentile-t case, we would expect this approach to
reduce the order of error associated with the bootstrap approximation to a
distribution. However, we shall show that in several important respects this
is false. In particular, let us suppose ĥ is a standard local plug-in bandwidth
selector for a second-order kernel density estimator f̂, based on pilot estima-
tors of f and f′′; see, for example, Wand and Jones [(1995), page 41] for the
theoretical version of this bandwidth, denoted here by h0. Then, replacing ĥ by
ĥ∗ when computing the bootstrapped estimator f̂∗�x
ĥ� does not necessarily
improve the order of accuracy of a confidence procedure based on the bootstrap.
It will of course lead to numerical differences, but unlike the percentile-t case,
it will not usually improve performance by an order of magnitude.

The reasons are complex, but result primarily from the fact that standard
bootstrap methods are unable to accurately estimate the bias of a curve esti-
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mator. Bias terms contribute significantly to the distribution of f̂�x
ĥ�, where
ĥ is a local bandwidth selector. Another reason for the disparity between the
present context and that of the Studentized mean is that replacing ĥ by ĥ∗ does
not reproduce the stabilization or pivoting that is effected by Studentizing.

The situation is quite different when bandwidth is chosen using a global
plug-in rule. The relative accuracy with which a global bandwidth can be
estimated means that the first term in an Edgeworth expansion of the dis-
tribution of f̂�x
h0� is shared by the analogous expansion of the distribution
of f̂�x
ĥ�. (On this occasion the bandwidth h0 is the theoretical version of
the global plug-in bandwidth, and ĥ is its empirical counterpart.) As a result,
the bootstrap distributions of both f̂∗�x
ĥ� − f̂�x
ĥ� and f̂∗�x
ĥ∗� − f̂�x
ĥ�
successfully capture the dominant term causing departure of the distributions
of both f̂�x
h0�−E�f̂�x
h0�	 and f̂�x
ĥ�−E�f̂�x
h0�	 from Normality. In par-
ticular, changing ĥ to ĥ∗ at the bootstrap step has no impact on first-order
accuracy. Moreover, changing the definition of location from E�f̂�x
h0�	 to
E�f̂�x
ĥ�	 in the target distribution has no effect on the first-order term.

These two classes of results, about local and global plug-in bandwidth
selectors, respectively, demonstrate a marked dichotomy of properties. Nev-
ertheless, both directly contradict traditional wisdom for bootstrap methods.
In both cases, using ĥ∗ rather than ĥ has little theoretical effect on accuracy,
in terms of the first order of departure from the asymptotic distribution, of
the bootstrap approximation to the distribution of a density estimator. Similar
results may be obtained for other plug-in bandwidth selectors; they tend to be
either defeated by failure of the bootstrap to capture bias, at least in the case of
the usual prescriptions for their pilot bandwidths, or so accurate that resam-
pling the empirical bandwidth selector is largely unnecessary. Scott [(1992),
pages 172–177] discusses a range of plug-in rules, including alternative root-n
consistent methods.

In addition to making these specific contributions concerning bootstrapped
density estimators with empirically chosen bandwidths, we provide a detailed
account of the way in which empirical bandwidth choice affects departure of
the distribution of the density estimator from Normality. We also summarize
numerical results that lend support to our conclusions, for both local and global
plug-in rules. This work suggests an additional property: replacing ĥ by ĥ∗

when constructing confidence intervals generally tends to increase coverage,
regardless of whether this improves coverage accuracy or not.

Related work includes that of Taylor (1989) and Faraway and Jhun (1990)
on bootstrap approaches to bandwidth selection, and Hall [(1992a,b, 1993)] on
confidence regions based on nonparametric function estimators. The results in
the present paper have of course direct analogues in the context of nonpara-
metric regression, where similar difficulties arise with bootstrap estimators
of bias.

Section 2 will summarize methodology, Section 3 will state our main theoret-
ical results and discuss their implications, simulation results will be outlined
in Section 4 and theoretical arguments for Section 3 will be given in Section 5.
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2. Methodology.

2.1. What is the correct location parameter? We noted in Section 1 that
standard bootstrap methods are unreliable for estimating biases of linear
curve estimators. They generally estimate bias as zero, even when it is signi-
ficant. Thus, standard bootstrap approaches to constructing confidence regions
for curves should be interpreted as producing regions for the expected value
of the estimator, rather than for the true curve.

However, if the bandwidth is chosen empirically then one should consider
including the empirical bandwidth inside the expectation. In the present sec-
tion we consider some of the difficulties raised by that approach and show how
they may be overcome by truncation of the bandwidth estimator.

The following notation will be used throughout the paper. Given a random
sample � = �X1	 
 
 
 	Xn	 from a univariate distribution with density f, we
estimate f�x� by

f̂�x
h� = �nh�−1
n∑
i=1

K

(
x−Xi

h

)
	

and put f̂0 = f̂�·
h0� and f̃ = f̂�·
ĥ�, where h0 is a deterministic bandwidth
and ĥ is an empirical approximation to h0. To appreciate the problems associ-
ated with moments of f̃, consider a bandwidth selector ĥ that may be written
as ĥ = Inĥ1 + �1 − In�ĥ2, where (1) the indicator variable In takes only the
values 0 and 1, the latter with probability pn > 0, and (2) conditional on In,
ĥ1 is uniformly distributed on the interval �0	 δn�, where δn → 0. Assume too
that K ≥ 0 and K�0� > 0. Then, E�f̃�Xi�	 = ∞ for each i. Similarly, if nαpn

and nδn are bounded away from 0, for some α > 0, then the expected value of
the supremum of f̃�x� over any nondegenerate interval on which f is bounded
away from 0 is unbounded.

This example illustrates the problems associated with taking expected val-
ues of estimators computed using stochastic bandwidths. These difficulties
vanish, however, if it should be the case that ĥ is bounded below by a con-
stant multiple of n−A, for some A > 0. Indeed, in such cases, E�f̃� may be
calculated via a term-by-term Taylor series; see Lemma 5.1 in Section 5.

One could regard f�x�, rather than the expected value of an estimator, as
the location parameter. A confidence region for the former can be constructed
from one for the latter by making an explicit bias correction. Of course, this
introduces a new layer of complications, above those discussed in the present
paper. An alternative approach is to undersmooth when constructing f̂, so that
bias becomes less of an issue; see Hall (1992b) for discussion of these meth-
ods. However, there is a growing belief that the most appropriate approach
to constructing confidence regions is to estimate f̂ in a way that is optimal
for pointwise accuracy, and construct a confidence interval or a pointwise con-
fidence band for the expected value of this estimator. This view has been
expressed particularily strongly in discussion on e-mail bulletin boards, where
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it has been argued that such an approach has advantages of clarity, simplicity
and easy interpretation.

2.2. Local plug-in methods. The asymptotically optimal bandwidth for esti-
mating f at x, using f̂�x
h�, is h = h0 = a1�f�x�/f′′�x�2	1/5n−1/5, where the
constant a1 depends only on K. See, for example, Wand and Jones [(1995),
page 41]. To exposit properties of local plug-in methods we shall assume f
has four continuous derivatives in a neighborhood of x, and f�x�f′′�x� �= 0;
and consider estimating h0 by

ĥ = a1
{
f̂�x
h1�/f̂′′�x
h2�2

}1/5
n−1/5	(2.1)

where ρh1 ∼ h0 for some constant ρ > 0 (the value of which would not be
known to the experimenter), and h2 � n−d, with d < 1

5 . Let �Alpi� denote the
intersection of these assumptions. Assuming �Alpi� and taking c = min�2d	
1
2�1− 5d�	, it may be proved that

P
(∣∣ĥh−1

0 − 1
∣∣ > n−c+ε) = O

(
n−λ) for all ε	 λ > 0
(2.2)

The condition d < 1
5 is needed to ensure that f̂

′′�x
h2� is consistent for f′′�x�.
Taking d = 1

9 minimizes the order of mean-squared error of f̂′′�x
h2� as an
estimator of f′′�x�, and so this is the order of the bandwidth that is typically
recommended for calculating this part of ĥ. More generally, since h2 is an
order of magnitude larger than h1, and K will be taken to be compactly sup-
ported, then the probability that ĥ = 0 may be shown to be strictly positive
although exponentially small. Therefore, E�f̃�x�	 is not well defined if we
take ĥ as at (2.1). This difficulty may be overcome in a variety of ways; we
shall threshold ĥ, obtaining ĥt defined by ĥt = ĥ if ĥ > n−A and ĥt = n−A

otherwise, where A > 1/5 but is otherwise arbitrary. For this definition of ĥt
we put f̃t�x� = f̂�x
ĥt�.

2.3. Global plug-in methods. These techniques are based on the fact that
the optimal bandwidth for minimizing mean integrated squared error is asymp-
totic to h0 ≡ a2J

−1/5n−1/5, where a2 depends only on K, and J = J�f� =∫ �f′′�2. See Scott [(1992), pages 130–131] andWand and Jones [(1995), page 22].
There is a variety of root-n consistent estimators of J; we consider here

Ĵ = 2

n�n− 1�h53
∑∑
1≤i≤j≤n

L�4�
(
Xi −Xj

h3

)
	(2.3)

where L is a new kernel and h3 is a new bandwidth. Then,

ĥ ≡ a2
Ĵ
−1/5n−1/5(2.4)

is an empirical approximation to h0. (The absolute value sign is used to remove
any ambiguity, although from an asymptotic viewpoint it is unnecessary.)
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We assume that L is a symmetric, compactly supported function with four
bounded derivatives and satisfying∫

ujL�u�du =
{
1	 if j = 0,
0	 if j = 1	 
 
 
 	5,

f is compactly supported with eight bounded derivatives on the real line, and
h−1
3 n−1/9 + h3n

1/12 = O�1�. Call these conditions �Agpi�. The assumptions on

f and L may be shown to imply that Ĵ = J + Op�h63 + n−1/2 + n−1h−9/2
3 �;

see Lemma 3.1 of Hall and Marron (1987) for a closely related result. This
property, and the assumptions on h3 in �Agpi�, imply that Ĵ = J+Op�n−1/2�.
Therefore, �Agpi� implies that ĥ is “root-n consistent” for h0, in the sense that
ĥ/h0 = 1+Op�n−1/2�.

Note that, since 
Ĵ
 ≤ h−5
3 sup 
L�4�
, ĥ is bounded below by a constant

multiple of n−14/45, with probability 1. This threshold makes the global plug-
in bandwidth relatively resistant against unduly small choices, and ensures
that E�f̃� is a good approximation to the “average” value of f̃, at least in an
asymptotic sense.

It may be proved that, assuming �Agpi�, (2.2) holds with c = 1
2 .

2.4. Estimating scale and constructing bootstrap approximations. The vari-
ance of f̂�x
h� is σ�x
h�2 = �nh�−1γ2�x
f	h� − n−1γ1�x
f	h�2, where

γj�x
f	h� =
∫
K�u�jf�x− hu�du


A simple estimator of σ�x
h�2 is
σ̂�x
h�2 = �nh�−1γ2�x
f̄	 h� − n−1γ1�x
f̄	 h�2	(2.5)

where f̄ is an estimator of f. In the estimator f̂�·
h� we would usually take
h = ĥ, and so this choice of h would generally also be employed for σ̂�·
h�.
Selection of f̄ is not critical, but f̄ = f̃ = f̂�·
ĥ� is an obvious choice, and except
in the next paragraph, where we discuss more general options, we shall use
this definition of f̄ when defining σ̂�x
h�.

To appreciate why selection of f̄ is not so important, observe that for any
reasonable choice of f̄, in particular for f̄ = f̂�·
ĥ�, we have γj�x
f̄	 h� =
γj�x
f	h�+Op�n−2/5� for each j, and so σ̂�x
h�2σ�x
h�−2 = 1+Op�n−2/5�, this
result continuing to hold if h = ĥ. In consequence, replacing σ�x
ĥ� by σ̂�x
ĥ�,
when normalizing a density estimator, affects only terms of order n−2/5 or
higher in approximations to distributions. When ĥ is the local plug-in band-
width, this is of smaller order than changes that are caused through replacing
h0 by ĥ in the density estimator itself; see Theorem 3.1. If ĥ is the global plug-
in bandwidth then estimation of f in the formula for σ�x
h� affects first-order
properties only in the standard way that is to be expected for Studentized
estimators; see Theorem 3.2.
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Direct bootstrap approximations to the distributions of f̃ or f̃t are generally
obtained by replacing the sample � = �X1	 
 
 
 	Xn	 by a resample � ∗ =
�X∗

1	 
 
 
 	X
∗
n	, drawn by sampling from � with replacement. In particular,

the bootstrap form of f̂ is

f̂∗�x
h� = �nh�−1
n∑
i=1

K

(
x−X∗

i

h

)



The bootstrap version of ĥ is defined analogously, replacing f̂ by f̂∗ in (2.1) (in
the local plug-in case), to obtain ĥ∗, or (for the global plug-in rule) replacing
each datumXi by the respectiveX

∗
i in (2.3), to obtain Ĵ∗, and then substitut-

ing Ĵ∗ for Ĵ in (2.4), to obtain ĥ∗. We shall take f̄∗
1 = f̂∗�·
ĥ� and f̄∗

2 = f̂∗�·
ĥ∗�
to be our bootstrap versions of f̄, and define the bootstrap version of σ̂�x
h�2
by analogy with (2.5): for j = 1	2,

σ̂∗
j�x
h�2 = �nh�−1γ2�x
f̄∗

j	 h� − n−1γ1�x
f̄∗
j	 h�2
(2.6)

For brevity we shall give detailed results only for a particular percentile-t
approach to bootstrapping, although properties of the percentile method will
be outlined. Let µ�x� = E�f̂0�x�	. We consider approximating the distribution
of T = �f̂�x
ĥ� − µ�x�	/σ̂�x
ĥ� by the conditional distribution of either

T∗
j�x� =

f̂∗�x
ĥ� − f̂�x
ĥ�
σ̂∗
j�x
ĥ�

or U∗
j�x� =

f̂∗�x
ĥ∗� − f̂�x
ĥ�
σ̂∗
j�x
ĥ∗�

	(2.7)

for j = 1	2. If R∗ denotes either T∗
j�x� or U∗

j�x�, and v̂α is defined by P�R∗ ≤
v̂α
� � = α, for 0 < α < 1, then �−∞	 f̂�x
ĥ� − v̂1−ασ̂�x
ĥ�� is a confidence
interval for µ�x� with coverage probability approximately equal to α.

3. Main theoretical results.

3.1. Theoretical approximations to distributions. Our distribution approx-
imations will be developed around one-term Edgeworth expansions of the
distribution of f̂0 − E�f̂0�, discussed for example by Hall [(1991); 1992a,
Section 4.4]. In the non-Studentized case such an expansion has the form

P
{
f̂0�x� − µ�x� ≤ σ0�x�z

} = *�z� − �nh0�−1/2 16βf�x�−1/2

×�z2 − 1�φ�z� + o
{�nh0�−1/2}	(3.1)

uniformly in −∞ < z < ∞, where µ�x� = E�f̂0�x�	 and σ0�x�2 = var�f̂0�x�	
denote the mean and variance of the density estimator, * and φ are the stan-
dard Normal distribution and density functions, and β = �∫ K3�/�∫ K2�3/2.

In formulating the Studentized form of (3.1), we define σ̂�x
h� by (2.5) with
f̄ = f̂�·
ĥ�. Then,

P
{
f̂0�x� − µ�x� ≤ σ̂�x
h0�z

} = *�z� + �nh0�−1/2 16β f�x�−1/2

×�2z2 + 1�φ�z� + o
{�nh0�−1/2}	(3.2)
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again uniformly in −∞ < z < ∞.
The only additional regularity conditions needed for (3.1) and (3.2), apart

from �Alpi� or �Agpi�, are that (1) f�x� �= 0, and (2) K is continuously differ-
entiable and supported on a compact interval � , and there are only a finite
number of points in � where K vanishes. See, for example, Hall [(1992a),
Section 5.5].

Let c equal min�2d	 12�1 − 5d�	 or 1
2 in the cases of local plug-in or global

plug-in, respectively. [These are the maximum values for which (2.2) holds.] We
shall assume that K is a symmetric, compactly supported probability density,
vanishing only at a finite number of points in its support interval and with ν
bounded derivatives, where ν > �2/5c� + 1 and ν = 2 in the local and global
plug-in cases, respectively. Call these assumptions �A�.

Define κ = ∫
K2, κ2 =

∫
u2K�u�du,

κ�ρ� = ρ
∫
K�u��ρuK′�ρu� +K�ρu�	du	

τ1�x� =
κ2f

�4��x�
5f′′�x� 	 τ2�x� =

K′′�0�f�x�
5κ2f′′�x�2 


Recall that f̃ = f̂�·
ĥ�, and that in the local plug-in case, ρ equals the limit of
h0/h1 as n → ∞. We use κ�ρ� and τj�x� only in the local plug-in setting. Let
sgnu denote the sign of a nonzero real number u.

Theorem 3.1 (Local plug-in method). Assume conditions �A� and �Alpi�.
Then

P
{
f̃�x� − µ�x� ≤ σ0�x�z

}
= *�z� + h22τ1�x�

{
κ�ρ�κ−1z− sgnf′′�x�}φ�z� − h−2

0

(
nh32

)−1
τ2�x�(3.3)

× {(
z2 − 1

)
sgnf′′�x� + 2z

}
φ�z� + o

(
h22 + n−3/5h−3

2

)
	

uniformly in −∞ < z < ∞. The effect of using the thresholded local plug-in
bandwidth selector ĥt and replacing µ�x� by E�f̃t�x�	 in the probability on
the left-hand side of �3
3� is to remove one of the terms in sgnf′′�x� from the
right-hand side:

P
[
f̃t�x� −E�f̃t�x�	 ≤ σ0�x�z

]
= *�z� + h22τ1�x�κ�ρ�κ−1zφ�z� − h−2

0

(
nh32

)−1
τ2�x�(3.4)

× {(
z2 − 1

)
sgnf′′�x� + 2z

}
φ�z� + o

(
h22 + n−3/5h−3

2

)
	

uniformly in z. Results �3
3� and �3
4� continue to hold if σ0�x� = σ�x
h0� is
replaced by σ̂�x
h0� within the probability statement on the left-hand side of
each. Moreover, �3
3� and �3
4� hold if σ0�x� = σ�x
h0� is replaced by either

σ�x
ĥ� or σ̂�x
ĥ�, except that (for either of these choices of normalization) the
term { 1

2h
2
2τ1�x� + h−2

0 �nh32�−1τ2�x�sgnf′′�x�}zφ�z�(3.5)
should be added to the right-hand side.
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Result (3.4) does not change if, on the left-hand side, we replace σ0�x� by
the standard deviation of f̃t�x�.

Remark 3.1 (Dominant errors in distribution expansions). Note that add-
ing the term at (3.5) to the right-hand sides of (3.3) or (3.4) does not change
the main character of either of those expansions: there are still two main
terms in each, of sizes h22 and h−2

0 �nh32�−1, respectively. Since h2 is of strictly
larger order than h0, then the terms in h22 are of strictly larger order than the
terms in �nh0�−1/2 on the right-hand sides of (3.1) and (3.2). Therefore, the
Edgeworth expansions (3.3) and (3.4), and their analogues with the quantity
at (3.5) added, describe particularly low orders of departure from the asymp-
totic distribution. As we shall show in Section 3.2, the bootstrap has difficulty
capturing such low-order departures.

Remark 3.2 (Studentized versus non-Studentized cases). The fact that
(3.3) and (3.4) are unchanged if σ0�x� = σ�x
h0� is replaced by σ̂�x
h0� reflects
the fact that the impact of using the local plug-in bandwidth selector ĥ is more
significant than that of standardizing by the empirical standard deviation,
provided the latter is computed using the optimal bandwidth h0. This in turn
is reflected by the fact that the difference between the non-Studentized and
Studentized expansions (3.1) and (3.2) is of smaller order, �nh0�−1/2, than the
dominant terms on the right-hand sides of (3.3) and (3.4).

Remark 3.3 (Rate of convergence to asymptotic distribution). One of the
implications of (3.3) and (3.4), and their versions with the term at (3.5) added,
is that the distance of the distribution of f̃ (or f̃t) from Normality is mini-
mized by choosing h22 and n

−3/5h−3
2 to be of the same size; that is, by choosing

h2 � n−3/25. This is a different order from that (that is, n−1/9; see Section 2.2)
which minimizes the mean squared error of f̂′′�x
h2� as an estimator of f′′�x�,
although the difference is only slight.

Remark 3.4 (Effects of oversmoothing or undersmoothing when choosing
pilot bandwidths). The results discussed above assume h1 � h0. If, however,
h1 is chosen to give a certain amount of oversmoothing and tends to zero more
slowly than h0, then, in effect, ρ = 0, and so κ�ρ� = 0. In consequence, the
term in h22 vanishes from the right-hand side of (3.4), although not from (3.3).
Therefore, in the case of (3.4), faster rates of convergence to Normality may be
achieved by oversmoothing when constructing the density estimator f̂�x
h1�
in the definition of ĥ at (2.1).

When 0 < ρ < ∞, the optimal rate of convergence to Normality in the
supremum metric, obtained using h2 � n−3/25, is O�n−6/25�. Again this choice
of pilot bandwidth entails undersmoothing, relative to the “pointwise optimal”
choice h2 � n−1/9. The rate of convergence to Normality is only O�n−2/9� in
the latter case. These results should be compared with the rateO�n−2/5� when
the bandwidth is chosen non empirically; see (3.1) and (3.2).
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Therefore, in principle, convergence rates can be improved by slightly over-
smoothing when estimating f, or undersmoothing when estimating f′′, in the
formula for the pointwise-optimal bandwidth. However, practical implemen-
tation of such a method is far from straightforward. There are no existing
techniques for choosing h1 and h2 against criteria of coverage accuracy, and the
development of procedures is inhibited by the facts that (1) coverage accuracy
needs to be optimized to second order, not first order, and (2) optimal values of
h1 and h2 should depend on x. Difficulty (1) is reflected in the property that the
ratio 3/25 �= 1/8
333 · · ·�, occurring in the convergence rate optimal formula
h2 � n−3/25, is very close to 1/9, arising in the pointwise-optimal formula
h2 � n−1/9. By way of contrast, there are elementary well-known methods,
such as the Normal scale approach (see Remark 3.6) and plug-in rules, for
selecting h1 and h2 using pointwise-optimality criteria.

Remark 3.5 [Explanation for terms on right-hand sides of (3.3)–(3.5)]. In
Equations (3.3)–(3.5) the terms in h22 come directly from the bias of f̂′′�x
h2�,
the latter quantity being used in ĥ to estimate f′′�x0� in the definition of
h0. The portion �nh32�−1 of the term in h−2

0 �nh32�−1 comes indirectly from the
stochastic component of f̂′′�x
h2�, arising through cross-products. The part h−2

0
comes from the normalization of the density estimator itself, appearing in the
probabilities on the left-hand sides of (3.3)–(3.5); note that the normalization
there is by the inverse of the standard deviation, and hence by the factor
�nh0�1/2 � h−2

0 .
The global plug-in case is substantially different and more simple. There

the empirical bandwidth selector ĥ is so accurate, as an approximation to its
“ideal” form h0, that the first terms in the Edgeworth expansions at (3.1) and
(3.2) are preserved.

Theorem 3.2 (Global plug-in method). Assume conditions �A� and �Agpi�.
Then result �3
1� is unchanged if, in the probability on the left-hand side,

f̂0�x� −µ�x� is replaced by f̃�x� −µ�x� or by f̃�x� −E�f̃�x�	. Neither is there
any change if, within the probability statement on the left-hand side, σ0�x� is

replaced by σ�x
ĥ�. Moreover, �3
2� is unchanged if f̂0�x� − µ�x� on the left-

hand side is replaced by f̃�x�−µ�x� or by f̃�x�−E�f̃�x�	, or if σ̂�x
h0� on the

left is replaced by σ̂�x
ĥ�.

Remark 3.6 (Effect of empirical choice of pilot bandwidth). Theorems 3.1
and 3.2 often remain true if the pilot bandwidths h1	 h2 (used in the local
plug-in case) and h3 (used for global plug-in) are chosen empirically. For exam-
ple, if we select h1 using the “Normal scale” or “Normal reference” method
[see, e.g., Silverman (1986), pages 45–47; Scott (1992), page 131; Wand and
Jones (1995), page 60] and either select h2 using the same principle, or, more
simply, take h2 = h

5/9
1 ; then Theorem 3.1 remains true provided the distribu-

tion with density f has finite fourth moment.
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3.2. Bootstrap approximations. We confine attention almost solely to the
local plug-in case, dealing with global plug-in methods only at the very end of
the section. In the case of local plug-in bandwidth selectors, the main distin-
guishing feature of expansions in the bootstrap case is that they fail to capture
bias contributions arising from the component f̂′′�x
h2� of ĥ. These are repre-
sented the terms in h22 in (3.3)–(3.5).

Recall the definitions ofT∗
j�x� andU∗

j�x� in Section 2.4, and note thatU∗
j�x�

is the version of T∗
j�x� in which ĥ is replaced by ĥ∗ when computing boot-

strap estimators. Therefore, conventional bootstrap arguments (see Section 1)
would suggest that the bootstrap distribution of U∗

j�x� should offer a bet-
ter approximation, by an order of magnitude, than the bootstrap distribution
of T∗

j�x� to the true distribution of T�x� = �f̃�x� − µ�x�	/σ̂�x
ĥ�. The distri-
bution of the latter is treated in the later part of Theorem 3.1, where the term
at (3.5) is to be added to the right-hand sides of (3.3) and (3.4), giving

P
{
T�x� ≤ z

} = *�z� + h22τ1�x�
{ 1
2z+ κ�ρ�κ−1z− sgnf′′�x�}φ�z�

−h−2
0

(
nh32

)−1
τ2�x�

{(
z2 − z− 1

)
sgnf′′�x� + 2z

}
φ�z�(3.6)

+ o
(
h22 + n−3/5h−3

2

)



Theorem 3.3 (Local plug-in method). Assume conditions �A� and �Alpi�.
Then

P�T∗
j�x� ≤ z
� 	 = *�z� − h−2

0

(
nh32

)−1
τ2�x�

{(
z2 − 1

)
sgnf′′�x� + 2z

}
×φ�z� + op

(
h22 + n−3/5h−3

2

)
	

(3.7)

P�U∗
j�x� ≤ z
� 	 = *�z� − h−2

0

(
nh32

)−1
τ2�x�

{(
z2 − z− 1

)
sgnf′′�x� + 2z

}
×φ�z� + op

(
h22 + n−3/5h−3

2

)



(3.8)

uniformly in −∞ < z < ∞, for both j = 1	2.

Remark 3.7 [Explanation for terms on right-hand sides of (3.7) and (3.8)].
The terms in h22 on the right-hand sides of expansions such as (3.3) and (3.6)
come from the bias of f̂′′�x
h2�, the latter appearing in the definition of ĥ.
(See also Remark 3.5.) The nonappearance of terms in h22 on the right-hand
sides of (3.7) and (3.8), relative to (3.3) and (3.6), is due to the failure of the
bootstrap distributions of either T∗

j or U
∗
j to capture the bias of f̂

′′�x
h2�.
However, except for the term in h22, the expansion at (3.7) is identical to

that at (3.3). In particular, except for these terms, the bootstrap distribution
of T∗

j captures the distributions of both S0�x� = �f̃�x�−µ�x�	/σ0�x� [see (3.3)]
and T0�x� = �f̃�x�−µ�x�	/σ̂�x
h0� [note that, by Theorem 3.1, (3.3) continues
to hold if σ0�x� on its left-hand side is replaced by σ̂�x
h0�]. The fact that the
distributions of both the non-Studentized statistic S0�x� and its Studentized
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form T0�x� are captured to first order by the same bootstrap quantity, except-
ing the h22 terms, reflects the property, noted in Remark 3.2, that at this level,
Studentizing does not play a major role.

It might be thought that the bootstrap distribution of T∗
j should approxi-

mate the distribution of Z = �f̂�x
h0� − µ�x�	/σ̂�x
h0�, as given at (3.2), and
so the right-hand sides of (3.2) and (3.7) should be similar, except for terms
in h22. This is not the case, however, and (3.7) includes a term in h−2

0 �nh32�−1
that arises from stochastic error (as distinct from bias) of f̂′′�x
h2� in ĥ; note
that Z does not involve ĥ.

Remark 3.8 (Distributional approximation provided by U∗
j). Since the exp-

ansion (3.8) is identical to (3.6), except for terms in h22, then apart from those
terms, the bootstrap distribution of U∗

j captures the distributions of both

�f̃�x� − µ�x�	/σ�x
ĥ� and T�x� = �f̃�x� − µ�x�	/σ̂�x
ĥ�. This again reflects
the relatively unimportant role played by Studentizing.

Remark 3.9 (Should µ�x� or E�f̃t�x�	 be considered as the target?). In
Theorem 3.1 the only change brought about by considering E�f̃t�x�	, rather
than µ�x�, as the “mean” of the density estimator was to remove a portion of
the term in h22 from the Edgeworth expansion; compare (3.3) and (3.4). How-
ever, the h22 term is not captured by the bootstrap distributions of either T∗

j or
U∗

j, and so in the bootstrap setting there is not a clear argument for preferring

µ�x� or E�f̃t�x�	 as the target of a confidence procedure.
By way of contrast, in the case of global plug-in bandwidth selectors, ĥ

is such an accurate approximation to h0 that biases in the construction of
ĥ do not influence the distribution of the density estimator f̂�x
ĥ�, to first
order. This high level of accuracy is maintained by the bootstrap bandwidth
selector ĥ∗, as our next result shows.

Theorem 3.4 (Global plug-in method). Assume conditions �A� and �Agpi�.
Then �3
2� is unchanged if the probability on the left-hand sides is changed
to either P�T∗

j�x� ≤ z
� 	 or P�U∗
j�x� ≤ z
� 	, for either j = 1 or 2, pro-

vided the remainder term o��nh0�−1/2	 on the right-hand side is replaced
by op��nh0�−1/2	.

Remark 3.10 (Percentile-method versions of Theorems 3.3 and 3.4). Like
Theorem 3.3, Theorem 3.4 describes performance of a percentile-t method.
Consider replacing T∗

j�x� and U∗
j�x�, in the statement of Theorem 3.4, by

their respective percentile forms,

V∗ = f̂∗�x
ĥ� − f̂�x
ĥ�
σ̂�x
ĥ�

and W∗ = f̂∗�x
ĥ∗� − f̂�x
ĥ�
σ̂�x
ĥ∗�

	

where σ̂�x
h� is as defined in the first paragraph of Section 2.4. Then Theorem
3.4 continues to hold, provided we replace “(3.2)” by “(3.1)” in its formulation.
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This is in effect a bootstrap version of a property first noted in Section 2.4:
the global plug-in bandwidth selector ĥ is so accurate that replacing ĥ by its
bootstrap form affects first-order properties only in the standard ways that
are to be expected for Studentized or non-Studentized estimators.

By way of contrast, if in Theorem 3.3 we replace T∗
j�x� andU∗

j�x� byV∗ and
W∗, then there is no change to that result. This is another aspect of a property
already noted in Remarks 3.7 and 3.8: the effects of local plug-in bandwidth
selection dominate those of Studentizing.

4. Numerical properties.

4.1. Parameters of the simulation study. We used Monte Carlo simula-
tion to evaluate small-sample properties of f̂∗�x
ĥ� and f̂∗�x
ĥ∗�. The under-
lying distributions were chosen to be four of the Normal mixture densities
described by Marron and Wand (1992): (a) standard Normal, (b) skewed uni-
modal density [mixture of N�0	1�, N�1/2	 �2/3�2� and N�13/12	 �5/9�2� in
proportions 1�1�3], (c) bimodal density [equal mixture of N�±1	 �2/3�2�], and
(d) trimodal density [mixture of N�−6/5	 �3/5�2�, N�6/5	 �3/5�2� and N�0	
�1/4�2� in proportions 9�9�2]. Graphs of the densities are given by Marron and
Wand (1992). Populations (a), (c) and (d) are symmetric about the origin, and
that point was selected as a value of x for all four populations. We also chose
x = 0
75 for population (a), x = 1
00 for populations (b) and (c) (in each case
this point is close to a mode), and x = 1
20 for population (d) (again, close
to a mode). Thus, simulations for each population were conducted using two
values of x.

Four different bootstrap methods were considered in all instances, based on
T∗
1, T

∗
2, U

∗
1 and U∗

2, respectively; see (2.7) for definitions. Sample sizes were
n = 50, 100 and 400; B = 299 bootstrap resamples were used to construct
confidence intervals; and coverage probabilities were approximated by aver-
aging over 3,000 replications. [We apportioned computational labor in this
way since it is known that even taking B quite small has negligible impact
on computational accuracy; see Hall (1986) and Hall and Titterington (1989).]
Each confidence interval was one-sided and had nominal coverage 0
95, but
in each setting (that is, for each population, each value of x, each sample size
and each bootstrap method) we treated both left-handed �−∞	 ẑ0
95� and right-
handed �ẑ0
05	∞� one-sided intervals. All density estimates were constructed
using the standard Normal kernel, φ, the tails of which are so light that it is
effectively compactly supported.

We computed the local plug-in bandwidth directly from (2.1), taking h1 and
h2 there to be those bandwidths that would be (asymptotically) optimal for
estimating f and f′′, respectively, if the population were Normal with scale
equal to the sample standard deviation. To implement the global plug-in rule
we used the method described at (2.3) and (2.4), taking the kernel L to be
of sixth order, L�u� = 1

8�u4 − 10u2 + 15�φ�u�. The bandwidth h3 at (2.3) was



1456 P. HALL AND K.-H. KANG

taken to be the one that would be optimal if the density were Normal with
scale equal to the sample standard deviation.

4.2. Results of the study. The results reported below are all for the case
where f̂�x
ĥ� is treated as an estimator of µ�x� = E�f̂�x
h0�	. The trends are
the same if insteadE�f̂�x
ĥ�	 is the focus of interest, except that all coverages
tend to be slightly increased. As will be seen from the discussion below, this
does not alter our conclusions.

There is a general tendency for coverage to increase if the empirical band-
width ĥ is replaced by ĥ∗ at the bootstrap step, regardless of whether a local
or global plug-in method is used. In particular, for left-handed intervals, in
only 1 out of 48 cases does the interval based on U∗

j not have at least the
coverage of that based on T∗

j. For right-handed intervals the proportion is 7
out of 48. (The 48 cases arise as 4 populations × 3 sample sizes × 2 values
of x × 2 plug-in methods.) Of the 1 + 7 = 8 exceptions, all but two [these
occurring in population (b)] arise in the case of the relatively complex popula-
tions (c) and (d). There, accurate estimation of f′′, which is required for both
local and global plug-in methods, is relatively difficult, and so it is perhaps
not surprising that the trend is not followed completely.

Whether or not an increase in coverage is beneficial depends of course on
the extent of the increase and on the base. In the case of left-handed confi-
dence regions, where methods founded on T∗

j generally undercover, the more
conservative performance evidenced by U∗

j often leads to enhanced coverage
accuracy. For example, results for population (a) in the context of local plug-
in smoothing, given in Table 1, show that there, U∗

1 gives better results (in
terms of closeness of true coverage to 0.95) than T∗

1 in six out of six cases. The
proportion is only three out of six for the global plug-in approach applied to
population (a), however. Using the same criterion, and for populations (b), (c)
and (d) together, the proportions in favor ofU∗

1 are 17 out of 18 for local plug-in
smoothing, and 9 out of 18 for the global plug-in method.

On the other hand, methods based on T∗
j provide relatively good coverage

accuracy in the case of right-handed confidence intervals, and so their coun-
terparts employing U∗

j have a tendency to overcover to an unnecessarily large
extent. Thus, for local plug-in smoothing and right-handed confidence regions,
T∗
1 outperforms U∗

1 15 out of 24 times, in terms of nearness to the nominal
level. In the case of global plug-in methods, T∗

1 outperforms U∗
1 19.5 out of

24 times. (The fraction comes from ties, which are counted 50% toward each
tally. These figures are taken over all four populations.) Table 2, which shows
the results for population (a) in the setting of local plug-in smoothing and
right-handed confidence intervals, is fairly typical of properties in the case of
unimodal populations. There, owing to relatively accurate coverage of inter-
vals based on T∗

1, and consequent overcoverage in the case of intervals based
on U∗

1, the former are more accurate in all six cases.
For both right- and left-handed intervals, results for U∗

2 versus T
∗
2 tend to

be more mixed and have less of an obvious trend. However, again there is
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Table 1
Left-handed confidence intervals in case of Normal population and local plug-in smoothing∗

n= 50 n= 100 n= 400

x= 0
00 x= 0
75 x= 0
00 x= 0
75 x= 0
00 x= 0
75

f�x� 0.3989 0.3011 0.3989 0.3011 0.3989 0.3011
h0 0.4267 0.6283 0.3714 0.5469 0.2815 0.4145
Ef̂0�x� 0.3669 0.2761 0.3740 0.2819 0.3840 0.2899

pt1 80.17 80.03 81.50 83.37 87.37 89.13
mt1 0.4251 0.3207 0.4238 0.3170 0.4201 0.3137
st1 0.0864 0.0595 0.0636 0.0425 0.0332 0.0214

pt2 89.87 86.47 92.90 90.63 97.60 94.70
mt2 0.4969 0.3529 0.4673 0.3380 0.4338 0.3200
st2 0.1051 0.0743 0.0664 0.0476 0.0295 0.0207

pu1 93.00 93.50 95.97 94.60 98.06 94.63
mu1 0.4656 0.3501 0.4529 0.3351 0.4291 0.3180
su1 0.0819 0.0586 0.0571 0.0422 0.0298 0.0213

pu2 97.66 95.20 98.67 96.30 99.76 96.83
mu2 0.7102 0.4617 0.5894 0.4005 0.4584 0.3306
su2 0.2543 0.1420 0.1689 0.0927 0.0621 0.0310

∗Values of f�x�, h0 and E�f̂0�x�	 are given in the first set of three rows. Subsequent sets of three
rows give Monte Carlo approximations to true coverage, p�×100�, average values of finite end-
points, m, and standard deviations of those endpoints, s, respectively, of the respective confidence
regions. Subscripts tj and uj refer to local plug-in methods based on T∗

j and U∗
j, respectively.

no tendency for U∗
2 to outperform T∗

2, or vice versa, in terms of sheer cover-
age accuracy.

We conclude that there is no evidence that methods based on U∗
j have

systematically greater coverage accuracy than methods that use T∗
j. However,

intervals based on U∗
j are generally more conservative, and so in cases where

that is an advantage they would be preferable.

5. Derivations of theorems.

5.1. Preliminary lemma. Define 7 = h0ĥ
−1 − 1. Let c > 0 be a constant

such that (2.2) holds; let �A1� denote the assumption that K is a symmetric,
compactly supported probability density with k1 ≥ 2 bounded derivatives, f
has two bounded derivatives in a neighborhood of x, and ĥ satisfies (2.2);
let �A2� represent the assumption that for some B1	B2 > 0, ĥ ≥ B1n

−B2

with probability 1. Define Kj�u� = ujK�j��u� (for j ≥ 0), Mj�u� = Kj�u� +
jKj−1�u� (for j ≥ 1) and f̂j�x� = �nh0�−1

∑
i Mj��x−Xi�/h0	 (for j ≥ 1).

Lemma 5.1. For each 1 ≤ k < k1 − �2/5c� we may write

f̃�x� = f̂0�x� + 7f̂1�x� + · · · + 1
k!
7kf̂k�x� +R1�x�	(5.1)
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Table 2
Right-handed confidence intervals in case of Normal population and local plug-in smoothing∗

n= 50 n= 100 n= 400

x= 0
00 x= 0
75 x= 0
00 x= 0
75 x= 0
00 x= 0
75

f�x� 0.3989 0.3011 0.3989 0.3011 0.3989 0.3011
h0 0.4267 0.6283 0.3714 0.5469 0.2815 0.4145
Ef̂0�x� 0.3669 0.2761 0.3740 0.2819 0.3840 0.2899

pt1 94.60 94.23 94.23 94.83 94.93 95.03
mt1 0.2913 0.2233 0.3129 0.2388 0.3455 0.2623
st1 0.0466 0.0329 0.0377 0.0259 0.0235 0.0159

pt2 89.70 89.87 90.67 91.67 93.13 93.73
mt2 0.3039 0.2301 0.3220 0.2441 0.3499 0.2646
st2 0.0512 0.0385 0.0395 0.0277 0.0234 0.0159

pu1 98.96 98.77 98.57 98.73 97.13 97.83
mu1 0.2435 0.1853 0.2843 0.2156 0.3351 0.2551
su1 0.0631 0.0477 0.0490 0.0370 0.0262 0.0175

pu2 97.26 96.60 96.53 97.40 96.10 96.80
mu2 0.2792 0.2146 0.3042 0.2324 0.3415 0.2597
su2 0.0445 0.0324 0.0368 0.0256 0.0230 0.0155

∗Rows have the same interpretation as before.

where, assuming �A� and �A1�, we have that for some ε > 0 and all λ > 0,

P
{
R1�x�
 > n−�2/5�−kc−ε} = O

(
n−λ)
(5.2)

Assuming in addition �A2�,

E�f̃�x�	 = E

{
f̂0�x� + 7f̂1�x� + · · · + 1

k!
7kf̂k�x�

}
+O

(
n−�2/5�−kc−ε)(5.3)

for some ε > 0.

Proof. The quantities C1	C2	 
 
 
 will denote positive constants. By Taylor
expansion,

f̃�x� = 1+ 7

nh0

n∑
i=1

K

{
x−Xi

h0
�1+ 7�

}
= f̂0�x� + 7f̂1�x� + · · · + 1

�k1 − 1�!7
k1−1f̂k1−1�x� + 7k1R2�x�	

(5.4)

where, assuming C1h0 ≤ ĥ ≤ C2h0 [which, in view of �A1�, may be assumed
true with probability 1 − O�n−λ� for all λ > 0] and K is supported on the
interval �−C3	C3�,


R2�x�
 ≤ C4�nh0�−1
n∑
i=1

I�
x−Xi
 ≤ C2C3h0� = C4R3�x�	(5.5)
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say. It may be proved using Bernstein’s inequality that if C5 is chosen suffi-
ciently large then the probability that 
R3�x�
 exceeds C5 equals O�n−λ� for
all λ > 0. Hence, in view of �A1� we have for all ε	 λ > 0,

P
{∣∣7k1R2�x�

∣∣ > n−k1c+ε} = O
(
n−λ)
(5.6)

Repeated integration by parts shows that∫
urMj�u�du = �−1�j �r+ j− 1�!

�r− 1�!
∫
urK�u�du

for r ≥ 0 and j ≥ 1, the right-hand side being interpreted as 0 if r = 0.
In particular,

∫
urMj�u�du = 0 for r = 0	1, and so E�f̂j�x�	 = O�h2� for

j = 1	 
 
 
 	 k1 − 1; call this result (R). (Here we have used the fact that f
has two bounded derivatives.) Markov’s inequality may be used to prove that
the probability that 
f̂j�x�−E�f̂j�x�	
 exceeds n−�2/5�+ε equals O�n−λ� for all
ε	 λ > 0. From this property and (R) it follows that the probability that 
f̂j�x�

exceeds n−�2/5�+ε equals O�n−λ� for all ε	 λ. Results (5.1) and (5.2) now follow
from (5.4) and (5.6).

Let ess�
7
� denote the essential supremum of 7, and note that by �A2�,
ess�
7
� ≤ B3n

B4 for some B3	B4 > 0. Therefore, if �A2� holds then for any
positive integer <,

E
(
7
<) ≤ n−�c−ε�< + (

B3n
B4
)<
P
(
7
 > n−�c−ε�)


By �A1�, the latter probability equals O�n−λ� for all ε	 λ > 0, and so E�
7
<� =
O�n−�c−ε�<� for all ε > 0. Therefore, for any random variable Zn,∣∣E(

7<Zn

)∣∣ ≤ {
E
(
72<)E(

Z2
n

)}1/2 = O
{
n−�c−ε�<�EZ2

n�1/2
}

(5.7)

We shall apply this result to terms 7< f̂<�x� on the right-hand side of (5.1),
and so we shall take Zn = f̂<�x�. In this case we have, on the right-hand
side of (5.7), EZ2

n = O�h40�. Note too that by (5.5), if �A2� holds then
ess�
7
k1R2�x�	 ≤ B5n

B6 for some B5	B6 > 0. Therefore, in view of (5.6),
and using an argument similar to that leading to (5.7),

E
{
7k1R2�x�

} = O
(
n−k1c+ε)(5.8)

for all ε > 0. Result (5.3) follows from (5.4), (5.7) and (5.8). This completes the
proof of Lemma 5.1. ✷

In the local and global plug-in cases, Lemma 5.1 implies that

f̃ = f̂0 +S1 +R4	 f̃ = f̂0 +R5	(5.9)

respectively, where S1 = 7f̂1, R4 satisfies

P
{
R4�x�
 > n−�2/5�−c−ε} = O

(
n−λ)	(5.10)

and R5 satisfies

P
{
R5�x�
 > n−�4/5�−ε} = O

(
n−λ)	(5.11)
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both holding for some ε > 0 and all λ > 0. The lemma implies too that

E�f̃t� = E�f̂0� +E�S1� +O
(
n−�2/5�−c−ε)	

E�f̃� = E�f̂0� +O
(
n−�4/5�−ε)	(5.12)

respectively, both holding for some ε > 0. Here and below, for simplicity we
shall often suppress the argument x in quantities such as f̃, f̂j and Rj.

5.2. Proof of �3
3�. Put δ�0��x� = E�f̂�x
h1�	−f�x�, δ�2��x� = E�f̂′′�x
h2�	
−f′′�x�, 7�0��x� = f̂�x
h1�−E�f̂�x
h1�	, 7�2��x� = f̂′′�x
h2�−E�f̂′′�x
h2�	. Put
c = min�2d	 12�1− 5d�	 < 2

5 . It may be proved by Taylor expansion that

7 = 1
5

{
2�δ�2� + 7�2���f′′�−1 − �δ�0� + 7�0��f−1}+R7	(5.13)

where, in view of Markov’s inequality,

P
(
R7
 > n−2c+ε) = O

(
n−λ)

for all ε	 λ > 0. From this result, (5.10) and the first identity at (5.9) we deduce
that for all sufficiently large n, all ε	 λ > 0, and j = 1,

P�f̃− µ ≤ z�
{≤ =j

(
z+ n−�2/5�−2c+ε)+O

(
n−λ)

≥ =j

(
z− n−�2/5�−2c+ε)+O

(
n−λ)	(5.14)

where µ = E�f̂0�,
=1�z� = P

[
f̂0 − µ− 1

5 f̂1
{
2�δ�2� + 7�2���f′′�−1 − �δ�0� + 7�0��f−1} ≤ z

]
	

and the “O�n−λ�” terms are of that order uniformly in −∞ < z < ∞.
Note that n−2c = O��h22+n−3/5h−3

2 �n−ε	 for some ε > 0. Call this result (R′).
It will allow us to show that the terms in n−�2/5�−2c+ε at (5.14) pass into the
“small oh” remainders in (3.3) and (3.4).

Define δj = E�f̂j� and 7j = f̂j − δj, for j ≥ 0, and put

T1 = 70− 1
571

{
2δ�2��f′′�−1−δ�0�f−1}− 1

5δ1
{
27�2��f′′�−1−7�0�f

−1}	
T2 = 1

571
{
27�2��f′′�−1−7�0�f

−1}	 T3=T1−T2	(5.15)

=2�z� = P
[
T3≤z+ 1

5δ1
{
2δ�2��f′′�−1−δ�0�f−1}]


Then, (5.14) for j = 1 is identical to that result for j = 2.
Since T1 is the sum of independent random variables with zero mean, then

an Edgeworth expansion of the distribution of T1 is relatively easy to derive.
We claim that an Edgeworth expansion of the standardized distribution of T3
equals that of T1 plus a term of size n−3/5h−3

2 :

P
{
T1 ≤ �varT1�1/2z

}−P
{
T3 ≤ E�T3� + �varT3�1/2z

}
= �nh0�1/2

(
nh32

)−1
τ̄2
(
z2 − 1

)
φ�z� + o�ξ0�	

(5.16)

uniformly in z, where (for each ε ≥ 0) ξε = �h22 + n−3/5h−3
2 �n−ε, and τ̄2 =

K′′�0�f1/2/5κ1/2f′′. [Note that E�T1� = 0.]
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Methods for deriving (5.16) are variants of those discussed by Hall [(1992a),
Section 5.5]. Note in particular that if 
h0−h1
/h0 is bounded away from 0 as
n → ∞ then the conditions imposed on K imply that

sup

t1
+···+
t4
>ε

∣∣∣∣ ∫ exp
{
it1K

(
x− y

h0

)
+ it2K

(
x− y

h1

)
+ it3M1

(
x− y

h0

)

+ it4K
′′
(
x− y

h2

)}
f�y�dy

∣∣∣∣ ≤ 1−C�ε�h2	
(5.17)

where C�ε� depends on f, K and x as well as ε and is strictly positive for
each ε > 0. This result plays the role of Cramér’s smoothing condition, and
allows us to rigorously develop Edgeworth expansions of the distributions of
T1 and T3. If, however, 
h0 − h1
/h0 converges to 0 then (5.17) can fail. This
case can be treated separately, and then conventional arguments used to treat
settings where 
h0 − h1
/h0 converges to 0 only along a subsequence. For the
sake of brevity we shall show only that cumulant expansions are consistent
with (5.16). We shall prove too that (5.16) continues to hold if E�T3� and
var �T3� on the left-hand side of (5.16) are replaced by E�T1� and var �T1�,
respectively.

Observe that 
E�717�0��
 = O��nh0�−1	 and

E�717�2�� =
(
nh32

)−1 ∫
M1�u�K′′�h0u/h2�f�x− h0u�du+O

(
n−1)

= O
{�nh32�−1�h0/h2�2 + n−1} = O

(
n−7/5h−5

2 + n−1)	(5.18)

where we have Taylor-expanded K′′�h0u/h2� about 0 and used the facts that∫
ujM1�u�du = 0 for j = 0	1 and that K has four bounded derivatives. It

follows that

�nh0�1/2E�T3 −T1� = O
{(
nh52

)−1 + n−2/5} = O�ξε�(5.19)

for some ε > 0. Also, E
{(
717�2�

)2} = O
{�nh0�−1(nh52)−1},

∣∣E(
70717�0�

)∣∣+ ∣∣E(
70717�2�

)∣∣ = O
{�nh0�−2 + �nh0�−1

(
nh32

)−1}
	

from which result (and related ones where 70 on the left-hand side is replaced
by 71, 7�0� or δ17�2�) it follows that

�nh0� �varT3 − varT1� = O
{�nh0�−1 + (

nh52
)−1} = O�ξε�(5.20)

for some ε > 0.
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Similar calculations show that

3∑
j=0

∣∣E(
7
j
07

3−j
1 7�0�

)∣∣ = O
{�nh0�−2}	 ∣∣E(

717
3
�2�

)∣∣ = O
{(
nh52

)−2
h20

}
	

3∑
j=0

∣∣E(
7
j
07

3−j
1 7�2�

)∣∣ = O
{�nh0�−1(nh32)−1}	 ∣∣E(

72
17

3
�2�

)∣∣ = O
{(
n3h0h

8
2

)−1}
	

2∑
j1=0

2∑
j2=0

2∑
j3=0

∑
j4=0	2

∣∣E(
7j17j27j37

2
�j4�

)∣∣+ ∑
j=0	2

∣∣E(
73
17

3
�j�

)∣∣
= O

{
�nh0�−3 + �nh0�−2

(
nh52

)−1 + �nh0�−1
(
nh52

)−1(
n−7/5h−5

2 + n−1)}

[Bounding the j = 2 term in the last-written series involves an argument
similar to that at (5.18).] Furthermore,

E
(
72
0717�2�

)
= �nh0�−3�nh32�−1n2

[{∫
K
(x−y

h0

)2
f�y�dy

}{∫
M1

(x−y
h0

)
K′′

(x−y
h2

)
f�y�dy

}
+2

{∫
K
(x−y

h0

)
M1

(x−y
h0

)
f�y�dy

}{∫
K
(x−y

h0

)
K′′

(x−y
h2

)
f�y�dy

}]
+O{�nh0�−1�nh32�−1n−ε}

= 2�nh0�−1�nh32�−1
(∫

KM1

)
K′′�0�f2+O{�nh0�−1�nh32�−1n−ε}	

for some ε > 0. [We use arguments similar to those at (5.18) to show that
the first product within square brackets above makes a contribution that goes
into the remainder.] Combining the results in this paragraph, and noting that∫
KM1 = 1

2 κ and varT3 = �nh0�−1 κf+O��nh0�−1n−ε	, we deduce that

�varT3�−3/2
{
E
(
T3
3

)−E
(
T3
1

)} = −6 �nh0�1/2
(
nh32

)−1
τ̄2 +O�ξε�

for some ε > 0. From this result, (5.19) and (5.20) we deduce that

�varT3�−3/2
{
E�T3 −ET3�3 −E�T1 −ET1�3

}
= −6 �nh0�1/2

(
nh32

)−1
τ̄2 +O�ξε�


(5.21)

Differences between the cumulants of �nh0�1/2T1 and �nh0�1/2T3 of index
4 or more are of order ξε for some ε > 0. Note too that if the differences of
skewnesses (i.e., centered third moments) between two asymptotically Normal
random variables (both standardized for location and scale) equals η = η�n�,
if η → 0, and if other cumulants differ only by o�η�, then formally, the differ-
ence between the two distributions equals 1

6 η �1 − z2�φ�z� + o�η�. See Hall
[(1992a), pages 46–48]. Combining these properties with (5.19)–(5.21), we see
that we have established formally, although not as yet rigorously, result (5.16).
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That (5.16) continues to hold if E�T3� and var�T3� on the left-hand side are
replaced by E�T1� and var�T1�, respectively, follows from (5.19) and (5.20).

Next we show that, if we define T4 ≡ 70 − 2
571δ�2��f′′�−1, then

P
{
T1 ≤ �varT1�1/2z

}−P
{
T4 ≤ �varT4�1/2z

} = o�ξ0�	(5.22)

uniformly in z. [Note that E�T1� = E�T4� = 0.] It may be proved that for all
ε	 λ > 0,

P
(
71
 > n−�2/5�+ε) = O

(
n−λ) 	 P

(
7�0�
 > n−�2/5�+ε) = O
(
n−λ)
(5.23)

If we define T5 ≡ 70 − 2
5�71δ�2� + δ17�2���f′′�−1 then, in view of (5.23) and the

fact that 
δ1
 + 
δ�0�
 = O�n−2/5�, we have

P�T1 ≤ z�
{≤ P

(
T5 ≤ z+ n−�4/5�+ε)+O

(
n−λ)

≥ P
(
T5 ≤ z− n−�4/5�+ε)+O

(
n−λ)	(5.24)

uniformly in z, for all ε	 λ > 0. Arguments similar to those in the previ-
ous paragraph show that the cumulants of �varT4�−1/2T4 and �varT5�−1/2T5
differ only in terms equal to o�ξ0�. Result (5.22) follows from this property
and (5.24), noting the arguments outlined in the paragraph subsequent
to (5.16).

The cumulants of �varT4�−1/2T4 and �var70�−1/270 also differ only in terms
equal to o�ξ0�. Therefore, (5.22) implies

P
{
T1 ≤ �varT1�1/2z

}−P
{
70 ≤ �var70�1/2z

} = o�ξ0�	(5.25)

uniformly in z. From (5.16) and (5.25) (the version of the former having the
mean and variance of T3 replaced by those quantities for T1), we deduce that,
since E�T1� = 0,

P
{
T3 ≤ �varT1�1/2z

} = P
{
70 ≤ �var70�1/2z

}
−�nh0�1/2

(
nh32

)−1
τ̄2�z2 − 1�φ�z� + o�ξ0�


(5.26)

Note too that �nh0� �varT1 − varT5� = o�ξ0�, and

�nh0� �varT5 − varT4� = −4nh0 δ1
5f′′ E�707�2�� + o�ξ0�

= 4
5
κ2K

′′�0�fnh30
(
nh32

)−1 + o�ξ0�	
the last identity following from the results

δ1 = −f′′ h20 κ2 + o
(
h20

)
	 E

(
707�2�

) = (
nh32

)−1
K′′�0�f+ o

{(
nh32

)−1}



Also,

�nh0� �varT4 − var70� = −4nh0 δ�2�
5f′′ E�7071� + o�ξ0�

= −2
5
κ�ρ�κ2 ff�4�

f′′ h22 + o�ξ0�	
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the last identity following from the results δ�2� = 1
2 h

2
2 κ2 f

�4� + o
(
h22

)
and

nh0E�7071�f−1 =
∫
K�u�M1�uh0/h1� du+ o�1� = κ�ρ� + o�1�


Furthermore, var70 ∼ �nh0�−1κf. Combining the results in this paragraph
to this point we see that

varT1 − var70

var70
= 2a+ o�ξ0�	(5.27)

where

a = 1
5

{
2κ2K′′�0�

κ
nh30

(
nh32

)−1 − κ�ρ�κ2 f�4�

κf′′ h22

}



Combining (5.26) and (5.27) we deduce that

P
{
T3 ≤ �var70�1/2z

} = P
{
70 ≤ �var70�1/2z

}− �nh0�1/2
(
nh32

)−1
× τ̄2 �z2 − 1�φ�z� − azφ�z� + o�ξ0�


(5.28)

Recall that δ1 = −f′′ h20 κ2+o�h20� and δ�2� = 1
2 h

2
2 κ2 f

�4�+o�h22�. Using these
results, (5.14) with j = 2, result (R′) [defined below (5.14)], and the properties
�nh50�1/2 → �κf�1/2/�κ2
f′′
� and var70 ∼ �nh0�−1κf, where κ = ∫

K2, we
deduce that

P
{
f̃−µ≤�var70�1/2z

} = P
(
T3≤�var70�1/2

[
z+ 1

5 δ1�var70�−1/2
×{

2δ�2� �f′′�−1−δ�0�f−1}])+o�ξ0�
= P

[
T3≤�var70�1/2

{
z− 2

5κ2h
2
0�var70�−1/2δ�2�

}]+o�ξ0�
= P

{
T3≤�var70�1/2

(
z− 1

5κ2 
f′′
−1f�4�h22
)}+o�ξ0�

= *�z�−�nh0�1/2
(
nh32

)−1
τ̄2
(
z2−1

)
φ�z�

−( 1
5κ2 
f′′
−1f�4�h22+az

)
φ�z�+o�ξ0�	

(5.29)

where we have explicitly used (5.28) to obtain the last line and implicitly used
(5.28) in earlier steps to obtain a modulus of continuity for the probability
approximations. Since �nh0�1/2τ̄2 = h−2

0 s τ2 and 1
5 κ2K

′′�0�κ−1 nh30 = h−2
0 τ2,

where s = sgn f′′, then (5.29) is equivalent to (3.3).

5.3. Proof of (3.4). If, in the construction of f̃, we replace ĥ by its thresh-
olded form ĥt, thereby obtaining the estimator f̃t (see Section 2.2), then the
first part of (5.12) holds. Moreover, we may simplify the term E�S1� = E�7f̂1�
in that formula by replacing 7 by the nonremainder portion of the right-hand
side of (5.13). This allows us to show that for some ε > 0,

E�S1� = 1
5 E

[{
2 �δ�2� + 7�2�� �f′′�−1 − �δ�0� + 7�0��f−1} f̂1]+O

(
n−�2/5�−2c)

= 1
5 δ1

{
2 δ�2� �f′′�−1 − δ�0�f

−1}+O
(
n−�2/5�−εh20

)
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for some ε > 0. The nonremainder term in the last line is identical to the added
“correction” on the right-hand side in the probability at (5.15). Therefore, if
we replace f̃ and µ by f̃t and E�f̃t�, respectively, in the sequence of steps
at (5.29), then they simplify to

P
{
f̃t −E�f̃t� ≤ �var 70�1/2z

} = P
{
T3 ≤ �var 70�1/2 z

}+ o�ξ0�
= *�z� − �nh0�1/2

(
nh32

)−1
τ̄2 �z2 − 1�(5.30)

×φ�z� − azφ�z� + o�ξ0�	
the last identity following directly from (5.28). Formula (5.30) is equivalent
to (3.4). Similar arguments may be used to prove that (3.3) and (3.4) are
unchanged if σ0�x� = σ�x
h0� is replaced by σ̂�x
h0� on the respective left-
hand sides.

5.4. Proof of version of (3.3) when σ�x
ĥ� replaces σ0�x�. Write σ0 and σ̃

for σ0�x� and σ�x
ĥ�, respectively. It may be proved that �σ̃2−σ2
0 �/σ2

0 = 7+R8,
where R8 satisfies

P
{
Rj
 > n−2c1+ε} = O

(
n−λ)(5.31)

for all ε	 λ > 0. From this result and (5.13) we may show that σ̃/σ0 = 1 +
1
5 �δ�2�+7�2�� �f′′�−1+R9, where R9 satisfies (5.31). Therefore, replacing var 70

by σ̃2 on the far left-hand side of (5.29), and following the string of identities
as before, we deduce that

P�f̃− µ ≤ σ̃ z� = P
[
T3 ≤ �var70�1/2

{
1+ 1

5�δ�2� + 7�2���f′′�−1
}

×
{
z− 1

5 κ2 
f′′
−1f�4� h22
}]

+ o�ξ0�

= P
[
T3 ≤ �var 70�1/2

{
1+ 1

5 7�2� �f′′�−1
}

×
{
z− 1

5 κ2 
f′′
−1 f�4� h22
}]

+ 1
2h

2
2 τ1 zφ�z� + o�ξ0�

= P
[
T3 ≤ �var70�1/2

{
z− 1

5κ2 
f′′
−1 f�4� h22
}]

+ 1
5σ

−1
0

(
nh32�−1K′′�0� f

f′′ zφ�z� + 1
2h

2
2 τ1 zφ�z� + o�ξ0�

= P
[
T3 ≤ �var70�1/2

{
z− 1

5κ2 
f′′
−1 f�4� h22
}]

+
{
h−2
0

(
nh32

)−1
τ2 sgn�f′′� + 1

2h
2
2 τ1

}
zφ�z� + o�ξ0�


Thus, the expansion is identical to that at (3.3), up to terms of order o�ξ0�,
except that the term at (3.5) should be added to the right-hand side.

The case where σ̂�x
ĥ� replaces σ0�x� is similar; note remarks in Section 2.4.
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5.5. Proof of Theorem 3.2 �global plug-in method�
 Let X have the distri-
bution of a genericXi, and define A�u� = E�L�4���u−X�/h3	�, α = E�A�X�	,
B1�u	 v� = L�4���u−v�/h3	−A�u�−A�v�+α andB2�u� = A�u�−α. A standard
U-statistic decomposition of Ĵ is Ĵ = Ĵ1 + 2Ĵ2 + α, where

Ĵ1 =
2

n�n− 1�h53
∑ ∑
1≤i<j≤n

B1�Xi	Xj�	 Ĵ2 =
(
nh53

)−1 n∑
i=1

B2�Xi�


The 2<th moments of Ĵ1 and Ĵ2 may be shown to equalO�n−<� for each integer
< ≥ 1. Also, α−J = O�n−1/2�. Therefore, using Markov’s inequality it may be
proved that for each ε	 λ > 0, 7 = �Ĵ/J�1/5 − 1 satisfies

P
(
7
 > n−�1/2�+ε) = O

(
n−λ)


From this result, (5.11) and the second identity in (5.9) we deduce that for all
sufficiently large n, some ε > 0 and all λ > 0,

P�f̃− µ ≤ z�
{
≤ P

(
f̂0 − µ ≤ z+ n−�4/5�−ε)+O

(
n−λ)	

≥ P
(
f̂0 − µ ≤ z− n−�4/5�−ε)+O

(
n−λ)	(5.32)

where the “O�n−λ�” terms are of that order uniformly in z.
Recall that σ2

0 = var f̂0. Edgeworth expansion of the distribution of �f̂0 − µ�/
σ0, up to and including a term of size n−2/5 and with remainder of smaller
order, is given at (3.1). In view of (5.32) the same expansion applies to the
distribution of Q ≡ �f̃ − µ�/σ0. Also, the second result at (5.12) implies that
we may replace µ by E�f̃� in the definition of Q without affecting the expan-
sion up to terms of smaller order than n−2/5. The fact that we may replace
σ̂�x
h0� by σ̂�x
ĥ�, without affecting (3.2), follows by Taylor expansion and the
delta method, from the properties σ̂�x
ĥ�/σ�x
h0� = 1 + Op�
h−1

0 ĥ − 1
� and
ĥ/h0 = 1+Op�n−1/2�. Theorem 3.2 is a consequence of these results.

5.6. Notes on proofs of Theorems 3.3 and 3.4. Bootstrap versions of
Theorems 3.2 and 3.3 may be derived along the same lines as before, there
being no difference (at the level of first-order terms) in those components
of Edgeworth expansions that derive from the differences between bootstrap
quantities and their conditional expected values. Note, for example, that condi-
tional on� , f̂∗�x
ĥ�−E�f̂∗�x
ĥ�
� 	, f̂∗�x
h1�−E�f̂∗�x
h1�
� 	 and �f̂∗�′′�x
h2�
−E��f̂∗�′′�x
h2�
� 	 are jointly asymptotically Normal with zero mean and the
same respective asymptotic covariances as f̂�x
h0� − E�f̂�x
h0�	, f̂�x
h1� −
E�f̂�x
h1�	 and f̂′′�x
h2� −E�f̂′′�x
h2�	.

However, E�f̂∗�x
ĥ�
� 	, E�f̂∗�x
h1�
� 	 and E��f̂∗�′′�x
h2�
� 	 are respec-
tively identical (with probability 1) to f̂�x
ĥ�, f̂�x
h1� and f̂′′�x
h2�, respec-
tively. In particular, the biases are 0, and so terms in Edgeworth expansions
that take the value 0 if biases vanish, are no longer present. For example,
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working through the proof of (3.3) we find that

P
{
f̂∗�x
ĥ∗� − f̂�x
ĥ� ≤ σ̂�x
ĥ�z}
= −ĥ−2 (nh32)−1τ̂2�x� {(z2 − 1

)
sgn f̂′′�x
h2� + 2z

}
φ�z�(5.33)

+ op
(
h22 + n−3/5h−3

2

)
	

where

τ̂2�x� =
K′′�0� f̂�x
ĥ�
5κ2 f̂′′�x
h2�2




Formula (5.33) is the bootstrap version of (3.3), except that terms in h22, which
derive from bias terms, are not present.

Noting that f̂�x
ĥ�, f̂′′�x
h2� and ĥ/h0 converge in probability to f�x�, f′′�x�
and 1, respectively, and in particular that τ̂�x� → τ�x�, we deduce from (5.33)
that (3.3) continues to hold if on the left-hand side there we place the prob-
ability that appears on the left-hand side of (5.33), and if we interpret the
remainder in (3.3) as being of the stated order “in probability.” This leads
to (3.7). The same argument, with the same interpretation of the remainder,
shows that (3.6) continues to hold if on the left-hand side we place the prob-
ability that appears on the left-hand side of (3.8). This result is equivalent
to (3.8).
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