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NEAREST NEIGHBOR CLASSIFICATION WITH
DEPENDENT TRAINING SEQUENCES

By M. Holst and A. Irle

Christian-Albrechts-Universität Kiel

The asymptotic classification risk for nearest neighbor procedures is
well understood in the case of i.i.d. training sequences. In this article, we
generalize these results to a class of dependent models including hidden
Markov models. In the case where the observed patterns have Lebesgue
densities, the asymptotic risk takes the same expression as in the i.i.d.
case. For discrete distributions, we show that the asymptotic risk depends
on the rule used for breaking ties of equal distances.

1. Introduction and model. Pattern recognition considers the following
basic situation: a random variable �X�Y� consists of an observed pattern
X ∈ �d from which we wish to infer the unobservable class Y. We assume
that this class belongs to some known finite set M, fixed as M = �1� � � � �m�.
If the joint distribution of �X�Y� is known, then we may simply choose the
class having maximum a posteriori probability, given the observed pattern.
The resulting probability of misclassification is usually called the Bayes risk.

In general the joint distribution of �X�Y� will be unknown, and we have a

training sequence Zn = ��X1�Y1�� � � � � �Xn�Yn��

at our disposal, where patterns and corresponding classes are observed. Here
the random variables �X1�Y1�� � � � � �Xn�Yn� are taken to be jointly stochas-
tically independent of �X�Y�, while having the same distribution, at least
asymptotically, as �X�Y�.

1.1. Nearest neighbor classification. A well-known classification procedure
is the k-NN procedure where NN stands for nearest neighbor.

Having observed x ∈ �d we order �x −Xi� according to increasing values
with respect to the Euclidean norm for �d so that

�x−XR1	n�x�� ≤ �x−XR2	n�x�� ≤ · · · ≤ �x−XRn	n�x���

where �R1	n�x�� � � � �Rn	n�x�� is a random permutation of �1� � � � � n�. The event
that different patterns from our training sequence have identical distance
from x has probability 0 when we have Lebesgue densities. For discrete dis-
tributions, the problem of equal distances has to be treated with some care;
see Section 3.
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The k-NN procedure chooses that class which occurs most often among
YR1	n�x�� � � � �YRk	n�x�. If this class is not unique, some tie-breaking rule has to
be applied.

Let us denote for k ∈ �, j ∈ M = �1� � � � �m� the number of occurences of
class j among the k-nearest neighbors by

N
�j�
k�n�x�Zn� = ��i ∈ �1� � � � � k� � YRi	n�x� = j���

We assume that for any J ⊂ M, J �= ∅, we have stochastically independent
random variables TJ with values in J which are also stochastically inde-
pendent of �X�Y� and Zn and give the tie-breaking rule. Then the k-NN
procedure is formally given as

δk�n�x�Zn� = TJ with J =
{
l ∈M �N�l�

k�n�x�Zn� = max
j∈M

N
�j�
k�n�x�Zn�

}
�

In the following, we shall usually omit the dependence on x and Zn in our
notations by writing, for example,

Ri	n�N
�j�
k�n� δk�n�

Since the introduction of k-NN procedures by Fix and Hodges (1951, 1952),
substantial research on their theoretical properties and their practical perfor-
mance has been carried out. This is documented in the tutorial by Dasarathy
(1991), which also contains reprints of various key papers in this area, and
in the monograph by Devroye, Györfi and Lugosi (1996), a considerable part
of which is devoted to nearest neighbor rules. On the theoretical side, two
problems in particular have been investigated.

1. Evaluation of the asymptotic risk, that is, the asymptotic probability of mis-
classification, for fixed k as n → ∞. In the i.i.d. situation, where �X�Y�,
�X1�Y1�� �X2�Y2� · · · form an i.i.d. sequence, the asymptotic risk was
derived by Cover and Hart (1967) under certain continuity assumptions.
The extension to the general nonparametric case follows from Stone (1977),
and was stated explicitly by Devroye (1981a, b).

Although this is the quantity to be studied in our paper, let us also point
out a second major line of research.

2. Consistency of k-NN procedures as k = k�n� → ∞ and n → ∞. Here a
classification procedure is called consistent if the asymptotic risk is equal to
the Bayes risk. In the i.i.d. case, nonparametric consistency was established
by Stone (1977) as k�n�/n → ∞, and questions of this type were later
investigated by various authors [see, e.g., the discussion in Devroye, Györfi
and Lugosi (1996), Chapters 5 and 11, and Devroye, Györfi, Krzyzak and
Lugosi (1994)]. We remark that consistency for discrimination problems
follows from consistency in the corresponding regression problems; hence
any result on regression consistency for k-NN procedures yields a result on
discrimination consistency.
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Let us finally mention a new line of research where the risk of k-NN proce-
dures is expanded for finite sample size n; see Snapp and Venkatesch (1998).

1.2. The asymptotic risk in the i.i.d. case. To state the result of Cover
and Hart (1967) in the nonparametric situation considered by Stone (1977),
Devroye (1981a, b), we introduce several notations which will also be used
throughout this paper.

The underlying probability measure will be denoted by P and the distribu-
tion of a random variable V by PV, so that P�X�Y� denotes the joint distribu-
tion of �X�Y� with respect to the underlying probability measure.

Let py�x� = P�Y = y �X = x� for x ∈ �d, y ∈M.
For J ⊂M, J = �y1� � � � � yj�, y1 < · · · < yj, let

AJ =
k⋃
i=1

�0� � � � � i− 1�y1−1 × �i� × �0� � � � � i− 1�y2−y1−1 × �i�

× · · · × �i� × �0� � � � � i− 1�m−yj�

Then the event, that the classes from J occur most often among YR1	n� � � � �
YRk	n , is given by ( k∑

i=1
1�YRi	n=1�� � � � �

k∑
i=1

1�YRi	n=m�

)
∈ AJ�

M�k�p1� � � � � pm� denotes the multinomial distribution with parameters k�
p1� � � � � pm, so that

M�k�p1� � � � � pm����j1� � � � � jm��� =
k!

j1! · · · · · jm!
m∏
i=1
p
ji
i �

with j1� � � � � jm ∈ �0� � � � � k�, ∑mi=1 ji = k.
We now formally introduce the quantity whose asymptotic behaviour is

investigated in this article.

Definition 1.1. The risk of the k-NN procedure from a training sequence
of size n is defined as

R�δk�n� = P�δk�n�X�Zn� �= Y��

Then in the i.i.d. situation, the asymptotic risk is given by the following
result.

Theorem 1.1. Consider the i.i.d. situation. Then

lim
n→∞R�δk�n� =

∑
y∈M

∫
�d

∑
J⊂M
y∈J

M�k�p1�x�� � � � � pm�x���AJ�P�TJ = y�

× �1− py�x��PX�dx��
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In the case of only two classes and using the smaller class in the case of
ties, this takes the following simpler form.

Theorem 1.2. Consider the i.i.d. situation. LetM = �1�2� andTJ = minJ
for J ⊂M. Then with p�x� = p1�x�

lim
n→∞R�δk�n� =

∫
p�x� ∑

j<k/2

(
k

j

)
p�x�j�1− p�x��k−j

+�1− p�x�� ∑
j≥k/2

(
k

j

)
p�x�j�1− p�x��k−jPX�dx��

Although the general expression for the asymptotic risk as given in
Theorem 1.1 appears to be well known in the field of pattern recognition,
see, for example Snapp and Venkatesh (1998), Formula (9), it does not appear
to be stated explicitly in this generality. Cover and Hart (1967) formulate it
for k = 1, general m, and m = 2, general k. [Devroye (1981a, b), see also
Devroye, Györfi and Lugosi (1996). Chapter 5, treats the latter case.]

Validity of the general expression may easily be derived by the following
argument. Asymptotically, YR1	n� � � � �YRk	n behave like k i.i.d. random vari-
ables which take the values 1� � � � �m with probabilities p1�x�� � � � � pm�x�.
Using this and taking care of the definition of the k-NN procedure together
with the tie-breaking rule, the result follows immediatedly.

Let us point out two approaches which have been used to obtain this result
without continuity assumptions. On the one hand, a geometrical cone-covering
argument together with an application of the i.i.d. setting was used by Stone
(1977); on the other, the general Lebesgue differentiation theorem was used
by Devroye (1981a, b). In our later arguments we shall apply the Lebesgue
differentiation theorem as formulated in the proof of Theorem 2.1.

We have introduced nearest neighbor procedures with respect to the
Euclidean norm. Any other norm for which the Lebesgue differentiation
theorem is known to hold, for example the maximum norm, could also be used
for the results of this paper. Furthermore, it is stated in Devroye, Györfi and
Lugosi [(1996), Chapter 5, Problem 5.1] that Stone’s cone-covering argument,
hence also Theorem 1.1, remains valid for general norms.

1.3. Dependent models. The aim of this paper is to generalize the above
results to training sequences with stochastic dependencies. It is readily con-
jectured that the results for i.i.d. training sequences carry over to suitably
dependent training sequences. Looking at the k nearest neighbors out of a
large training sequence, the indices of the k nearest neighbors will tend to
be far apart, and their classes should tend to independence under reasonable
assumptions. The arguments in this article provide the exact reasoning for
this line of thought.

Our starting point was the investigation of hidden Markov models which
have elicited strong practical and theoretical interest in recent years; see the
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monographs by MacDonald and Zucchini (1997) and by Huang, Ariki and Jack
(1990) from the more practical viewpoint and Bickel, Ritov and Ryden (1998)
from the viewpoint of asymptotic statistics. As it turned out, our results could
be proved for more general models which we introduce now.

General conditionally independent model (GCIM).

(a) The distribution π = PY fulfils the condition 0 < π��i�� < 1 for all
i ∈M.

(b) For any sequence �An�n∈� of Borel subsets An ∈ �d we have

P��Xn�n∈� ∈ �An�n∈���Yn�n∈� = �yn�n∈�� =
∏
n∈�
Qyn�An��

with Qy = P�X ∈ · � Y = y�, so that in particular the �Xn�n∈� are condition-
ally independent given �Yn�n∈�.

(c) For each i ∈M,

S
�i�
n

n
= 1
n

n∑
j=1

1�i��Yj� → π��i�� in probability�

Condition (a) just states that all classes occur with positive probability and
may be assumed without loss of generality.

Condition (b) expresses that the distributions of the observed patterns
depend only on their classes and not on other patterns or classes. This is
an assumption already essential in working with hidden Markov models, and
of course, any i.i.d. model incorporates this feature. It is a common condition
in pattern recognition problems.

Condition (c) describes the dependence structure for the sequence of classes.
It may be viewed as a weak ergodicity assumption. Ergodic Markov chains
provide special cases so that hidden Markov models are special cases of GCI
models, but of course many other classes of processes fulfil this assumption.
Note that we do not assume stationarity and that no quantitative assumptions,
such as those on mixing coefficients, are involved.

Recent work in machine intelligence and learning argues in favor of the
use of statistical techniques, in particular k-NN procedures, due to the avail-
ability of very high-speed computing [see, e.g., Smith, Bourgoin, Sims and
Voorhees (1994)]. In this paper, the use of k-NN procedures is investigated for
the recognition of handwritten characters. The databases as described in this
paper and similarly in Kahan, Pavlidis and Baird (1987) for the recognition
of printed characters stem from written text, here in particular from written
English. Then the classes, that is, the consecutive true letters, are of course
no longer independent. A first approximation would be provided by a simple
Markov model, but Shannon (1951) has already argued that such a model
is not adequate. Information theoretical investigations point to a model with
dependencies up to eight letters; see Cover and Thomas (1991). In this sit-
uation, the Y1�Y2� � � � � would come from an ergodic, non-Markovian scource
providing an example for a GCIM which is not a hidden Markov model.
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Let us finally point out work in dependent models which is related to this
articles. To our knowledge, the problem of obtaining the asymptotic risk of
k-NN procedures for training sequences with dependencies, which is the prob-
lem studied in this article, has not been treated in the literature.

On the other hand, the problem of asymptotic regression consistency, hence
discrimination consistency under conditions of dependence in the Yi’s has
been treated by various authors. The monograph by Györfi, Härdle, Sarda
and Vieu (1989) gives an overview of results under mixing conditions, where
the main tools are exponential probabilistic inequalities. A different approach
to derive consistency under mixing conditions is given in Irle (1997) where, in
particular, consistency for k-NN procedures is treated in detail.

It is known that, for general ergodic models such as those treated in this
article, nonparametric consistency no longer holds universally [see, e.g., Györfi
and Lugosi (1992) for a regression problem, Adams and Nobel (1998) for a
problem of density estimation]. A universally consistent procedure for a spe-
cial estimation problem in ergodic models is given by Morvai, Yakowitz and
Györfi (1996). A different approach dealing with nonstochastic sequences, and
then transforming the results to a stochastic setting under certain continu-
ity conditions, has been proposed in Kulkarni and Posner (1995) and Nobel,
Morvai and Kulkarni (1998). Let us remark that the last article treats nearest
neighbor procedures under the assumption that the classes Yi’s are indepen-
dent given the observables Xi’s, which is rather different from the common
assumption, which is also used in this article of conditional independence of
the observables given the classes.

2. Models with Lebesgue densities. In this section we shall show that,
for models with Lebesgue densities, we have the same behaviour of k-NN
procedures as in the i.i.d. case. We start by giving two basic facts, valid in any
GCIM.

Lemma 2.1. Consider a GCIM. Then for PX-almost all x ∈ �d,

lim
n→∞�x−XRk	n� = 0 P-almost surely�

Proof. Let ε > 0 and x ∈ support�PX�. Then there exists l ∈ M with
Ql� �K�x� ε�� > 0, where �K�x� ε� denotes the closed ball with center x and
radius ε.

For S�l�
n we have

lim
n→∞P

(∣∣∣∣S�l�
n

n
− π��l��

∣∣∣∣ > δ) = lim
n→∞P�S

�l�
n /∈ Dn�δ� = 0�

where δ > 0 and Dn�δ = �n�π��l�� − δ�� n�π��l�� + δ�� ∩ � with �·� denoting
integer part.
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This implies

P��x−XRk	n�>ε�

≤P
( n∑
i=1

1��x−Xi�≤ε�≤k−1
)

≤
n∑
j=0

∑
1≤k1<���<kj≤n

P�Yi=l for i∈�k1�����kj� and Yi �=l otherwise�

×P
( j∑
i=1

1�Xki∈ �K�x�ε�� ≤k−1 �Yi=l for i∈�k1�����kj� and Yi �=l otherwise
)

≤ ∑
j∈Dn�δ

P

( j∑
i=1

1�Xi∈ �K�x�ε�� ≤k−1 �Y1=l�����Yj=l
)
P�S�l�

n =j�+P�S�l�
n /∈Dn�δ�

≤ Bin ��n�π��l��−δ���Ql� �K�x�ε����0�����k−1��+P�S�l�
n /∈Dn�δ�→0�

Bin�·�·� denoting the binomial distribution. This shows convergence in proba-
bility and also almost sure convergence since �x−XRk	n� is decreasing. ✷

To apply property (b) of a GCIM we shall compute probabilities by condi-
tioning with respect to Y1�����Yn. For this, the following invariance regarding
permutations will be useful.

Lemma 2.2. Consider a GCIM. Let x∈�d and ri∈M for i=1�����n. Then

P�N�1�
k�n=j1�����N

�m�
k�n=jm �Y1=r1�����Yn=rn�

=P�N�1�
k�n=j1�����N

�m�
k�n=jm �Y1=rτ�1������Yn=rτ�n��

for any permutation τ of �1�����n�.

The proof is immediate from the second assumption for our GCIM.
We now turn to a GCIM such that the probability measures Q1�����Qm

have densities f1�����fm with respect to d-dimensional Lebesgue measure λd,
that is,

fi=
dQi
dλd

�

For x∈�d we define the mappings

dx�z�	 �d→�0�∞��dx�z�=�z−x��
so that the distributions Qdx1 �����Q

dx
m of these mappings are probability mea-

sures on �0�∞� with continuous distribution functions Fx1�����F
x
m. Hence

Q
dx
i is the conditional distribution of �X−x� given Y=i
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and

Fxi �t�=P��X−x�≤t�Y=i��
The asymptotic risk of a k-NN procedure is determined by the asymptotic
distribution of the random variables

�N�1�
k�n�����N

�m�
k�n��

Our main result shows that this asymptotic distribution, hence the asymptotic
risk, is the same for a GCIM with Lebesgue densities as in the i.i.d. case.

Theorem 2.1. Consider a GCIM with Lebesgue densities. Then:

(i) For PX-almost all x∈�d,
lim
n→∞P�N

�1�
k�n=j1�����N

�m�
k�n=jm�=M�k�p1�x������pm�x�����j1�����jm���

for any k∈� and j1�����jm∈�0�����k� with
∑m
i=1ji=k.

(ii)

lim
n→∞R�δk�n�

= ∑
y∈M

∫
�d

∑
J⊂M
y∈J

M�k�p1�x������pm�x���AJ�P�TJ=y��1−py�x��PX�dx��

Proof. It is immediate that (ii) follows from (i):

lim
n→∞R�δk�n�

= ∑
y∈M

∫
�d

lim
n→∞P�δk�n�x�Zn�=y��1−py�x��P

X�dx�

= ∑
y∈M

∫
�d

lim
n→∞

∑
J⊂M
y∈J

P��N�1�
k�n�����N

�m�
k�n�∈AJ�TJ=y��1−py�x��PX�dx�

= ∑
y∈M

∫
�d

∑
J⊂M
y∈J

M�k�p1�x������pm�x���AJ�P�TJ=y��1−py�x��PX�dx��

So in the remaining part of the proof we shall derive (i). We use the fact that
the result is valid for the i.i.d. case, as discussed in Section 1, and shall show
that the GCIM and the i.i.d. model have the same asymptotic behavior with
regard to a fixed number of nearest neighbors.
As f1�����fm are Lebesgue densities for Q1�����Qm,

f=
m∑
i=1
π��i��fi

is a Lebesgue density for PX.
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Since PX��x∈�d �f�x�=0��=0 we only have to consider x∈�d with
f�x�>0. Furthermore the general Lebesgue differentiation theorem states
that, for any i∈M,

lim
h→0

Qi� �K�x�h��
λd� �K�x�h�� =fi�x� forλd-almost all x

[see, e.g., Wheeden and Zygmund (1977), page 100]. So let us for the following
consider x with these properties.

We now introduce the corresponding i.i.d. model. In addition to the GCIM
let us consider a sequence �X′

n�Y
′
n�n of i.i.d. random variables, where the

conditional distribution of �X′
n�n given �Y′

n�n is the same as in the GCIM and
each Y′

n has distribution π.
By property (b) of the GCIM and by the law of large numbers there exists

a sequence �εn�n, εn↓0, such that for all i∈M,

P

(∣∣∣∣ n∑
j=1

1�i��Yj�−π��i��
∣∣∣∣≥εnn)→0

and

P

(∣∣∣∣ n∑
j=1

1�i��Y′
j�−π��i��

∣∣∣∣≥εnn)→0�

Let

Dn=
{
�y1�����yn�∈Mn 	

∣∣∣∣ n∑
j=1

1�i��yj�−π��i��
∣∣∣∣<εnn}�

Then

P��Y1�����Yn�∈Dn�→1� P��Y′
1�����Y

′
n�∈Dn�→1�

Take �y1�����yn�∈Dn and �z1�����zn�∈Dn, with ordered vectors �y1	n�����yn	n�
and �z1	n�����zn	n�. Denoting the number of i’s in these vectors by ki and li,
respectively, the definition of Dn shows

�ki−li �≤2nεn for any i.

In the ordered tuple �y1	n�����yn	n�, the i’s are at positions
∑i−1
r=1kr+1�����∑i

r=1kr� and in the ordered vector �z1	n�����zn	n� at positions
∑i−1
r=1lr+1�����∑i

r=1lr. Since ∣∣∣∣ i∑
r=1
kr−

i∑
r=1
lr

∣∣∣∣≤2inεn�

there is a nonoverlap for at most 4inεn positions. Hence �y1	n�����yn	n� and
�z1	n�����zn	n� agree for at least

n�1−δn� positions with δn=2m�m−1�εn→0�
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We may assume that nδn is an integer and set

a�n�=n�1−δn��b�n�=nδn hence
a�n�
b�n� →∞�

Choose a subset Kn of a�n� positions such that yj	n and zj	n agree at these
positions. Then for any i∈M, the number of positions j in Kn with value
yj	n=zj	n=i is at least n�π��i��−δn−εn�.

Now let us look at∣∣P�N�1�
k�n=j1�����N

�m�
k�n=jm�−P�N

�1′�
k�n=j1�����N

�m′�
k�n =jm

∣∣�
the quantities N�j′�

k�n being defined as the N�j�
k�n but with respect to �X′

n�Y
′
n�n.

We then obtain∣∣P�N�1�
k�n=j1�����N

�m�
k�n =jm�−P�N

�1′�
k�n=j1�����N

�m′�
k�n =jm�

∣∣
≤
∣∣∣∣∫
Dn

P�N�1�
k�n=j1�����N

�m�
k�n =jm �Y1=y1����Yn=yn�P�Y1�����Yn��dy1�����dyn�

−
∫
Dn

P�N�1�
k�n=j1�����N

�m�
k�n =jm

∣∣Y1=y1����Yn=yn�

×P�Y′
1�����Y

′
n��dy1�����dyn�

∣∣∣+o�1�
≤ sup
y�z∈Dn

�P�N�1�
k�n=j1�����N

�m�
k�n =jm �Y1=y1	n�����Yn=yn	n�

−P�N�1�
k�n=j1�����N

�m�
k�n =jm �Y1=z1	n�����Yn=zn	n� �+o�1��

Note that we have used equality of conditional distributions for the GCIM
and the i.i.d. model and permutational invariance according to Lemma 2.2.
We thus have to look at two vectors �y1�����yn� and �z1�����zn� which agree at
all positions in some subset Kn with a�n� elements, and we want to give a
suitable bound for∣∣P�N�1�

k�n=j1�����N
�m�
k�n=jm �Y1=y1�����Yn=yn�

−P�N�1�
k�n=j1�����N

�m�
k�n=jm �Y1=z1�����Yn=zn�

∣∣�
For our estimate, this bound has to be independent of the particular �y1�����yn�
and �z1�����zn�. We introduce the following probabilistic model where all ran-
dom variables are defined on the same probability space.

If j∈Kn, we consider random variablesWj=W′
j with distributionQdxyj , the

conditional distribution of ��X−x�� given Y=yj. If j /∈Kn, we letWj have dis-
tributionQdxyj and letW

′
j have distributionQ

dx
zj . Of course all random variables

are chosen to be independent.
The probability P�N�1�

k�n=j1�����N
�m�
k�n=jm �Y1=y1�����Yn=yn� may obviously

be expressed in terms of the Wj and P�N�1�
k�n=j1�����N

�m�
k�n=jm �Y1=z1�����

Yn=zn� in terms of the W′
j.
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Using �P�A�−P�B��≤P�A∩Bc�+P�B∩Ac� we are led to the following
bound: on �A∩Bc�∪�B∩Ac� the k smallest members of the Wj and of the
W′
j cannot agree. Defining

Wk	a�n� as the k-smallest of Wj� j∈Kn
and

W1	b�n� as the smallest of Wj� j /∈Kn�
similarly W′

k	a�n��W
′
1	b�n�, we have

Wk	a�n� =W′
k	a�n�

and ∣∣P�N�1�
k�n=j1�����N

�m�
k�n =jm �Y1=y1�����Yn=yn�

−P�N�1�
k�n=j1�����N

�m�
k�n=jm �Y1=z1�����Yn=zn�

∣∣
≤P�Wk	a�n� ≥W1	b�n��+P�W′

k	a�n� ≥W′
1	b�n���

We finally have to find a bound for P�Wk	a�n� ≥W1	b�n��, the second probability
being of exactly the same type.

Since f�x�>0 we may choose l such that fl�x�>0� Let c�n�=
�n�π��l��−δn−εn��. We choose additional independent random variables
Vj�V

′
j on the same probability space such that all theVj have distributionQ

dx
l ,

hence distribution functionFxl , and theV
′
j have distribution functionF′ given

by

F′ =max
i
Fxi �

Among the random variables which contribute to Wk	a�n�, there are at least
c�n� with distribution function Fxl . Furthermore, the V′

j are stochastically
smaller than any of the random variables contributing toW1	b�n�. This implies

P�Wk	a�n� ≥W1	b�n��≤P�Vk	c�n� ≥V′
1	b�n���

Since c�n�/b�n�→∞, it follows easily from standard results of extreme value
theory that

P�Vk	c�n� ≥V′
1	b�n��→0�

completing the proof. ✷

The precise argument for this convergence to 0 is given in the concluding
Lemma 2.3. To see that its assumptions hold in our situation we use that

lim
h→0

Qi� �K�x�h��
hd

=fi�x�λd� �K�x�1��� i∈M�
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hence

nFl

(
z

n1/d

)
→zdfl�x�λd� �K�0�1��>0

and

nF′
(
z

n1/d

)
→zdmax

i
fi�x�λd� �K�0�1��>0�

Then we may apply Lemma 2.3 with en=dn=n1/d and α�n�=c�n��β�n�=b�n�.

Lemma 2.3. Let �Vn�n and �V′
n�n be i.i.d. sequences of real-valued random

variables with distribution functions F and F′, respectively. Assume F�0�=
F′�0�=0 and that there exist sequences �dn�n and �en�n with dn→∞, en→∞,
such that

nF

(
z

dn

)
and nF′

(
z

en

)
converge in �0�∞�

for all z>0.
Then for any sequences of integers �α�n��n, �β�n��n with α�n�→∞�

β�n�→∞,

dα�n�
eβ�n�

→∞ implies P�Vj	α�n� ≥V′
k	β�n��→0

for all fixed j�k.

Proof. It is well known from extreme value theory [see, e.g., Leadbetter,
Lindgren and Rootzen (1983)] that the conditions on F and F′, respectively,
imply the convergence in distribution of dnVj	n and enV

′
k	n to random vari-

ables with support on �0�∞�. For ε>0 we may thus choose δ>0 such that

P�eβ�n�V′
k	β�n�<δ�≤ε

for all sufficiently large n, and consequently,

P�Vj	α�n� ≥V′
k	β�n��

≤P�eβ�n�V′
k	β�n�<δ�+P

(
eβ�n�Vk	β�n� ≥δ�

eβ�n�
dα�n�

dα�n�Vj	α�n��≥δ
)

≤ε+P
(
dα�n�Vj	α�n� ≥δ

dα�n�
eβ�n�

)
�

The last probability tends to 0 which proves the result. ✷

Looking at the proof, we can give the following local formulation of
Theorem 2.1(i) which will be used in Section 3.

Let U be an open subset of �d and �=�A∩U �A∈�d� the Borel σ-algebra
restricted toU. If we assume that the restricted measuresQ1�������Qm�� have
densities with respect to λd�� then the conclusion (i) of Theorem 2.1 holds for
PX-almost all x∈U.
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3. Discrete models. We continue to consider a GCIM but shall now turn
to models where P�X=x�>0 occurs.

Ranking the training sequence. In the case of such models we of course
have to specify how to handle equal distances in the allocation of nearest
neighbors. It is natural to distribute the possible ranks with equal probability
among those who have the same distance from the x at hand. We shall call this
fair allocation. This can be done by the following randomization procedure.

LetU1�����Un be i.i.d. with continuous distribution, also stochastically inde-
pendent of �X�Y��Zn. Then the Ri	n are almost surely uniquely determined
by the requirement that for i<j,

�x−XRi	n�<�x−XRj	n� or �x−XRi	n�=�x−XRj	n�� URi	n≤URj	n�
where

Ri	n=Ri	n�x�X1�U1�����Xn�Un��
Of course, any continuous distribution used in this way leads to fair allocation.

We also note that, as in the previous parts, the dependence on x is sup-
pressed in our notations so that, for example, YRi	n=YRi	n�x� =YRi	n�x�X1�U1�����

Xn�Un�.
We shall now prove that, in the case of fair allocation, the same result as

in the case of Lebesgue densities holds.

Theorem 3.1. Consider a GCIM with fair allocation. Let x∈�d such that
P�X=x�>0. Then for all k∈�, and j1�����jm∈�0�����k� with

∑m
i=1ji=k,

lim
n→∞P�N

�1�
k�n=j1�����N

�m�
k�n=jn�=M�k�p1�x������pm�x�����j1�����jm����

Proof. We start by specifying fair allocation. Choose r>0. Consider i.i.d.
random variables Vi taking values in �d with distribution Q̃ given by

Q̃�A�= λ
d�A∩ �K�0�r��
λd� �K�0�r�� �

For fair allocation we use the sequence of random variables

U1=�V1��U2=�V2����� �
An equivalent problem is obtained in the following way: we consider the
mapping

φx	 �d×�d �→�d� φx�z�v�=
{
x+v� if z=x,
z+r z−x�z−x� � if z �=x

and the random variables φx�Xi�Vi� i=1�����n. Given XRk	n=x we have for
i<j≤k,
URi	n≤URj	n if and only if �x−φx�XRi	n�VRi	n��≤�x−φx�XRj	n�VRj	n���
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Of course as in Lemma 2.1,

lim
n→∞P�XRk	n=x�=1�

hence asymptotically the two problems

�I� Classify x using ��X1�U1�Y1�������Xn�Un�Yn��
and

�II� Classify x using ��φx�X1�V1��Y1�������φx�Xn�Vn��Yn��
are equivalent.

The distribution

P�φx�Xi�Vi�∈· �Yi=y�=�Qy⊗Q̃�φx
is given by

�Qy⊗Q̃�φx�A∩ �K�x�r��=
∫
A∩ �K�x�r�

Qy��x��
λd� �K�0�r��dλ

d� A∈�d�

We may thus apply the local version of Theorem 2.1(i) to �φx�Xn�Vn��Yn�n
and obtain

lim
n→∞P

(
N

�1�
k�n=j1�����N

�m�
k�n =jm

)
= lim
n→∞P

(
N

�1�
k�n=j1�����N

�m�
k�n =jm�XRk	n=x

)
=M�k�p1�x������pm�x�����j1�����jm���� ✷

Let us call a distribution discrete if the support is finite or countably infinite
without an accumulation point. Then we immediatedly obtain the asymptotic
risk for discrete distributions.

Theorem 3.2. Consider a GCIM with fair allocation. Let PX be a discrete
distribution. Then:

(i) For PX-almost all x∈�d,

lim
n→∞P

(
N

�1�
k�n=j1�����N

�m�
k�n=jm

)
=M�k�p1�x������pm�x�����j1�����jm���

for any k∈� and j1�����jm∈�0�����k� with
∑m
i=1ji=k.

(ii) limn→∞R�δk�n�P�

= ∑
y∈M

∫
�d

∑
J⊂M
y∈J

M�k�p1�x������pm�x���AJ�P�TJ=y��1−py�x��PX�dx��

The proof follows from Theorem 3.1, with (ii) an immediate consequence of
(i) as in Theorem 2.1.
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3.1. Nearest neighbor classification for different allocation procedures. In
the case of discrete distributions it may be suspected that different types of
allocation also lead to different expressions for the risk. We shall look into this
problem for the special case of hidden Markov models.

We assume thatM=�1�2� and that we have a GCIM such that �Yn�n∈� is
an ergodic Markov chain with stationary distribution π=PY.

We denote the transition probabilities by pyz=P�Yn=z �Yn−1=y� and the
initial distribution by µ.

Types of allocation.

1. In the case of equal distances �x−XRi	n�=�x−XRj	n� for i<j we prescribe
Ri	n<Rj	n.
Setting τ=τ�x�= inf�k∈� �Xk=x� it follows that, on the event XR1	n=x,

R1	n=τ�
hence

lim
n→∞Pµ�YR1	n=y�=Pµ�Yτ=y�

if P�X=x�>0�
2. For the second type of allocation, we use in the case of equal distances

�x−XRi	n�=�x−XRj	n� for i<j the prescription Ri	n>Rj	n.
Setting τ̃n= τ̃n�x�=sup�k∈�1�����n��Xk=x� we obtain that, on the event
XR1	n=x,

R1	n= τ̃n�
hence

lim
n→∞Pµ�YR1	n=y�= lim

n→∞Pµ�Yτ̃n=y�

if P�X=x�>0.
In the following we shall consider the case of only two classes for explic-

itly obtaining the asymptotic distribution limn→∞Pµ�YR1	n=y�. Of course this
immediatedly gives the asymptotic risk for 1-NN classification.

We start with allocation rule (1).

Theorem 3.3. Consider a hidden Markov model withM=�1�2� using allo-
cation rule (1). Then for any x∈�d with PX��x��>0 and i=1�2,

lim
n→∞Pµ�YR1	n=i� =

P�Y=i�X=x�
P�X=x�+8x

+8x
P�Y=i�

P�X=x�+8x

+
(
µ��i��−π��i��)/(p12+p21)Q1��x��Q2��x��

P�X=x�+8x
�

where 8x= p11−p21
p12+p21Q1��x��Q2��x��.
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Proof. We have

Pµ�τ<∞�
and

lim
n→∞Pµ�YR1	n=i�=Pµ�Yτ=i�� i=1�2�

Obviously,

P1�Yτ=1�

=
∞∑
n=1
P1�Yn=1�τ=n�

=P1�τ=1�+
∞∑
n=2

[
P�X1 �=x�Y1=1�P1�Y2=1�P1�Yn−1=1�τ=n−1�

+P�X1 �=x�Y1=1�P1�Y2=2�P2�Yn−1=1�τ=n−1�]
=Q1��x��+p11�1−Q1��x���P1�Yτ=1�+p12�1−Q1��x���P2�Yτ=1�

and

P2�Yτ=1�=p12�1−Q2��x���P1�Yτ=1�+p22�1−Q2��x���P2�Yτ=1��
We may solve this to obtain

P1�Yτ=1� = p12Q1��x���1−Q2��x��
p12Q2��x��+p21Q1��x��+�p11−p21�Q1��x��Q2��x��

P2�Yτ=1� = Q1��x���p21+Q2��x��−p21Q2��x��
p12Q2��x��+p21Q1��x��+�p11−p21�Q1��x��Q2��x��

�

which implies

Pµ�Yτ=1�
=µ��1��P1�Yτ=1�+µ��2��P2�Yτ=1�

= p21Q1��x��+�µ��1��−p21�Q1��x��Q2��x��
p12Q2��x��+p21Q1��x��+�p11−p21�Q1��x��Q2��x��

=P�Y=1�X=x�
P�X=x�+8x

+8x
P�Y=1�

P�X=x�+8x

+
(
µ��1��−π��1��)/(p12+p21)Q1��x��Q2��x��

P�X=x�+8x
using

π��1��= p21
p12+p21

and π��2��= p12
p12+p21

� ✷
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Example. Obviously this leads to results which differ from the indepen-
dent case. To illustrate this we consider the following example: let the transi-
tion matrix be given as [

0�99 0�01
0�1 0�9

]
and let

Q1��x��=0�03� Q2��x��=0�99�

The stationary distribution is π��1��= 10
11 , π��2��= 1

11 and we have

P1�Yτ=1�=0�756� P2�Yτ=1�=7�6·10−4�
So we have convergence of Pπ�YR1	n=1� to

Pπ�Yτ=1�=0�687�

whereas in the case of fair allocation Pπ�YR1	n=1� converges to
Pπ�Y=1�X=x�=0�233�

We now consider allocation procedure (2).

Theorem 3.4. Consider a hidden Markov model withM=�1�2� using allo-
cation rule (2). Then for any x∈�d with PX��x��>0 and i=1�2,

lim
n→∞Pµ�YR1	n=i�=

P�Y=i�X=x�
P�X=x�+8x

+8x
P�Y=i�

P�X=x�+8x
�

where 8x= p11−p21
p12+p21Q1��x��Q2��x��.

Proof. We may assume 0<Qi��x��<1 for i=1�2, the result being ob-
vious otherwise. Setting dn=dx�XR1	n� we consider the Markov process
��Yn�YR1	n� dn��n∈�.

For any initial distribution µ, the process reaches the absorbing set

�=��1�1�0���2�1�0���1�2�0���2�2�0��
with probability 1. The transition matrix for the Markov chain induced on �
is given by

P�=


p11 p12�1−Q2��x��� 0 p12Q2��x��
p21 p22�1−Q2��x��� 0 p22Q2��x��

p11Q1��x�� 0 p11�1−Q1��x��� p12
p21Q1��x�� 0 p21�1−Q1��x��� p22

�
We thus have an ergodic Markov chain with stationary distribution π̃ on �,
determined by

π̃P�= π̃�
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The quantities we are looking for are given by

lim
n→∞Pµ�YR1	n=2� = π̃���1�2�0���2�2�0���� lim

n→∞Pµ�YR1	n=1�
= 1−π̃���1�2�0���2�2�0����

We may compute explicitly

π̃���1�2�0��� = π��2��Q2��x��p21�1−Q1��x���
p12Q2��x��+p21Q1��x��+�p11−p21�Q1��x��Q2��x��

= π��2��Q2��x��
P�Y=1�−p21Q1��x��/

(
p21+p12

)
P�X=x�+8x

and

π̃���2�2�0��� = π��2��Q2��x���p12+p11Q1��x���
p12Q2��x��+p21Q1��x��+�p11−p21�Q1��x��Q2��x��

= π��2��Q2��x��
P�Y=2�+p11Q1��x��/p21+p12

P�X=x�+8x
�

This implies

lim
n→∞Pµ�YR1	n=2� = π��2�� Q1��x��+8x

P�X=x�+8x
= P�Y=2�X=x�
P�X=x�+8x

+8x
P�Y=2�

P�X=x�+8x
�

hence the result. ✷
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Györfi, L., Härdle, W., Sarda, P. and Vieu, V. (1989). Nonparametric Curve Estimation from
Time Series. Lecture Notes Statistics 60 Springer, Berlin.

Györfi, L. and Lugosi, G. (1992). Kernel density estimation from ergodic samples is not univer-
sally consistent. Comp. Statist. Data Anal. 24 437–442.

Huang, X. D., Ariki, Y. and Jack, M. A. (1990). Hidden Markov Models for Speech Recognition.
Edinburgh Univ. Press.

Irle, A. (1997). On consistency in nonparametric estimation under mixing assumptions.
J. Multivariate Anal. 60 123–147.

Kahan, S., Pavlides, T. and Baird, H. S. (1987). On the recognition of printed characters of any
font and size. IEEE Trans. Pattern Anal. Mach. Intelligence 9 274–288.

Kulkarni, S. R. and Posner, S. E. (1995). Rates of convergence of nearest neighbor estimation
under arbitrary sampling. IEEE Trans. Inform. Theory 41 1028–1039.

Leadbetter, M. R., Lindgren, G. and Rootzen, H. (1983). Extremes and Related Properties of
Random Sequences and Processes. Springer, New York.

MacDonald, I. and Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-valued
Time-series. Chapman and Hall, London.

Morvai, G., Yakowitz, S. and Györfi, L. (1996). Nonparametric inference for ergodic stationary
time series. Ann. Statist. 24 370–379.

Nobel, A. B., Morvai, G. and Kulkarni, S. R. (1998). Density estimation from an individual
numerical sequence. IEEE Trans. Inform. Theory 44 537–541.

Shannon, C. E. (1951). Prediction and entropy of handwritten English. Bell Systems Tech. J. 30
50–64.

Smith, S. J., Bourgoin, M. O., Sims, K. and Voorhees, H. L. (1994). Handwritten character
classification using nearest neighbor in large databases. IEEE Trans. Pattern Anal.
Mach. Intelligence 3 75–78.

Snapp, R. S. and Venkatesh, S. S. (1998). Asymptotic expansion of the k nearest neighbor risk.
Ann. Statist. 26 850–878.

Stone, C. (1977). Consistent nonparametric regression. Ann. Statist. 5 595–645.
Wheeden, R. L. and Zygmund A. (1977). Measure and Integral. Marcel Dekker, New York.

Mathematisches Seminar
Der Univeristät Kiel
Ludewig-Meyn str. 4
D-24908 Kiel
Germany
E-mail: irle@math.uni-kiel.de


