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Let ��1��1�� � � � � ��n��n� be a random sample from a bivariate distri-
bution functionF in the domain of max-attraction of a distribution function
G. This G is characterised by the two extreme value indices and its spec-
tral or angular measure. The extreme value indices determine both the
marginals and the spectral measure determines the dependence structure
of G. One of the main issues in multivariate extreme value theory is the
estimation of this spectral measure. We construct a truly nonparametric
estimator of the spectral measure, based on the ranks of the above data.
Under natural conditions we prove consistency and asymptotic normality
for the estimator. In particular, the result is valid for all values of the
extreme value indices. The theory of (local) empirical processes is indis-
pensable here. The results are illustrated by an application to real data
and a small simulation study.

1. Introduction. In two-dimensional space as in one-dimensional space,
if one has to do inference in the tail of a distribution outside the range of
the observations, a rational way to proceed is to use extreme value theory,
that is, to model the tail asymptotically as an extreme-value distribution. In
order to turn this into a useful tool, one has to estimate the parameters of
the fitted extreme-value distribution. In fact there is no finite-dimensional
parametrisation in the higher-dimensional case: the probability distribution is
characterised by the extreme value indices and a finite measure, the spectral
or angular measure. The estimation of this spectral measure is one of the
main issues in multivariate extreme value theory. In this paper a natural non-
parametric estimator is constructed and its asymptotic properties are derived.
In order to describe the setup, we have to start by explaining the probabilistic
background.
Let �� �� �� ��1��1�� ��2��2�� � � � � ��n��n� be i.i.d. with common continu-

ous distribution functionF. Suppose that there are norming constants an� cn >
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0 and bn� dn such that the sequence of distribution functions

P
{
max1≤i≤n �i − bn

an
≤ x� max1≤i≤n �i − dn

cn
≤ y

}
converges to a limit distribution function, say G�x�y�, with non-degenerate
marginals, that is,

lim
n→∞ F

n�anx+ bn� cny+ dn� = G�x�y�(1)

for all but countably many x and y. The two marginal distribution functions
are automatically extreme value distribution functions and we choose the con-
stants an, cn, bn and dn such that for some γ1� γ2 ∈ R,

G�x�∞� = exp
{−�1+ γ1x�−1/γ1} �

G�∞� y� = exp
{−�1+ γ2y�−1/γ2} �

Then there is a finite measure � on 
0� π/2�, the spectral measure, such that

G

(
xγ1 − 1
γ1

�
yγ2 − 1
γ2

)
= exp

{
−
∫ π/2
0

(
1 ∧ tan θ

x
∨ 1 ∧ cot θ

y

)
��dθ�

}
(2)

and ∫ π/2
0

�1 ∧ tan θ���dθ� =
∫ π/2
0

�1 ∧ cot θ���dθ� = 1�

This is a variant, useful for our purposes, of the usual representation; cf. de
Haan and Resnick (1977), Deheuvels (1978) and Pickands (1981). For more
background material see Einmahl, de Haan and Sinha (1997). Note that G
has independent marginals if and only if � is concentrated on �0� π/2�.
An alternative useful way to express (1) is

lim
n→∞ n�1−F�anx+ bn� cny+ dn�� = − logG�x�y��

A continuous version also holds:

lim
t→∞

t�1−F�a�t�x+ b�t�� c�t�y+ d�t��� = − logG�x�y�(3)

for suitable functions a� c > 0, and b and d, or

lim
t→∞

tP
{
� − b�t�
a�t� >

xγ1 − 1
γ1

or
� − d�t�
c�t� >

yγ2 − 1
γ2

}
= − logG

(
xγ1 − 1
γ1

�
yγ2 − 1
γ2

)
=
∫ π/2
0

(
1 ∧ tan θ

x
∨ 1 ∧ cot θ

y

)
��dθ�
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for x�y > 0, where we can choose b�t� = F←1 �1− 1/t� and d�t� = F←2 �1− 1/t�,
with F1 and F2 the marginals of F. This implies

lim
t→∞

P
{
� −b�t�
a�t� >

xγ1−1
γ1

or
� −d�t�
c�t� >

yγ2−1
γ2

∣∣∣∣� >b�t� or � >d�t�
}

=
∫ π/2
0

(
1∧tanθ
x

∨ 1∧cotθ
y

)
��dθ�/�

([
0�
π

2

])
�

(4)

Relation (4) has an interpretation analogous to the Generalised Pareto setup
in one-dimensional extreme value theory: observations outside a large rectan-
gle �−∞� b�t�� × �−∞� d�t�� can be considered as i.i.d. random variables with
approximate distribution function

1−
∫ π/2
0

(
1 ∧ tan θ

�1+ γ1x/a�t��1/γ1
∨ 1 ∧ cot θ
�1+ γ2y/c�t��1/γ2

)
��dθ�/�

([
0�
π

2

])
�

This interpretation is the basis for estimating �.
Relation (3) becomes simpler if we apply a preliminary transformation to

the marginals:

lim
t↓0

t−1P �1−F1�� � ≤ tx or 1−F2�� � ≤ ty�

=
∫ π/2
0

( x

1 ∨ cot θ ∨
y

1 ∨ tan θ
)
��dθ��

(5)

[cf. de Haan and Resnick (1977)] or, more generally, for any Borel set A in

0�∞�2 \ ��∞�∞��,

lim
t↓0

t−1P ��1−F1�� ��1−F2�� �� ∈ tA� = ��A��(6)

(with tA = ��tx� ty� � �x�y� ∈ A�) provided ��∂A� = 0 with the measure � on

0�∞�2 \ ��∞�∞�� defined by

� ��
x�∞� × 
y�∞��c� =
∫ π/2
0

( x

1 ∨ cot θ ∨
y

1 ∨ tan θ
)
��dθ��(7)

Or, withP the measure on 
0�1�2 induced by �X�Y� �= �1−F1�� ��1−F2�� ��,
lim
t↓0

t−1P�tA� = ��A��(8)

These relations show how one can get � from F and hence show a way to
estimate �. A slightly more complicated relation shows how to get � from F:
apply (6) to the set

Cθ �=
{�x�y� ∈ 
0�∞�2 � x ∧ y ≤ 1� y ≤ x tan θ} �

with the convention that ∞ · 0 = 1. The result is

lim
t↓0
t−1P��1−F1�� ��∧�1−F2�� ��≤t�1−F2�� �≤�1−F1�� ��tanθ�
= lim
t↓0
t−1P�X∧Y≤t�Y≤Xtanθ�=��Cθ�=��θ�

(9)
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for all but countably many θ. Note that we simplified the notation: ��θ� �=
��
0� θ��. It is also useful to note that we have, for example, on 
0� π/4�, for
continuity points of �:

��θ� = ∂

∂y
� ��
x�∞� × 
y�∞��c� �y=x tan θ�(10)

In order to turn the left-hand side of (9) into an estimator for �, we have
to replace F1 and F2 and the unknown probability measure P with empirical
counterparts. In Einmahl, de Haan and Sinha (1997) this has been done by
replacing P with the empirical measure and the tails 1−F1�x� and 1−F2�y�
with the fitted Pareto tails,

t

(
1+ γ1

x− b�t�
a�t�

)−1/γ1
and t

(
1+ γ2

y− d�t�
c�t�

)−1/γ2
[based on one-dimensional versions of (3)]. The use of Pareto tails (which de-
pend on γ1 and γ2) for the marginals and the ensuing necessity to estimate
six parameters cause mathematical problems: asymptotic normality was only
proved for γ1� γ2 > 0; the limiting process does not even exist when γ1 ≤ −1
or γ2 ≤ −1.
In this paper we replace P, F1 and F2 by the corresponding empirical

measures and consider the following purely non-parametric estimator based
on the relations (8) and (9):

�̂�θ� �= n
k
P̂n

(
k

n
Cθ

)
= 1
k

n∑
i=1

1��n+1−R�
i �∧�n+1−R�

i �≤k�n+1−R�
i ≤�n+1−R�

i � tan θ�

= 1
k

n∑
i=1

1�R�
i ∨R�

i ≥n+1−k�n+1−R�
i ≤�n+1−R�

i � tan θ�

where R�
i is the rank of �i among �1� � � � ��n, R

�
i is the rank of �i among

�1� � � � ��n and for any Borel set C ⊂ 
0�1�2,

P̂n�C� �=
1
n

n∑
i=1

1C�X̂i� Ŷi��

where

�X̂i� Ŷi� �=
1
n
�n+ 1−R�

i � n+ 1−R�
i ��

We shall prove that �̂ is weakly consistent for � provided k = k�n� → ∞,
k�n� = o�n�, n→∞, and strongly consistent if moreover k�n�/ log log n→∞,
n → ∞. We shall give further conditions on � and the sequence k�n� that
ensure asymptotic normality.
The estimator seems natural, since it is essentially the empirical distribu-

tion function. Although the mathematical details of the derivation are delicate,
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the asymptotic results are rather simple and valid for all γj ∈ R�j = 1�2. The
non-parametric estimator seems to perform well in applications, better than
the semi-parametric one described above [cf. de Haan and de Ronde (1998) or
the reports on the Neptune project, Draisma et al. (1996, 1997)].
Apart from Einmahl, de Haan and Huang (1993) and Einmahl, de Haan

and Sinha (1997), we are not aware of other work on estimating the spectral
measure starting from observations in the domain of attraction. There are sev-
eral proposals for estimating the measure � starting from such observations:
Huang (1992) [cf. Drees and Huang (1998)], de Haan and Resnick (1993), Ab-
dous, Ghoudi and Khoudraji (1999) and in a restricted parametric context,
Tawn (1988), Coles and Tawn (1991), Joe, Smith and Weissman (1992). The
paper by Deheuvels and Martynov (1996) considers observations taken from
the limit distribution itself.
If one takes any of the mentioned estimators for � and one uses it to esti-

mate the extreme-value distribution G via (2) and (7):

G

(
x−γ1 − 1
γ1

�
y−γ2 − 1
γ2

)
= exp �−� ��
x�∞� × 
y�∞��c�� �

this leads to an estimator of G that is itself not necessarily an extreme value
distribution (only max-infinitely divisible). If one estimates G via (2) using �,
one does get an extreme value distribution. Observe that formula (10) indicates
that the estimation of � is like the estimation of �, locally.
Apart from this, �̂ is directly useful for assessing the amount of dependence

in the tail of F; see, for example, Section 4 and Hauksson et al. (2001). In
Theorem 4.1 of de Haan and Sinha (1999), �̂ is also necessary to estimate
the variance in the analysis of probabilities of rare sets in an extreme value
context.
The writeup is for the two dimensional situation. The higher dimensional

case can be dealt with in a similar way, but the technical details are much
more involved.
The results are presented in Section 2. The proof of the main theorem

(Theorem 2) is given in Section 3. Section 4 contains an application and a
small simulation study.

2. Main results. Our point of departure is now (6) or (8), that is, we
consider a probability measure P on 
0�1�2 with distribution function � which
has uniform-
0�1� marginals and assume there exists a measure � such that

lim
t↓0

1
t
P�tA� = ��A�

for all measurableA⊂ 
0�∞�2\��∞�∞�� with ��∂A�= 0. Note that ��
0� tx�×

0� ty�� = t��
0� x�×
0� y�� and that 0 ≤ ��
0� x�×
0� y�� ≤ x∧y� Furthermore
��
0� x� × 
0�∞�� = ��
0�∞� × 
0� x�� = x. Set

Cθ =
{�x�y� ∈ 
0�∞�2 � x ∧ y ≤ 1� y ≤ x tan θ} � θ ∈

[
0�
π

2

]
�
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So we have i.i.d. random vectors �X1�Y1�� � � � � �Xn�Yn�, obtained from
��1��1�� � � � � ��n��n� of Section 1, in the following way: �Xi�Yi� = �1 −
F1��i��1 − F2��i��, i = 1� � � � � n. We denote the marginal empirical distri-
bution functions of �X1�Y1�� � � � � �Xn�Yn� with �1n and �2n, so, for example,
�1n�x� = 1

n

∑n
i=1 1�−∞�x��Xi�, for x ≤ 1; for x > 1 we set �jn�x� = x, for

j = 1�2. Now we transform the data by �1n and �2n as follows: �X̂i� Ŷi� =
��1n�Xi�� �2n�Yi��, i = 1� � � � � n� Observe that the thus obtained data are
no longer independent (with respect to i). This dependence is non-negligible
and creates a major technical problem. Denote the empirical measures of the
�Xi�Yi� and �X̂i� Ŷi�, i = 1� � � � � n by Pn and P̂n, respectively, so

P̂n�C� =
1
n

n∑
i=1

1C�X̂i� Ŷi��

Let k = k�n� ≤ n be a sequence of positive numbers such that

k→∞ and k/n→ 0 as n→∞�(11)

Set T� �= �θ ∈ 
0� π/2� � � is continuous at θ� ∪ �π/2�. Recall ��θ� = ��Cθ�
and �̂�θ� = n

k
P̂n� knCθ�.

Theorem 1. (i) Suppose �1� and �11� hold. Then for all θ ∈ T�,

�̂�θ� P→ ��θ��
(ii) Suppose in addition that

k/ log log n→∞�
as n→∞. Then for all θ ∈ T�,

�̂�θ� → ��θ� a.s�

Note that the statements in Theorem 1 imply convergence of �̂ to � (“in
probability” and “almost surely,” respectively) in the vague topology on the
spaceM+�
0� π/2�� of nonnegative Radon measures on 
0� π/2�.

Proof. (i) Set

�̂�A� = n
k
P̂n

(
k

n
A

)
�

From Huang [(1992), Chapter 2, Theorem 1], for each x�y ≥ 0,

�̂ ��
x�∞� × 
y�∞��c� P→ � ��
x�∞� × 
y�∞��c� �
For ε > 0 choose two finite unions of (bounded or unbounded) rectangles Lε
and Uε such that Lε ⊂ Cθ ⊂ Uε and

��Uε� − ε < ��Cθ� < ��Lε� + ε�
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Also we have

�̂�Lε� ≤ �̂�θ� = �̂�Cθ� ≤ �̂�Uε��
Since now clearly �̂�Lε� and �̂�Uε� are weakly consistent estimators of ��Lε�
and ��Uε�, respectively, and since ��Uε� − ��Lε� → 0 as ε ↓ 0, if θ ∈ T�, we
conclude that

�̂�θ� P→ ��θ��
for θ ∈ T�.
(ii) We have from Qi (1997) that under the stated conditions for x�y ≥ 0,

�̂ ��
x�∞� × 
y�∞��c� → � ��
x�∞� × 
y�∞��c� a.s.

The rest of the proof is the same as in the first part. ✷

We will now consider the process
√
k
(
�̂�θ� −��θ�

)
� θ ∈ 
0� π/2� �

We will assume that the density λ of � exists, that it is continuous on 
0�∞�2\
��0�0��, and that ��
0�∞�×�∞�� = ���∞�×
0�∞�� = 0. Note that asymptotic
independence in the tail, that is, G has independent marginals, is excluded
now. Observe that λ�tx� ty� = 1

t
λ�x�y�. Define

Ĉθ =
n

k

{
�x�y� ∈ 
0�∞�2 \ ��∞�∞�� � ��1n�x�� �2n�y�� ∈

k

n
Cθ

}
�

Then we have [note P̂n� knCθ� = Pn� knĈθ��
√
k
(
�̂�θ� −��θ�

)
=
√
k

(
n

k
Pn

(
k

n
Ĉθ

)
− n
k
P

(
k

n
Ĉθ

))
+
√
k

(
n

k
P

(
k

n
Ĉθ

)
− �

(
Ĉθ

))
+
√
k
(
�
(
Ĉθ

)
− � �Cθ�

)
� = V1�θ� + r�θ� +V2�θ�� θ ∈ 
0� π/2� �

(12)

DefineW� to be a Wiener process with “time” �, that is, a centred Gaussian
process with EW��C�W��C̃� = ��C ∩ C̃�. Note that

�W��Cθ�� θ ∈ 
0� π/2�� d= �W���θ��� θ ∈ 
0� π/2�� �
with W a standard Wiener process on 
0�∞�. Define W1�x� = W��
0� x� ×

0�∞�� andW2�y� =W��
0�∞�× 
0� y��. Note thatW1 andW2 are also stan-
dard Wiener processes. Define the process Z by

Z�θ� =
∫ 1∨ 1

tan θ

0
λ�x� x tan θ� �W1�x� tan θ−W2�x tan θ�� dx
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−W2�1�
∫ ∞
1∨ 1

tan θ

λ�x�1�dx

−1�π/4�π/2��θ�W1�1�
∫ tan θ

1
λ�1� y�dy� θ ∈ 
0� π/2� �

Z�π/2� = −W2�1�
∫ ∞
1
λ�x�1�dx−W1�1�

∫ ∞
1
λ�1� y�dy�

Our aim is to show that

��V1�θ�� r�θ��V2�θ�� � θ ∈ 
0� π/2��
d→ ��W��Cθ��0�Z�θ�� � θ ∈ 
0� π/2�� �

where “
d→” denotes weak convergence in

(
D
[
0� π2

])3
�with the supremum norm

on D
[
0� π2

]
(and the Euclidian norm on R3).

Now we are almost ready to present the theorem on the weak convergence
of
√
k��̂ − ��, but we need two conditions. First, we need the domain of at-

traction condition (8) uniformly on a class of sets � ′ = �A ∩A′ � A�A′ ∈ � �,
where � = � �,�M� is a Vapnik-Chervonenkis (VC) class of sets defined
as follows. Let , ∈ �1� 12 � 13 � � � ��, p = 0�1�2� � � � � 1

,
− 1, and define I,�p� =[

p ,
tan θ � �p+ 1� ,

tan θ

]
, θ ∈ 
0� π/4�. Set ˜� to be the class containing all the

following sets:

• ⋃ 1
,−1
p=0

{
�x�y� � x ∈ I,�p�� 0 ≤ y ≤ x tan θ+Cp�x tan θ�

1
16

}
�

for some θ ∈ 
0� π/4� and C0� C1 � � � � C 1
,−1 ∈ 
−1�1� and

• ��x�y� � y ≤ b�, for some b ≤ 2, and

• ��x�y� � x ≤ a�, ��x�y� � x ≤M� y ≤ 2�, for some a ≤ M (later on M
will be taken large) and

• {�x�y� � x ≥ 1
tan θ � y ≤ b

}
, for some θ ∈ 
0� π/4� and b ≤ 2.

Next define ˜�s = �As � A ∈ ˜� �, where, for A ∈ ˜� , As = ��x�y� � �y�x� ∈ A�.
Finally define � = ˜� ∪ ˜�s.

Condition 1. For all , ∈ �1� 12 � 13 � � � �� andM> 1

sup
A∈� ′

∣∣t−1P �tA� − ��A�∣∣→ 0 �t ↓ 0��

The second condition is partly similar to Condition 1, but it also specifies a
rate of convergence in the domain of attraction condition, which can be seen
as a condition on the sequence k. Consider the class of sets � = � �β� defined
by

� = ���x�y� � 0 ≤ y ≤ b�x� for some non-decreasing function b�
∈ ��
0�∞�2 \ ��∞�∞��� �

sup
0<x≤ 2

tan θ

�x tan θ�−1/16 �b�x� − ��x tan θ� ∧ 1�� ≤ β

for some θ ∈ 
0� π/4�� and b�x� = b�2/ tan θ� for x > 2/ tan θ��

(13)
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where��
0�∞�2\��∞�∞��� denotes the set of Borel sets on 
0�∞�2\��∞�∞��.

Condition 2a(i). For some β > 0,

D�t� �= sup
C∈�

∣∣t−1P �tC� − ��C�∣∣→ 0 �t ↓ 0��

Condition 2a(ii). Let k be such that �for the same β�
√
kD

(
k

n

)
→ 0 �n→∞��

Condition 2b. This is similar to Conditions 2a(i) and 2a(ii), but with x
and y interchanged.

Theorem 2. Assume the framework of Section 1 and suppose � has a con-
tinuous density λ on 
0�∞�2 \ ��0�0��. Under Conditions 1 and 2 we have, as
n→∞,

√
k
(
�̂�θ� −��θ�

)
d→W��Cθ� +Z�θ� in D 
0� π/2� �

Note that W��C0� +Z�0� = 0 a.s.

Example. Let us consider the bivariate Cauchy distribution on �0�∞�2
with density

2

π�1+ x2 + y2� 32
� x� y > 0�

We will show now that this distribution satisfies Conditions 1 and 2. It is
straightforward to compute the density of π2tP��0� 2tπ x�× �0� 2tπ y�� [cf. (8)]; it is
equal to

t
�1+ cot2�tx���1+ cot2�ty��
�1+ cot2�tx� + cot2�ty�� 32

�(14)

Relations (4.3.70) and (23.1.15) in Abramowitz and Stegun (1966) imply

1
u
− 8u
π2
< cotu <

1
u

for 0 < u <
π

2
�(15)

Note that (14) is correct only for tx� ty < π
2 . For either x large, y bounded or

the other way around, the reasoning below should be slightly adapted. Using
(15) we find that (14) can be written, for t ↓ 0, as

t

( 1
t2x2

+O�1�) ( 1
t2y2

+O�1�
)

(
1
t2

(
1
x2
+ 1

y2

)
+O�1�

) 3
2

=
( 1
x2
+O�t2�) ( 1

y2
+O�t2�

)
(

1
x2
+ 1

y2
+O�t2�

) 3
2

�
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with the O-terms not depending on x or y. Now for u > 0� �h� < u
2 ,∣∣∣u− 3

2 − �u+ h�− 3
2

∣∣∣ = ∣∣∣∣32 ∫ u+hu
s−

5
2ds

∣∣∣∣ < 2
5
2
3
2
hu−

5
2 �

hence
1(

1
x2
+ 1

y2
+O�t2�

) 3
2

= 1(
1
x2
+ 1

y2

) 3
2

+ 1(
1
x2
+ 1

y2

) 5
2

O�t2��

So the main term is

λ�x�y� =
1

x2y2(
1
x2
+ 1

y2

) 3
2

and the error term is 1
x2y2(

1
x2
+ 1

y2

) 5
2

+
1
x2
+ 1

y2(
1
x2
+ 1

y2

) 3
2

+
1
x2
+ 1

y2(
1
x2
+ 1

y2

) 5
2

O�t2��
The first factor of this expression has a finite integral over a strip 
0� u�×
0�∞�
or 
0�∞� × 
0� u�. We conclude that for the present probability distribution
t−1P�tA� converges to ��A� uniformly over the family of all Borel sets con-
tained in a set of the form ��x�y� � x ≤ u or y ≤ u�. This is sufficient for
Conditions 1 and 2.

3. Proof of Theorem 2.

3.1. We first prove weak convergence of
√
k
(
�̂�θ� −��θ�

)
in D
0� π/4�.

More precisely, we will show that for probabilistically equivalent versions of
the processes involved and any ε > 0

lim
,↓0

limsup
n→∞

P

 sup
θ∈
0� π4 �

∣∣∣√k(�̂�θ�−��θ�)−�W��Cθ�+Z�θ��
∣∣∣≥3ε

=0�(16)

where �̂ = �̂, and W� =W��, (, ∈ �1� 12 � 13 � � � ��).
In the sequel we will replace Ĉθ� θ ∈

[
0� π4

]
, by{

�x�y� � y ≤ n
k
Q2n

(
�tan θ��1n

(
x
k

n

))
� y ≤ n

k
Q2n

(
k

n

)}
�

where Qjn, is the quantile function corresponding to �jn (set Qjn�y� = 0 for
0 ≤ y ≤ 1

2n ) j = 1�2, and call it Ĉθ again. Both sets are not exactly equal, but
the difference is negligible for our purposes. Define the marginal tail empirical
processes by

wjn�x� =
n√
k

(
�jn

(
x
k

n

)
− xk

n

)
� x ≥ 0� j = 1�2�
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and the marginal tail quantile process by

vjn�x� =
n√
k

(
Qjn

(
x
k

n

)
− xk

n

)
� x ≥ 0� j = 1�2�

Note that for x ≥ 0,

n

k
Q2n

(
�tanθ��1n

(
x
k

n

))
=xtanθ+ 1√

k

{
�tanθ�w1n�x�+v2n

(
xtanθ+ 1√

k
�tanθ�w1n�x�

)}
�

(17)

3.1.1. First we deal with V1�θ� in (12). Write

zn�θ�x� = �tan θ�w1n�x� + v2n
(
x tan θ+ 1√

k
�tan θ�w1n�x�

)
and note that n

k
Q2n

(
k
n

)
= 1 + 1√

k
v2n�1�. Recall the definitions of � and ˜� ,

just above Condition 1. Define (with the convention that 0/0=0)

V+p�,�θ = sup
x∈I,�p�

{
zn�θ�x� ∧ �v2n�1� +

√
k�1− x tan θ��

}
/�x tan θ� 1

16

and

V−p�,�θ = inf
x∈I,�p�

{
zn�θ�x� ∧ �v2n�1� +

√
k�1− x tan θ��

}
/�x tan θ� 1

16 �

Set, for either choice of sign,

H±
p�,�θ =

{
�x�y� � x ∈ I,�p�� 0 ≤ y ≤ x tan θ+

1√
k
�x tan θ� 1

16V±p�,�θ

}
and

M±
,�θ =

1
,−1⋃
p=0

H±
p�,�θ�

Here it should be noted, especially for p = 0, that V±p�,�θ = OP�1� as n→∞.
In particular, it is useful to write

v2n

(
x tan θ+ 1√

k
�tan θ�w1n�x�

)
�x tan θ� 1

16

=
v2n

(
x tan θ+ 1√

k
�tan θ�w1n�x�

)
(
x tan θ+ 1√

k
�tan θ�w1n�x�

) 1
4

(
�x tan θ� 34 + 1√

k
�tan θ� 34w1n�x�/x

1
4

) 1
4

and to use the fact that w1n/I
1
4 (on 
0�1/ tan θ�) and v2n/I

1
4 (on 
0�2�) are

bounded in distribution (I is the identity function).
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Now we apply Theorem 3.1 of Einmahl (1997); see also Einmahl, de Haan
and Sinha (1997). Then using that � is a VC class and Condition 1, we have
for a special construction (but keeping the same notation), as n→∞,

sup
A∈�

∣∣∣∣√k(nkPn
(
k

n
A

)
− n
k
P

(
k

n
A

))
−W��A�

∣∣∣∣ a�s�→ 0�(18)

Set Ĉθ�1 =
{
�x�y� ∈ Ĉθ � x ≤ 1

tan θ

}
, Ĉθ�2 = Ĉθ \ Ĉθ�1, and define for j = 1�2,

V1�j�θ� =
√
k

(
n

k
Pn

(
k

n
Ĉθ�j

)
− n
k
P

(
k

n
Ĉθ�j

))
� j = 1�2�

Then

V1�1�θ� ≤
√
k

(
n

k
Pn

(
k

n
M+
,�θ

)
− n
k
P

(
k

n
M+
,�θ

))
+
√
k
n

k
P

(
k

n

(
M+
,�θ \M−

,�θ

))
(19)

=� V+1�1�θ� + r1�θ�!
similarly

V1�1�θ� ≥
√
k

(
n

k
Pn

(
k

n
M−
,�θ

)
− n
k
P

(
k

n
M−
,�θ

))
−
√
k
n

k
P

(
k

n

(
M+
,�θ \M−

,�θ

))
(20)

=� V−1�1�θ� − r1�θ��

We now first deal with r1�θ� and next with V±1�1�θ�.
Using Condition 2a and the results on the behavior of weighted tail empir-

ical and quantile processes [see Einmahl (1992, 1997)] we can show that, as
n→∞,

sup
θ∈
0�π/4�

∣∣∣r1�θ� − √k� (M+
,�θ \M−

,�θ

)∣∣∣ P→ 0�(21)

Now consider

sup
θ∈
0�π/4�

√
k�
(
M+
,�θ \M−

,�θ

)
�(22)

Note that
√
k�
(
M+
,�θ \M−

,�θ

)
=
√
k

1
,−1∑
p=0

∫ �p+1� ,
tan θ

p ,
tan θ

∫ x tan θ+ 1√
k
�x tan θ� 1

16V+p�,�θ

x tan θ+ 1√
k
�x tan θ� 1

16V−p�,�θ
λ�x�y�dydx�
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Setting y = x tan θ+ 1√
k
�x tan θ� 1

16 z we obtain

1
,−1∑
p=0

∫ �p+1� ,
tan θ

p ,
tan θ

∫ V+p�,�θ
V−p�,�θ

λ�x� x tan θ+ 1√
k
�x tan θ� 1

16 z��x tan θ� 1
16 dzdx

≤ 16 sup
y≥0

λ�1� y� max
p∈�0�1����� 1,−1�

(
V+p�,�θ −V−p�,�θ

)
�

Since λ�1� y� = y−1λ�1/y�1� and by the continuity of λ on 
0�∞�2 \ ��0�0��
we have limy→∞ λ�1� y� = 0. Hence supy≥0 λ�1� y� < ∞. Also because of the
tightness of wjn/Iδ and vjn/Iδ, j = 1�2, 0 < δ < 1/2, on 
0�M�, we see that
for any ε̃ > 0,

lim
,↓0

lim sup
n→∞

P

{
sup

θ∈
0�π/4�
max

p∈�0�1����� 1,−1�
(
V+p�,�θ −V−p�,�θ

)
≥ ε̃
2

}
= 0�

and hence, using (21),

lim
,↓0

lim sup
n→∞

P

{
sup

θ∈
0�π/4�
r1�θ� ≥

ε

2

}
= 0�(23)

Now consider for either choice of sign V±1�1�θ�. Since P�M±
,�θ ∈ ˜� � for all θ ∈


0� π/4�� → 1 �n→∞�, we have, using (18), that

sup
θ∈
0�π/4�

∣∣V±1�1�θ� −W�

(
M±
,�θ

)∣∣ P→ 0�(24)

But with similar calculations as for (22) we obtain that

�
(
M±
,�θ "Cθ�1

) ≤ 16√
k
sup
y≥0

λ�1� y� max
p∈�0�1����� 1,−1�

∣∣V±p�,�θ∣∣
with

Cθ�1 =
{
�x�y� ∈ Cθ � x ≤

1
tan θ

}
=
{
�x�y� ∈ 
0�∞�2 � 0 ≤ x ≤ 1

tan θ
� 0 ≤ y ≤ x tan θ

}
�

Since

sup
θ∈
0�π/4�

max
p∈�0�1����� 1,−1�

∣∣V±p�,�θ∣∣ = OP�1��

we have that for any , ∈ �1� 12 � 13 � � � ��,

sup
θ∈
0�π/4�

�
(
M±
,�θ "Cθ�1

) P→ 0�
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Hence, since W� is uniformly continuous on � (with respect to the pseudo-
metric
��A"A′�� A�A′ ∈ � �,

sup
θ∈
0�π/4�

∣∣W�

(
M±
,�θ

)−W�

(
Cθ�1

)∣∣ P→ 0�(25)

Combining (19), (20), (23), (24) and (25), we now have proven that

lim
,↓0

lim sup
n→∞

P

{
sup

θ∈
0�π/4�

∣∣V1�1�θ� −W�

(
Cθ�1

)∣∣ ≥ ε} = 0�(26)

Observe that Ĉθ�2 is (almost) a rectangle. [Only near �1/ tan θ�1� there is a
small deviation from the rectangular shape, but with some care it can be
shown that this deviation is negligible.] But these rectangles are in the VC
class ˜� and need no approximation like Ĉθ�1. Therefore we can show in a
similar but easier way than for V1�1 that, with Cθ�2 = Cθ \Cθ�1,

lim
,↓0

lim sup
n→∞

P

{
sup

θ∈
0�π/4�

∣∣V1�2�θ� −W�

(
Cθ�2

)∣∣ ≥ ε} = 0�(27)

Combining (26) and (27), we now have, as n→∞,

lim
,↓0

lim sup
n→∞

P

{
sup

θ∈
0�π/4�

∣∣V1�θ� −W� �Cθ�
∣∣ ≥ 2ε

}
= 0�(28)

3.1.2. Next we consider V2�θ�. We show that, as n→∞,

sup
θ∈
0�π/4�

∣∣∣√k (��Ĉθ� − ��Cθ�)−Z�θ�∣∣∣ P→ 0�(29)

Note that for θ ∈ 
0� π/4�:

Z�θ�=
∫ 1

tanθ

0
λ�x�xtanθ��W1�x�tanθ−W2�xtanθ��dx−W2�1�

∫ ∞
1

tanθ

λ�x�1�dx�

Observe, with Ĉθ�1, Cθ�1 and zn�θ as before, that
√
k
(
��Ĉθ�1� − ��Cθ�1�

)
=
√
k
∫ 1

tan θ

0

∫ x tan θ+ 1√
k
�zn�θ�x�∧�v2n�1�+√k�1−x tan θ���

x tan θ
λ�x�y�dydx�(30)

Now for (large)M> 1,

sup
θ∈
0�π/4�

∣∣∣∣∣√k (��Ĉθ�1� − ��Cθ�1�)

−
∫ 1

tan θ

0
λ�x� x tan θ� �W1�x� tan θ−W2�x tan θ�� dx

∣∣∣∣∣
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≤ sup
θ∈
arctan 1

M�π/4�

∣∣∣∣∣√k (��Ĉθ�1� − ��Cθ�1�)

−
∫ 1

tan θ

0
λ�x� x tan θ� �W1�x� tan θ−W2�x tan θ�� dx

∣∣∣∣
+ sup
θ∈
0�arctan 1

M �

∣∣∣√k (��Ĉθ�1� − ��Cθ�1�)

+ sup
θ∈
0�arctan 1

M �

∣∣∣∣∫ 1
tan θ

0
λ�x� x tan θ� �W1�x� tan θ−W2�x tan θ�� dx

∣∣∣∣
=� T1 +T2 +T3�

We have

T3 ≤ sup
θ∈
0�arctan 1

M �

∫ 1
tan θ

0

1
x
λ�1� tan θ� ��W1�x�� tan θ+ �W2�x tan θ��� dx

≤ sup
θ∈
0�arctan 1

M �

{
�tan θ�λ�1� tan θ�

∫ 1
tan θ

0

�W1�x��
x

dx

+λ�1� tan θ�
∫ 1

0

�W2�y��
y

dy

}

≤ sup
θ∈
0�arctan 1

M �

{
�tan θ�λ�1� tan θ�

(
sup
x∈
0�1�

W1�x�
x1/4

∫ 1

0

1
v3/4

dv

+ sup
x≥1

�W1�x��
x3/4

∫ 1
tan θ

1

1
v1/4

dv

)

+λ�1� tan θ� sup
y∈
0�1�

�W2�y��
y1/4

∫ 1

0

1
v3/4

dv

}
�

(31)

Since P has uniform marginals we have∫ ∞
1
λ�x�0�dx ≤ 1�

But since λ�x�0� = 1
x
λ�1�0�, this implies λ�1�0� = 0. Hence by the continuity

of λ: limy↓0 λ�1� y� = 0. Combining this with (31) yields that for any η > 0,

lim
M→∞

P �T3 ≥ η� = 0�(32)

Let us consider T2 now. For T2, and also for T1, we will replace zn�θ�x� ∧
�v2n�1� +

√
k�1 − x tan θ�� by zn�θ�x� in the right-hand side of (30), since it

can be shown that the difference between these two expressions is negligible.
Concerning T2 we have∣∣∣∣√k ∫ 1

0

∫ x tan θ+ 1√
k
zn�θ�x�

x tan θ
λ�x�y�dydx

∣∣∣∣
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≤ sup
y≥0

λ�1� y�
∣∣∣∣∫ 1

0

1
x
zn�θ�x�dx

∣∣∣∣
≤ sup

y≥0
λ�1� y�

{
tan θ sup

x∈
0�1�

�w1n�x��
x1/16

+�tan θ� 1
16 sup
x∈
0�1�

∣∣∣v2n (x tan θ+ 1√
k
�tan θ�w1n�x�

)∣∣∣
�x tan θ� 1

16


×
∫ 1

0

1
v15/16

dv�

Also ∣∣∣∣√k ∫ 1
tan θ

1

∫ x tan θ+ 1√
k
zn�θ�x�

x tan θ
λ�x�y�dydx

∣∣∣∣
=
∣∣∣∣∫ 1

tan θ

1

1
x

∫ zn�θ�x�
0

λ

(
1� tan θ+ z

x
√
k

)
dzdx

∣∣∣∣
≤ sup
�z�≤sup1≤x≤ 1

tan θ
�zn�θ�x��

λ

(
1� tan θ+ z√

k

)

× sup
1≤x≤ 1

tan θ

�zn�θ�x��
�x tan θ�1/16

∫ 1
tan θ

1

1
v
�v tan θ�1/16 dv�

Hence, since

sup
θ∈
0�π/4�

sup
1≤x≤ 1

tan θ

�zn�θ�x��
�x tan θ�1/16 = OP�1��

we see, somewhat similar as for T3, that

lim
M→∞

lim sup
n→∞

P �T2 ≥ η� = 0�(33)

Finally consider T1. Write zθ�x� =W1�x� tan θ−W2�x tan θ�. Then we have

T1 ≤ sup
θ∈
arctan 1

M�
π
4 �

∣∣∣∣∣√k ∫
1

tan θ

0

∫ x tan θ+ 1√
k
zn�θ�x�

x tan θ+ 1√
k
zθ�x�

λ�x�y�dydx
∣∣∣∣∣

+ sup
θ∈
arctan 1

M�
π
4 �

∣∣∣∣√k ∫ 1
tan θ

0

∫ x tan θ+ 1√
k
zθ�x�

x tan θ
λ�x�y�dydx

−
∫ 1

tan θ

0
λ�x� x tan θ�zθ�x�dx

∣∣∣∣
=� T1�1 +T1�2�
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For handling T1�1, note that it can be easily shown that

sup
θ∈
0�π/4�

sup
0≤x≤M

�zn�θ�x� − zθ�x��
�x tan θ�1/16

P→ 0�

We have

T1�1 ≤ sup
y≥0

λ�1� y�
∫ 1

tan θ

0

1
x

�zn�θ�x� − zθ�x��
�x tan θ�1/16 �x tan θ�1/16 dx�

Hence, for anyM> 1,

T1�1
P→ 0�(34)

In the term T1�2 we split up outer integral in the integral from 0 to δ �0 <
δ < 1�, and from δ to 1

tan θ , and denote the corresponding expressions by T1�2�1
and T1�2�2, respectively. Then

T1�2�1 ≤ 2 sup
y≥0

λ�1� y� sup
θ∈
arctan 1

M�
π
4 �

sup
x∈
0�δ�

�zθ�x��
�x tan θ�1/4

∫ δ
0

1
v
�v tan θ�1/4 dv(35)

and

T1�2�2 ≤ sup
θ∈
arctan 1

M�
π
4 �

∣∣∣∣∫ 1
tan θ

δ

1
x

∫ zθ�x�
0

(
λ

(
1� tan θ+ z

x
√
k

)

−λ�1� tan θ�
)
dzdx

∣∣∣∣∣�
(36)

Now noting that

sup
θ∈
arctan 1

M�π/4�
sup

0≤x≤ 1
tan θ

�zθ�x�� <∞ a.s.

and that 1
tan θ ≤M, we obtain from (35) and (36) that for anyM> 1,

T1�2
P→ 0�(37)

Combining (32)-(34) and (37) yields that, as n→∞,

sup
θ∈
0�π/4�

∣∣∣∣√k (��Ĉθ�1� − ��Cθ�1�)− ∫ 1
tan θ

0
λ�x� x tan θ�zθ�x�dx

∣∣∣∣ P→ 0�(38)

Similarly, but much more easily, we obtain,

sup
θ∈
0�π/4�

∣∣∣∣√k (��Ĉθ�2� − ��Cθ�2�)−W2�1�
∫ ∞

1
tan θ

λ�x�1�dx
∣∣∣∣ P→ 0�(39)

Combining (38) and (39) yields (29).
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3.1.3. We now consider r�θ� in (12). From (17), Condition 2a and the
well-known behavior of weighted tail empirical and quantile processes, it now
follows that

sup
θ∈
0�π/4�

�r�θ�� P→ 0 as n→∞�(40)

Combining (28),(29) and (40) yields (16). So actually we proved the theorem
for θ ∈ 
0� π/4�.

3.2. Next note that it rather easy to show that, as n→∞,∣∣∣√k (�̂ (π
2

)
−�

(π
2

))
−
(
W�

(
Cπ

2

)
+Z

(π
2

))∣∣∣ P→ 0�

Hence it follows by a symmetry argument, observing that for θ ∈ �π/4� π/2�
(the closure of) Cπ

2
\Cθ is the mirror image (with respect to the line y = x) of

Cπ
2 −θ, that, as n→∞,

lim
,↓0

limsup
n→∞

P

 sup
θ∈� π4 � π2 �

∣∣∣√k(�̂�θ�−��θ�)−�W��Cθ�+Z�θ��
∣∣∣≥4ε

=0�(41)

Combining (16) and (41) completes the proof. ✷

4. An application and simulations. The National Institute for Coastal
and Marine management of The Netherlands provided a data set consisting
of wave heights and still water levels during 828 storm events spread over
13 years in front of the Dutch coast near the town of Petten. They can be
considered independent and all following the same probability distribution.
These observations are relevant for a small stretch of sea dike near Petten
that protects a gap in the natural coast protection formed by sand dunes. The
dike is called “Pettemer zeedijk,” but it is also known as the “Hondsbossche
Zeewering.” Figure 1 displays the estimated spectral measure

�̂�θ� = 1
k

n∑
i=1

1
�R�

i ∨R�
i ≥n+1−k�arctan

n+1−R�
i

n+1−R�
i

≤θ�

(0 ≤ θ/π ≤ 1/2), for various values of k: k = 20, 28, 30 and 40. The solid line
represents k = 28. The graph seems to be rather robust against changes of
k. Since the graph has sufficient increase away from the endpoints, we may
conclude that there seems to be asymptotic dependence between the variables
“wave height” and “still water level.”
For comparison the spectral measure has also been estimated as in Ein-

mahl, de Haan and Sinha (1997):

�̃�θ� �= 1
k

n∑
i=1

1
�X̃i� nk �∨Ỹi� nk �>1�arctan

X̃i� nk �
Ỹi� nk �

≤θ�
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Fig. 1. The solid line is the nonparametric estimator �̂ for k = 28, the dashed lines correspond
to the same estimator for k = 20, 30 and 40, respectively.

with

X̃i

(n
k

)
�=
(
1+ γ̂1

�i − b̂1�nk �
â1�nk �

)1/γ̂1
�

Ỹi

(n
k

)
�=
(
1+ γ̂2

�i − b̂2�nk �
â2�nk �

)1/γ̂2
�

and âj, b̂j and γ̂j (j = 1�2) appropriate estimators of scale, location and
shape, respectively. Judging from the marginal distributions [cf. de Haan and
de Ronde (1998)] the choice k = 28 seems to be natural. But we have again
displayed the estimates with k = 20, 28, 30 and 40 (Figure 2; the solid line
represents k = 28). One sees that this semiparametric estimator is less robust
with respect to these variations of k.
Simulations have been carried out using a bivariate Cauchy distribution re-

stricted to the first quadrant, but with the marginal distributions transformed
so that these are similar in the tail to those in the application above, that is,
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Fig. 2. The solid line is the semiparametric estimator �̃ for k = 28, the dashed lines correspond
to the same estimator for k = 20, 30 and 40, respectively.

Fig. 3. The true � �solid� and the average of 100 estimates �̂ �dashed�.
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Fig. 4. 10 estimates �̂ and asymptotic probability-0�95 bands around �.

from the density function

2�1+ γ1x�
1
γ1
−1�1+ γ2y�

1
γ2
−1

π
(
1+ �1+ γ1x�

2
γ1 + �1+ γ2y�

2
γ2

) 3
2

�

with x and y such that 1+ γ1x, 1+ γ2y > 0. Note that we showed in Section
2 that this distribution satisfies Conditions 1 and 2 there. We have chosen
�γ1� γ2� = �−0�0074�−0�1215�, the same as the estimates for the variables
‘wave height’ and ‘still water level’ above. This is similar to what has been done
in de Haan and Sinha (1999). Our estimator �̂, however, is clearly not affected
by strictly increasing transformations of the marginals. It can be computed
that for this example ��θ� = sin θ, for θ ∈ 
0� π/4�, and ��θ� = √

2 − cos θ,
for θ ∈ �π/4� π/2�. We took, as in the application above, always n = 828
and k = 28. Figure 3 displays the average of 100 (independent) estimates �̂
(dashed), as well as the true function � (solid). Clearly, they are very close to
each other. In Figures 4 and 5 we plotted respectively 10 and 100 estimates �̂.
In those pictures the solid lines are bands around the true �, computed from
Theorem 2 and 500 simulations of the limiting Gaussian process appearing
there. To be more precise, the (constant) vertical distance between � and one
of these bands is the simulated 0�95 quantile of the supremum of the absolute
value of this limiting process divided by

√
k, with k = 28. This shows that for

this example the asymptotic theory seems to work well. Maybe the bands are a
bit conservative, but this could also be due to the inaccuracy in the simulation
of the aforementioned 0�95 quantile.
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Fig. 5. 100 estimates �̂ and asymptotic probability-0�95 bands around �.

Acknowledgments. We are grateful to Marko Boon and Gerrit Draisma
for the computer programs and pictures related to the simulations and real
data application, respectively. Thanks are also due to a referee and Editor
Hans R. Künsch for insightful comments and suggestions which led to im-
provements at several places.

REFERENCES

Abdous, B., Ghoudi, K. and Khoudraji, A. (1999). Non-parametric estimation of the limit de-
pendence function of multivariate extremes. Extremes 2 245–268.

Abramowitz, M. and Stegun, I. A. (1966). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover, New York.

Coles, S. G. and Tawn, J. A. (1991). Modelling extreme multivariate events. J. Roy. Statist. Soc.
Ser. B 53 377–392.

Hauksson, H. A., Dacorogna, M. M., Domenig, T., Müller, U. and Samorodnitsky, G. (2001)
Multivariate extremes, aggregation and risk estimation. Quantitative Finance 1 79–95.
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