
The Annals of Statistics
2001, Vol. 29, No. 5, 1361–1400

NONPARAMETRIC ANALYSIS OF COVARIANCE1

By Holger Dette and Natalie Neumeyer

Ruhr-Universität Bochum

In the problem of testing the equality of k regression curves from
independent samples, we discuss three methods using nonparametric esti-
mators of the regression function. The first test is based on a linear combi-
nation of estimators for the integrated variance function in the individual
samples and in the combined sample. The second approach transfers the
classical one-way analysis of variance to the situation of comparing non-
parametric curves, while the third test compares the differences between
the estimates of the individual regression functions by means of an L2-
distance. We prove asymptotic normality of all considered statistics under
the null hypothesis and local and fixed alternatives with different rates
corresponding to the various cases. Additionally, consistency of a wild boot-
strap version of the tests is established. In contrast to most of the proce-
dures proposed in the literature, the methods introduced in this paper are
also applicable in the case of different design points in each sample and
heteroscedastic errors. A simulation study is conducted to investigate the
finite sample properties of the new tests and a comparison with recently
proposed and related procedures is performed.

1. Introduction. An important problem in applied regression analysis is
the comparison of a response Y across several groups in the presence of a
covariate effect. In general, this model can be written as

Yij = gi�tij� + σi�tij�εij
 i = 1
 � � � 
 k
 j = 1
 � � � 
 ni
(1.1)

where εij are independently identically distributed errors, gi
 σi are the regres-
sion and variance function in the ith group �i = 1
 � � � 
 k� and the covariate
tij varies in the interval [0, 1]. In this paper we are interested in the problem
of testing the equality of the mean functions, that is,

H0� g1 = g2 = · · · = gk versus
H1� gi �= gj for some i
 j ∈ 	1
 � � � 
 k
�

(1.2)

Much effort has been devoted to this problem in the literature [see, e.g., Härdle
and Marron (1990), Hall and Hart (1990), King, Hart and Wehrly (1991),
Delgado (1993), Young and Bowman (1995), Kulasekera (1995), Kulasekera
and Wang (1997), Hall, Huber and Speckman (1997) and Dette and Munk
(1998)]. Most authors concentrate on the case of two samples �k = 2� and
a homoscedastic error in all groups. Härdle and Marron (1990) consider a
semiparametric approach in the case of equal designs (i.e., n1 = · · · = nk,
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tij = tj
 i = 1
 � � � 
 k�. King, Hart and Wehrly (1991) and Hall and Hart (1990)
discuss the completely nonparametric homoscedastic [i.e., σ2i �t� = σ2i 
 i =
1
 � � � 
 k� model in the case of equal design points. While the latter approach
can be generalized to the case of unequal design points [see Hall and Hart
(1990)], Kulasekera (1995) points out some drawbacks of the test in this case
and proposes several alternatives which are applicable to the model (1.1) under
the additional assumption of homoscedasticity in all groups. This approach can
detect alternatives which converge to the null at a rate of order 1/

√
n but the

author also mentions some practical problems of this procedure. On the one
hand, the level of the test depends sensitively on the smoothing parameter;
on the other hand, larger noises yield levels substantially different from the
nominal levels [see also Kulasekera and Wang (1997) for a detailed simula-
tion study and data-driven guidelines for bandwidth selection]. Moreover, a
generalization to a heteroscedastic error or a multivariate predictor seems
to be difficult. A rather different test was introduced by Young and Bowman
(1995) who generalized the one-way analysis of variance to the model (1.1).
Under the assumption of normally distributed homoscedastic errors over all
groups, these authors proposed a χ2-approximation for the distribution of the
test statistic. Although the finite sample properties of the test under these
assumptions look promising, a generalization to the general heteroscedastic,
nonnormal case does not appear trivial and the asymptotic properties of this
test have not been investigated so far. To our knowledge the problem of test-
ing the equality of the regression functions in the completely heteroscedastic
model (1.1) with a univariate predictor and unequal design points was first
considered by Dette and Munk (1998), who introduced a simple estimator of
the distance ∑

i<j

∫ 1

0

[
gi�t� − gj�t�

]2
dt

and proved an asymptotic normal law with a
√
n-rate for a corresponding

test statistic. As a consequence, this test can only detect alternatives which
converge to the null hypothesis at a rate of order n−1/4.

In this paper we discuss various tests for the hypothesis (1.2) which are
directly applicable in the general model (1.1), do not require any additional
assumptions (such as homoscedasticity or equal design points) and improve
on the asymptotic efficiency of the test of Dette and Munk (1998). More-
over, the new methods can easily be extended to the case of multivariate
predictors. A first method for testing the hypothesis (1.2) is based on a dif-
ference between a nonparametric variance estimator in the combined sam-
ple 	Yij

∣∣j = 1
 � � � 
 ni
 i = 1
 � � � 
 k
 and the corresponding estimators in the
individual samples 	Yij

∣∣j = 1
 � � � 
 ni
 and yields in fact an estimator of an
alternative measure of equality. Our second proposal is to use Young and
Bowman’s (1995) test also in the situation of a heteroscedastic error. Finally,
we suggest a generalization of King, Hart and Wehrly’s (1991) test to the gen-
eral setup (1.1), which compares the estimates of the regression functions in
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the individual samples. This method is closely related to an approach intro-
duced by Rosenblatt (1975) in the context of testing independence and further
developed by Härdle and Mammen (1993) and González-Manteiga and Cao
(1993) for the problem of testing the parametric form of a regression function.
We prove asymptotic normality of all proposed test statistics under the null
hypothesis and fixed alternatives with different rates of convergence corre-
sponding to both cases. In Section 2 we introduce the different methods, state
the main asymptotic results and discuss various links among the different
approaches. In Section 3 we investigate the finite sample properties of some
of the proposed tests and perform a comparison with alternative procedures
which have been suggested in the literature [see Hall and Hart (1990), Delgado
(1993), Kulasekera (1995), Kulasekera and Wang (1997)]. It is demonstrated
that a wild bootstrap version of the test based on the difference of variance
estimators has excellent finite sample properties and is very often remarkably
more powerful than several other tests proposed in the literature, which can
detect alternatives converging to the null at a parametric rate. Finally, some
of the proofs, which are cumbersome, are given in Section 4.

2. Testing the equality of regression functions by kernel-based
methods. To motivate the different methods for testing the hypothesis of the
form (1.2) and to investigate the asymptotic distribution of the corresponding
test statistics, we need a few regularity assumptions. Let N = ∑k

i=1 ni denote
the total sample size and assume

ni
N

= κi +O
(
1
N

)

 i = 1
 � � � 
 k
(2.1)

for given constants κ1
 � � � 
 κk ∈ �0
1�. Let r1
 � � � 
 rk denote positive densities
on the interval �0
1� such that the design points tij satisfy∫ tij

0
ri�t�dt =

j

ni

 j = 1
 � � � 
 ni
 i = 1
 � � � 
 k(2.2)

[see Sacks and Ylvisaker (1970)]. Throughout this paper we will assume the
continuity of the variance functions σ2i �·�
 i = 1
 � � � 
 k, and additionally that
the design densities in (2.2) and the regression functions are sufficiently smooth,
that is,

gj
 rj ∈ C�r��0
1�
 j = 1
 � � � 
 k
(2.3)

where r ≥ 2 and C�r��0
1� denotes the space of r-times continuously differen-
tiable functions on the interval �0
1�. Let

ĝi�t� =
∑ni
j=1K

(�t− tij�/hi)Yij∑ni
j=1K

(�t− tij�/hi)(2.4)

denote the Nadaraya–Watson estimator of the ith regression function gi and
hi the corresponding bandwidth [see Nadaraya (1964) and Watson (1964)].
We assume that the kernel in (2.4) is supported on a compact interval, say
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�−1
1�
 and is of order r ≥ 2 [see Gasser, Müller and Mammitzsch (1985)],
that is,

�−1�j
j!

∫ 1

−1
K�u�uj du =


1
 j = 0

0
 1 ≤ j ≤ r− 1,
kr �= 0
 j = r,

(2.5)

where
∫ 1
−1K

2�u�du <∞.
If the hypothesis of equal regression functions is valid, the total sample

could be used to estimate the common regression, that is,

ĝ�t� =
∑k
i=1

∑ni
j=1K

(�t− tij�/h)Yij∑k
i=1

∑ni
j=1K

(�t− tij�/h) 
(2.6)

where h is an additional bandwidth. For the sake of simplicity, the asymptotic
analysis of the statistics proposed below is performed for the case of equal
bandwidths hi = h
 i = 1
 � � � k
 in the estimators (2.4) and (2.6) where the
bandwidth h satisfies

Nh2 → ∞
 h = O�N−2/�4r+1���(2.7)

2.1. Comparing variance estimators. Our first measure of equality between
the different regression functions is obtained by comparing the nonparametric
variance estimators of the individual samples with a nonparametric variance
estimator of the pooled sample. To be precise, let

σ̂2i =
1
ni

ni∑
j=1

(
Yij − ĝi�tij�

)2

 i = 1
 � � � 
 k
(2.8)

denote the estimator of the variance of the ith sample introduced by Hall
and Marron (1990), where ĝi is the nonparametric estimator of the regression
function in the ith sample defined in (2.4). Although these authors considered
only a homoscedastic model, it will be shown (see Lemma 4.0) that in the het-
eroscedastic model σ̂2i consistently estimates the integrated variance function∫ 1
0 σ

2
i �t�ri�t�dt of each sample �i = 1
 � � � 
 k�. In the following we will consider

the analogue of (2.8) for the total sample size

σ̂2 = 1
N

k∑
i=1

ni∑
j=1

(
Yij − ĝ�tij�

)2
�(2.9)

It is proved in Section 4 that under the hypothesis of equal regression curves
this is essentially an estimator for a convex combination of the individual
integrated variance functions, that is,

k∑
i=1
κi

∫ 1

0
σ2i �t�ri�t�dt�
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For these reasons we propose as a test statistic

T
�1�
N = σ̂2 − 1

N

k∑
i=1
niσ̂

2
i �

The asymptotic properties of the statistic T�1�
N are listed in the following

theorem.

Theorem 2.1. Assume that (2.1), (2.2), (2.3), (2.5) and (2.7) are satisfied.

(i) If the hypothesis of equal regression functions is valid, then the statistic

T
�1�
N satisfies

N
√
h

(
T

�1�
N −B�1�

k h
2r − 1
Nh
D

�1�
k

)
�−→ � �0
 β2k
1�


where

B
�1�
k = k2r

∫ 1

0

(�g1 �R��r� − g1 �R�r�)2�t� dt�R�t�

−k2r
k∑
j=1
κj

∫ 1

0

(�g1rj��r� − g1r�r�j )2�t� dt
rj�t�


(2.10)

D
�1�
k =

[∫ 1

−1
K2�u�du− 2K�0�

] k∑
j=1

(∫ 1

0

κjσ
2
j�t�rj�t�
�R�t� dt−

∫ 1

0
σ2j�t�dt

)



the asymptotic variance is given by

β2k
1 = 2
∫ 1

−1
�2K−K ∗K�2�u�du

×
{ k∑
j=1

∫ 1

0
σ4j�t�

(κjrj�t�
�R�t� − 1

)2
dt

+
k∑
j=1

k∑
l=1
l�=j

∫ 1

0
σ2j�t�σ2l �t�

κjrj�t�κlrl�t�
�R2�t� dt

}



(2.11)

K ∗K is the convolution of the kernel with itself and �R denotes the convex
combination of the underlying densities, that is,

�R�t� =
k∑
j=1
κjrj�t��

(ii) Under the alternative gi �= gj
 for some i
 j ∈ 	1
 � � � 
 k
, the statistic

T
�1�
N satisfies

√
N�T�1�

N −M2
k
1�

�−→ � �0
 γ2k
1�
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where

M2
k
1 =

k∑
j=1

k∑
l=1
l<j

∫ 1

0
�gj − gl�2�t�

κjrj�t�κlrl�t�
�R�t� dt(2.12)

and the asymptotic variance is given by

γ2k
1 = 4
k∑
j=1

∫ 1

0

(
k∑
l=1
l�=j

(
gj�t� − gl�t�

)κlrl�t�
R̄�t�

)2

σ2j�t�κjrj�t�dt�(2.13)

2.2. An ANOVA-type statistic. The following method for testing the equal-
ity of the regression functions was introduced by Young and Bowman (1995)
in the context of a homoscedastic normal distribution for the error over all
k samples. The corresponding statistic is closely related to the difference of
variance estimators introduced in Section 2.1. It will be shown in this section
that the method proposed by these authors is also applicable in the general
situation of nonnormal heteroscedastic errors. The test statistic of Young and
Bowman (1995) is motivated by the classical one-way analysis of variance and
given by

YN = N
ŝ2
T

�2�
N 


where

T
�2�
N = 1

N

k∑
i=1

ni∑
j=1

[
ĝ�tij� − ĝi�tij�

]2

(2.14)

ĝ
 ĝ1
 � � � 
 ĝk are defined in (2.6) and (2.4), respectively, and

ŝ2 = 1
2�N− k�

k∑
i=1

ni−1∑
j=1

�Yi
j+1 −Yi
j�2

is a pooled mean of the difference-based estimators for the variances in the
individual samples [see, e.g., Rice (1984)]. The statistic ŝ2 is also a consistent
estimator of

s2 =
k∑
j=1
κj

∫ 1

0
σ2j�t�rj�t�dt
(2.15)

which follows by a straightforward calculation [see also Kulasekera and Wang
(1997) for a related result under homoscedasticity]. Note that there is a strong
link between the statistics T�1�

N and T�2�
N . While the statistic T�1�

N is comparing

the regression functions through residual sums of squares, the statistic T�2�
N

compares the curves through the fitted values. In the case of a fixed design,
equal homoscedastic variances in all groups and a normally distributed error,
Young and Bowman (1995) proposed a χ2-approximation of the corresponding
test statistic under the null hypothesis. These restrictions allow a rapid and
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accurate calculation of the p-value [see Young and Bowman (1995) for more
details]. It is also worthwhile mentioning that the use of the same smoothing
parameters in the estimates of the individual regression function yields a
direct cancellation of the bias.

Obviously, the numerator of YN given in (2.14) is an estimate for an appro-
priate measure of equality of the k regression curves and we will also use T�2�

N

as a test statistic for the hypothesis (1.2) in the general situation of not nec-
essarily homoscedastic and normally distributed errors. The following result
makes this heuristic argument more precise and provides the asymptotic prop-
erties of the statistic (2.14). As a by-product, it also proves consistency of the
test proposed by Young and Bowman (1995) if the required assumptions for
the finite sample size approximation used by these authors are not satisfied.
Moreover, critical values could be obtained from an approximation by a normal
distribution or a wild bootstrap procedure as proposed in Section 3.

Theorem 2.2. Assume that (2.1), (2.2), (2.3), (2.5) and (2.7) are satisfied.

(i) If the hypothesis of equal regression curves is valid, then the statistic

T
�2�
N defined in (2.14) satisfies

N
√
h

(
T

�2�
N +B�2�

k h
2r − D

�2�
k

Nh

)
�−→ � �0
 β2k
2�


where B
�2�
k = B�1�

k is defined in (2.10),

D
�2�
k =

∫ 1

−1
K2�u�du

k∑
j=1

∫ 1

0

(
1− κj

rj�t�
�R�t�

)
σ2j�t�dt(2.16)

and the asymptotic variance is given by

β2k
2 = 2
∫ 1

−1
�K ∗K�2�u�du

×
{ k∑
j=1

∫ 1

0
σ4j�t�

(
κjrj�t�
�R�t� − 1

)2

dt

+
k∑
j=1

k∑
l=1
l�=j

∫ 1

0
σ2j�t�σ2l �t�

κjrj�t�κlrl�t�
�R2�t� dt

}
�

(2.17)

(ii) Under the alternative gi �= gj
 for some i
 j ∈ 	1
 � � � 
 k
, the statistic

T
�2�
N defined in (2.14) satisfies

√
N

(
T

�2�
N −M2

k
2

)
�−→ � �0
 γ2k
2�


whereM2
k
2 =M2

k
1 and γ
2
k
2 = γ2k
1 are defined in (2.12) and (2.13), respectively.
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2.3. Pairwise comparison of regression curves. Following Rosenblatt (1975),
Härdle and Mammen (1993) and González-Manteiga and Cao (1993), an obvi-
ous alternative test of the hypothesis (1.2) could be obtained from a pairwise
comparison of the estimators of the regression functions. To this end, we con-
sider the statistic

T
�3�
N =

k∑
i=1

i−1∑
j=1

∫ 1

0

[
ĝi�t� − ĝj�t�

]2
wij�t�dt
(2.18)

where wij�·� are positive weight functions satisfying wij = wji
1 ≤ j < i ≤ k.
A similar statistic was considered by King, Hart and Wehrly (1991) in the case
of two samples with equal design points (here the integral was approximated
by a sum and a constant weight was used). A calculation similar to that given
in the proof of Lemma 4.0 shows that

E
[
T

�3�
N

] =


1
Nh
D

�3�
k +O

(
1
N

)

 under H0,

1
Nh
D

�3�
k +M2

k
3 +O
(
1
N

)

 under H1,

(2.19)

where the constants D�3�
k 
 M

2
k
3 are defined by

D
�3�
k =

∫
K2�u�du

k∑
j=1

∫ 1

0

σ2j�t�
κjrj�t�

(
k∑
l=1
l�=j

wjl�t�
)
dt
(2.20)

M2
k
3 =

k∑
j=1

k∑
l=1
l<j

∫ 1

0
�gj − gl�2�t�wjl�t�dt�(2.21)

Note that, in contrast to Theorems 2.1 and 2.2, there does not appear a term
of order h2r in (2.19), which is in fact a result of the application of equal band-
widths in the estimates of the regression functions in the individual samples.
The following result can be proved using similar arguments as given for the
proof of Theorem 2.1 in Section 4.

Theorem 2.3. Assume that (2.1), (2.2), (2.3), (2.5) and (2.7) are satisfied.

(i) If the hypothesis of equal regression curves is valid, then the statistic

T
�3�
N defined in (2.18) satisfies

N
√
h

(
T

�3�
N − 1

Nh
D

�3�
k

)
�−→ � �0
 β2k
3�
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where the asymptotic variance is defined by

β2k
3 =
∫ 1

0
�K ∗K�2�u�du

×
{
k∑
j=1

∫ 1

0

σ4j�t�
κ2jr

2
j�t�

(
k∑
l=1
l�=j

wjl�t�
)2

dt

+
k∑
j=1

k∑
l=1
l�=j

∫ σ2j�t�σ2l �t�
κjrj�t�κlrl�t�

w2
jl�t�dt

}
�

(2.22)

(ii) Under the alternative gi �= gj
 for some i
 j ∈ 	1
 � � � 
 k
, the statistic

T
�3�
N defined in (2.18) satisfies

√
N�T�3�

N −M2
k
3�

�−→ � �0
 γ2k
3�

whereM2

k
3 is defined in (2.21) and the asymptotic variance is given by

γ2k
3 = 4
k∑
i=1

k∑
j=1
j�=i

k∑
l=1
l�=i

∫ 1

0

(
gi�t� − gl�t�

)(
gi�t� − gj�t�

)
wji�t�wli�t�

σ2i �t�
κiri�t�

dt�

Remark 2.4. It is worthwhile mentioning that there is a strong link among
the three statistics T�1�

N 
 T
�2�
N 
 T

�3�
N , which can nicely be explained by looking

at the classical one-way analysis of variance model, where

Xij ∼ � �µi
 σ2�
 j = 1
 � � � 
 ni
 i = 1
 � � � 
 k�

Here the denominator of the corresponding F-test corresponds to the statistic
T

�2�
N of Young and Bowman (1995) and can be decomposed as

k∑
i=1
ni

(
�Xi· − �X··

)2

=
k∑
i=1

ni∑
j=1

(
Xij − �X··

)2
−
k∑
i=1

ni∑
j=1

(
Xij − �Xi·

)2

(2.23)

where the first term on the right-hand side is an estimator of the variance from
the pooled sample (assuming equal means in all k samples) and the second
term is a combination of the variance estimators in the individual samples.
Consequently, the right-hand side of (2.23) corresponds to the statistic T�1�

N

introduced in Section 2.1. Therefore in linear models both statistics are equiv-
alent, while for nonparametric models there appear to be differences because
the cross-product terms involve a nonvanishing bias. Similarly, we have the
representation

k∑
i=1
ni

( �Xi· − �X··
)2 = 1

2N

k∑
i=1

k∑
j=1
ninj

( �Xi· − �Xj·
)2



which establishes an analogy between the statistics T�2�
N and T�3�

N .
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2.4. Some asymptotic power comparisons. As a consequence of Theorems
2.1–2.3, we obtain consistent, asymptotic level-α tests by rejecting the hypoth-
esis of equal regression curves whenever

N
√
h

(
T

�i�
N −B�i�

k h
2r − D

�i�
k

Nh

)
> βk
iu1−α
 i = 1
2
3
(2.24)

where B�3�
k = 0
B�i�

k 
D
�i�
k 
 β

2
k
i are defined in Theorems 2.1–2.3 and have to be

replaced by consistent estimators. In the following section we will illustrate
the performance of a wild bootstrap version of the tests given by (2.24), because
the speed of convergence under the null hypothesis is usually rather slow [see
also Azzalini and Bowman (1993), Hjellvik and Tjøstheim (1995) and Alcalá,
Christóbal and González-Manteiga (1999) for similar observations].

Moreover, the second parts of Theorems 2.1–2.3 provide an important advan-
tage in the application of these tests (compared to most of the procedures
proposed in the literature). It is well known that in the problem of testing
goodness of fit the essential error is the type II error and a large observed
p-value does not give any empirical evidence for the null hypothesis [see, e.g.,
Berger and Delampady (1987) and Staudte and Sheater (1990)]. The second
parts of Theorems 2.1–2.3 now provide an approximation for the type II error
of the test by

P�“rejection”� ∼ ,
(√
N

γk
i

{
M2
k
i −

u1−αβk
i
N

√
h

})

∼ ,
(√
NM2

k
i

γk
i

)

 i = 1
2
3�

(2.25)

We note that the approximation by a normal distribution under fixed alter-
natives is more reliable than under the null hypothesis, because it is similar
to the approximation by a normal distribution in the classical central limit
theorem (see the proof in Section 4.3). Moreover, the second parts of Theorems
2.1–2.3 can also be used for testing the precise hypotheses [see Berger and
Delampady (1987)]

H0�M2
k
i > - versus H1�M2

k
i ≤ -
(2.26)

where - is a sufficiently small constant such that, whenever M2
k
i ≤ -, the

experimenter agrees to analyze the data under the assumption of equal regres-
sion curves. Note that the rejection of H0 in (2.26) allows us to show that the
regression functions are “close” at a controlled error rate.

Remark 2.5. The possibility of choosing the weight functions in (2.18)
leaves some freedom for the statistic T�3�

N and using

wij =
κiriκjrj

�R(2.27)
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gives a statistic with an asymptotically similar behavior as described in
Theorems 2.1 and 2.2 for the tests based on T�1�

N and T�2�
N . This weight function

is very natural because under the additional assumption of homoscedasticity
it maximizes the asymptotic power for comparing the curves gi and gj with
respect to the choice of the weight function. To be precise, assume that k = 2.
Then a straightforward calculation [see also the derivation of (2.25)] shows
that the probability of rejection is an increasing function of

�M2
2
3�2
γ22
3

=
(∫ 1

0 �g1−g2�2�t�w12�t�dt
)2

σ2
∫ 1
0 �g1−g2�2�t�w2

12�t��1/κ1r1�t�+1/κ2r2�t��dt

≤ 1
σ2

∫ 1
0 �g1 − g2�2

(
1

κ1r1�t� +
1

κ2r2�t�

)−1
dt

= �M2
2
1�2
γ22
1




(2.28)

where M2
2
1 = M2

2
2 and γ22
1 = γ22
2 are defined in (2.12) and (2.13), respec-
tively, and the second line follows from Cauchy’s inequality. Now discussing
the equality in (2.28) shows that the maximal power (with respect to the
choice of the weight function w12� is obtained by the weight (2.27). For these
reasons, the tests based on T�2�

N [Young and Bowman (1995)] and T�1�
N (pro-

posed in Section 2) should be preferred because they automatically adapt to
the best possible (but unknown) weight function for the maximization of the
power at any fixed alternative.

Remark 2.6. In the remaining part of this section, we will concentrate on
the asymptotic behavior of the different tests with respect to local alternatives.
For the sake of transparency, we will concentrate on the case of k = 2 samples.
There is no difference in the discussion of the general situation of k ≥ 3
regression functions. We will adopt an approach of Rosenblatt (1975), who
considered alternatives of the form

g2�·� = g1�·� + δNs
( · − c
γN

)

(2.29)

where s is a continuously differentiable function of order r and c ∈ �0
1� a
given constant. In addition, δN and γN are sequences converging to 0 such
that

δ2NγN = 1

N
√
h

 δN = o�1�
 γ−1N = o

(
h−2r/�2r−1�

)
(2.30)

(a typical example in the case r = 2 is h = N−2/9
 δN = N−13/36 and γN =
N−1/6). For alternatives of the form (2.29) satisfying (2.30), it follows by similar
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arguments as given in Section 4 for the proof of Theorem 2.1 that

N
√
h

(
T

�i�
N −B�i�

k h
2r − D

�i�
k

Nh

)
�−→ � �µ�i�
 β2k
i�
(2.31)

where the constants B�i�
k 
 D

�i�
k and β2k
i are defined in Theorems 2.1–2.3 (note

that B�3�
k = 0) and

µ�i� =


∫ 1

0
s2�x�dx · κ1κ2r1�c�r2�c�

κ1r1�c� + κ2r2�c�

 if i = 1
2,∫ 1

0
s2�x�dx ·w12�c�
 if i = 3�

(2.32)

A similar result is obtained for local alternatives of the form (2.29) with c = 0
and γN = 1, that is, g1 = g2 + s · �N

√
h�−1/2. In this case (2.31) is still valid,

with a different expectation in the limit distribution, that is,

µ�i� =


∫ 1

0
s2�x� κ1κ2r1�x�r2�x�

κ1r1�x� + κ2r2�x�
dx
 if i = 1
2,∫ 1

0
s2�x�w12�x�dx
 if i = 3.

(2.33)

For an asymptotic analysis of the three testing procedures with respect to
these local alternatives, we use the optimal (but unknown) weight function
(2.27) for w12 in the definition of the statistic T�3�

N . The comparison can now
easily be performed by looking at the different variances in (2.31) and observ-
ing the relation∫

�K ∗K�2�x�dx ≤
∫
K2�x�dx ≤

∫
�2K−K ∗K�2�x�dx


which has been proved by Biedermann and Dette (2000). From this inequality
it follows that β22
2 = β22
3 ≤ β22
1, and, consequently, the procedures based on

T
�2�
N 
 T

�3�
N are asymptotically more efficient as the test based on T�1�

N .
However, some care is necessary with this interpretation, because the speed

of convergence in (2.31) is rather slow and the asymptotic analysis usually
requires a rather large sample size [see Azzalini and Bowman (1993), Hjellvik
and Tjøstheim (1995) and Alcalá, Christóbal and González-Manteiga (1999) for
similar observations]. For realistic sample sizes the approximation (2.25) indi-
cates a similar behavior of all three methods. Moreover, for moderate sample
sizes the bias always has to be taken into account and the superiority of one
of the three methods cannot be established in general. In the examples pre-
sented in Section 3, we observe a much better performance of the test based
on T�1�

N .
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2.5. Generalizations: different bandwidths, smoothing techniques and
random design.

Remark 2.7. Note that we have assumed the equality of all bandwidths in
Sections 2.1–2.3, which substantially simplifies the presentation of the asymp-
totic results and their proofs. Nevertheless, in practice, it is strictly recom-
mended to choose the bandwidth hi
 i = 1
 � � � 
 k, and h of each estimator ĝi
and ĝ according to the size of the corresponding sample. If there exist con-
stants b1
 � � � 
 bk ∈ �0
1� such that these bandwidths satisfy (2.7) and

hi
h

= bi +O
(
1
N

)

 i = 1
 � � � 
 k
(2.34)

as N→ ∞, similar results as given in Theorems 2.1–2.3 can be established,
where the constants B�i�

k and D�i�
k additionally depend on the proportions

b1
 � � � 
 bk (note thatB
�3�
k does not vanish in this case). For more details we refer

to Neumeyer (1999) and Dette and Neumeyer (1999).

Remark 2.8. It should also be pointed out that the asymptotic results
given in Theorems 2.1–2.3 do not depend on the special structures of the
smoothing procedures used in the construction of the variance estimators. We
used the Nadaraya–Watson estimator for the calculation of residuals because
for this choice the proofs given in Section 4 are more transparent. For example,
a local polynomial estimator [see Fan (1992) and Fan and Gijbels (1996)] can
be treated in the same way with greater mathematical complexity but without
changing the structure of the asymptotic results. Although local polynomial
estimators have various advantages for the estimation of the regression func-
tion, particularly at the boundaries, our simulation results showed that this
superiority is not reflected in the problem of testing the equality of regression
functions. A heuristical explanation of this observation is that the methods
presented in Sections 2.1–2.3 essentially avoid the direct estimation of the
regression function and only use estimates for quantities smoothed by lin-
ear integral operators. Nevertheless, there are still theoretical advantages to
using local smoothing in the definition of the statistics T�i�

N 
 i = 1
2
3. On
the one hand, the use of these estimators allows weaker assumptions on the
design densities, because only the continuity of the design density is required
(for local polynomials of odd order). On the other hand, the bias of local polyno-
mials of odd order is the same for all curves irrespective of the design pattern.
More precisely, if equal bandwidths are used for the local polynomial estima-
tion of the individual regression functions [see (2.4) and (2.6)], the terms B�1�

k

and B�2�
k in Theorems 2.1 and 2.2 vanish, while the kernelK in the asymptotic

bias D�i�
k and in the asymptotic variance β2k
i
 i = 1
2
3, of Theorems 2.1–2.3

has to be replaced by the equivalent higher order kernel corresponding to the
local polynomial estimator [see Wand and Jones (1995)]. A similar observation
was made by Alcalá, Christóbal and González-Manteiga (1999) in the context
of testing for a parametric form of the regression function.
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Remark 2.9. The test statistics T�1�
N 
 T

�2�
N and T�3�

N can be directly used for
a multivariate predictor and a random design. Under the assumption of a ran-
dom design, ti1
 � � � 
 tini are realizations of i.i.d. random variables Ti1
 � � � 
Tini
with positive density ri on the interval �0
1�
 i = 1
 � � � 
 k. In this case, the
first parts of the statements of Theorems 2.1–2.3 regarding the asymptotic
behavior of the statistics and the hypothesis of equal regression functions
remain valid and consistent tests are obtained exactly as in the case of a
fixed design. However, it is worthwhile mentioning that under the alterna-
tive a different asymptotic variance is obtained in all three cases. Consider,
for example, the situation of Theorem 2.1 in the case of k = 2 independent
random samples. Under a fixed alternative, the asymptotic variance of the
statistic T�1�

N is given by

var�T�1�
N � = 4κ1κ2

N

∫
�g1 − g2�2�t�

(
κ2r2�t�σ21 �t� + κ1r1�t�σ22 �t�

)
× r1�t�r2�t�

�κ1r1 + κ2r2�2�t�
dt

+ κ1κ
2
2

N
var

(
�g1 − g2�2�T11�

κ2r
2
2�T11� + 2κ1r1�T11�r2�T11�

�κ1r1 + κ2r2�2�T11�

)

+ κ
2
1κ2
N

var

(
�g1 − g2�2�T21�

κ1r
2
1�T21� + 2κ2r1�T21�r2�T21�

�κ1r1 + κ2r2�2�T21�

)

+ o
(
1
N

)
�

3. Simulation results. In similar problems it was observed by several
authors [see, e.g., Azzalini and Bowman (1993), Hjellvik and Tjøstheim (1995)
and Alcalá, Christóbal and González-Manteiga (1999)] that the asymptotic
normal distribution under the null hypothesis does not provide a satisfactory
approximation of the distribution of the statistics T�i�

N for reasonable sample
sizes. For these reasons, many authors propose the application of bootstrap
procedures in these problems [see, e.g., Hall and Hart (1990) and Härdle and
Mammen (1993)]. In this section we study the finite sample performance of a
wild bootstrap version of the test (2.24) and compare its power properties with
several other procedures suggested in the literature. Some remarks regarding
the consistency of this procedure are given in Section 4.4.

Because all simulation results published so far consider the two-sample
case with equal homoscedastic variance [i.e., σ21 �t� = σ22 �t� = σ2�, and we
are interested in a comparison, we mainly restrict our study to this case.
Moreover, we will concentrate on the statistic T�1�

N based on the difference of

variance estimators, because it performed better than T�2�
N (see Section 3.2)

and it does not require the specification of a weight function (in contrast to
the statistic T�3�

N ). In our study we used in fact an asymptotic equivalent test
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statistic given by

T̃N = σ̂2 − n21
Nν1
σ̂21 − n22

Nν2
σ̂22 


where n1/ν1
 n2/ν2 are normalizing constants converging to 1, such that σ̂2i
is unbiased for constant regression gi [see Hall and Marron (1990)]. More
precisely, these constants are defined by

νl = nl − 2
nl∑
i=1
w

�l�
ii +

nl∑
i
k=1

�w�l�
ik �2
 l = 1
2


where

w
�l�
ik = K

(�tli − tlk�/hl)∑nl
s=1K

(�tli − tls�/hl) 
 l = 1
2�

We used the common wild bootstrap of residuals based on a nonparametric fit
[see Härdle and Mammen (1993)]

ε̂ij = Yij − ĝ�tij�
 j = 1
 � � � 
 ni
 i = 1
2
(3.1)

where ĝ is the estimator of the regression curve from the total sample defined
in (2.6). Let V∗

ij
 i = 1
2
 j = 1
 � � � 
 ni, denote i.i.d. random variables with
masses �√5+1�/2√5 and �√5−1�/2√5 at the points �1−√

5�/2 and �1+√
5�/2

(note that this distribution satisfies E∗�V∗
ij� = 0
 E∗�V∗2

ij � = E∗�V∗3
ij � = 1�.

Finally, define ε∗ij = V∗
ijε̂ij and the bootstrap sample by

Y∗
ij = ĝ�tij� + ε∗ij
 j = 1
 � � � 
 ni
 i = 1
2�(3.2)

For the test at level α, the null hypothesis is rejected if T̃N is bigger than the
corresponding quantile of the bootstrap distribution of T̃N
 that is,

T̃N > T̃
∗
N��B�1−α���
(3.3)

where T̃∗
N�i� denotes the ith-order statistic of the bootstrap sample T̃∗

N
1
 � � � 


T̃∗
N
B. In our study we resampledB = 200 times and used 1000 simulations for

the calculation of the level and power in each scenario. Moreover, we used the
same bandwidth for the generation of the bootstrap sample (3.1) and the def-
inition of the test statistic T̃N. The consistency of this procedure is indicated
in Section 4.4.

We considered two samples at the design points

t1i =
i− 1
n1 − 1


 i = 1
 � � � 
 n1


t2j =
j

n2

 j = 1
 � � � 
 n2


(3.4)
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and normally distributed errors in both samples unless stated otherwise,
that is,

ε1l
 ε2l ∼ � �0
 σ2��(3.5)

The kernel was chosen as K�x� = 3
4�1− x2�I�−1
1��x� (which yields r = 2) and

the bandwidths are

hi =
(∫ 1

0 σ
2
i �t�dt
ni

)3/10

=
(
σ2i
ni

)3/10


 i = 1
2
(3.6)

h =
(
n1

∫ 1
0 σ

2
1 �t�dt+ n2

∫ 1
0 σ

2
2 �t�dt

�n1 + n2�2
)3/10

=
(
σ21

n1 + n2

)3/10


(3.7)

where the last equalities follow in the case of homoscedasticity and σ21 = σ22 .
Note that we use different bandwidths for the estimators ĝ
 ĝ1 and ĝ2 in our
study.

3.1. Simulation of the level. Our first example investigates the approxi-
mation of the level by the wild bootstrap version of the test (2.24). First, we
considered quadratic regression functions g1�t� = g2�t� = t2
 standard nor-
mal distributed errors and different sample sizes n1
 n2 = 10
20
30
50. The
results are summarized in Table 1, which shows the simulated rejection prob-
abilities of the wild bootstrap test with level 10%, 5% and 2.5%. Table 2 shows
the corresponding results for the regression functions g1�t� = g2�t� = cos�πt�.
We observe a reasonable approximation of the level by the wild bootstrap pro-
cedure in all cases, even in the case of very small samples [see also Hall and
Hart (1990), who obtained a similar conclusion for their resampling proce-
dure]. Note that for the more oscillating regression functions gi�t� = cos�πt�
the approximation is slightly worse compared to the more smooth case g1�t� =
g2�t� = t2
 which can be partially explained by a larger bias in the variance
estimators σ̂2
 σ̂21 and σ̂22 .

Table 1

Simulated level of the test (3.3) for various sample sizes and standard normal errors; the designs

are uniform [according to (3.4)] and g1�t� = g2�t� = t2

�n1
n2� (10, 10) (10, 20) (10, 30) (10, 50) (20, 20)

α = 10% 0.099 0.096 0.099 0.105 0.101
α = 5% 0.061 0.051 0.051 0.054 0.054
α = 2�5% 0.032 0.030 0.026 0.023 0.025

�n1
n2� (20, 30) (20, 50) (30, 30) (30, 50) (50, 50)

α = 10% 0.098 0.108 0.099 0.090 0.108
α = 5% 0.054 0.050 0.048 0.047 0.048
α = 2�5% 0.029 0.028 0.025 0.026 0.025
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Table 2

Simulated level of the test (3.3) for various sample sizes and standard normal errors; the designs
are uniform [according to (3.4)] and g1�t� = g2�t� = cos�πt�

�n1
n2� (10, 10) (10, 20) (10, 30) (10, 50) (20, 20)

α = 10% 0.098 0.114 0.107 0.092 0.097
α = 5% 0.054 0.056 0.055 0.052 0.053
α = 2�5% 0.032 0.030 0.028 0.028 0.031

�n1
n2� (20, 30) (20, 50) (30, 30) (30, 50) (50, 50)

α = 10% 0.100 0.096 0.098 0.095 0.101
α = 5% 0.053 0.048 0.050 0.051 0.052
α = 2�5% 0.023 0.026 0.031 0.028 0.027

As pointed out by a referee, it might be of interest to investigate the approx-
imation of the level under a heteroscedastic error distribution. To this end,
we considered the quadratic regression functions g1�t� = g2�t� = t2 and the
variance functions

σ21 �t� = σ22 �t� =
et∫ 1

0 e
x dx

(3.8)

σ21 �t� =
et∫ 1

0 e
x dx

 σ22 �t� =

e2t∫ 1
0 e

2x dx

(3.9)

where the first and second scenarios correspond to the case of equal and
unequal variance functions, respectively, and we normalized such that∫ 1
0 σ

2
i �t�dt = 1
 i = 1
2. The results are listed in Tables 3 and 4 and demon-

strate an excellent performance of the wild bootstrap procedure under het-
eroscedasticity.

3.2. The test of Kulasekera and Wang (1997). Kulasekera (1995) proposed
a new testing procedure for the hypothesis (1.2) in the case of two samples

Table 3

Simulated level of the test (3.3) for various sample sizes and standard normal but heteroscedastic

errors, the designs are uniform [according to (3.4)], g1�t� = g2�t� = t2 and the variance functions
given by (3.8)

�n1
n2� (10, 10) (10, 20) (10, 30) (10, 50) (20, 20)

α = 10% 0.100 0.088 0.094 0.092 0.101
α = 5% 0.057 0.046 0.048 0.059 0.049
α = 2�5% 0.032 0.026 0.022 0.020 0.024

�n1
n2� (20, 30) (20, 50) (30, 30) (30, 50) (50, 50)

α = 10% 0.088 0.093 0.095 0.092 0.106
α = 5% 0.046 0.047 0.055 0.047 0.048
α = 2�5% 0.023 0.020 0.031 0.021 0.028
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Table 4

Simulated level of the test (3.3) for various sample sizes and standard normal but heteroscedastic

errors, the designs are uniform [according to (3.4)], g1�t� = g2�t� = t2 and the variance functions
given by (3.9)

�n1
n2� (10, 10) (10, 20) (10, 30) (10, 50) (20, 20)

α = 10% 0.097 0.084 0.087 0.084 0.105
α = 5% 0.046 0.050 0.043 0.041 0.052
α = 2�5% 0.035 0.028 0.019 0.017 0.029

�n1
n2� (20, 30) (20, 50) (30, 30) (30, 50) (50, 50)

α = 10% 0.089 0.086 0.095 0.091 0.103
α = 5% 0.051 0.044 0.050 0.047 0.044
α = 2�5% 0.026 0.021 0.033 0.020 0.030

with homoscedastic errors. Because this test is applicable to different designs
in both groups and can detect alternatives converging to the null at a rate
1/

√
n, we will discuss it in a little more detail. The test is based on the quasi

residuals

e1i = Y1i − ĝ2�t1i�
 i = 1
 � � � 
 n1


e2j = Y2j − ĝ1�t2j�
 j = 1
 � � � 
 n2


and the corresponding partial sums

µi�t� =
�nit�∑
j=1

eij√
ni

 0 < t < 1
 i = 1
2�

The test statistic proposed by Kulasekera (1995) is defined as a suitable
function of

K
�i�
1 = 1

niS
2
ni

ni∑
k=1
µ2i

(
k

ni

)

 i = 1
2


or

K
�i�
2 = 1

S3ni

∫ 1

0
µ2i �t−�dµi�t�
 i = 1
2


where S2ni is a consistent estimator of σ2i 
 i = 1
2. Note that this test does
not require equal designs in both groups. Kulasekera and Wang (1997) inves-
tigated the functions W1 = min	K�1�

1 
 K
�2�
1 

 W2 = min	�K�1�

2 �
 �K�2�
2 �
 and

proposed a method for choosing the bandwidth, which, roughly speaking, maxi-
mizes the power at a specific alternative. As pointed out in the latter paper, the
data-based smoothing parameters inflate the size of the test and the discrep-
ancy from the actual size depends largely on the variability of the responses
and the sample size. For these reasons, Kulasekera and Wang (1997) used
simulation (for g1 = g2 = 0� to find the critical points.
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Table 5

Simulated rejection probabilities of the test (3.3) for various alternatives given in (3.10); the designs

are uniform [according to (3.4)] and the errors are normal with variance σ2 = 0�5

n1 = n2 = 25 n1 = n2 = 50

Model � = 10% � = 5% � = 2�5% � = 10% � = 5% � = 2�5%

(a) 0.824 0.736 0.621 0.985 0.971 0.952
(b) 0.814 0.738 0.653 0.979 0.964 0.936
(c) 0.764 0.648 0.553 0.966 0.929 0.871
(d) 0.987 0.973 0.952 1.000 1.000 1.000
(e) 0.598 0.505 0.406 0.912 0.865 0.805
(f) 0.983 0.973 0.943 1.000 1.000 0.998

In Table 5 we compare the test (3.3) with the procedure proposed by
Kulasekera and Wang (1997). For the sake of comparison, we chose the setup
considered in Table 3 of the latter paper, that is, normally distributed errors
with variance σ2 = 0�5 and the regression functions

�a� g1�x� = −g2�x� = 0�5 cos�2πx�

�b� g1�x� = −g2�x� = 0�5 sin�2πx�

�c� g1�x� = g2�x� − x = cos�πx�
(3.10)

�d� g1�x� = g2�x� − 1 = cos�πx�

�e� g1�x� = g2�x� − x = cos�2πx�

�f � g1�x� = g2�x� − 1 = cos�2πx��

Comparing the results of Table 5 with the corresponding results of Kulasekera
and Wang (1997) in Table 3 of their paper, we observe that the test proposed
in this paper yields a substantial improvement with respect to the power in all
cases considered. Note that Kulasekera andWang (1997) chose the bandwidths
such that the power is maximized (at the cost of a simulated level) and we
could obtain a further improvement in power for the test (3.3) by applying
a similar technique. Although this would have theoretical advantages, we do
not recommend this approach in practice, because this data-based choice of
the smoothing parameter usually yields a large discrepancy between the size
of the test and the actual level.

We note that the test (3.3) can only detect alternatives converging to the
null at a rate �N√

h�−1/2 [which gives N−17/40 for the choice (3.7)], while
Kulasekera and Wang’s (1997) test achieves the parametric rate N−1/2. At
a first glance, this is a contradiction to the results obtained in our simulation.
However, these observations can be explained by the fact that the method of
Kulasekera and Wang implicitly uses a sample splitting. One sample is used
for estimating the regression, while the other sample is used for the calcula-
tion of the residuals.
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Table 6

Simulated rejection probabilities for the test of Young and Bowman (1995) for various alternatives
given in (3.10), the designs are uniform [according to (3.4)] and the errors normal with variance

σ2 = 0�5

n1 = n2 = 25 n1 = n2 = 50

Model � = 10% � = 5% � = 2�5% � = 10% � = 5% � = 2�5%

(a) 0.388 0.236 0.136 0.897 0.801 0.660
(b) 0.772 0.651 0.547 0.990 0.975 0.956
(c) 0.789 0.683 0.592 0.973 0.947 0.902
(d) 0.998 0.996 0.991 1.000 1.000 1.000
(e) 0.833 0.711 0.620 0.997 0.996 0.989
(f) 0.983 0.969 0.940 1.000 1.000 0.998

For the sake of comparison, we also studied the performance of the test of
Young and Bowman (1995) in this situation. The results are listed in Table 6.
We observe a similar power of both tests in most cases.

3.3. The tests of Delgado (1993) and Dette and Munk (1998). The test pro-
posed by Dette and Munk (1998) was the first procedure which was appli-
cable in the general model (1.1). This test is based on a simple estimate of
an L2-distance between the regression functions which does not depend on
a smoothing parameter. Although this procedure can only detect alternatives
which converge to the null at a rate of N−1/4, the test has promising finite
sample properties with respect to the quality of approximation of the level
[see Dette and Munk (1998)]. Moreover, a comparison with Delgado’s (1993)
test, which can detect alternatives converging to the null at a rate N−1/2,
indicates that for realistic sample sizes this test is comparable with proce-
dures which are efficient from an asymptotic point of view. Delgado’s (1993)
test requires equal design points and is based on the sup-norm of a marked
empirical process of the pairwise differences from both samples.

To compare the new test (3.3) with these procedures, we considered the
setup given in Section 4.2 of Dette and Munk (1998), that is, n1 = n2 =
15
30
 �g1 − g2��t� ≡ 1
 
 �g1 − g2��t� = sin�2πt� and three types of error
distributions [see also Hall and Hart (1990), pages 1041–1042]

�i� ��1
�2�

�ii� ���1� −

√
2/π
 ��2� −

√
2/π�
(3.11)

�iii� ���1� −
√
2/π


√
2/π − ��2���

The results are listed in Table 7 and a comparison of the power at the 5%
level shows the following. While Delgado’s (1993) test performs better for the
smooth alternative g1−g2 ≡ 1, Dette and Munk’s (1998) test is more efficient
for the oscillating alternative. The new test (3.3) has a reasonable perfor-
mance in both cases. On the one hand, it is substantially more powerful than
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Table 7

Simulated rejection probabilities of the test (3.3) in the scenario considered by Dette
and Munk (1998) Section 4.2; the design is uniform [according to (3.4)] and the error

distributions are given by (3.11)

�g1 − g2��t� 1 sin�2�t�
��1i
�2i� (i) (ii) (iii) (i) (ii) (iii)

ni = 15 2.5% 0.552 0.936 0.875 0.176 0.517 0.500
5% 0.648 0.963 0.913 0.255 0.615 0.604

10% 0.734 0.977 0.941 0.347 0.703 0.713

ni = 30 2.5% 0.870 0.999 0.992 0.386 0.863 0.772
5% 0.925 0.999 0.998 0.492 0.912 0.917

10% 0.954 1.000 1.000 0.608 0.951 0.950

Delgado’s test for the oscillating alternative and Dette and Munk’s test for the
smooth alternative. On the other hand, it is comparable with these procedures
in the remaining cases.

Our final example compares the new test with the bootstrap test introduced
by Hall and Hart (1990). These authors mainly considered the case of equal
design points and briefly mentioned a generalization of their approach to the
general case. However, Kulasekera (1995) observed that this generalization is
not reliable and recommends the application of Hall and Hart’s test only in the
case of equal designs. Note that this test can detect alternatives converging to
the null at a rateN−1/2. For a comparison with our test, we chose the setup of
Table 3 in Hall and Hart (1990). The test proposed by these authors depends
on a smoothing parameter p and Table 3 in Hall and Hart (1990) lists results
for three choices of p. More precisely, the errors are given by (3.11) and the
alternatives by g1−g2 = 1 and �g1−g2��x� = x, where g2 = 0. The results are
given in Table 8 and show that the new test is a serious competitor. In most
cases, we observe a better power for the new test (3.3), even if we compare it
with the best choice of p in the procedure of Hall and Hart.

4. Proofs.

4.1. Preliminaries. We will restrict ourselves to a proof of Theorem 2.1 in
the case of k = 2 regression functions. The general case k ≥ 3 and the asymp-
totic results given in Theorems 2.2 and 2.3 for T�2�

N and T�3�
N follow by exactly

the same arguments with an additional amount of algebra and notation. For
the sake of a transparent notation, we will omit all indices referring to the
number of samples and to the specific statistic discussed in Section 2. In other
words, we write B instead of B�1�

k 
TN instead of T�1�
N and so on. Recalling the

definition of the weights

w
�i�
jk = K��tij − tik�/h�∑ni

l=1K��tij − til�/h�

 i = 1
2
(4.1)
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Table 8

Simulated rejection probabilities of the test (3.3) in the scenario considered by Hall
and Hart (1990), Table 3; the design is uniform [according to (3.4)] and the error

distributions are given by (3.11)

�g1 − g2��t� 1 t

��1i
�2i� (i) (ii) (iii) (i) (ii) (iii)

ni = 15 2.5% 0.550 0.928 0.874 0.197 0.493 0.493
5% 0.643 0.957 0.931 0.276 0.612 0.591

10% 0.738 0.982 0.960 0.384 0.726 0.712

ni = 20 2.5% 0.666 0.989 0.966 0.237 0.624 0.591
5% 0.752 0.992 0.982 0.335 0.724 0.685

10% 0.844 0.999 0.990 0.447 0.817 0.779

ni = 30 2.5% 0.848 1.000 0.995 0.369 0.762 0.782
5% 0.898 1.000 0.998 0.487 0.847 0.832

10% 0.939 1.000 0.999 0.584 0.906 0.899

ni = 50 2.5% 0.990 1.000 1.000 0.541 0.941 0.940
5% 0.995 1.000 1.000 0.649 0.969 0.962

10% 0.999 1.000 1.000 0.741 0.983 0.981

the Nadaraya–Watson estimators (2.4) of the individual regression functions
evaluated at the points tij can be rewritten as

ĝi�tij� =
ni∑
k=1
w

�i�
jkYik
 i = 1
2�

To obtain a similar representation for the estimator in the combined sample,
define the weights

wlk
 ij =
K��tlk − tij�/h�∑2

l′=1
∑nl′
k′=1K��tl′k′ − tij�/h�

�(4.2)

The Nadaraya–Watson estimator (2.6) evaluated at the points tij using the
total sample can now be written as

ĝ�tij� =
2∑
l=1

nl∑
k=1
wlk
 ijYlk�(4.3)

We finally introduce the notation λ1 = κ1/κ2 and

ρ�t� = r1�t� +
1
λ1
r2�t� =

1
κ1

[
κ1r1�t� + κ2r2�t�

]

(4.4)

which will be used frequently throughout this section. Our first result estab-
lishes the asymptotic expansion for the bias of the estimator T�1�

N .
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Lemma 4.0. Assume that (2.1), (2.2), (2.3), (2.5) and (2.7) are satisfied. Then

E�σ̂2i � =
∫ 1

0
σ2i �t�ri�t�dt+ dih2r + o�h2r� +O

(
1
ni

)
+ 1
nih

[∫ 1

−1
K2�u�du− 2K�0�

] ∫ 1

0
σ2i �t�dt


(4.5)

where the constant di is defined by

di = k2r
∫ 1

0

[
�giri��r��t� − gir�r�i �t�

]2 1
ri�t�

dt
 i = 1
 � � � 
 k�

Moreover, if the null hypothesis of equal regression functions is valid, we have,
for the estimator (2.9) in the case k = 2,

E�σ̂2� = κ1
∫ 1

0
σ21 �t�r1�t�dt+ κ2

∫ 1

0
σ22 �t�r2�t�dt

+ 1
Nh

[∫ 1

−1
K2�u�du− 2K�0�

] ∫ 1

0

σ21 �t�κ1r1�t� + σ22 �t�κ2r2�t�
�κ1r1 + κ2r2��t�

dt

+Ch2r + o�h2r� +O
(
1
N

)



(4.6)

where the constant C is defined by

C = k2r
∫ 1

0

[(
g1�κ1r1 + κ2r2�

)�r� − g1�κ1r1 + κ2r2��r�]2�t� dt

�κ1r1 + κ2r2��t�
�

Under the alternative, we obtain, for the estimator (2.9) in the case k = 2,

E�σ̂2� = κ1
∫ 1

0
σ21 �t�r1�t�dt+ κ2

∫ 1

0
σ22 �t�r2�t�dt+M2

+O�h2r� +O
(

1
Nh

)



(4.7)

where the constantM2 is defined by

M2 = κ1κ2
∫ 1

0

(
g1�t� − g2�t�

)2 r1�t�r2�t�
κ1r1�t� + κ2r2�t�

dt�(4.8)

Proof. The first part (4.5) of the lemma is obtained from the representa-
tion (4.6) by considering equal variance functions and design densities. The
proof of (4.6) and (4.7) essentially follows the arguments of Hall and Marron
(1990), and we will only mention the main modifications here, which take into
account the mixture of two design densities. Define

-ij = gi�tij� −
2∑
l=1

nl∑
k=1
wlk
 ijgl�tlk��(4.9)
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Then the expectation of the variance estimator (2.9) from the total sample
splits into two parts, that is,

E�σ̂2�= 1
N

2∑
i=1

ni∑
j=1
-2ij+

1
N

2∑
i=1

ni∑
j=1
E

[(
σi�tij�εij−

2∑
l=1

nl∑
k=1
wlk
ijσl�tlk�εlk

)2
]
�(4.10)

A straightforward but tedious calculation shows

-ij =
[

1
ρ�tij�

+R�tij�
]

×
[
κ2
κi
r3−i�tij��gi − g3−i��tij� +

1
h

∫
K

(
tij − t
h

)
×

(
�g1r1��tij� − �g1r1��t� + gi�tij�

{
ρ�t� − ρ�tij�

}
+
(
g2

1
λ1
r2

)
�tij� −

(
g2

1
λ1
r2

)
�t�

)
dt

]
+O

(
1
Nh

)
+O�h2r�

(4.11)

= �κ2/κi�r3−i�tij��gi − g3−i��tij�
ρ�tij�

+O�hr� +O
(

1
Nh

)

(4.12)

uniformly in j = 1
 � � � 
 ni
 i = 1
2. Here the function R is defined by

R�x� = ρ�x� − �1/h� ∫ K��x− t�/h�ρ�t�dt
ρ2�x� = O�hr�
(4.13)

where the estimate on the right-hand side follows from the differentiability of
the design densities and the moment assumptions on the kernel.

Now the evaluation of the first term in (4.10) gives, for g1 �= g2,
1
N

2∑
i=1

ni∑
j=1
-2ij = κ1

∫ 1

0

��1/λ1�r2�2�x�r1�x�
ρ2�x� �g1−g2�2�x�dx

+κ2
∫ 1

0

r2�x�r21�x�
ρ2�x� �g1−g2�2�x�dx

+2κ1
∫ 1

0

�1/λ1�r2�x�r1�x�
ρ2�x� �g1−g2��x�

×
(
1
h

∫
K

(
x−t
h

){
�g1r1��x�−�g1r1��t�

+g1�x�
(
ρ�t�−ρ�x�)+(

g2
1
λ1
r2

)
�x�−

(
g2

1
λ1
r2

)
�t�

}
dt

)
dx

+2κ1
∫ 1

0

R�x�
ρ�x�

(
1
λ1
r2�x��g1−g2��x�

)2

r1�x�dx

+2κ2
∫ 1

0

r2�x�r1�x�
ρ2�x� �g2−g1��x�
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×
(
1
h

∫
K

(
x−t
h

){
�g1r1��x�−�g1r1��t�

+g2�x�
(
ρ�t�−ρ�x�)+(

g2
1
λ1
r2

)
�x�−

(
g2

1
λ1
r2

)
�t�

}
dt

)
dx

+2κ2
∫ 1

0

R�x�
ρ�x�

(
r1�x��g2−g1��x�

)2
r2�x�dx+O�h2r�+O

(
1
Nh

)
= κ1

∫ 1

0

�1/λ1�r2�x�r1�x�
ρ�x� �g1−g2�2�x�dx(4.14)

+2κ1
∫ 1

0

�1/λ1�r2�x�r1�x�
ρ2�x� �g1−g2��x�

×
(
1
h

∫
K

(
x−t
h

){
�g1r1��x�−�g1r1��t�

+g1�x�
(
ρ�t�−ρ�x�)+(

g2
1
λ1
r2

)
�x�

−
(
g2

1
λ1
r2

)
�t�−�g1r1��x�+�g1r1��t�

−g2�x�
(
ρ�t�−ρ�x�)−(

g2
1
λ1
r2

)
�x�+

(
g2

1
λ1
r2

)
�t�

}
dt

)
dx

+2κ1
∫ 1

0
R�x��g1−g2�2�x�r1�x�

1
λ1
r2�x�dx+O�h2r�+O

(
1
Nh

)
= κ1

∫ 1

0

�1/λ1�r2�x�r1�x�
ρ�x� �g1−g2�2�x�dx

+2κ1
∫ 1

0

�1/λ1�r2�x�r1�x�
ρ2�x� �g1−g2��x�

×
(
1
h

∫
K

(
x−t
h

)(
g1�x�−g2�x�

)(
ρ�t�−ρ�x�)dt)dx

+2κ1
∫ 1

0
R�x��g1−g2�2�x�r1�x�

1
λ1
r2�x�dx+O�h2r�+O

(
1
Nh

)
= κ1

∫ 1

0

�1/λ1�r2�x�r1�x�
ρ�x� �g1−g2�2�x�dx+O�h2r�+O

(
1
Nh

)
=M2+O�h2r�+O

(
1
Nh

)



where we used the definition of 1/λ1 = κ2/κ1 in the first equality and the
definition of R�x� in (4.13) and the definition of M2 in (4.8) for the last step.
Under the assumption of equal regression curves g1 = g2, (4.11) simplifies
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and we obtain, observing (2.7) and (4.4),

1
N

2∑
i=1

ni∑
j=1
-2ij

=κ1
∫ 1

0

[
1
ρ�x� +R�x�

]2
×
(
1
h

∫
K

(
x−t
h

){
�g1ρ��x�−�g1ρ��t�+g1�x�

(
ρ�t�−ρ�x�)}dt

+O
(

1
Nh

))2

r1�x�dx+κ1
∫ 1

0

[
1
ρ�x� +R�x�

]2
×
(
1
h

∫
K

(
x−t
h

){
�g1ρ��x�−�g1ρ��t�

+g1�x�
(
ρ�t�−ρ�x�)}dt+O(

1
Nh

))2 1
λ1
r2�x�dx+O

(
1
N

)
(4.15)

=κ1
∫ 1

0

[
1
ρ�x� +R�x�

]2
×ρ�x�

{
hrkr

[
g1ρ

�r�−�g1ρ��r�
]
�x�+o�hr�+O

(
1
Nh

)}2

dx

+O
(
1
N

)

=h2rk2rκ1
∫ 1

0

1
ρ�x�

[
g1ρ

�r�−�g1ρ��r�
]2
�x�dx+o�h2r�+O

(
1
N

)
×h2rC+o�h2r�+O

(
1
N

)
�

For the second term in (4.10), we obtain by a straightforward but cumbersome
calculation

U = 1
N

2∑
i=1

ni∑
j=1
E

[(
σi�tij�εij −

2∑
l=1

nl∑
k=1
wlk
 ijσl�tlk�εlk

)2]

= 1
N

2∑
i=1

ni∑
j=1
σ2i �tij� −

2
N

2∑
i=1

ni∑
j=1
σ2i �tij�wij
 ij

+ 1
N

2∑
i=1

ni∑
j=1

2∑
l=1

nl∑
k=1
σ2l �tlk�w2

lk
 ij

=
2∑
i=1
κi

∫ 1

0
σ2i �t�ri�t�dt+

2∑
i=1

1
Nh
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×
[
−2K�0�

∫ 1

0
σ2i �t�

�κi/κ1�ri�t�
ρ�t� dt(4.16)

+ 1
h

∫ ∫
K2

(
t− x
h

)
σ2i �x��κi/κ1�ri�x�

ρ�t� dtdx

]
+O

(
1
N

)
+O

(
hr

Nh

)
+O

(
1

�Nh�2
)

= κ1
∫ 1

0
σ21 �t�r1�t�dt+ κ2

∫ 1

0
σ22 �t�r2�t�dt+

1
Nh

[∫
K2�u�du− 2K�0�

]
×

{∫ 1

0

σ21 �x�r1�x�
ρ�x� dx+

∫ 1

0

σ22 �x��1/λ1�r2�x�
ρ�x� dx

}
+O

(
1
N

)



and the assertions (4.6) and (4.7) follow from (4.10), (4.14), (4.15) and (4.16).
✷

4.2. Proof of Theorem 2.1: the null hypothesis of equal regression functions.
In a first step we introduce the notation [observing (4.1)]

δij = gi�tij� −
ni∑
k=1
w

�i�
jkgi�tik�
 j = 1
 � � � 
 ni
 i = 1
2
(4.17)

and decompose the centered version of TN as

TN −E�TN� = σ̂2 −
n1
N
σ̂21 − n2

N
σ̂2 −E�TN� = R1
N +R2
N
(4.18)

where

R1
N = 2
N

2∑
i=1

ni∑
j=1
-ij

(
σi�tij�εij −

2∑
l=1

nl∑
k=1
wlk
 ijσl�tlk�εlk

)

− 2
N

2∑
i=1

ni∑
j=1
δij

(
σi�tij�εij −

ni∑
k=1
w

�i�
jkσi�tik�εik

)
= T̂�1�

N + T̂�2�
N 


(4.19)

R2
N = 1
N

2∑
i=1

ni∑
j=1

(
σi�tij�εij −

2∑
l=1

nl∑
k=1
wlk
 ijσl�tlk�εlk

)2

− 1
N

2∑
i=1

ni∑
j=1
E

[(
σi�tij�εij −

2∑
l=1

nl∑
k=1
wlk
ijσl�tlk�εlk

)2]

− 1
N

2∑
i=1

ni∑
j=1

(
σi�tij�εij −

ni∑
k=1
w

�i�
jkσi�tik�εik

)2
(4.20)

+ 1
N

2∑
i=1

ni∑
j=1
E

[(
σi�tij�εij −

ni∑
k=1
w

�i�
jkσi�tik�εik

)2]
=

7∑
j=3
T̂

�j�
N �
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Here the random variables T̂�j�
N are defined by

T̂
�i�
N = 1

N

ni∑
j=1
αijεij
 i = 1
2
(4.21)

T̂
�2+i�
N = 1

N

ni∑
j=1
kij�ε2ij − 1�
 i = 1
2
(4.22)

T̂
�4+s�
N = 1

N

ns∑
i=1

ns∑
l=1
l�=i

r
�s�
il εsiεsl
 s = 1
2
(4.23)

T̂
�7�
N = 1

N

n1∑
i=1

n2∑
j=1
t̄ijε1iε2j(4.24)

and the coefficients αij are given by

αij = 2
(
-ij − δij −

2∑
l=1

nl∑
k=1
-lkwij
lk +

ni∑
k=1
δikw

�i�
ik

)
σi�tij�


j = 1
 � � � 
 ni
 i = 1
2


(4.25)

where -ij and δij are defined in (4.9) and (4.17), respectively. The coefficients

kij
 r
�s�
il 
 t̄ij in the representation of R2
 n are defined as follows:

kij =
(
2w�i�
jj −2wij
ij+

2∑
l=1

nl∑
k=1
w2
ij
lk−

ni∑
k=1

�w�i�
ik �2

)
σ2i �tij�
 i=1
2
(4.26)

r
�s�
il =

(
2w�s�
il −2wsi
sl+

2∑
j=1

nj∑
k=1
wjk
siwjk
sl−

ns∑
k=1
w

�s�
ki w

�s�
kl

)
σs�tsi�σs�tsl�


s=1
2


(4.27)

t̄ij =
(
−2w1i
2j − 2w2j
1i + 2

2∑
l=1

nl∑
k=1
wlk
1iwlk
2j

)
σ1�t1i�σ2�t2j��(4.28)

The next lemmas specify the asymptotic behavior of the terms T̂ �j�
N on the

right-hand side of (4.19) and (4.20). Note that all terms in these representa-
tions are centered, that is, E�T̂ �j�

N � = 0
 j = 1
 � � � 
7.

Lemma 4.1. If the assumptions of Theorem 2.1 are satisfied, we have, under
the hypothesis of equal regression curves,

T̂
�j�
N

H0= op
(

1

N
√
h

)

 j = 1
2
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and, under the alternative,

var�T̂ �i�
N � H1= 4

N

�κ1κ2�2
κi

∫ 1

0
�g1 − g2�2�t�σ2i �t�

r21�t�r22�t�
ri�t�

(
κ1r1�t� + κ2r2�t�

)2 dt
+ o

(
1
N

)

 i = 1
2�

Proof. We only prove the assertion for the statistic T̂ �1�
N ; the remaining

case follows by exactly the same arguments. From (4.21) it follows that

var�T̂ �1�
N � = 1

N2

n1∑
i=1
α21i
(4.29)

where, by (4.25) and (4.12),

α1i = 2
{�1/λ1�r2�t1i�

ρ�t1i�
�g1 − g2��t1i�

− 1
n1h

2∑
l=1

nl∑
k=1

�κ2/κl�r3−l�tlk�
ρ�tlk�

�g1 − g2��tlk�K
(
tlk − t1i
h

)
1
ρ�tlk�

}

×σ1�t1i� +O�hr� +O
(

1
Nh

)
= 2�1/λ1�r2�t1i�σ1�t1i�

ρ�t1i�
�g1 − g2��t1i� +O�hr� +O

(
1
Nh

)



(4.30)

uniformly with respect to i = 1
 � � � 
 n1� The last equality in (4.30) uses the
fact that the integral approximations of the two sums have the same absolute
value with opposite signs. Now (4.29) implies, under the hypothesis of equal
regression curves,

var�T̂ �1�
N � = o

(
1
N2h

)



and an application of Chebyshev’s inequality proves the first part of the lemma.
For the second part we obtain, from (4.29) and (4.30),

var�T̂ �1�
N � = 1

N2

n1∑
i=1

(
2�1/λ1�r2�t1i�σ1�t1i�

ρ�t1i�
�g1 − g2��t1i�

)2

+ n1
N2

(
O�hr� +O

(
1
Nh

))
= 4
N
κ1

∫ 1

0
�g1 − g2�2�t�σ21 �t�

r1�t���1/λ1�r2�2�t�
ρ2�t� dt+ o

(
1
N

)



which completes the proof, by the definition of ρ and λ1. ✷
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Lemma 4.2. Under the assumptions of Theorem 2.1, we have

T̂
�j�
N = op

(
1

N
√
h

)

 j = 3
4�

Proof. Note that E�T̂ �j�
N � = 0 for j = 3
4� Recalling the definition of the

coefficients k1i in (4.26), we obtain

k1i =
{
2K�0�
n1h1

1
r1�t1i�

− 2K�0�
n1h

1
ρ�t1i�

+ 1
n1h

2

∫
K2

(
s− t1i
h

)
1
ρ�s� ds−

1

n1h
2
1

∫
K2

(
t− t1i
h1

)
1
r1�t�

dt

}
×σ21 �t1i� + o

(
1
n1h

)
= O

(
1
Nh

)



(4.31)

uniformly in i = 1
 � � � 
 n1� This implies, for the variance of T̂ �3�
N ,

var�T̂ �3�
N � = 1

N2

n1∑
i=1
k21ivar�ε21i� = o

(
1
N2h

)
and proves Lemma 4.2 for the case j = 3� The remaining case is obtained by
exactly the same arguments and is therefore omitted. ✷

Lemma 4.3. Under the assumptions of Theorem 2.1, we have

var�T̂ �4+i�
N � = 2

N2h

∫ 1

0
σ4i �x�

[
1− κi
κ1

ri�x�
ρ�x�

]2
dx

×
∫
�2K−K ∗K�2�u�du+ o

(
1
N2h

)

 i = 1
2�

Proof. We only sketch a proof of the first part i = 1 of the assertion; the
remaining case i = 2 follows by exactly the same arguments. Recalling the
definition of the weights r�s�il in (4.27), we obtain by straightforward algebra

r
�1�
il =

{
2K

(
t1i − t1l
h

)
1

r1�t1i�
−K

(
t1i − t1l
h

)
2
ρ�t1i�

+ 1
h

∫
K

(
s− t1i
h

)
K

(
s− t1l
h

)
1
ρ�s� ds

− 1
h

∫
K

(
t− t1i
h

)
K

(
t− t1l
h

)
1
r1�t�

dt

}
σ1�t1i�σ1�t1l�
n1h

+ o
(
1
N

)
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uniformly for i
 l = 1
 � � � 
 n1, and straightforward but tedious algebra shows

var�T̂�5�
N � = 1

N2

n1∑
i=1

n1∑
l=1
l�=i

[
�r�1�il �2+r

�1�
il r

�1�
li

]

= 2
N2

n1∑
i=1

n1∑
l=1

�r�1�il �2+o
(

1
N2h

)

= 2
N2h

{
4
∫
K2�u�du

∫ 1

0
σ41 �x�

[
1− r1�x�
ρ�x�

]2
dx

+
∫
�K∗K�2�u�du

∫ 1

0
σ41 �x�

[
1− r1�x�
ρ�x�

]2
dx

−4
∫
�K∗K��u�K�u�du

×
∫ 1

0
σ41 �x�

[
1− r1�x�
ρ�x�

]2
dx

}
+o

(
1
N2h

)

= 2
N2h

∫ 1

0
σ41 �x�

[
1− r1�x�
ρ�x�

]2
·
∫
�2K−K∗K�2�u�du+o

(
1
N2h

)
� ✷

Lemma 4.4. Under the assumptions of Theorem 2.1, we have

var�T̂�7�
N � = 4

N2h

∫
�2K−K ∗K�2�u�du

×
∫ 1

0

r1�x��1/λ1�r2�x�
ρ2�x� σ21 �x�σ22 �x�dx+ o

(
1
N2h

)
�

Proof. A straightforward calculation shows, for the coefficients t̄ij in
(4.28),

t̄ij =
{
− 2
n1h
K

(
t1i − t2j
h

)(
1
ρ�t1i�

+ 1
ρ�t2j�

)
+ 2
n1h

2

×
∫
K

(
s− t1i
h

)
K

(
s− t2j
h

)
1
ρ�s� ds

}
σ1�t1i�σ2�t2j� + o

(
1
N

)



(4.32)

uniformly for i = 1
 � � � 
 n1
 j = 1
 � � � 
 n2, which implies, for the variance of
T̂

�7�
N ,

var�T̂ �7�
N � = 1

N2

n1∑
i=1

n2∑
j=1
t̄2ij

= 1
N2h

∫ r1�x��1/λ1�r2�x�
ρ2�x� σ21 �x�σ22 �x�dx
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×
{
16

∫
K2�u�du−16

∫
�K∗K��u�K�u�du+4

∫
�K∗K�2�u�du

}

+o
(

1
N2h

)

= 4
N2h

∫
�2K−K∗K�2�u�du

∫ 1

0

r1�x��1/λ1�r2�x�
ρ2�x�

×σ21 �x�σ22 �x�dx+o
(

1
N2h

)
� ✷

Lemma 4.5. Under the assumptions of Theorem 2.1, we have, for the covari-
ances of the statistics defined in (4.21)–(4.24),

cov�T̂ �i�
N 
 T̂

�j�
N � = 0 if 	i
 j
 �= 	1
3

 	2
4
�

Under the hypothesis of equal regression functions,

cov�T̂ �1�
N 
 T̂

�3�
N � = o

(
1
N2h

)

 cov�T̂ �2�

N 
 T̂
�4�
N � = o

(
1
N2h

)



while, under the alternative g1 �= g2,

cov�T̂ �1�
N 
 T̂

�3�
N � = o

(
1
N

)

 cov�T̂ �2�

N 
 T̂
�4�
N � = o

(
1
N

)
�

Proof. The first part of Lemma 4.5 is obvious. From (4.21) and (4.22) we
obtain

cov�T̂ �1�
N 
 T̂

�3�
N � = 1

N2

n1∑
i=1
α1ik1iE�ε31i�


where α1i
 k1i are defined in (4.25) and (4.26), respectively. Now (4.30) gives

α1i =
O�hr� +O

(
1
Nh

)

 if g1 = g2,

O�1�
 if g1 �= g2,
uniformly for i = 1
 � � � 
 n1� Similarly, we have, from (4.31),

k1i = O
(

1
Nh

)



uniformly for i = 1
 � � � 
 n1, which implies

cov�T̂ �1�
N 
 T̂

�3�
N � = o

(
1
N2h

)
under the null–hypothesis and

cov�T̂ �1�
N 
 T̂

�3�
N � = o

(
1
N

)
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under the alternative g1 �= g2� This proves the second part of the assertion for
the statistics T̂ �1�

N and T̂ �3�
N � The remaining case follows by exactly the same

arguments and is therefore omitted. ✷

Proof of Theorem 2.1(i). Observing Lemma 4.0 and (2.7), we obtain

N
√
h
(
TN−Bh2r− 1

Nh
D
)
=N

√
h
(
TN−E�TN�

)
+o�1�

=N
√
h
(
T̂

�5�
N +T̂�6�

N +T̂�7�
N

)
+op�1�

=
2∑
s=1

 ns∑
i=1

ns∑
l=1
l�=i

√
hr

�s�
il εsiεsl


+
n1∑
i=1

n2∑
j=1

√
ht̄ijε1iε2j+op�1�


where the second equality follows from (4.18), (4.19), (4.20) and Lemmas 4.1–
4.5 and the constants B and D are defined in (2.10) for k = 2. Defining

r̄
�s�
il �= r

�s�
il + r�s�li

2

 s = 1
2


the right-hand side of this equation can be written as a symmetric quadratic
form with vanishing diagonal elements, that is,

WN =N
√
h
(
T̂

�5�
N + T̂ �6�

N + T̂ �7�
N

) =XTAX

where X = �X1
 � � � 
XN�T = �ε�1�
 ε�2��T, ε�i� = �εi1
 � � � 
 εini�
 i = 1
2
 the
matrix A = �aij�i
 j=1
���
N is given by aii = 0
 i = 1
 � � � 
N,

aij �=



√
hr̄

�1�
ij 
 i
 j = 1
 � � � 
 n1, i �= j,

√
h
t̄i
 j−n1
2


 i = 1
 � � � 
 n1, j = n1 + 1
 � � � 
 n1 + n2,

√
h
t̄j
 i−n1

2

 i = n1 + 1
 � � � 
 n1 + n2, j = 1
 � � � 
 n1,√

hr̄
�2�
i−n1
 j−n1
 i
 j = n1 + 1
 � � � 
 n1 + n2, i �= j,

(4.33)

and r�s�ij 
 t̄ij are defined in (4.27) and (4.28), respectively.
To show asymptotic normality of the statistic WN under the hypothesis

of equal regression curves, we apply Theorem 5.2 in de Jong (1987). For the
asymptotic variance ofWN, we obtain, from Lemmas 4.3–4.5 and the definition
of ρ in (4.4),

σ2N = var
(
N

√
h�T̂ �5�

N + T̂ �6�
N + T̂ �7�

N �
)
= β2 + o�1� = O�1�
(4.34)
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where β2 = β22
1 is defined in (2.11) for k = 2. Observing (4.32), we have

h
n2∑
j=1
t̄2ij =

1
n1

{
4
h

∫
K2

(
t1i − t
h

)(
1
ρ�t1i�

+ 1
ρ�t�

)2

σ22 �t�
1
λ1
r2�t�dt

+ 4
h3

∫ ( ∫
K

(
s− t1i
h

)
K

(
s− t
h

)
1
ρ�s� ds

)2 1
λ1
r2�t�σ22 �t�dt

+ 8
h2

∫ ∫
K

(
t1i − t
h

)
K

(
s− t1i
h

)
K

(
s− t
h

)
1
λ1
r2�t�σ22 �t�

×
(

1
ρ�t1i�

+ 1
ρ�t�

)
1
ρ�s� dsdt

}
σ21 �t1i� + o

(
1
N

)
= O

(
1
N

)



and a similar argument implies

h
n1∑
j=1

�r̄�1�ij �2 = O
(
1
N

)
�

From these estimates it follows that

N∑
j=1
a2ij = h

n1∑
j=1

�r̄ �1�ij �2 + h
4

n2∑
j=1
t̄2ij = O

(
1
N

)

 i = 1
 � � � 
 n1
(4.35)

and an analogous argument shows that (4.35) is also valid for i = n1+1
 � � � 
N.
Therefore conditions 1 and 2 in de Jong’s (1987) theorem are satisfied with
KN = log N. To establish the remaining condition 3 in the latter theorem, we
note that by Gerschgorin’s theorem the eigenvalues µ1
 � � � 
 µN of the matrix
A can be estimated as

n1
max
i=1

�µi� ≤
n1

max
i=1

N∑
l=1

�ail� ≤
√
h
n1∑
l=1

�r̄�1�il � +
√
h

2

n2∑
l=1

�t̄il�

= O�
√
h�


where we used the definition of r̄�s�il and (4.27) and (4.32) in the last estimate.
Similarly, we obtain

n2
max
i=1

�µi� = O�
√
h�


which implies maxNi=1 µ
2
i /σ

2
N = o�1�. The assertion of Theorem 2.1(i) now fol-

lows from de Jong’s (1987) theorem and (4.34), that is,

σ−1
N WN

�−→ � �0
1��
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4.3. Proof of Theorem 2.1: fixed alternatives. If g1 �= g2 we have, from
Lemmas 4.0–4.4,

√
N

(
TN −M2) = √

N
(
TN −E�TN�

)+ o�1�
=

√
N�T̂ �1�

N + T̂ �2�
N � + op�1�(4.36)

= 1√
N

2∑
i=1

ni∑
j=1
αijεij + op�1� =WN + op�1�


where the last equality definesWN. The assertion now follows from the stan-
dard central limit theorem using Liapounov’s condition. To this end, we note
that under a fixed alternative

σ2N = var�WN� = γ2 + o�1�

where we used Lemmas 4.1 and 4.5 and γ2 = γ22
1 is defined in (2.13) for k = 2.
For the coefficients αij in (4.36), we have, from (4.30) for the case i = 1 and a
similar argument in the case i = 2,

α4ij =
16��κ2/κi�r3−i�4�tij�

ρ4�tij�
σ4i �tij��g1 − g2�4�tij� + o�1�
 i = 1
2


which implies Liapounov’s condition, that is,

1

σ4N

2∑
i=1

k∑
j=1
E

∣∣∣∣αijεij√
N

∣∣∣∣4

≤ 16n1
N2σ4N

(∫ 1

0

��1/λ1�r2�4�t�r1�t�
ρ4�t� σ41 �t��g1 − g2�4�t�dt

+
∫ 1

0

r41�t��1/λ1�r2�t�
ρ4�t� σ42 �t��g1 − g2�4�t�dt

)
+ o�1� = o�1�


and completes the proof of Theorem 2.1(ii). ✷

4.4. Some comments on the consistency of the wild bootstrap. In this sec-
tion we briefly indicate the consistency of the wild bootstrap procedure used in
the simulation study of Section 3. For the sake of brevity, we restrict ourselves
to the statistic T�1�

N based on a difference of variance estimators for k = 2 sam-

ples. Corresponding results for T�2�
N 
T

�3�
N and k ≥ 3 regression functions can

be proved following a similar pattern. Recall that we again omit all indices
referring to the number of samples and to the specific statistics in our notation
(e.g., we use B instead of B�1�

k 
 TN instead of T�1�
N , etc.).

To be precise, let ĝ�·
 h�
 ĝi�·
 h� denote the estimates of the regression func-
tions from the joint and individual samples defined in (2.4) and (2.6), respec-
tively, where the dependency on the bandwidth h > 0 is now stated explicitly.
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The residuals for the bootstrap sample are given by (see the discussion in
Section 3)

ε̂ij = Yij − ĝ�tij
 b�
 j = 1
 � � � 
 ni
 i = 1
2
(4.37)

ε∗ij = V∗
ijε̂ij, where b is a bandwidth not necessarily equal to the bandwidth

h used in the statistic TN of Section 3.1 and the V∗
ij are i.i.d. with E∗�V∗

ij� =
0
 E∗��V∗

ij�2� = 1. Throughout this section E∗ denotes the conditional expec-
tation given the total sample 	Yij � j = 1
 � � � 
 ni
 i = 1
2
 and all quantities
formed from the bootstrap sample

Y∗
ij = ĝ�tij
 b� + ε∗ij
 j = 1
 � � � 
 ni
 i = 1
2
(4.38)

will be denoted with an extra ∗ (e.g., T∗
N
 ĝ

∗, etc.). Under the additional
assumption

h2r+1 = o�b2r�
(4.39)

we sketch a proof of

d2

[
N

√
h

(
T∗
N −Bh2r − D

Nh

)

 � �0
 β2�

]
P−→ 0
(4.40)

where B
 D and β2 = β22
1 are defined in Theorem 2.1 and d2�·
 ·� denotes
the Mallows distance [see Mallows (1972)]. Applying Lemma 8.8 of Bickel and
Freedman (1981), it follows that (4.40) can be established by showing

d2
[
N

√
h
(
T∗
N −E∗�T∗

N�
)

 � �0
 β∗2�] P−→ 0
(4.41)

N
√
h

∣∣∣∣E∗�T∗
N� −Bh2r − D

Nh

∣∣∣∣ P−→ 0
(4.42)

β∗2
P−→ β2
(4.43)

where

β∗2 = var∗�N
√
hT∗
N�(4.44)

is the conditional variance of N
√
hT∗
N.

Proof of (4.41). This follows along the lines of the proof of Theorem 2.1
in Sections 4.1–4.2 and is therefore omitted.

Proof of (4.43). Let T∗�j�
N denote the bootstrap versions of the statistics

T̂
�j�
N introduced in (4.21)–(4.24) such that

T∗
N −E∗�T∗

N� =
7∑
j=1
T

∗�j�
N(4.45)
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[compare with (4.18), (4.19) and (4.20)]. Conditionally on 	Yij � j = 1
 � � � 
 ni,
i = 1
2
, it follows by straightforward algebra

var∗�T∗�i�
N � = op

(
1
N2h

)

 i = 1
2
3
4


cov∗�T∗�i�
N 
T

∗�j�
N � = op

(
1
N2h

)

 i �= j

(4.46)

(just repeat the steps in the proofs of Lemmas 4.1, 4.2 and 4.5). Moreover,

var∗�T∗�5�
N � = 1

N2

∑
i�=l

�r�1�il �2 + r
�1�
il r

�1�
li

σ21 �t1
i�σ21 �t1
l�
ε̂21iε̂

2
1l + o

(
1
N

)
where r�1�il is defined in (4.27) and its asymptotic expansion is derived in the
proof of Lemma 4.3. It now follows by a straightforward calculation that the
expectation of the left hand-side is given by

2
N2h

∫ 1

0
σ41 �x�

[
1− r1�x�
ρ�x�

]2
dx

∫
�2K−K ∗K�2�u�du+ o

(
1
N2h

)
and a tedious calculation for the variance establishes

var∗�T∗�5�
N � − var�T�5�

N � = op
(

1
N2h

)
�

Similar arguments for T∗�6�
N , T∗�7�

N and (4.45), (4.46) establish the assertion
(4.43), that is,

β∗2 − β2 =N2h
7∑
j=5

{
Var∗�T∗�j�

N � − Var�T�j�
N �}+ op�1� = op�1��

Proof of (4.42). Recall the definition of the weights w�l�
ij 
 l = 1
2, wlk
 ij

in (4.1) and (4.2), respectively. To reflect the particular dependency on the
bandwidth, we denote these quantities w�l�

ij �h�
 wlk
ij�h� and so on. A straight-
forward calculation shows that, for i = 1
2,

E∗�σ∗2
i � = 1

ni

ni∑
j=1
δ̂ij +

1
ni

ni∑
j=1
ε̂2ij

+ 1
ni

ni∑
j=1

{
−2w�i�

jj �h� +
ni∑
k=1

(
w

�i�
jk �h�

)2
}
ε̂2ij

(4.47)

and

E∗�σ̂∗2� = 1
N

2∑
i=1

ni∑
j=1

{
-̂2ij + ε̂2ij

}

+ 1
N

2∑
i=1

ni∑
j=1

{
−2wij
 ij�h� +

2∑
l=1

nl∑
k=1
w2
ij
 lk�h�

}
ε̂2ij�

(4.48)
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Here δ̂ij and -̂ij denote the analogues of the quantities δij and -ij defined in
(4.9) and (4.17), respectively, where the regression functions g�t� and gi�t�
have been replaced by the estimate from the combined sample ĝ�t
 b�. Com-
bining (4.47) and (4.48) yields

E∗�T∗
N� = E∗�σ̂∗2� − n1

N
E∗�σ∗2

1 � − n2
N
E∗�σ∗2

2 �

= 1
N

2∑
i=1

ni∑
j=1

�-̂2ij − δ̂2ij� +
1
N

2∑
i=1

ni∑
j=1

kij

σ2i �tij�
ε̂2ij

(4.49)

where kij is defined in (4.26). Observing that under the null hypothesis of
equal curves g = g1 = g2
 ε̂ij = σi�tij�εij+g�tij� − ĝ�tij
 b�, we obtain, for the
second term in (4.49),

1
N

2∑
i=1

ni∑
j=1

kij

σ2i �tij�
ε̂2ij −

1
Nh
D = 1

N

2∑
i=1

ni∑
j=1
kijε

2
ij −

1
Nh
D+ op

(
1

N
√
h

)

= 1
N

2∑
i=1

ni∑
j=1
kijE�ε2ij� −

1
Nh
D+ op

(
1

N
√
h

)

= op
(

1

N
√
h

)



(4.50)

where the first equality follows from the uniform consistency of the estimate
ĝ�·
 b� [see, e.g., Mack and Silverman (1982)], the second equality follows from
(4.31) in the proof of Lemma 4.2 and the third equality is obtained by a similar
argument as given in the proof of Lemma 4.0 observing the definition of kij,
(4.31) and E�ε2ij� = 1� For the first term in (4.49) it can be proved by similar
arguments

1
N

2∑
i=1

ni∑
j=1

�-̂2ij − δ̂2ij� −Bh2r = op
(

1

N
√
h

)
(4.51)

and a combination of (4.49), (4.50) and (4.51) yields (4.42), which completes
the proof of assertion (4.40). ✷
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