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ENTROPIES AND RATES OF CONVERGENCE FOR MAXIMUM
LIKELIHOOD AND BAYES ESTIMATION FOR MIXTURES

OF NORMAL DENSITIES

By Subhashis Ghosal and Aad W. van der Vaart

University of Minnesota and Free University of Amsterdam

We study the rates of convergence of the maximum likelihood esti-
mator (MLE) and posterior distribution in density estimation problems,
where the densities are location or location-scale mixtures of normal dis-
tributions with the scale parameter lying between two positive numbers.
The true density is also assumed to lie in this class with the true mixing
distribution either compactly supported or having sub-Gaussian tails. We
obtain bounds for Hellinger bracketing entropies for this class, and from
these bounds, we deduce the convergence rates of (sieve) MLEs in Hellinger
distance. The rate turns out to be �log n�κ/√n, where κ ≥ 1 is a constant
that depends on the type of mixtures and the choice of the sieve. Next, we
consider a Dirichlet mixture of normals as a prior on the unknown density.
We estimate the prior probability of a certain Kullback-Leibler type neigh-
borhood and then invoke a general theorem that computes the posterior
convergence rate in terms the growth rate of the Hellinger entropy and
the concentration rate of the prior. The posterior distribution is also seen
to converge at the rate �log n�κ/√n in, where κ now depends on the tail
behavior of the base measure of the Dirichlet process.

1. Introduction. A mixture of normal densities is often used to model an
unknown smooth density because of its wide range of flexibility and infinite
degree of smoothness. Normal mixture models have been used for a variety
of inference problems including density estimation, clustering analysis and
robust estimation; see, for example, Lindsay (1995), McLachlan and Basford
(1988), Banfield and Raftery (1993), Robert (1996) and Roeder and Wasserman
(1997). The mixture model is a fully nonparametric class which is nevertheless
appropriate for model based inference such as the maximum likelihood method
or the Bayesian method.

Variants of the maximum likelihood method have been considered in the
literature; see Roeder (1992) and Priebe (1994). Since the likelihood is un-
bounded without any restriction on the support of the mixing distribution,
it is necessary to restrict the maximization over a suitable subset called a
sieve, which grows with the sample size. The sieve method was introduced by
Grenander (1981) and studied by many authors including Geman and Hwang
(1982), van de Geer (1993), Shen and Wong (1994), Wong and Shen (1995)
and Birgé and Massart (1998). While Roeder (1992) maximized a likelihood
based on spacings, Priebe (1994) considered finite mixtures and described an
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algorithm to adaptively select a finitely supported mixing distribution. These
authors showed consistency of the resulting estimates. Van de Geer (1996)
obtained the rate of convergence of the maximum likelihood estimate (MLE)
in some mixture models, but she did not discuss the case of normal mixtures.

From a Bayesian point of view, the mixture model provides an ideal plat-
form for density estimation where one can induce a prior distribution on the
densities by attaching a prior distribution to the mixing distribution. Such an
approach was taken by Ferguson (1983) and Lo (1984) who used a Dirichlet
process prior on the mixing distribution and obtained expressions for Bayes
estimates. Note that the Dirichlet process always selects discrete distributions
and hence it cannot be directly used as a prior on densities. In a recent article,
Ghosal, Ghosh and Ramamoorthi (1999a) showed that the Dirichlet mixture
of normal prior gives rise to a consistent posterior under general conditions for
the weak topology and the variation distance. These authors established weak
posterior consistency by verifying Schwartz’s (1965) condition of the positivity
of the prior probabilities of Kullback-Leibler neighborhoods. In addition, by
bounding the L1-metric entropies of the class of mixtures, certain uniformly
consistent tests were obtained. Existence of the uniformly consistent tests and
the Schwartz condition together imply posterior consistency in the variation
distance. The main purpose of the paper, among other things, is to refine this
result to a rate of convergence. For a general discussion on posterior consis-
tency for non-parametric problems, see the recent reviews Ghosal, Ghosh and
Ramamoorthi (1999b) and Wasserman (1998).

Ferguson (1983) and Lo (1984) obtained analytic expressions for the Bayes
estimates for the Dirichlet mixture prior. Unfortunately, these expressions are
not suitable for computational purposes, because of their exponential order
of complexity. We can nevertheless compute the Bayes estimates by simula-
tion methods. Due to the substantial progress of Bayesian computing in the
last decade, posterior characteristics such as the posterior mean can now be
computed for many Bayesian nonparametric problems including the Dirich-
let mixture model by Markov chain Monte Carlo methods. West (1992), West,
Mueller and Escobar (1994) and Escobar and West (1995) among others, de-
veloped Gibbs sampling techniques to compute the Bayes estimate and other
posterior quantities for the Dirichlet mixture prior. These authors also used
the Dirichlet mixture prior effectively in many applications.

In this article, we obtain the rate of convergence of the MLE and sieve MLEs
as well as the rate of convergence of the posterior distribution for Dirichlet
mixtures. We first obtain bounds on the bracketing entropies of the class of
normal mixtures. These bounds immediately give us the rates of convergence
of MLE and sieve MLEs in view of the results of van de Geer (1993), Wong
and Shen (1995) and Birgé and Massart (1998). Our entropy bounds are new
and the method we use appears to be new too. We believe these bounds will
be of independent interest as well.

To obtain the posterior rate of convergence, we further compute the concen-
tration rate of the prior distribution on a Kullback-Leibler type neighborhood
and then apply the recent results on posterior rate of convergence obtained by
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Ghosal, Ghosh and van der Vaart (2000); see also Shen and Wasserman (2001)
for a similar result under stronger conditions. For easy reference, the relevant
result of Ghosal, Ghosh and van der Vaart (2000) is stated as Theorem 2.1 in
Section 2 of this paper. The condition (2.10) in that theorem may be thought
of as a quantitative analogue of the Schwartz condition. Condition (2.9) helps
us to effectively reduce the size of the parameter space. Condition (2.8) im-
plies the existence of tests with sufficiently high power for testing against the
complement of a neighborhood shrinking at a certain rate and can be viewed
as a quantitative refinement of the testing condition in Schwartz (1965) or the
entropy conditions in Ghosal, Ghosh and Ramamoorthi [(1999a), Theorem 2]
or Barron, Schervish and Wasserman [(1999), Assumption 2]. To obtain the
right rate of convergence, we however need much more precise entropy and
prior estimates than those used by Ghosal, Ghosh and Ramamoorthi (1999a).
The relatively crude bounds obtained there sufficed for posterior consistency
but are inadequate for rates.

We consider both location mixtures and location-scale mixtures where the
scale is assumed to be bounded above and below and the true mixing dis-
tribution of the location is compactly supported or has sub-Gaussian tails. A
near parametric rate �log n�κ/√n of convergence is obtained for the MLE and
its variants and the posterior, where κ ≥ 1 depends on the type of mixtures
and the choice of the sieve for the sieve MLE or the tail behavior of the base
measure for the posterior. It should be noted here that this sharp rate in con-
trast with those of the popular estimators such as the kernel estimator is due
to the assumption that the true density is also a mixture of normals whose
scale parameters can vary only between two positive numbers, in addition to
the smoothness of the normal density. When the true density lies outside that
class, in order to approximate such a density, one has to let the scale take
arbitrarily small positive values. It will be very interesting to study the con-
vergence rates for this problem. In this case, one will have to consider a sieve
where the scale is bounded below by a number decreasing to zero at some
rate. Our basic inequalities are explicit in the lower bound of the scale, so a
rate may be calculated from these bounds. However, the obtained rate does
not appear to be close to the optimal rate, and hence we do not pursue it here.

Recently Genovese and Wasserman (2000) also obtained bounds for bracket-
ing Hellinger entropies for normal mixtures where the scale parameter again
lies between two positive numbers and as a result, computed the convergence
rates of sieve MLEs. They considered only location mixtures and obtained the
convergence rate n−1/6�log n��1+δ�/6 of the sieve MLE for some δ > 0. In con-
trast, we consider the maximum likelihood as well as the Bayesian methods,
treat both the location and the location-scale mixtures and at the same time
obtain much faster rates.

As far as we are aware, the optimal rate of convergence relative to the
Hellinger distance is unknown for our problem. However, Ibragimov (2001)
and Ibragimov and Khasminskii (1982) have studied the minimax rate for the
problem of estimating an entire density relative to the Lp-norms for p ≥ 2.
Specifically, consider estimating a density f based on an independent sample
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of size n from f, where f is known to belong to the class � of density functions
that admit an analytic continuation f � � → � such that

sup
x∈�


f�x+ iy�
 ≤Mec
y

2
� y ∈ ��

Then for p ≥ 2 and some positive constants C1 and C2,

C1
�log n�1/4√

n
≤ inf

f̂
sup
f∈�

Ef

(∫ ∞

−∞

f̂�x� − f�x�
pdx

)1/p

≤ C2
�log n�1/4√

n
�

The class of densities under consideration in our paper is smaller than the
above class � (for some M and c). This suggests that the power of the loga-
rithm in our results can possibly be improved a little. This is not certain as
Ibragimov (2001) considered ad-hoc and not Bayesian or maximum likelihood
estimators and Lp-norms for p ≥ 2 rather than Hellinger or L1-norms. How-
ever, it appears plausible, even though mathematically intractable to us at
this time.

The organization of the paper is as follows. In Section 2 we explain the set
up and notations and discuss the necessary prerequisites. Bounds for entropies
and bracketing entropies are obtained in Section 3. Using these bounds, the
convergence rates for the MLE and sieve MLEs are obtained in Section 4. Con-
vergence rates of posterior distribution for location mixtures and location-scale
mixtures are respectively obtained in Section 5 and Section 6. In Section 7,
we consider certain extensions and variations of the results of Section 5. Some
lemmas of more general interests are presented in the Appendix.

2. Notation and preliminaries. Suppose we have independent obser-
vations X1�X2� � � � from a common density p�x� on the real line. Let φ�x�
stand for the standard normal density �2π�−1/2 exp�−x2/2� and let φσ�x� =
σ−1φ�x/σ� be the density of the normal distribution with mean zero and stan-
dard deviation σ . We model the density in three different ways in increasing
order of generality. We assume that the density p�x� is either a location mix-
ture of normals, that is,

p�x� = pF�σ�x� =
∫
φσ�x− z�dF�z��(2.1)

where F�·� is a probability distribution on � called the mixing distribution or
the latent distribution, or p�x� is a location-scale mixture of normals of the
type

p�x� = pF�G�x� =
∫ ∫

φσ�x− z�dF�z�dG�σ��(2.2)

where F�·� is a probability distribution on � and G�·� is a probability distri-
bution on �0�∞�, or p�x� is a location-scale mixture of normals of the type

p�x� = pH�x� =
∫
φσ�x− z�dH�z� σ��(2.3)
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where H�·� ·� is a probability distribution on � × �0�∞�. In model (2.1), let
F0�·� and σ0 be the true values of F�·� and σ respectively. In model (2.2), let
F0�·� and G0�·� be the true values of F�·� and G�·� respectively while the true
value of H�·� ·� in model (2.3) is denoted by H0�·� ·�. The possible values of σ
in all the models are assumed to lie in a compact interval �σ�σ� ⊂ �0�∞�. The
values of σ�σ are kept fixed throughout. For all the three models, we write p0
for the true value of p and P0 for the probability distribution corresponding
to p0.

We determine the rates of convergence of the MLE or sieve MLEs and
the posterior distribution. As a prior for p, we consider a Dirichlet mixture
of normals. To be more precise, in model (2.1), we let F have the Dirichlet
process distribution Dα, where α is a finite, positive measure on � and let
σ be distributed on �σ�σ� independently of F. For model (2.2), we consider
independent Dirichlet process priors Dα and Dβ respectively for F and G,
where α is as above and β is a measure on �σ�σ�. For model (2.3), F is assumed
to have the Dirichlet process prior Dγ, where γ is a finite, positive measure
on �× �σ�σ�. Recall that the Dirichlet process on a measurable space � with
a base measure α is a random probability measure F on � such that for every
finite partition �A1� � � � �Ak� of �, the probability vector �F�A1�� � � � �F�Ak��
has a Dirichlet distribution on the k-dimensional simplex with parameters
�α�A1�� � � � � α�Ak��. We choose the Hellinger distance

d�f�g� =
(∫

�f1/2�x� − g1/2�x��2dx
)1/2

as the metric on the space of densities. Other possible choices are the variation
or the L1-norm �f − g�1 = ∫ 
f�x� − g�x�
dx and the L2-norm �f − g�2 =(∫ 
f�x� − g�x�
2dx)1/2. It may be recalled that

d2�f�g� ≤ �f− g�1 ≤ 2d�f�g�(2.4)

for any two densities f and g. Further, if the densities f and g are uniformly
bounded by M, say, then

�f− g�2 ≤ 2
√
Md�f�g��(2.5)

We shall show that under mild conditions, the posterior distribution based on
X1� � � � �Xn concentrates on Hellinger neighborhoods of p0 of size a large mul-
tiple of �log n�κ/√n, where κ ≥ 1 depends on the context. This substantially
strengthens the assertion of posterior consistency shown by Ghosal, Ghosh
and Ramamoorthi (1999a). Note that since normal mixtures are uniformly
bounded, by (2.4) and (2.5), �log n�κ/√n is an upper bound for the rate of
convergence for the L1 and L2-distances as well.

To compute the rate of convergence of the posterior distribution, we shall
compute Hellinger metric (and bracketing) entropies of the space of Gaussian
mixtures and estimate from below the prior probabilities of a Kullback-Leibler
type neighborhood of P0. The recently obtained general results of Ghosal,
Ghosh and van der Vaart (2000) on the rate of convergence of posterior distri-
butions then immediately give us the the desired rate �log n�κ/√n. The rates
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for the MLE or sieve MLEs are obtained from the estimates of the bracketing
entropies and the results of Wong and Shen (1995), van de Geer (1993) or
Birgé and Massart (1998).

The methods of obtaining entropy and prior estimates for the three models
above differ in details, although the essential ideas are similar. Nevertheless,
we need to consider these three models separately.

Let � be a class of densities on � and d be a metric on it. Let D�ε�� � d�
stand for the ε-packing number defined to be the maximum number of points
in � such that the distance between each pair is at least ε. The ε-covering
number N�ε�� � d� is defined to be the minimum number of balls of radius ε
needed to cover � and is related to the packing number by the inequalities

N�ε�� � d� ≤ D�ε�� � d� ≤N�ε/2�� � d��(2.6)

A set �ε with the property that any element of � is within ε distance from
an element of �ε will be referred to as an ε-net over � . The ε-bracketing
number N� ��ε�� � d� is defined to be the minimum number of brackets of
size ε necessary to cover � , where a bracket of size ε is a set of the form
�l� u� = �f � l�x� ≤ f�x� ≤ u�x� for all x� for nonnegative integrable functions
l and u with l�x� ≤ u�x� for all x and d�l� u� < ε. Clearly,

N�ε�� � d� ≤N� ��2ε�� � d��(2.7)

The logarithm of the packing (or covering) number is often called the (metric)
entropy and that of the bracketing number is called the bracketing entropy.
For more details, we refer the readers to Kolmogorov and Tihomirov (1961)
and van der Vaart and Wellner (1996).

In the next section, we estimate packing numbers and bracketing num-
bers of these classes of densities. These results are of independent interest
as they provide useful “size estimates” of these important classes of densities,
unavailable in the literature so far. Bounds for the bracketing numbers have a
number of implications for the convergence rates of the MLE and sieve MLEs
vide the results of Wong and Shen (1995), van de Geer (1993) and Birgé and
Massart (1998). Using these results, we obtain, in Section 4, the convergence
rates of the MLE and sieve MLEs.

Bounds on bracketing numbers also allow us to construct certain priors
based on finite approximating sets such that the posterior distributions are
guaranteed to converge at a certain rate depending on the bounds; see Section
3 of Ghosal, Ghosh and van der Vaart (2000).

To compute the posterior rate of convergence, we shall use Theorem 2.1 of
Ghosal, Ghosh and van der Vaart (2000) stated below in a slightly different
way to exactly suit our purpose.

Let p0 ∈ � , a class of densities and let P0 be the probability measure with
density p0. Put K�p0� p� = ∫

log�p0/p�dP0, V�p0� p� = ∫ �log�p0/p��2dP0,
B�ε�p0� = �p � K�p0� p� ≤ ε2� V�p0� p� ≤ ε2�. Henceforth, d will stand for
the Hellinger distance.
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Theorem 2.1. Let ,n be a sequence of priors on � . Suppose that for pos-
itive sequences ε̄n� ε̃n → 0 with nmin�ε̄2

n� ε̃
2
n� → ∞, constants c1� c2� c3� c4 > 0

and sets �n ⊂ � , we have

logD�ε̄n��n� d� ≤ c1nε̄
2
n�(2.8)

,n�� \�n� ≤ c3e
−�c2+4�nε̃2

n�(2.9)

,n�B�ε̃n� p0�� ≥ c4e
−c2nε̃

2
n �(2.10)

Then for εn = max�ε̄n� ε̃n� and a sufficiently largeM> 0, the posterior proba-
bility

,n�p � d�p�p0� >Mεn
X1� � � � �Xn� → 0(2.11)

in Pn
0 -probability.

In what follows, we show that the conditions of the above theorem are
satisfied by ε̄n = �log n�κ/√n and ε̃n = �log n�/√n for the Dirichlet mixture
prior for a suitable power κ ≥ 1. For that, apart from the estimates of packing
numbers for the class of normal mixtures, we further need to estimate the
prior probability of B�ε�p0�.

In Sections 4, we estimate this prior probability for the location mixture
and obtain the convergence rate of the posterior using Theorem 2.1. Analogous
results for the location-scale mixtures are presented in Section 5. Note that
convergence of the posterior at rate εn also implies that there exist estimators,
the posterior mean for instance, that converge at the rate εn in the frequentist
sense. See Theorem 2.5 of Ghosal, Ghosh and van der Vaart (2000) and the
discussion following that for details.

The symbol “�” will be used throughout to denote inequality up to a con-
stant multiple where the value of the constant is fixed within our set-up. The
symbol a ∼ b will stand for a/b→ 1.

3. Entropy estimates. As mentioned in the introduction and the last
section, estimates of packing and bracketing numbers are essential for the
computation of rates for both the posterior distribution and the MLE and
sieve MLEs. In this section, we provide such estimates for the family of normal
mixtures defined by (2.1), (2.2) and (2.3).

Let � · �∞ and � · �1 stand for the supremum and the L1-norm respectively
and d for the Hellinger distance. Let ��S� stand for the set of all probability
measures on a given set S.

3.1. Location mixtures. First, we consider location mixtures. The following
theorem gives the estimates of entropies and bracketing entropies.
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Theorem 3.1. Let � 1
a = �pF�σ � F ∈ ��−a� a�� σ ≤ σ ≤ σ�, where

a ≤ L�log 1
ε
�γ and γ ≥ 1

2 . Then for 0 < ε < 1
2 ,

logN�ε�� 1
a � � · �∞��

(
log

1
ε

)2γ+1

�(3.1)

logN� ��ε�� 1
a � � · �1��

(
log

1
ε

)2γ+1

(3.2)

and

logN� ��ε�� 1
a � d��

(
log

1
ε

)2γ+1

�(3.3)

The key idea behind the proof of (3.1) is to get hold of a finitely supported
mixing distribution with sufficiently restricted number of support points such
that the corresponding normal mixture uniformly approximates a given nor-
mal mixture. Such a finitely supported mixing distribution may be found by
matching a certain number of moments of the given mixing distribution with
that of the finitely supported mixing distribution. This is done in the next
lemma. The same idea will be used in the next section to estimate the prior
probabilities of the Kullback-Leibler type balls. It may be mentioned here that
the naive choice of the mixing distribution with equally spaced support points
will need many more points for the same degree of approximation.

Lemma 3.1. Let 0 < ε < 1
2 be given and 
σ − σ ′
 < ε. For any probability

measure F on an interval �−a� a�, where a ≤ L�log 1
ε
�γ and γ ≥ 1

2 and L > 0
are constants, there exists a discrete probability measure F′ on �−a� a� with at
most N��log 1

ε
�2γ support points in �−a� a� such that

�pF�σ − pF′�σ ′ �∞�ε�(3.4)

Proof. Since �φσ −φσ ′ �∞�
σ − σ ′
, it easily follows that

�pF�σ − pF�σ ′ �∞�
σ − σ ′
(3.5)

for any probability measure F. For M = max�2a�√8σ�log 1
ε
�1/2�, we have for

any probability F on �−a� a�,
sup

x
≥M


pF�σ�x� − pF′�σ�x�
 ≤ 2φσ�M− a�

≤ 2σ−1φ�M/2σ�
≤ 21/2π−1/2σ−1 exp�−M2/�8σ2��
≤ 21/2π−1/2σ−1ε�

so that

sup

x
≥M


pF�σ�x� − pF′�σ�x�
�ε�(3.6)
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By Taylor’s expansion of ey and k! ≥ kke−k, we have for any y < 0, k > 1,∣∣∣∣∣ey −
k−1∑
j=1

yj

j!

∣∣∣∣∣ ≤ 
y
k
k!

≤ �e
y
�k
kk

�

Puttting y = −x2/2 and expanding φσ�x�, we obtain∣∣∣∣∣φσ�x� −
k−1∑
j=0

�−1�jσ−�2j+1�x2j

√
2πj!

∣∣∣∣∣ ≤ σ−1 �e1/22−1/2σ−1
x
�2k√
2πkk

�(3.7)

and hence for any F ∈ ��−a� a�,
sup

x
≤M


pF�σ�x� − pF′�σ�x�


≤ sup

x
≤M

∣∣∣∣∣
∫ k−1∑

j=0

�2π�−1/2 �−1�jσ−�2j+1��x− z�2j
j!

d�F−F′��z�
∣∣∣∣∣

+2 sup

x
≤M

z
≤a

∣∣∣∣∣φσ�x− z� −
k−1∑
j=0

�2π�−1/2 �−1�jσ−�2j+1��x− z�2j
j!

∣∣∣∣∣
= sup


x
≤M

∣∣∣∣∣
∫ k−1∑

j=0

2j∑
l=0

�2π�−1/2 �−1�jσ−�2j+1�(2j
l

)
x2j−lzl

j!
d�F−F′��z�

∣∣∣∣∣
+2 sup


x
≤M

z
≤a

∣∣∣∣∣φσ�x− z� −
k−1∑
j=0

�2π�−1/2 �−1�jσ−�2j+1��x− z�2j
j!

∣∣∣∣∣ �

(3.8)

If ∫
zldF�z� =

∫
zldF′�z�� l = 1� � � � �2k− 2�(3.9)

then the first term on the right hand side (RHS) of (3.8) vanishes. If 
x
 ≤ M
and 
z
 ≤ a, then


x− z
 ≤M+ a ≤ 3M
2

≤ max�3L�
√

18σ�
(

log
1
ε

)γ
�(3.10)

Therefore, with c = e1/22−1/2σ−1 max�3L�√18σ�, the second term on the RHS
of (3.8) is bounded by a constant multiple of(

c�log 1
ε
�γ)2k

kk
= exp�−k�log k− 2 log�c�log ε−1�γ����(3.11)

Clearly the bound decreases as k increases. If we choose k to be the smallest
integer exceeding �1 + c2��log 1

ε
�2γ, it follows that

sup

x
≤M


pF�σ�x� − pF′�σ�x�
�ε�(3.12)

By Lemma A.1, F′ can be chosen to be a discrete distribution on �−a� a� with
at most N = 2k−1 support points. The result now follows by combining (3.5),
(3.6) and (3.12). ✷
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Proof of (3.1). Choose an ε-net 1 for �σ�σ�. Let � be the set of all pF�σ

such that σ comes from 1 and F has at most N ≤ D�log 1
ε
�2γ support points

in �−a� a�, where D is a constant. By Lemma 3.1, D can be so chosen that �
is an ε-net over � 1

a . Thus an ε-net over � is a 2ε-net over � 1
a . Choose and fix

an ε-net � over the N-dimensional simplex for the 21-norm. By Lemma A.4
of the Appendix, this can be chosen in such a way that the cardinality of �
does not exceed �5/ε�N. Let � ′ be the set of all pF�σ ∈ � such that F is
supported on 0�±ε�±2ε� � � � with weights coming from � only. A given pF�σ

can be “projected” into � ′ by first moving the point masses of F to the closest
point in 0�±ε�±2ε� � � �, and next changing the vector of sizes of point masses
to the closest vector in � . The new pF�σ ’s obtained this way are respectively
less than ε�φ′

σ�∞ and ε�φσ�∞ away from their starting points. Thus any
pF�σ is within distance ε�φσ�∞ + ε�φ′

σ�∞�ε of some element of � ′. Now the
cardinality of � ′ can be bounded as

#� ′�
1
ε
×
(

2a
ε

)N
×
(

5
ε

)N
= �10a�Nε−�2N+1��(3.13)

and so for some constants c1 and c2,

logN�c1ε��
1
a � � · �∞�

≤N log�10a� + �2N+ 1�
(

log
1
ε

)
+ c2

≤ D

(
log

1
ε

)2γ (
log

(
10L

(
log

1
ε

)γ)
+ 2 log

1
ε

)
+ log

1
ε
+ c2

�

(
log

1
ε

)2γ+1

�

(3.14)

The result follows. ✷

In the transition from the L∞ metric �·�∞ to the variation and the Hellinger
metrics � · �1 and d, the following lemma will be helpful.

Lemma 3.2. For any two probability measuresF�F′ on �−a� a�where a > 0
is arbitrary and any σ�σ ′ ∈ �σ�σ�,

�pF�σ − pF′�σ ′ �1

��pF�σ − pF′�σ ′ �∞ max

{√
log+

(
1

�pF�σ − pF′�σ ′ �∞

)
� a� 1

}
�

(3.15)

Proof. Since the L1-norm between any two densities is bounded by 2, if
�pF�σ − pF′�σ ′ �∞ ≥ 1, the inequality

�pF�σ − pF′�σ ′ �1 ≤ 2�pF�σ − pF′�σ ′ �∞(3.16)
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holds trivially. We may therefore assume that �pF�σ − pF′�σ ′ �∞ < 1. For any
T ≥ 2a and 
x
 > T,

pF�σ�x� ≤ φσ�
x
 − a� ≤ φσ�x/2� ≤ σ−1e−x
2/8σ2

�(3.17)

Hence �pF�σ − pF′�σ ′ �1 is bounded by

2
∫

x
>T

σ−1e−x
2/8σ2

dx+ 2T�pF�σ − pF′�σ ′ �∞

�e−T
2/8σ2 +T�pF�σ − pF′�σ ′ �∞�

For the choice

T = max

(
σ

√
8 log� 1

�pF�σ − pF′�σ ′ �∞
��2a

)
�

the first term is bounded by �pF�σ−pF′�σ ′ �∞, while the second term is bounded

by a multiple of �pF�σ − pF′�σ ′ �∞ max
(√

log� 1
�pF�σ−pF′ �σ ′ �∞ �� a

)
. The result fol-

lows. ✷

Now we are ready to prove the remaining parts of Theorem 3.1.

Proofs of (3.2) and (3.3). Let ε > 0 be given and let η ≤ ε to be chosen
later. Note that clearly a ≤ L�log 1

η
�γ. Let f1� � � � � fN be an η-net for � · �∞

over � 1
a . For any pF�σ ∈ � 1

a , we have

0 ≤ pF�σ�x� ≤



σ−1φ�0�� for all x�

σ−1φ
( x

2σ

)
� if 
x
 > 2a�

Thus

H�x� =


σ−1φ

( x

2σ

)
� if 
x
 > 2a�

σ−1φ�0�� otherwise�

is an envelope for � 1
a . Construct brackets �li� ui� by setting

li = max�fi − η�0�� ui = min�fi + η�H��
Then clearly � 1

a ⊂ ∪i�li� ui� and ui−li ≤ min�2η�H�. Therefore for any B > 0,∫
�ui�x� − li�x��dx ≤

∫

x
≤B

2ηdx+
∫

x
>B

H�x�dx�(3.18)

Choose B = max�2L�√8σ��log 1
η
�γ. Then B ≥ 2a and by Mill’s ratio,∫


x
>B
H�x�dx�H�B� ≤ η�
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The first term on the RHS of (3.18) is therefore bounded by a constant multiple
of η�log 1

η
�γ. Thus for some constant C,

N� �

(
Cη

(
log

1
η

)γ
� � 1

a � � · �1

)
≤N�

By (3.1), we can choose logN��log 1
η
�2γ+1. Choosing η the solution of

Cη�log 1
η
�γ = ε and noting that log 1

η
∼ log 1

ε
, we obtain (3.2). Therefore by

(2.4),

logN� ��ε�� 1
a � d� ≤ logN� ��ε2�� 1

a � � · �1��
(

log
1
ε

)2γ+1

�(3.19)

3.2. Location-scale mixtures. We now present the analogous estimates of
the metric and bracketing entropies for the class of location-scale mixtures
defined by (2.2) and (2.3).

Theorem 3.2. Let � 2
a = �pF�G � F ∈ ��−a� a�� G ∈ ��σ�σ��, where

a ≤ L�log 1
ε
�γ and γ ≥ 1

2 . Then for 0 < ε < 1
2 ,

logN�ε�� 2
a � � · �∞��

(
log

1
ε

)2γ+1

�(3.20)

logN� ��ε�� 2
a � � · �1��

(
log

1
ε

)2γ+1

(3.21)

and

logN� ��ε�� 2
a � d��

(
log

1
ε

)2γ+1

�(3.22)

As in the family location mixtures, the key step in the proof is a uniform
approximation by a discretely supported mixture with sufficiently restricted
number of support points. The following result gives us such an approximation
in the spirit of Lemma 3.1

Lemma 3.3. Let 0 < ε < 1
2 be given. For any probability measure F ∈

��−a� a�, where a ≤ L�log 1
ε
�γ and γ ≥ 1

2 and L > 0 are constants, and G ∈
��σ�σ�, there exist discrete probability measuresF′ on �−a� a� andG′ on �σ�σ�
with at mostN��log 1

ε
�2γ support points in �−a� a� and �σ�σ� respectively, such

that

�pF�G − pF′�G′ �∞�ε�(3.23)

Proof. For any choices of F′ ∈ ��−a� a� and G′ ∈ ��σ�σ�, we have, as in
(3.6),

sup

x
≥M


pF�G�x� − pF′�G′ �x�
�ε�(3.24)
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If probability distributions F′ and G′, respectively on �−a� a� and �σ�σ�, are
chosen to satisfy∫

zldF�z� =
∫
zldF′�z�� l = 1� � � � �2k− 2(3.25)

and ∫
σ−�2j+1�dG�σ� =

∫
σ−�2j+1�dG′�σ�� j = 0� � � � � k− 1�(3.26)

where k is the smallest integer exceeding �1+c2��log 1
ε
�2γ and c is the constant

e1/22−1/2σ−1 max�3L�√18σ�, then by the estimate (3.7) and the arguments
given in the proof of Lemma 3.1, �pF�G − pF′�G′ �∞�ε. Applying Lemma A.1
of the Appendix to zl, l = 0� � � � �2k − 2 and F on �−a� a� and to σ−�2j+1�,
j = 1� � � � � k − 1 and G on �σ�σ�, we may restrict the number of support
points of F′ and G′ to N = 2k− 1��log 1

ε
�2γ. ✷

Proof of Theorem 3.2. Consider the class of densities � consisting of all
pF�G where F and G have at most N�

(
log 1

ε

)2γ
support points from �−a� a�

of the form 0�±ε�±2ε� � � �, and from �σ�σ� of the form ε�2ε� � � � respectively,
and the weight corresponding to each point of support of F and G comes from
a chosen ε-net over the N-simplex for the 21-norm. Then by Lemma 3.3) and
the arguments given in the proof of (3.1), � is a kε-net over � 2

a for some fixed
constant k. The cardinality of � is bounded by a constant times(

σ − σ

ε

)N
× � f2aε�N ×

(
5
ε

)N
×
(

5
ε

)N
= �50a�σ − σ��Nε−4N�

Thus (3.20) follows. Now observe that as in Lemma 3.2, if F and F′ are prob-
ability measures on �−a� a� and G and G′ are probability measures on �σ�σ�,
then

�pF�G − pF′�G′ �1

��pF�G − pF′�G′ �∞ max

{√
log+

(
1

�pF�G − pF′�G′ �∞

)
� a� 1

}
�

(3.27)

The rest of the proof can be completed as in that of Theorem 3.1. ✷

The following result gives entropy estimates for the general location-scale
mixtures defined by (2.3). Note that the entropy estimates are weaker than
the corresponding bounds in Theorem 3.2.

Theorem 3.3. Let � 3
a = �pH � H ∈ ���−a� a� × �σ�σ���, where a ≤

L�log 1
ε
�γ and γ ≥ 1

2 . Then for 0 < ε < 1
2 ,

logN�ε�� 3
a � � · �∞��

(
log

1
ε

)4γ+1

�(3.28)



1246 S. GHOSAL AND A. W. VAN DER VAART

logN� ��ε�� 3
a � � · �1��

(
log

1
ε

)4γ+1

(3.29)

and

logN� ��ε�� 3
a � d��

(
log

1
ε

)4γ+1

�(3.30)

To prove the theorem, we need the following analogue of Lemma 3.3.

Lemma 3.4. Let 0 < ε < 1
2 be given. For any probability measure H ∈

���−a� a� × �σ�σ��, where a ≤ L�log 1
ε
�γ and γ ≥ 1

2 and L > 0 are constants,
there exists a discrete probability measure H′ on �−a� a� × �σ�σ� with at most
N��log 1

ε
�4γ support points in �−a� a� × �σ�σ�, such that

�pH − pH′ �∞�ε�(3.31)

Proof. Applying Lemma A.1 of the Appendix to �−a� a� × �σ�σ�, find dis-
crete distributions H′ on �−a� a� × �σ�σ� with at most N = k�2k − 1� + 1
support points such that∫

zlσ−�2j+1�dH�z� =
∫
zlσ−�2j+1�dH′�z��(3.32)

for all l = 0� � � � �2k − 2 and j = 0� � � � � k − 1. The rest of the proof is almost
identical to that of Lemma 3.3. ✷

Proof of Theorem 3.3. Consider the class of densities � consisting of all
pH where H has at most N support points from �−a� a� × �σ�σ� of the form
�±kε� lε�, where k� l = 0�1� � � � respectively, and the weight corresponding to
each point of support of H comes from a chosen ε-net over the N-simplex for
the 21-norm, where N��log 1

ε
�4γ. Then, as before, � is a kε-net over � 3

a for
some fixed constant k and the cardinality of � is bounded by a constant times
�log 1

ε
�4γ+1, proving (3.28). The rest of the proof can be completed as before. ✷

4. Maximum likelihood and sieve methods. The estimate of
ε-bracketing Hellinger entropy obtained in Theorems 3.1–3.3 allows us to
compute an upper bound on the rate of convergence of the MLE and sieve
MLEs using the results of Wong and Shen (1995). Alternatively, one can also
apply Theorem 3.4.4 of van der Vaart and Wellner (1996).

Let p̂ be an MLE, that is, a measurable function of the observations taking
values in � such that

n−1
n∑
i=1

log p̂�Xi� ≥ sup
p∈�

n−1
n∑
i=1

logp�Xi��

It is known that the MLE exists; see Lindsay (1995), Theorem 18.
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In the following theorems, we consider three possible models � , deriving
from (2.1), (2.2) and (2.3), respectively. In model (2.1), let F be any probability
measure supported on �−a� a� where a��log n�γ and σ take any arbitrary
value on the interval �σ�σ�. For model (2.2), we assume that F is as above and
the distribution G of σ is supported on �σ�σ�. In model (2.3), the distribution
H for �z� σ� is supported on �−a� a�×�σ�σ�, where a is as above. Assume that
the true F0 has compact support in case of model (2.1) and (2.2); for model
(2.3), H0 is assumed to have compact support.

Theorem 4.1. Under the above set-up, for a sufficiently large constantM,

P0�d�p̂� p0� >Mεn��e−c�log n�2�(4.1)

where εn = �log n�max�γ� 1
2 �+ 1

2 /
√
n for models (2.1) and (2.2) while we have εn =

�log n�2 max�γ� 1
2 �+ 1

2 /
√
n for model (2.3), and c is a constant. In particular, p̂

converges to p0 in Hellinger distance at a rate εn in P0-probability, and P0-
almost surely.

Clearly, the best rates εn = �log n�/√n for models (2.1) and (2.2) and εn =
�log n�3/2/√n for model (2.3), are obtained by choosing γ ≤ 1

2 . Genovese and
Wasserman (2000) considered convergence rates of sieve MLEs for location
mixtures only, where again the scale is restricted to lie between two positive
numbers, and obtained the much weaker rate n−1/6�log n��1/6�+δ of convergence
of the (sieve) MLE for some δ > 0.

To prove the above theorem, we apply Theorem 2 of Wong and Shen (1995)
by noting that ∫ εn

0

√
logN� ��u�� � d�du�√nε2

n(4.2)

for all the models with the appropriate εn by the estimates of the bracketing
entropy shown in Theorems 3.1–3.3.

Note that although the true mixing measure F0 is supported on an interval
�−k0� k0� (in case of (2.3), H0 is supported in �−k0� k0� × �σ�σ�), it is not
necessary to know k0 since we can increase a to infinity. One, however, needs
to know an interval where the possible values of σ will lie.

Since the MLE exists and converges at the desired rate, it is not necessary
to restrict the maximization to a sieve if F0 has a known compact support.
A suitable sieve may, however, give a simpler and equally efficient estimator.
Priebe (1994) considered the sieve where the mixing distributions are finitely
supported and argued that often it is possible to estimate the density with
a relatively small number of normal components. It is known that [Lindsay
(1995), Theorem 21] the MLE is a discrete distribution supported on at most n
points. The following theorem shows that restricting the maximization to the
sieve of all discrete distributions with at most C log n support points, where
C is a sufficiently large constant, we obtain the same rate of convergence.
However, we believe it is a reasonable conjecture that the full MLE has of the



1248 S. GHOSAL AND A. W. VAN DER VAART

order of log n support points. Thus the resulting estimators in Theorem 4.1
and 4.2 may not be different.

For model (2.1), let p̂k be the maximizer of the likelihood on �pF�σ � F =∑k
j=1 pjδzj� pj ≥ 0�

∑k
j=1 pj = 1� zj ∈ �−a� a��. Define p̂k in model (2.2) simi-

larly by restricting the mixing distributions F and G to have at most k support
points, while in model (2.3), let H to be supported on k2 points. The number
k = kn will be allowed to grow with n. To compute the rate of convergence
of p̂k, we apply part (ii) of Theorem 4 of Wong and Shen (1995). Since the
sieve, being a subset of the parameter space, already meets the required en-
tropy condition (4.2), we only need to check the approximation properties of
the sieve in the Kullback-Leibler sense.

Theorem 4.2. If k ≥ C log n for some sufficiently large C, then for some
M,

P0�d�p̂k� p0� >Mεn� → 0�(4.3)

where εn is as in Theorem 4.1.

To prove the theorem, we need the following result which bounds K�·� ·� and
V�·� ·� of two normal mixtures in terms of their Hellinger distance. Although
we state and prove the result only for location mixtures, exactly analogous
results hold for location-scale mixtures as well. This result will be useful in
the study of the convergence rate of the posterior distribution also.

Lemma 4.1. If F�−B�B� > 1
2 for some constant B and F∗ is a probability

measure satisfying F∗�z � 
z
 > t��e−b′t2 for some constant b′ > 0, then for
ε = d�pF∗�σ∗� pF�σ� < 1

2 ,

K�pF∗�σ∗� pF�σ� � ε2 log
1
ε

V�pF∗�σ∗� pF�σ� � ε2
(

log
1
ε

)2

�
(4.4)

Proof. Note that

pF∗�σ∗�x� ≤ 1
σ
φ�0�

and if F�−B�B� > 1
2 ,

pF�σ�x� ≥
1
σ

∫ B

−B
φ

(
x− z

σ

)
dF�z� ≥ 1

2σ
φ

( 
x
 +B

σ

)
�

Therefore for some c (depending on B),

pF∗�σ∗�x�
pF�σ�x�

�ecx
2
�(4.5)
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and so for some δ > 0,

∫ (pF∗�σ∗�x�
pF�σ�x�

)δ
pF∗�σ∗�x�dx <∞�(4.6)

Applying Theorem 5 of Wong and Shen (1995), we get the result. ✷

Let us indicate the proof of Theorem 4.2 only for model (2.1). Given ε > 0
and η ≤ ε to be chosen later, Lemma 3.1 shows that there exists a discrete
distribution F′

0 supported on �−k0� k0� with N� log 1
η

support points such that
�pF0�σ0

− pF′
0�σ0

�∞�η. By Lemmas 3.2 and 4.1, we obtain

K�pF0�σ0
� pF′

0�σ0
��η

(
log

1
η

)3/2

� V�pF0�σ0
� pF′

0�σ0
��η

(
log

1
η

)5/2

�

Choosing η the solution of η1/2�log 1
η
�5/4 = ε and noting that log 1

ε
∼ log 1

η
, we

see that F′
0 has N��log 1

ε
�2γ support points and

K�pF0�σ0
� pF�σ0

��ε2� V�pF0�σ0
� pF�σ0

��ε2�(4.7)

Now apply Theorem 4 of Wong and Shen (1995) with ε = εn and k ≥ N to
obtain

P0�d�p̂k� p0� >Mεn��e−nε
2
n + 1

n
→ 0�(4.8)

Theorems 4.1 and 4.2 remain valid even if the true mixing distribution
F0 (or H0 for model (2.3)) is not compactly supported, provided that it has
sub-Gaussian tails. We choose sieves as before with a��log 1

ε
�1/2, and using

Lemma 4.1, we can show that some element from the sieve approximates the
true density in the Kullback-Leibler sense as in (4.7). We omit the details;
a similar theorem for the posterior distribution will be proved in the next
section.

Following the construction in Example 4 of Wong and Shen (1995) and using
the estimate of the bracketing entropy, we can construct a sieve consisting of
finitely many densities which also gives the desired rate of convergence of
the sieve-MLE. To this end, consider the sieve �n = �g1� � � � � gN�, where
N =N� ��εn�� � d�, εn is the solution of the entropy equation

logN� ��ε�� � d� ≤ nε2�(4.9)

gj = uj/
∫
uj, j = 1� � � � �N, and �l1� u1�� � � � � �lN�uN� is a Hellinger bracketing

for � of size εn. If we choose a��log n�1/2, then εn��log n�/√n for models (2.1)
and (2.2), εn��log n�3/2/√n for model (2.3) and the sieve MLE p̂ maximizing
the likelihood on �n satisfies (4.1).

The above sieve �n can also be used to construct a prior for which the
posterior converges at rate εn. We follow the construction in Theorem 3.1 of
Ghosal, Ghosh and van der Vaart (2000). Put the uniform distribution ,j on
�j and consider the prior , = ∑∞

j=1 λj,j, where λj > 0,
∑∞

j=1 λj = 1 and
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log λ−1
j = O�log j� as j → ∞. Alternatively, for a sample of size n, simply

consider the prior ,n. Then Theorem 3.1 of Ghosal, Ghosh and van der Vaart
(2000) implies that the posterior converges at the intended rate εn. ✷

5. Posterior convergence: Location mixtures. In this section, we con-
sider model (2.1) and the Dirichlet mixture of normal prior described in Sec-
tion 2. We shall write , for the prior. The following theorem gives the rate
of convergence of the posterior assuming that the true mixing distribution is
compactly supported.

Theorem 5.1. Assume that the true mixing measure F0 has compact sup-
port, i.e., F0�−k0� k0� = 1 for some k0. If the prior for σ has a continuous and
positive density on an interval containing σ0, the base measure α has a contin-
uous and positive density on an interval containing �−k0� k0� and satisfies the
tail condition

α�
z
 > t��e−b
t
δ for all t > 0(5.1)

and for some constants b > 0� δ > 0, then for a sufficiently large constantM,

,

(
p � d�p�p0� >M

�log n�κ√
n

∣∣∣X1� � � � �Xn

)
→ 0(5.2)

in Pn
0 -probability, where κ = max� 2

δ
� 1

2� + 1
2 .

Remark 5.1. In the above theorem, the best rate �log n�/√n is obtained
when δ can be chosen to be 4 or more. For instance, a compactly supported
base measure will give rise to this rate. For the commonly used normal base
measure, the preceding theorem with δ = 2 yields the rate �log n�3/2/√n.

We verify the conditions of Theorem 2.1 with ε̄n = �log n�κ/√n and ε̃n =
�log n�/√n. Since we are interested in the rate only and not in constants,
we may replace the packing number by the covering number in (2.8) in view
of (2.6). The estimates of the covering number is given by Theorem 3.1. It
remains to obtain an estimate of the prior probability to satisfy (2.9) and
(2.10). The following lemma bounds the variation distance between a discrete
normal mixture and another normal mixture and is instrumental in bounding
the prior probabilities.

Lemma 5.1. Let F∗ =∑N
j=1 pjδzj be a probability measure with 
zj−zk
 >

2ε for all j �= k. Then for any probability measure F on �,

�pF�σ − pF∗�σ∗�1�ε+ 
σ − σ∗
 +
N∑
j=1


F�zj − ε� zj + ε� − pj
�(5.3)

Proof. Because �φσ −φσ∗��
σ − σ∗
, for any F, we have

�pF�σ − pF�σ∗�1�
σ − σ∗
�(5.4)
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Now


pF�σ∗�x� − pF∗�σ∗�x�
 ≤
∫
z�
z−zj
>ε ∀j

φσ∗�x− z�dF�z�

+
N∑
j=1

∫

z−zj
≤ε


φσ∗�x− z� −φσ∗�x− zj�
dF�z�(5.5)

+
N∑
j=1

φσ∗�x− zj�
F�zj − ε� zj + ε� − pj
�

Since φσ∗�·� integrates to one and

�φσ∗�· − z� −φσ∗�· − zj��1 ≤
√

2/πσ−1
z− zj
�
we obtain from (5.5) and Fubini’s theorem that

�pF�σ∗ − pF∗�σ∗�1

≤ F�z � 
z− zj
 > ε ∀j� +
√

2/πσ−1
N∑
j=1

∫

z−zj
≤ε


z− zj
dF�z�(5.6)

+
N∑
j=1


F�zj − ε� zj + ε� − pj
�

To bound the first term on the RHS of (5.6), note that since the intervals
�zj − ε� zj + ε�’s are disjoint and the pj’s add up to 1,

F�z � 
z− zj
 > ε ∀j� = 1 −
N∑
j=1

F�zj − ε� zj + ε�

≤
N∑
j=1


F�zj − ε� zj + ε� − pj
�
(5.7)

The second term on the RHS of (5.6) is bounded by
√

2/πσ−1ε. The result
follows by combining these assertions. ✷

We are now ready to prove the theorem.

Proof of Theorem 5.1. We may assume without loss of generality that
δ ≤ 4. Given η > 0 and a satisfying a ≤ L�log 1

η
�2/δ, where L is a constant,

set � 1
a�η = �pF�σ � F�−a� a� ≥ 1 − η� σ ≤ σ ≤ σ� and put, as in Theorem 3.1,

� 1
a = �pF�σ � F�−a� a� = 1�. We estimate the η-entropy of the class �a�η as

η→ 0. First observe that, by Lemma A.3 with A = �−a� a�,
N�3η�� 1

a�η� � · �1� ≤N�η�� 1
a � � · �1��(5.8)
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Now (3.2), together with (2.7), implies that logN�η�� 1
a � � · �1���log 1

η
��4/δ�+1.

This and (5.8) together imply that

logN�η�� 1
a�η� � · �1��

(
log

1
η

)�4/δ�+1

�(5.9)

Therefore, by (2.4),

logN�η�� 1
a�η� d� ≤ logN�η2��a�η� � · �1��

(
log

1
η

)�4/δ�+1

�(5.10)

Next, to estimate ,�� c
a�η�, note that, because F��−a� a�c� has a beta dis-

tribution with parameters α��−a� a�c� and α�−a� a�, Chebyshev’s inequality
implies that

,�F � F�−a� a� < 1 − η� ≤ 1
α���ηα��−a� a�

c��η−1e−ba
δ

�(5.11)

We now estimate ,�B�ε�pF0�σ0
�� as ε → 0. First, for given 0 < ε < 1

2 , by
Theorem 3.1 applied to F = F0 and a = k0, we can find a discrete distribution
F′

0 (depending on ε) on �−k0� k0� supported on at most C1 log 1
ε
, points such

that �pF0�σ0
−pF′

0�σ0
�∞�ε, where C1 is a constant. Without loss of generality,

we may assume that the support points of F′
0 are at least 2ε-separated. If not,

take a maximal 2ε-separated set in the support points of F′
0. Let F′′

0 be the
discrete measure on this 2ε-net with weights obtained by moving the masses
in F′

0 to the closest point in the support of F′′
0. Then �pF′

0�σ0
− pF′′

0�σ0
�∞ ≤

2ε�φ′
σ0
�∞, and hence we can replace F′

0 by F′′
0.

By Lemma 3.2, we have �pF0�σ0
− pF′

0�σ0
�1�ε�log 1

ε
�1/2. Represent F′

0 as∑N
j=1 pjδzj , so that N ≤ C1 log 1

ε
. Then by Lemma 5.1, for some constants d1

and d2,{
�F�σ� � �pF�σ − pF0�σ0

�1 ≤ d1ε

(
log

1
ε

)1/2
}

⊃ ��F�σ� � �pF�σ − pF′
0�σ0

�1 ≤ d2ε�(5.12)

⊃
{
�F�σ� �

N∑
j=1


F�zj − ε� zj + ε� − pj
 ≤ ε� 
σ − σ0
 ≤ ε

}
�

Since the zj’s are in �−k0� k0�, the intervals �zj−ε� zj+ε� are contained in
�−k0 − 1� k0 + 1�. Hence for any F satisfying

∑N
j=1 
F�zj − ε� zj + ε� −pj
 ≤ ε,

we have F�−k0 − 1� k0 + 1� > 1− ε > 1
2 . By (2.4) and Lemma 4.1, we find that

for any �F�σ� on the left hand side (LHS) of (5.12)

pF�σ ∈ B

(
cε1/2

(
log

1
ε

)5/4

� pF0�σ0

)
(5.13)
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for some constant c. Therefore using the prior independence of F and σ , we
obtain

,

(
B

(
cε1/2

(
log

1
ε

)5/4

� pF0�σ0

))

≥ ,�
σ − σ0
 ≤ ε�,
(

N∑
j=1


F�zj − ε� zj + ε� − pj
 ≤ ε

)
�

(5.14)

By the positivity and continuity of the prior density of σ , the first factor on
the RHS of (5.14) is bounded below by a constant multiple of ε. To bound
the second factor from below, we apply Lemma A.2 with N + 1 sets Aj =
�zj−ε� zj+ε�, j = 1� � � � �N and AN+1 = �∪N

j=1Aj�c. Clearly, if ε is sufficiently
small, for some constant A,

Aε ≤ α�Aj� ≤ 1� j = 1� � � � �N�(5.15)

We may also assume without loss of generality that α�AN+1� ≤ 1; otherwise
we subdivide AN+1 into a number of subsets each satisfying the required
condition. Then N will be increased by only a number not depending on ε, not
affecting the conclusion of that Lemma A.2, which gives a bound a multiple
of exp�−c′N log 1

ε
� ≥ exp�−c′′�log 1

ε
�2� for some constants c′ and c′′. The first

factor on the RHS of (5.14) can be absorbed into this. Thus we obtain

,

(
B

(
cε1/2

(
log

1
ε

)5/4

� pF0�σ0

))
≥ C̄ exp

[
−c̄

(
log

1
ε

)2
]
�(5.16)

for some constants C̄ and c̄. Putting ε′ = cε1/2�log 1
ε
�5/4 and noting that log 1

ε′ ∼
log 1

ε
, we have

,�B�ε′� pF0�σ0
�� ≥ c1 exp

[
−c2

(
log

1
ε′

)2
]

(5.17)

for some constants c1 and c2.
It therefore follows from (5.17) that the sequence ε̃n = �log n�/√n satisfies

the Condition (2.10) of Theorem 2.1. If we now choose ε̄n = �log n�κ/√n, where
κ = 2

δ
+ 1

2 , an = L�log 1
ε̃n
�2/δ, � = �pF�σ � F ∈ ����� σ ≤ σ ≤ σ�, �n =

� 1
an�ε̄n

and L > �4�c2 + 4�/b�1/δ, then from (5.11), it follows that ,�� \ �n� is
bounded above by a multiple of exp�−�c2+4�nε̃2

n�. Therefore the Condition (2.9)
holds for these choices of ε̃n and �n. The estimate in (5.10) then shows that
Condition (2.8) holds for the given choice of ε̄n. The result now follows from
Theorem 2.1. ✷

Remark 5.2. An examination of the proof reveals that the existence, con-
tinuity and positivity of the density of the base measure are used only to
guarantee that intervals of size ε have α-measure at least of the order of ε
as ε → 0. This condition holds also if the absolutely continuous part of α
possesses a density that is bounded away from zero on the support of F0. In
particular, α may contain point masses.
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As mentioned in Section 2, Theorem 5.1 also implies that the posterior
mean of the density, as a point estimator, converges to the true density at the
same rate �log n�κ/√n in Hellinger distance; see Ghosal, Ghosh and van der
Vaart [(2000), page 507]. Similar propositions hold for all the later theorems,
although they will not be separately stated.

Corollary 5.1. Under the conditions of Theorem 5.1, the posterior mean
p̂�x� = ∫

p�x�d,�p
X1� � � � �Xn� satisfies d�p̂� p0� = Op��log n�κ/√n�.

The condition of compact support of the true mixing distribution F0 is not
necessary; it suffices that F0 has sub-Gaussian tails provided a normal base
measure is used.

Theorem 5.2. Assume that the true mixing measure has sub-Gaussian
tails in the sense that for some c0 > 0, F0�
z
 > t��e−c0t

2
for all t. If the prior

for σ has continuous and positive density on an interval containing σ0 and the
base measure α is normal, then for a large enough constantM,

,

(
p � d�p�p0� >M

�log n�3/2√
n

∣∣∣X1� � � � �Xn

)
→ 0(5.18)

in Pn
0 -probability.

Proof. A normal base measure α satisfies the tail condition (5.1) in Theo-
rem 5.1 with δ = 2. The proof of Theorem 5.1 uses the compact support of F0
only to verify (2.10) of Theorem 2.1 with ε̃n = �log n�/√n. Thus for F0 with
sub-Gaussian tails, we need only to verify (2.10) with this ε̃n. Then it will
follow as in the last theorem that the posterior converges at rate �log n�κ/√n,
where κ = max� 2

2 �
1
2� + 1

2 = 3
2 .

Set B = 2�∫ z2dF0�z��1/2. For a given 0 < ε < 1
4 , let a = c

−1/2
0 �log 1

ε
�1/2 and

F∗
0 be F0 restricted to �−a� a� and normalized. By Lemma A.3 of the Appendix,

�pF∗
0�σ0

− pF0�σ0
�1 ≤ 2F0��−a� a�c��e−c0a

2 = ε�(5.19)

Find a discrete distribution F′
0 on �−a� a� which matches the moments of F∗

0
up to the order N, where N� log 1

ε
. By Lemma A.1 of the Appendix, F′

0 can
be chosen to have at most N+ 1 support points. Represent F′

0 =
∑N+1

j=1 pjδzj .
Because F∗

0 has smaller second moment than F0, Chebyshev’s inequality gives

F′
0��−B�B�c� ≤ B−2

∫
z2dF′

0�z� = B−2
∫
z2dF∗

0�z� ≤ B−2
∫
z2dF0�z� = 1

4 �

We may also assume that, as before, 
zj − zk
 > 2ε, j �= k, increasing B to
B+ 1, if necessary, to satisfy F′

0��−B�B�c� ≤ 1
4 . Thus if F is such that

N+1∑
j=1


F�zj − ε� zj + ε� − pj
 < ε�(5.20)
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then F��−B�B�c� < 1
4 + ε < 1

2 . Therefore, as in the proof of Theorem 5.1,
Lemmas 4.1 and 5.1 imply that for some c > 0,

B

(
cε1/2

(
log

1
ε

)5/4

� pF0�ε0

)

⊃ {�F�σ� � 
F�zj − ε� zj + ε� − pj
 ≤ ε� 
σ − σ0
 ≤ ε
}
�

(5.21)

As argued in the proof of Theorem 5.1, it is then enough to estimate the prob-
ability of (5.20). To this end, note that 
zj
 ≤ a��log 1

ε
�1/2, so that α�zj−ε� zj+

ε� ≥ Aε exp�−c′ log 1
ε
� ≥ Aεb for some constants A, c′ and b. Now Lemma A.2

can be applied to conclude that (2.10) is satisfied by ε̃n = �log n�/√n.

6. Posterior convergence: Location-scale mixtures. Now consider
the case when the true density is a location-scale mixture of normals and the
prior is a Dirichlet location-scale mixture. We have the following theorems.

Theorem 6.1. Let F0 and α be as in Theorem 5.1 and assume that G0
has support in �σ�σ�. Let the base measure β of the Dirichlet prior for G have
continuous and positive density on an interval containing supp�G0� and have
support contained in �σ�σ�. Then for a large enough constantM,

,

(
p � d�p�p0� >M

�log n�κ√
n

∣∣∣X1� � � � �Xn

)
→ 0(6.1)

in Pn
0 -probability, where κ = max� 2

δ
� 1

2� + 1
2 .

The following analogue of Lemma 5.1 will be used.

Lemma 6.1. Let F∗ =∑N
j=1 pjδzj be a probability measure on � with 
zj−

zj′ 
 > 2ε for j �= j′ and G∗ = ∑N
k=1 qkδσk be a probability measure on �σ�σ�

with 
σk − σk′ 
 > 2ε for k �= k′. Then for any probability measures F on � and
G on �σ�σ�,

�pF�G − pF∗�G∗�1 �ε+
N∑
j=1


F�zj − ε� zj + ε� − pj


+
N∑
k=1


G�σk − ε� σk + ε� − qk
�
(6.2)

Proof. Write

pF�G�x� − pF∗�G∗�x�

=
∫
�z�σ��
z−zj
>ε ∀j� or 
σ−σk
>ε ∀k

φσ�x− z�dF�z�dG�σ�

+
N∑
j=1

N∑
k=1

∫

z−zj
≤ε� 
σ−σk
≤ε

�φσ�x− z� −φσk
�x− z��dF�z�dG�σ�
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+
N∑
j=1

N∑
k=1

∫

z−zj
≤ε� 
σ−σk
≤ε

�φσk
�x− z� −φσk

�x− zj��dF�z�dG�σ�

+
N∑
j=1

N∑
k=1

φσk
�x− zj��F�zj − ε� zj + ε�G�σk − ε� σk + ε� − pjqk��

The integral of the first term on the RHS can be bounded by

�F×G���z� σ� � 
z− zj
 > ε ∀j� or 
σ − σk
 > ε ∀k�

= 1 −
N∑
j=1

N∑
k=1

F�zj − ε� zj + ε�G�σk − ε� σk + ε�

≤
N∑
j=1

N∑
k=1


F�zj − ε� zj + ε�G�σk − ε� σk + ε� − pjqk


≤
N∑
j=1


F�zj − ε� zj + ε� − pj
 +
N∑
k=1


G�σk − ε� σk + ε� − qk
�

Note that �φσ�·� − φσ ′ �·��1�
σ − σ ′
 and �φσ�· − z� − φσ�· − z′��1�
z− z′
, so
the integrals of the second and the third terms are bounded by a multiple of
ε. The proof is complete. ✷

Proof of Theorem 6.1. The proof follows the trail of that of Theorem 5.1.
In this case, � = �pF�G � F ∈ ����� G ∈ ��σ�σ��.

By Lemma 3.3, find discrete distributions F∗
0 and G∗

0 on �−k0� k0� and an
interval containing supp�G0� on which β has a positive density, respectively,
with at most N� log 1

ε
support points such that �pF0�G0

− pF∗
0�G

∗
0
� ≤ ε. Repre-

sent F∗
0 and G∗

0 respectively as
∑N

j=1 pjδzj and
∑N

k=1 qkδσk , where 
zj − zj′ 
 >
2ε, j �= j′, 
σk − σk′ 
 > 2ε, k �= k′, without loss of generality. To estimate the
prior probability of �pF�G−pF∗

0�G
∗
0
� ≤ ε, observe that by Lemma 6.1, it suffices

to estimate the probability of
N∑
j=1


F�zj − ε� zj + ε� − pj
 ≤ ε and
N∑
k=1


G�σk − ε� σk + ε� − qk
 ≤ ε�(6.3)

In view of the prior independence of F and G and Lemma A.2, the prior
probability of the above set is at least C exp�−c�log 1

ε
�2� for some constants

C and c. By an obvious analogue of Lemma 4.1 and the arguments given
in (5.12), the above set is contained in B

(
cε1/2�log 1

ε
�5/4� p0

)
. Now proceed-

ing as in the proof of Theorem 5.1 and estimating the covering numbers by
Theorem 3.2, we conclude that conditions of Theorem 2.1 are satisfied for
ε̄n = �log n� 2

δ+ 1
2 /
√
n, ε̃n = �log n�/√n and �n = �pF�G � F�−an� an� ≥ 1 − ε̄n�,

where an = L�log 1
ε̃ n
�2/δ, and L is a sufficiently large constant. ✷

The following result gives the posterior convergence rate for the general
location-scale mixture model defined by (2.3).
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Theorem 6.2. Let H0 be a compactly supported probability measure in
�× �σ�σ� and let H be given a Dirichlet process prior with a base measure γ
which has a positive and continuous density on a rectangle inside � × �σ�σ�
containing supp�F0� and satisfies the tail condition

γ��z� σ� � 
z
 > t� ≤ ce−b
t

δ

for all t > 0�(6.4)

Then for a sufficiently large constantM,

,

(
p � d�p�p0� >M

�log n�κ√
n

∣∣∣X1� � � � �Xn

)
→ 0(6.5)

in Pn
0 -probability, where κ = 2 max� 3

δ
� 1

2� + 1
2 .

Remark 6.1. In the above theorem, the best rate �log n�3/2/√n is obtained
when δ can be chosen to be 6 or more, which is the case if the base measure
is compactly supported. When the base measure is the product of a normal
distribution with a distribution supported in �σ�σ� such that the density is
positive on a rectangle containing supp�F0�, we may take δ = 2 and so the
rate �log n�7/2/√n is obtained.

Proof of Theorem 6.2. The proof is similar to that of Theorem 6.1.
Here, the class of densities is � = �pH � H ∈ ��� × �σ�σ���. We may

assume without loss of generality that δ ≤ 6.
By Lemma 3.4, get a discrete distribution H∗

0 on the support of H0 with
at most N��log 1

ε
�2 support points such that �pH0

− pH∗
0
�∞ ≤ ε. Represent

H∗
0 = ∑N

j=1 rjδ�zj�σj�, where, without loss of generality, the sets �zj − ε� zj +
ε� × �σj − ε� σj + ε�, j = 1� � � � �N, are disjoint. Similar to Lemma 6.1, the set
�pH − pH∗

0
�1 ≤ ε, contains

N∑
j=1


H��zj − ε� zj + ε� × �σj − ε� σj + ε�� − rj
 ≤ ε�(6.6)

and, is contained in B�cε1/2�log 1
ε
�5/4� p0� for some c. Lemma A.2 now shows

that the prior probability of the last set is at least C exp�−c�log 1
ε
�3� for some

constants C and c.
This, together with Theorem 3.3 and the arguments similar to those used in

the proofs of Theorems 5.1 and 6.1, imply that the conditions of Theorem 2.1
are satisfied for ε̄n = �log n� 6

δ+ 1
2 /
√
n, ε̃n = �log n�3/2/√n and �n = �pH �

H��−an� an� × �σj − ε� σj + ε�� ≥ 1 − ε̄n�, where an = L�log 1
ε̃ n
�3/δ, and L is a

sufficiently large constant. ✷

Remark 6.2. The slower rate �log n�max� 6
δ �1�+ 1

2 /
√
n, compared to the rate

�log n�max� 2
δ �

1
2 �+ 1

2 /
√
n in Theorems 5.1 and 6.1, is due to the lack of product

structure in the mixing measure. Therefore we had to match many more mo-
ments in Lemma 3.4 compared to Lemma 3.1 for model (2.1) and Lemma 3.3
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for model (2.2). Hence the entropy estimate as well as the prior estimate are
relatively inferior causing a weaker rate of convergence.

Clearly one can extend Theorems 6.1 and 6.2 when the true mixing measure
in not compactly supported in the spirit of Theorem 5.2. These results are not
separately stated here.

7. Extensions and variations. The method of proof used in Sections 3–
5 also allows certain variations that are useful from practical aspects. Often it
is sensible to allow the precision parameter m = α��� of the base measure of
the Dirichlet process to grow with the sample size. As the following theorem
shows, the conclusion of Theorem 5.1 is not affected provided that m does not
grow too fast.

Theorem 7.1. Assume the set-up and conditions of Theorem 5.1 except that
m = α��� varies with the sample size. If 1�m� log n, then for a sufficiently
large constantM,

,

(
p � d�p�p0� >M

�log n�κ√
n

∣∣∣X1� � � � �Xn

)
→ 0

in Pn
0 -probability, where κ = max� 2

δ
� 1

2� + 1
2 .

To prove the theorem, we use Theorem 2.1 with the described sequence
of Dirichlet mixture priors and proceed as in the proof of Theorem 5.1. We
follow the notations of Theorem 5.1. Clearly, the estimate in (5.11) remains
valid since m is bounded below. Next, to estimate the Dirichlet probability in
(5.14), subdivide �∪N

j=1�zj − ε� zj + ε��c into k sets each having α-measure at
most 1, where k is the smallest integer greater than or equal to m, and apply
Lemma A.2 with N replaced by N+ k sets. Since m grows at most like log n,
the estimate is unaffected. At all the other places, m has no role. Therefore
(5.2) holds.

The base measure of the Dirichlet process is usually specified up to certain
parameters, which themselves are given a prior. The N�µ� τ� base measure,
where µ and τ are also distributed according to some prior, is often used.
Another possibility is to put a prior on the precision parameter α��� of the
Dirichlet base measure α. If the base measures corresponding to the different
values of the hyperparameters satisfy the conditions on α in Theorem 5.1
uniformly, then the results go through with minor modifications.

Theorem 7.2. Assume the set-up of Theorem 5.1. However, instead of the
prior Dα for F, consider a mixture of Dαθ

priors, where θ is given an arbitrary
prior and αθ are base measures satisfying the following conditions�

(i) αθ��� is bounded above and below in θ.

(ii) There exist constants B, b and δ > 0 such that αθ�z � 
z
 > t� ≤ Be−bt
δ

for all t > 0 and θ.
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(iii) Every αθ has a density α
′
θ such that for some ε > 0, α′θ�x� ≥ ε for all θ

and x ∈ �−k0� k0�.
Then for a sufficiently large constantM,

,

(
p � d�p�p0� >M

�log n�κ√
n

∣∣∣X1� � � � �Xn

)
→ 0

in Pn
0 -probability, where κ = max� 2

δ
� 1

2� + 1
2 .

To prove the above, one needs to check the bounds for prior estimates. The
prior probability for any set under this hierarchical prior could be obtained by
first conditioning on θ and then integrating the possible values of the prob-
ability of that set given θ with respect to the prior for θ. Therefore, if the
constants in the prior estimates in (5.11) and (5.17) can be chosen free of θ,
then the conclusion holds. The assumed conditions (i) and (ii) clearly imply
that the estimate in (5.11) is uniform. From (i) and (iii), (5.15) and the argu-
ments following that, it is easily seen that the estimate (5.17) is also uniform.

Conditions of the above theorem usually hold if the parametric family αθ
is “well behaved” and θ has a compact range. However, conditions (ii) and
(iii) are not expected to hold if the range of θ is unbounded. Nevertheless, in
certain situations, the conclusion may still hold even if the hyperparameters
are not compactly supported. We consider the important special case where
the base measure is N�µ� τ� and µ is also given a normal prior.

Theorem 7.3. Assume the set-up and conditions of Theorem 5.1 and sup-
pose that the base measure is N�µ� τ�, where µ is given a N�µ0�A� prior, and
τ is either given, or has a compactly supported prior distribution. Then

,

(
p � d�p�p0� >M

�log n�κ√
n

∣∣∣X1� � � � �Xn

)
→ 0

in Pn
0 -probability, where κ = max� 2

δ
� 1

2� + 1
2 .

To prove Theorem 7.3, we proceed as in the proof of Theorem 7.2. Since
we are seeking only a lower bound in (5.17), we may restrict our attention
to a compact interval for µ’s, where a uniform estimate is available by the
argument given in the last theorem. It therefore remains to consider (5.11).
Let ,�·
µ� denote the prior given µ and , the overall prior. With the notations
as in the proof of Theorem 5.1, we have for any C, a, ε and η,

,��� 1
a�η�c� ≤ ,

(

µ
 > C log

1
ε

)
+ sup

{
,��� 1

a�η�c�
µ� � µ ≤ C log
1
ε

}
�

If C is chosen sufficiently large, L > C and a = L log 1
ε
, then both terms are

bounded by exp�−c�log 1
ε
�2�, for some c. This is clearly true for the first term,

while the same follows for the second term from the inequality

αµ��−a� a�c� ≤ α0��−�L−C� log ε−1� �L−C� log ε−1�c��e−c�log 1
ε �2
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for all µ ≤ C log 1
ε
. The result follows.

Similar remarks apply in the context of Theorems 5.2, 6.1 and 6.2.

APPENDIX

Lemma A.1. Let K be a compact metric space and let ψ1� � � � � ψN be con-
tinuous functions from K to �. Then for any probability measure F0 on K,
there exists a discrete probability measure F on K with at most N+1 support
points such that ∫

ψjdF =
∫
ψjdF0 for j = 1� � � � �N�(A.1)

Proof. The set

C = ��ψ1�x�� � � � � ψN�x�� � x ∈K�
is compact in �N. Therefore its convex hull conv�C� is also compact. Then for
every probability measure F0 on K,

v0 =
(∫

ψ1�x�dF0�x�� � � � �
∫
ψN�x�dF0�x�

)T
∈ conv�C�(A.2)

[see, e.g., Lemma 3 on page 74 of Ferguson (1967)]. Since conv�C� ⊂ �N, any
element of conv�C� may be written as a convex combination of at most N+ 1
elements of C [see, e.g., Rudin (1973, page 73)]. Thus there exist λ1� � � � � λN+1 ≥
0,
∑N+1

j=1 λj = 1, x1 � � � � xN+1 ∈K such that

v0 =
N+1∑
j=1

λj�ψ1�xj�� � � � � ψN�xj��T

=
(∫

ψ1�x�dF�x�� � � � �
∫
ψN�x�dF�x�

)T
�

(A.3)

where F =∑N+1
j=1 λjδxj .

The following estimate of the probability of a 21-ball under a Dirichlet dis-
tribution appeared as Lemma 6.1 in Ghosal, Ghosh and van der Vaart (2000).

Lemma A.2. Let �X1� � � � �XN� be distributed according to the Dirichlet
distribution on the unit 21-simplex in �N, N ≥ 2, with parameters �m"α1� � � � �
αN�, where Aεb ≤ αj ≤ 1 and

∑N
j=1 αj = m for some constant A and b. Let

�x1� � � � � xN� be any point on theN-simplex. Then there exist positive constants
c and C depending only on A and b such that for ε ≤ 1/N,

P

(
N∑
j=1


Xj − xj
 ≤ 2ε

)
≥ C exp

(
−cN log

1
ε

)
�(A.4)
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The following lemma helps truncate the domain of the mixing distribution.
Let �z�B� #→ @�B
z� be a Markov kernel on arbitrary measurable spaces

admitting densities ψ�·
z�. Consider a mixture pF�x� =
∫
ψ�x
z�dF�z�, where

F is a probability measures on the domain Z of z.

Lemma A.3. Let F be an arbitrary probability measure on Z and F∗ be its
renormalized restriction to a subset A ⊂ Z with F�A� > 0, that is, F∗�B� =
F�A ∩B�/F�A� for all B. Then

�pF∗ − pF�1 ≤ 2F�Ac��(A.5)

Therefore, if � = �pF � F�A� ≥ 1 − ε� and � ∗ = �pF � F�A� = 1�, then
N�3ε�� � � · �1� ≤N�ε�� ∗� � · �1��(A.6)

Proof. For any x, we have∫
ψ�x
z�d�F∗ −F��z� =

∫
A
ψ�x
z�dF�z�

(
1

F�A� − 1
)

−
∫
Ac
ψ�x
z�dF�z��

Using the triangle inequality and next integrating over x, the LHS of (A.5) is
bounded by

F�A�
(

1
F�A� − 1

)
+F�Ac� = 2F�Ac��

For (A.6), note that any ε-net over � ∗ is a 3ε-net over � by (A.5).

The following lemma is possibly known in the literature. However, the proof
does not appear to be readily available, so we include a brief proof as well.

Lemma A.4. Let BN = ��x1� � � � � xN� � xi ≥ 0�
∑N

i=1 xi = 1� be the unit
21-simplex in �N, N ≥ 2. Then for ε ≤ 1,

D�ε�BN� � · �1� ≤
(

5
ε

)N−1

�(A.7)

Proof. For x ∈ BN, let x∗ denote the vector of its first N− 1 co-ordinates.
Then x∗ belongs to the set DN−1 = ��y1� � � � � yN−1� � yi ≥ 0�

∑N−1
i=1 yi ≤ 1�.

The correspondence x #→ x∗ is one-to-one and �x1 − x2�1 ≤ 2�x∗1 − x∗2�1. Let
x1� � � � � xm ∈ BN such that �xi − xj�1 > ε, i� j = 1� � � � �N, i �= j. Then �x∗i −
x∗j�1 > ε/2, i� j = 1� � � � �N, i �= j, and so BN−1�x∗i � ε/4�, the 21-balls in �N−1

of radius ε/4 centered at x∗i , are disjoint. The union of these balls is clearly
contained in the set{

�y1� � � � � yN−1� �
N−1∑
i=1


yi
 ≤ �1 + ε/4�
}
�(A.8)
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Let VN−1 be the volume of the unit 21-ball in �N−1. Then the volume of
the set in (A.8) is �1 + ε/4�N−1VN−1 ≤ �5/4�N−1VN−1, while the volume of
each B�x∗i � ε/4� is �ε/4�N−1VN−1. A volume argument now gives the desired
bound. ✷

It is interesting to note that the technique of the proof applies to any unit
2p-ball in �N. By a similar argument, we get

D�ε� �x � �x�p ≤ 1�� � · �p� ≤
(

3
ε

)N
(A.9)

for all ε ≤ 1.
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