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MAXIMIN DESIGNS FOR EXPONENTIAL GROWTH MODELS
AND HETEROSCEDASTIC POLYNOMIAL MODELS

By Lorens A. Imhof

Stanford University

This paper is concerned with nonsequential optimal designs for a
class of nonlinear growth models, which includes the asymptotic regression
model. This design problem is intimately related to the problem of find-
ing optimal designs for polynomial regression models with only partially
known heteroscedastic structure. In each case, a straightforward applica-
tion of the usual D-optimality criterion would lead to designs which depend
on the unknown underlying parameters. To overcome this undesirable
dependence a maximin approach is adopted. The theorem of Perron and
Frobenius on primitive matrices plays a crucial role in the analysis.

1. Introduction. Consider the exponential growth model

y�x� = exp�−θxp�
n∑

k=0

βkx
k + ε
 x ∈ � 
(1.1)

where y�x� is the response to the control variable x, � ⊂ � is the design space,
β0
 � � � 
 βn and θ are the model parameters that are to be estimated, p ∈ �1
2	
and ε, the random error, is normally distributed with mean zero and variance
σ2 > 0. Applications of growth models of this type abound [cf. Seber and Wild
(1989)] and much recent attention has been devoted to the construction of
optimal designs for model (1.1) and special cases of that model [e.g., Pronzato
and Walter (1988), Chaloner (1993), Dette and Sperlich (1994), Mukhopadhyay
and Haines (1995), Dette and Neugebauer (1996, 1997) and Dette and Wong
(1996, 1998)]. From the design point of view, the salient feature of model
(1.1) is its nonlinearity. For nonlinear models, the information matrix depends
on the unknown parameters so that most tools of experimental design, as
described, for example, in Pukelsheim (1993), cannot be applied. A natural
way to choose designs that accommodate the dependence on the parameters
is to use Bayesian or maximin optimality criteria; see Silvey (1980) and Ford,
Titterington and Kitsos (1989). Almost all of the papers cited above use a
Bayesian approach. This paper is concerned with designs for the exponential
model which are D-optimal in a maximin sense. Only nonsequential designs
are considered.

The nonlinear design problems are attacked by first determining D-optimal
designs for suitably chosen polynomial heteroscedastic models. Specifically,
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consider

y�x� =
n∑

k=0

βkx
k + ε�x
 θ�
 x ∈ � 
(1.2)

where β0
 � � � 
 βn are to be estimated and the random error ε�x
 θ� is normally
distributed with mean zero and variance σ2/λ�x
 θ�. Here λ�x
 θ�, the efficiency
function, is assumed only to belong to a known class of functions �λ�x
 θ��
θ ∈ �	, the value of θ is unknown. Again, the uncertainty in θ is dealt with
by a maximin approach. Optimal designs for this model are of interest in
their own right and the present results complement recent findings of Huang,
Chang and Wong (1995) and in particular those of Chang and Lin (1997).
As a by-product, a conjecture of Chang and Lin is shown to be true. The
point to notice is that even a slightly inaccurate specification of the efficiency
function can lead to poor designs, as was observed by Dette and Wong (1996).
Consider, by way of illustration, model (1.2) with n = 3 and efficiency function
λ�x
 θ� = exp�−θx�, x ∈ � = �0
∞�. If the true value of θ is 0�3 and one
uses the design that is D-optimal for θ = 0�5, then the resulting efficiency
(cf. Section 2) of the design used is about 0�72. Had one instead assumed that
θ ∈ �0�2
0�8� and used the maximin design given in Theorem 3.1, then the
resulting efficiency would have been 0�84.

Several approaches to finding minimax or maximin designs have been
suggested in the literature. They are, however, only of indirect use in the
present situation. The general algorithm of Wong (1992) for generating min-
imax optimal designs is tailored to linear models with known error struc-
ture and cannot be applied here. The geometric approach of Haines (1995) is
applicable but is restricted to one-parameter models. The geometric method
developed by Imhof and Wong (2000) is helpful in finding candidate designs,
but does not yield analytical solutions and is restricted to the case where �
contains only two points.

This paper is organized as follows. The design setting and the optimality
criteria are described in Section 2. Optimal designs for polynomial models with
various heteroscedastic structures are presented in Section 3. These designs
are given in terms of orthogonal polynomials. Section 4 addresses design prob-
lems that arise from those of Section 3 by imposing an additional restriction
on the design space. In this case, the optimal designs are given in terms
of polynomials whose coefficients are themselves polynomials which satisfy
a three-term recurrence formula similar to that for orthogonal polynomials.
Here the theorem of Perron and Frobenius on primitive matrices is the crucial
tool to verify optimality of a candidate design. In Section 5 it is shown how
the results of Sections 3 and 4 can be used to obtain optimal designs for the
exponential growth models.

2. Preliminaries. An approximate design for model (1.2) is represented
by a probability measure ξ on � . Only approximate nonsequential designs
will be considered. If ξ has finite support, �x1
 � � � 
 xk	 say, then the observa-
tions on y�x� are made at the support points with frequencies proportional
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to ξ�x1�
 � � � 
 ξ�xk�. All observations are assumed to be uncorrelated. Associ-
ated with each observation on y�x� is the Fisher information matrix,

I�x
 θ� = fn�x�fT
n �x�λ�x
 θ�


where fn�x� = �1
 x
 � � � 
 xn�T. The information matrix of a design ξ is given by

M�ξ
 θ� =
∫
I�x
 θ�dξ�x��

For any given value of θ, the locally D-optimal design ξθ is the design that
maximizes detM�ξ
 θ� [cf. Chernoff (1953)]. Obviously, locally optimal designs
depend on θ and so cannot be implemented unless θ is known exactly. In this
paper it will only be assumed that θ belongs to a known parameter set �.
A design will then be judged for each θ ∈ � with respect to what is achievable
for that θ. Specifically, for a given value of θ, the efficiency [Pukelsheim (1993),
page 132] of a design ξ is (

detM�ξ
 θ�
detM�ξθ
 θ�

)1/�n+1�
�

A design ξ∗ is said to be a standardized maximin D-optimal design [cf. Dette
(1997)] if it maximizes the minimal efficiency, or, equivalently,

inf
θ∈�

detM�ξ∗
 θ�
detM�ξθ
 θ�

= sup
ξ

inf
θ∈�

detM�ξ
 θ�
detM�ξθ
 θ�

�(2.1)

An optimal k-point design is a design that is optimal among all designs with k
support points. Note that the optimality criterion defined by (2.1) is the max-
imin analog to the Bayesian �1-criterion of Dette and Wong (1996).

The standardized maximin design is to be distinguished from the (non-
standardized) maximin D-optimal design, which maximizes inf θ∈� detM�ξ
 θ�.
This criterion reflects a cautious approach and judges a design by its behavior
in the worst case. See Pronzato and Walter (1988) for a comparison of the two
maximin concepts.

3. Maximin designs for heteroscedastic polynomial models. This
section is concerned with optimal designs for model (1.2) with error structure
modeled by efficiency functions of the following form:

1. λ�x
 θ� = exp�−θx�, x ∈ �0
∞�, θ > 0

2. λ�x
 θ� = exp�−θx2�, x ∈ �, θ > 0

3. λ�x
α
β� = �1 − x�α�1 + x�β, x ∈ �−1
1�, α
β > 0.

The set of competing designs is restricted to designs with minimum
support, that is, to designs with n+1 support points, where n is the degree of
the regression polynomial. Recently established results for Bayesian criteria
strongly suggest that one cannot expect closed form solutions to the design
problem without that restriction; see, for example, Dette and Neugebauer
(1997). Pukelsheim and Wilhelm (1995) pointed out that designs with as few
support points as possible may well be of particular interest from a practical
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point of view. Moreover, the numerical examples in Section 5 suggest that an
optimal �n+ 1�-point design is also optimal among all designs, provided that
the domain in which the nonlinear parameter is known to lie is not too large.

Theorem 3.1. Consider model (1.2) with � = �0
∞� and λ�x
 θ� =
exp�−θx�. Let � be a nonempty compact subset of �0
∞� and θmin = min�,
θmax = max�, θmin < θmax. Let L

�1�
n �x� denote the generalized Laguerre poly-

nomial of degree n orthogonal with respect to the weight xe−x on �0
∞�. Then
the standardized maximin D-optimal �n + 1�-point design with respect to �
puts equal masses at the zeros of

xL
�1�
n

(
θmax − θmin

log θmax − log θmin
x

)
�

Remark 3.1. The standardized maximin D-optimal �n + 1�-point design
for model (1.2) with � = � and λ�x
 θ� = exp�−θx2�, 0 < θmin ≤ θ ≤ θmax puts
equal masses at the zeros of

Hn+1

(
x

√
θmax − θmin

log θmax − log θmin

)



where Hn+1�x� denotes the Hermite polynomial of degree n+ 1. This follows
from Theorem 3.1 by a symmetry argument and the relation between Laguerre
and Hermite polynomials.

Remark 3.2. A simple calculation based on the monotonicity of the effi-
ciency function shows that in the situation of Theorem 3.1, the nonstandard-
ized maximin D-optimal design puts equal masses at the zeros of xL�1�

n �θmaxx�.

Theorem 3.2. Consider model (1.2) with � = �−1
1� and λ�x
α
β� =
�1 − x�α+1 �1 + x�β+1. Let � ⊂ �−1
∞�2 be a compact convex body and let �
denote the boundary of �. Let P

�α
β�
n+1 �x� denote the Jacobi polynomial of degree

n+1 orthogonal with respect to the weight �1−x�α�1+x�β on �−1
1�. Then the
standardized maximin D-optimal �n + 1�-point design with respect to � puts

equal masses at the zeros of P
�α∗
 β∗�
n+1 �x�, where �α∗
 β∗� ∈ �−1
∞�2 maximizes

min
�u
 v�∈�

n+1∏
k=1

(
k+ α

k+ u

)k+u(
k+ β

k+ v

)k+v(
n+ 1 + k+ u+ v

n+ 1 + k+ α+ β

)n+1+k+u+v
�

In general, the optimal parameters α∗ and β∗ in Theorem 3.2 will have to be
determined numerically. It is all the more remarkable that in the case where
� is an interval of the form �αmin
 αmax�2, the solution to the maximin problem
turns out to be particularly simple.
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Theorem 3.3. Suppose that, in the situation of Theorem 3.2, � =
�αmin
 αmax�2, 0 < αmin < αmax. Let P

�γ�
n+1�x� denote the ultraspherical poly-

nomial of degree n + 1 orthogonal with respect to the weight �1 − x2�γ− 1
2 on

�−1
1�. Then the standardized maximin D-optimal �n + 1�-point design with
respect to � puts equal masses at the zeros of

P

(
1
2 �αmin+αmax+1�

)
n+1 �x��

To compare the maximin designs with optimal designs obtained by a
Bayesian approach consider the setting of Theorem 3.1 with � = �1�0
2�5�
and the Bayesian criterion

��ξ� =
∫
�

(
detM�ξ
 θ�
detM�ξθ
 θ�

)1/�n+1�
dπ�θ��

Here ξθ is the locally D-optimal design and π, the prior distribution, is taken
to be uniform on �. The �-optimal �n+1�-point designs are given in Dette and
Wong (1996). Table 1 shows for n = 2
3
4 the design points, the minimum
efficiency and the average efficiency of the maximin and the �-optimal �n+1�-
point design. The performance of the Bayesian designs with respect to the
minimax criterion agrees with the general observations of Pronzato and Walter
(1988). The minimax designs are in these cases nearly �-optimal.

In the situation of Theorem 3.3, the maximin designs coincide with the
Bayesian D-optimal design with respect to the uniform prior on �. If � con-
tains only one point; that is, if the heteroscedastic structure of the underly-
ing model is completely known, then the maximin designs coincide with the
well-known D-optimal designs for weighted polynomial regression [see e.g.
Proposition VI.6 in Pázman (1986)].

The proofs of Theorems 3.1 through 3.3 are similar and therefore only
Theorem 3.3 will be proved here. That proof requires two auxiliary results,
which are established in the Appendix.

Table 1

Support points, minimum and average efficiencies of minimax designs ξM and Bayesian �-optimal
designs ξB for model (1.2) with � = �0
∞�, λ�x
 θ� = exp�−θx�, θ ∈ � = �1�0
2�5�

n �M min-eff(�M ) �(�M )

2 0.0 0.775 2.891 0.813 0.935
3 0.0 0.572 2.019 4.740 0.732 0.905
4 0.0 0.454 1.571 3.501 6.691 0.660 0.877

n �B min-eff(�B) �(�B)

2 0.0 0.725 2.704 0.769 0.939
3 0.0 0.535 1.889 4.434 0.675 0.911
4 0.0 0.425 1.470 3.275 6.259 0.591 0.885
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Lemma 3.1. Let y
�α
β�
1 < y

�α
β�
2 < · · · < y

�α
β�
n denote the zeros of the Jacobi

polynomial P
�α
β�
n �y�. Then{(
n∏

k=1

(
1 − y

�α
β�
k

)



n∏
k=1

(
1 + y

�α
β�
k

))
� α
β > −1

}

=
{(

n∏
k=1

�1 − xk�

n∏

k=1

�1 + xk�
)
� − 1 < x1 < · · · < xn < 1

}
�

Lemma 3.2. Let n ∈ � and s
 t ≥ 0. Then

n∏
k=1

(
k+ �s+ t�/2

k+ s

)k+s( k+ t

k+ �s+ t�/2
)k+t( n+ k+ 2s

n+ k+ s+ t

)n+k+2s

≥ 1

with equality if and only if s = t.

Proof of Theorem 3.3. Note first that when ξ
�α
β�
∗ denotes the locally

D-optimal design for �α
β�, then

detM�ξ�α
β�∗ 
α
β�

= 2�n+1��n+2+α+β�
n∏

k=1

kk
n+1∏
k=1

�k+ α�k+α�k+ β�k+β
�n+ 1 + k+ α+ β�n+1+k+α+β 


see Dette and Wong (1996), Lemma 3.1. Now let ξ be an arbitrary �n+1�-point
design with support points x0
 x1
 � � � 
 xn and weights w0
w1
 � � � 
wn. Then,
by Lemma 5.1.3 in Silvey (1980),

detM�ξ
α
β� ≤ 1
�n+ 1�n+1

n∏
k=0

�1 − xk�α+1�1 + xk�β+1 ∏
0≤µ<ν≤n

�xµ − xν�2

with equality if and only if wk = 1/�n+1� for k = 0
 � � � 
 n. One may, of course,
assume that x0 > −1 and xn < 1. In view of Lemma 3.1, there exist constants
α′ = α′�ξ� > −1 and β′ = β′�ξ� > −1 such that the zeros y0
 y1
 � � � 
 yn of
P

�α′
 β′�
n+1 �y� satisfy

n∏
k=0

�1 − xk� =
n∏

k=0

�1 − yk�

n∏

k=0

�1 + xk� =
n∏

k=0

�1 + yk��

It therefore follows by Szegö (1975), Theorems 6.7.1 and 6.71 and equations
(4.1.1), (4.1.4) and (4.21.6) that

n∏
k=0

�1 − xk�α+1�1 + xk�β+1 ∏
µ<ν

�xµ − xν�2

≤
n∏

k=0

�1 − xk�α−α
′ �1 + xk�β−β

′
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×
n∏

k=0

�1 − yk�α
′+1�1 + yk�β

′+1 ∏
µ<ν

�yµ − yν�2

= 2�n+1��n+2+α+β�
n+1∏
k=1

kk�k+ α′�k+α�k+ β′�k+β
�n+ 1 + k+ α′ + β′�n+1+k+α+β �

Consequently,

min
�α
β�∈�

detM�ξ
α
β�
detM�ξ�α
β�∗ 
α
β�

≤ min
�α
β�∈�

H�α
β
 α′
 β′�
(3.1)

where

H�α
β
u
 v� =
n+1∏
k=1

(
k+ u

k+ α

)k+α( k+ v

k+ β

)k+β

×
(
n+ 1 + k+ α+ β

n+ 1 + k+ u+ v

)n+1+k+α+β
�

Moreover, there is equality in (3.1) if and only if ξ puts equal masses at the
zeros of P�α′
 β′�

n+1 �x�.
Let α∗ = 1

2�αmin + αmax�. A brief calculation shows that

min�H�αmin
 αmax
 α
′
 β′�
H�αmax
 αmin
 α

′
 β′�	

< H

(
αmin
 αmax


1
2�α′ + β′�
 1

2�α′ + β′�
)(3.2)

unless α′ = β′, and

H
(
αmin
 αmax


1
2�α′ + β′�
 1

2�α′ + β′�
)
< H

(
αmin
 αmax
 α

∗
 α∗)(3.3)

unless 1
2�α′ + β′� = α∗. It is straightforward to verify that logH�α
β
 α∗
 α∗�

is a strictly concave function of �α
β�. The minimum subject to �α
β� ∈
� is therefore attained at some extreme point of �, that is at �αmin
 αmin�,
�αmin
 αmax�, �αmax
 αmin� or �αmax
 αmax�. Obviously, H�αmin
 αmax
 α

∗
 α∗� =
H�αmax
 αmin
 α

∗
 α∗�, and it follows from Lemma 3.2 that

H�αmin
 αmin
 α
∗
 α∗�

H�αmax
 αmin
 α
∗
 α∗� > 1


H�αmax
 αmax
 α
∗
 α∗�

H�αmax
 αmin
 α
∗
 α∗� > 1�

Hence,

min
�α
β�∈�

H�α
β
 α∗
 α∗� = H�αmin
 αmax
 α
∗
 α∗��(3.4)

Combining (3.1) through (3.4), one obtains that

min
�α
β�∈�

detM�ξ
α
β�
detM�ξ�α
β�∗ 
α
β�

≤ H�αmin
 αmax
 α
∗
 α∗�
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with equality if and only if ξ puts equal masses at the zeros of

P
�α∗
 α∗�
n+1 �x� = ��2α∗ + 1�

��α∗ + 1�
��n+ α∗ + 2�
��n+ 2α∗ + 2�P

(
α∗+ 1

2

)
n+1 �x��

✷

4. Maximin designs for heteroscedastic polynomial models on
restricted design spaces. This section takes up the design problem of
Theorem 3.1. Instead of the unbounded design space � = �0
∞�, the design
space will now be a compact interval.

Again, let L�1�
n �x� denote the generalized Laguerre polynomial of degree n.

Theorem 4.1. Consider model (1.2) with � = �0
 b� and λ�x
 θ� =
exp�−θx�. Let � be a nonempty compact subset of �0
∞� and θ∗ = max�.
Define polynomials Ck�u� recursively by C−1�u� = 0, C0�u� = 1 and

b�k+ 1��k+ 2�Ck+1�u�= �k�k+ 3 + bθ∗� − u�Ck�u�
+ �n− k�θ∗Ck−1�u�

(4.1)

for k = 0
 � � � 
 n−1. Let u∗ and x∗ denote the largest zeros of Cn�u� and L�1�
n �x�,

respectively.

(a) If x∗ ≤ bθ∗, then the maximin D-optimal design with respect to � puts

equal masses at the zeros of xL
�1�
n �θ∗x�. A sufficient condition for x∗ ≤ bθ∗ to

hold is that n ≤ bθ∗/4 + 1/2.
(b) If x∗ > bθ∗, then the maximin D-optimal design with respect to � puts

equal masses at the n+ 1 zeros of

x�b− x�
n−1∑
k=0

Ck�u∗�xk�

A sufficient condition for x∗ > bθ∗ to hold is that n ≥ 4bθ∗/π2 + 3/4.

Remark 4.1. The corresponding design problem for model (1.2) with � =
�−b
 b� and λ�x
 θ� = exp�−θx2� can be dealt with along similar lines. The
details are omitted.

Remark 4.2. Chang and Lin (1997) conjectured that for polynomial regres-
sion on �−1
1� with known efficiency function λ�x� = exp�αx�, there is a crit-
ical value α∗ = α∗�n� such that if S denotes the support of the D-optimal
design, then −1 �∈ S and +1 ∈ S if α > α∗; �−1
+1	 ⊂ S if �α� ≤ α∗;
and −1 ∈ S and +1 �∈ S if α < −α∗. That this is indeed the case follows
from Theorem 4.1. Choose � = �θ	 = �−α	. Note that the theorem is eas-
ily extended to arbitrary intervals � = �a
 b� and to negative θ. If ξ�x� is
D-optimal for λ�x� = exp�−θx�, x ∈ �0
 b− a�, then ξ�x − a� is D-optimal for
λ�x� = exp�−θx�, x ∈ �a
 b� and ξ�−x− a� is D-optimal for λ�x� = exp�+θx�,
x ∈ �−b
−a�. It now follows that the conjecture is correct and the critical
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value is the largest zero of L�1�
n �2α�. This ties in with the numerical values in

Table 2 of Chang and Lin (1997).
Similarly, the critical value α∗ in Table 4 of Chang and Lin (1997) is the

smallest zero of Hn+1�� − α�1/2�.

Remark 4.3. Equation (4.1) is reminiscent of the three-term recurrence
formula for orthogonal polynomials; see for example, Theorem 3.2.1 in Szegö
(1975). However, the polynomials C0�u�
 � � � 
 Cn�u� do not form an orthogo-
nal system, for if they did, the coefficients of Ck+1�u� and Ck−1�u� in (4.1)
would have different signs. Moreover, in general the polynomials Fn−1�x� =∑n−1

k=0 Ck�u∗�xk, n = 1
2
 � � � 
 do not form an orthogonal system either. This
can also be verified with Theorem 3.2.1 in Szegö (1975).

Proof of Theorem 4.1. The first assertion of (a) is an immediate conse-
quence of Theorem 3.1. If n ≤ bθ∗/4 + 1/2, then, by inequality (13) in Sansone
(1959), page 316, x∗ < 4n − 2 ≤ bθ∗, which completes the proof of (a). The
second assertion of (b) follows from inequality �201� in Sansone [(1959), page
317] and a bound for the zeros of Bessel’s function J1�x� [see Watson (1952),
page 492].

Now suppose that x∗ > bθ∗. In order to determine the D-optimal design ξ∗

for the efficiency function λ�x
 θ∗� = exp�−θ∗x� note first that this design must
have exactly n + 1 support points, say x0 < x1 < · · · < xn, and that it must
put equal masses at these points. This follows from Theorem 3.6 in Karlin
and Studden [(1966), page 333] since �exp�θ∗x�
1
 x
 · · · 
 x2n	 is a Chebyshev
system on �0
 b�. Hence

detM�ξ∗
 θ∗� = exp�−θ∗�x0 + · · · + xn��
�n+ 1�n+1

∏
0≤µ<ν≤n

�xµ − xν�2�(4.2)

Obviously, x0 = 0. If xn < b, then an argument similar to that of Szegö [(1975),
page 141] would yield that x1
 � � � 
 xn are the zeros of L�1�

n �θ∗x�. This would
imply that xn = x∗/θ∗ > b, which is impossible. Thus xn = b. It then follows
from (4.2) on differentiating with respect to x1
 � � � 
 xn−1 that the polynomial
F�x� = �x− x1� · · · �x− xn−1� satisfies the differential equation

x�b− x�F′′�x� + �2b− 4x− θ∗x�b− x�� + �ρ− �n− 1�θ∗x�F�x� = 0(4.3)

for some ρ ∈ �. WriteF�x� = ∑n−1
k=0 qkx

k and q = �q0
 q1
 � � � 
 qn−1�T. Then (4.3)
is equivalent to

Aq = ρq
(4.4)
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where

A =




s0 t0 0 0 � � � 0 0 0

r1 s1 t1 0 � � � 0 0 0

0 r2 s2 t2 � � � 0 0 0

���
���

���
� � �

� � �
� � �

���
���

0 0 0 0 � � � rn−2 sn−2 tn−2

0 0 0 0 � � � 0 rn−1 sn−1




and

rk = �n− k�θ∗ > 0


sk = k�k+ 3 + θ∗b� ≥ 0


tk = −b�k+ 1��k+ 2� < 0�

To determine the coefficient vector q set

B =
((

j
i

)
bj−i

)n−1

i
j=0
�

Making use of the Vandermonde convolution formula [see Riordan (1968),
page 8] one may verify that

P �= BAB−1 =




s̃0 −t0 0 0 � � � 0 0
r1 s̃1 −t1 0 � � � 0 0
0 r2 s̃2 −t2 � � � 0 0
���

���
���

� � �
� � �

���
���

0 0 0 � � � 0 rn−1 s̃n−1




where s̃k = k�k + 3� + �n − 1 − k�θ∗b > 0. Thus P is a nonnegative matrix
and it is easily seen that all the elements of Pn−1 are positive. This means
that P is a primitive matrix. It therefore follows from the theorem of Perron
and Frobenius [Seneta (1981), page 3] that the largest characteristic root of P,
the Perron–Frobenius root, is simple and that there is a corresponding posi-
tive characteristic vector, say p. Note that all the characteristic roots of the
Jacobi matrix P are real as −tkrk+1 > 0 for all k. Moreover, every positive
characteristic vector of P is proportional to p. The vector Bq is, by (4.4), a
characteristic vector of P. The components of Bq are the coefficients in the
Taylor expansion of F�x� around x = b. Consequently, as all the zeros of F�x�
are less than b, Bq must be positive. Hence Bq is proportional to p.

On the other hand, it is easily seen by induction that

Cn�u� =
det�uIn −A�
t0t1 · · · tn−1
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where In denotes the unit matrix of order n. Thus u∗, the largest zero of Cn�u�,
is equal to the Perron–Frobenius root of P. Let c = �C0�u∗�
 � � � 
 Cn−1�u∗��T.
Then Ac = u∗c, and so PBc = u∗Bc. Since u∗ is a simple characteristic root
of P, Bc must be proportional to p, too. Therefore, q and c are proportional,
and it follows that the design points x1
 � � � 
 xn−1 are the zeros of F�x� =
q0
∑n−1

k=0 Ck�u∗�xk.
To complete the proof note that according to the basic composition formula

[Karlin and Studden (1966), page 14] for any design ξ,

detM�ξ
 θ� =
∫
· · ·
∫

y0<···<yn

e−θ
∑
yk�det�fn�y0�
 � � � 
 fn�yn���2 dξ�y0� · · ·dξ�yn�


showing that inf θ∈� detM�ξ
 θ� = detM�ξ
 θ∗�. Hence inf θ detM�ξ∗
 θ� ≥
inf θ detM�ξ
 θ� with equality if and only if ξ = ξ∗. ✷

Remark 4.4. The matrix A in the proof of Theorem 4.1 is a Jacobi matrix
with negative super- and positive subdiagonal entries so that the theorem of
Perron and Frobenius cannot be applied directly. See Arscott (1961) for some
results on matrices of that type.

5. Maximin designs for exponential growth models. Consider the
growth model

y�x� = exp�−θx�
n∑

k=0

βkx
k + ε
 x ∈ �(5.1)

where ε is normally distributed with constant variance and θ ∈ � =
�θmin
 θmax�, 0 < θmin < θmax. Suppose interest is in estimating β0
 � � � 
 βn

as well as θ. For this model, it was shown by Dette and Wong (1996) that the
determinant of the Fisher information matrix of a design ξ is proportional to

detN�ξ
 θ� = det
∫
fn+1�x�fT

n+1�x� exp�−2θx�dξ�x��
The locally D-optimal design for θ
β0
 � � � 
 βn depends therefore only on θ but
not on β0
 � � � 
 βn. The optimal designs for model (5.1) can now be obtained as
an application of Theorems 3.1 and 4.1.

Theorem 5.1. Let x∗ denote the largest zero of the generalized Laguerre

polynomial L
�1�
n+1�x�.

(a) If � = �0
∞� or � = �0
 b� with b ≥ x∗/�2θmax�, then the standardized
maximin D-optimal �n+ 2�-point design for the growth model (5.1) puts equal
masses at the zeros of

xL
�1�
n+1

(
2

θmax − θmin

log θmax − log θmin
x

)
(5.2)

and the nonstandardized maximin D-optimal design puts equal masses at the

zeros of xL
�1�
n+1�2θmaxx�.
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(b) If � = �0
 b� with b < x∗/�2θmax�, let C−1�u� = 0, C0�u� = 1 and, for
k = 0
 � � � 
 n,

b�k+ 1��k+ 2�Ck+1�u� = �k�k+ 3 + 2bθmax� − u�Ck�u�
+2�n+ 1 − k�θmax Ck−1�u��

Denote the largest zero of Cn+1�u� by u∗. Then the maximin D-optimal design
puts equal masses at the zeros of

x�b− x�
n∑

k=0

Ck�u∗�xk�

Proof. It remains to consider the case where � = �0
 b� and b ≥ x∗/
�2θmax�. Let 61 and 62 denote the set of all designs on �0
 b� and �0
∞�, respec-
tively. Then, for every θ ∈ �, the support of the locally D-optimal design in 62
is, by Theorem 4.1, contained in �0
 b�. Let ξ∗ denote the design that puts equal
masses at the zeros of the polynomial (5.2). An application of the mean value
theorem to the function log θ shows that

θmax − θmin

log θmax − log θmin
≤ θmax


which shows that ξ∗ ∈ 61. Hence, again by Theorem 4.1,

min
θ

detN�ξ∗
 θ�
maxη∈61

detN�η
 θ� = max
ξ∈62

min
θ

detN�ξ
 θ�
maxη∈62

detN�η
 θ�

= max
ξ∈61

min
θ

detN�ξ
 θ�
maxη∈61

detN�η
 θ� � ✷

To assess the potential efficiency loss caused by restricting the number
of support points, consider model (5.1) with n = 0, � = �0
∞� and 0 <
θmin ≤ θ ≤ θmax. Suppose that β0 is known. It is then easily checked that
the standardized maximin D-optimal one-point design puts all its mass at
log�θmax/θmin�/�θmax −θmin�. But to the model at hand one may also apply the
geometric approach of Haines (1995). This yields that the one-point design
is in fact optimal among all designs, not only among the one-point designs,
provided that θmax/θmin ≤ �2 + √

3� ≈ 3�73. It turns out that when the prior
knowledge of θ is somewhat less accurate, that is, when 3�73 < θmax/θmin <
5, say, then the efficiency loss caused by using the optimal one-point design
instead of the optimal design is still small, although the two designs look
quite different. If θmax/θmin gets even larger, the efficiency loss does become
noticeable, but the minimum efficiency of the optimal designs becomes low,
too. Table 2 shows, for selected parameter intervals �θmin
 θmax�, the optimal
one-point design, the optimal design and their minimum efficiencies, where
min-eff �ξ� = minθ e

2θ2
∫
x2e−2θx dξ�x�.

In light of this, it seems likely that there exist constants cn > 1 such that
the optimal �n+2�-point designs in Theorem 5.1 are optimal among all designs
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Table 2

Optimal one-point designs ξ and optimal designs ξ∗ for model (5.1) with n = 0, � = �0
∞� and
β0 known*

[�min, �max] � �* min-eff (�) min-eff (�*)

�1�0
3�73� 0.482(1) 0.482(1) 0.655 0.655
�1�0
4�0� 0.462(1) 0.427(0.866) 0.839(0.134) 0.626 0.627
�1�0
5�0� 0.402(1) 0.263(0.615) 0.968(0.385) 0.535 0.570
�1�0
6�0� 0.358(1) 0.199(0.565) 0.993(0.435) 0.463 0.547

*The support points are given with corresponding weights in parentheses.

as long as θmax ≤ cnθmin. The problem of deriving explicit expressions for cn
or useful bounds remains open.

APPENDIX

Proof of Lemma 3.1. Suppose that n ≥ 2. Let

S1 =
{( n∏

k=1

(
1 − y

�α
β�
k

)



n∏
k=1

(
1 + y

�α
β�
k

))
� α
β > −1

}



S2 =
{( n∏

k=1

�1 − xk�

n∏

k=1

�1 + xk�
)
� − 1 < x1 < · · · < xn < 1

}



S3 =
{�u
 v�� u
 v > 0
 u1/n + v1/n < 2

}
�

Obviously, S1 ⊂ S2. If �u
 v� ∈ S2, then u
 v > 0 and in view of the inequality
of the arithmetic and geometric means,

u1/n + v1/n =
n∏

k=1

�1 − xk�1/n +
n∏

k=1

�1 + xk�1/n

<
1
n

n∑
k=1

�1 − xk� +
1
n

n∑
k=1

�1 + xk�

= 2�

Thus S2 ⊂ S3. To see that S3 ⊂ S1 note first that [cf. Szegö (1975), equations
(4.1.1), (4.1.4), (4.21.6)]

n∏
k=1

(
1 − y

�α
β�
k

)
= P

�α
β�
n �1�
l
�α
β�
n

= 2n
n∏

k=1

k+ α

n+ k+ α+ β



n∏
k=1

(
1 + y

�α
β�
k

)
= 2n

n∏
k=1

k+ β

n+ k+ α+ β
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where l
�α
β�
n denotes the leading coefficient of P�α
β�

n �x�. Now fix �u
 v� ∈ S3.
Then for every α > −1 there is a unique β�α� > −1 such that

∏n
k=1

(
1 − y

�α
β�α��
k

)
∏n

k=1

(
1 + y

�α
β�α��
k

) = u

v
�

As β�α� depends continuously on α, so does y
�α
β�α��
k ; see Szegö (1975),

page 115. Moreover,

lim
α→−1

β�α� = −1
 lim
α→∞β�α� = ∞


lim
α→∞

β�α�
α

= lim
α→∞

∏n
k=1�1 + k/α�1/n∏n

k=1�1 + k/β�α��1/n
( v
u

)1/n

=
( v
u

)1/n
�

Hence,

lim
α→−1

n∏
k=1

(
1 − y

�α
β�α��
k

)
= 0
 lim

α→−1

n∏
k=1

(
1 + y

�α
β�α��
k

)
= 0

and

lim
α→∞

(
n∏

k=1

(
1 − y

�α
β�α��
k

)1/n
+

n∏
k=1

(
1 + y

�α
β�α��
k

)1/n
)

= 2 lim
α→∞

�1 + �v/u�1/n�∏n
k=1�1 + k/α�1/n∏n

k=1��n+ k�/α� + 1 + β�α�/α�1/n
= 2�

It follows that there is some α > −1 such that
∏n

k=1

(
1 − y

�α
β�α��
k

)
= u and∏n

k=1

(
1 + y

�α
β�α��
k

)
= v. ✷

Proof of Lemma 3.2. Fix s ≥ 0 and set for t ≥ 0, n ∈ �,

gn�t� =
n∏

k=1

(
k+ �s+ t�/2

k+ s

)k+s( k+ t

k+ �s+ t�/2
)k+t( n+ k+ 2s

n+ k+ s+ t

)n+k+2s

�

Obviously, gn�s� = 1. To see that gn�t� > 1 for t �= s consider

hn�t� = log
gn�t�
gn−1�t�

= log

[
�n+s�n+s�n+t�n+t
�n+�s+t�/2�2n+s+t

(
2n−1+2s

2n−1+s+t

)2n−1+2s(n+s+t

n+2s

)n+2s
]
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where g0�t�=1. If t>s, then

h′
n�t� =

�s−t��n−1�
�n+s+t��2n−1+s+t� +log

2n+2t
2n+s+t

> �t−s�
(

1−n

�n+s+t��2n−1+s+t� +
4n+3s+t

2�2n+s+t�2
)

> 0


the first inequality following from the fact that logy>y−1− 1
2�y−1�2 for y>1.

Similarly, if 0≤t<s, then h′
n�t�<0. As hn�s�=0, it now follows that hn�t�>0

for all t �=s. Thus gn�t�=exp�∑n
k=1hk�t��>1 for t �=s. ✷
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