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We describe a hierarchy of exponential families which is useful for
distinguishing types of graphical models. Undirected graphical models with
no hidden variables are linear exponential families (LEFs). Directed acyclic
graphical (DAG) models and chain graphs with no hidden variables, includ-
ing DAG models with several families of local distributions, are curved
exponential families (CEFs). Graphical models with hidden variables are
what we term stratified exponential families (SEFs). A SEF is a finite union
of CEFs of various dimensions satisfying some regularity conditions. We
also show that this hierarchy of exponential families is noncollapsing with
respect to graphical models by providing a graphical model which is a CEF
but not a LEF and a graphical model that is a SEF but not a CEF. Finally,
we show how to compute the dimension of a stratified exponential family.
These results are discussed in the context of model selection of graphical
models.

1. Introduction. A graphical model is a family of probability distribu-
tions specified via a set of conditional independence constraints that a graph
represents or via a parametric definition dictated by a graph. The wide appli-
cability of graphical models to many problems in statistics is due to several
features. Graphical models provide a language to facilitate communication
between a domain expert and a statistician, provide flexible and modular def-
initions of families of probability distributions and are amenable to scaleable
computational techniques [e.g., Pearl (1988), Lauritzen (1996)]. Furthermore,
graphical models based on directed acyclic graphs (DAGs), which are called
DAG models or Bayesian networks, have numerous uses including data anla-
ysis [e.g., Whittaker (1990), Spiegelhalter and Thomas (1998)], modeling of
causal relationships [e.g., Spirtes, Glymour and Scheines (1993), Pearl (2000)],
and representing and reasoning about uncertainty in expert systems [e.g.,
Cowell, Dawid, Lauritzen and Spiegelhalter (1999)]. Specific applications of
graphical models include diagnosis and troubleshooting [e.g., Olesen, Kjaerulff,
Jensen, Jensen, Flack, Andreassen and Andersen (1989); Shwe, Middleton,
Heckerman, Henrion, Horvitz, Lehmann and Cooper (1991); Heckerman,
Breese and Rommelse (1995)], medical monitoring [e.g., Berzuini, Bellazzi,
Quaglini and Speigelhalter (1992)], genetic counseling [e.g., Harris (1990)],
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information retrieval [e.g., Turtle and Croft (1991), Fung and Del Favero
(1995)], natural language processing [e.g, Eizirik, Barbosa andMendes (1993)],
weather forecasting [e.g., Abramson, Brown, Edwards, Murphy and Winkler
(1996)], manufacturing [e.g., Gavard, Bhadeshia, MacKay and Suzuki (1996)],
digital communication [e.g., McEliece, MacKay and Cheng (1998), Frey (1978)],
and machine vision [Sarkar and Boyer (1993), Kumar and Desai (1996)].

We describe a hierarchy of exponential families which is useful for dis-
tinguishing types of graphical models. Undirected graphical models with no
hidden variables are known to be linear exponential families (LEFs) [e.g.,
Lauritzen (1996)]. Directed acyclic graphical models and chain graphs with
no hidden variables, including DAG models with several families of local dis-
tributions, are shown to be curved exponential families (CEFs). Graphical
models with hidden variables are what we term stratified exponential families
(SEFs). A SEF is a finite union of CEFs of various dimensions satisfying some
regularity condition. We also show that this hierarchy of exponential families
is noncollapsing with respect to graphical models by providing a graphical
model which is a CEF but not an LEF and a graphical model that is a SEF
but not a CEF. Finally, we show how to compute the dimension of a stratified
exponential family.

Our work is motivated by results on model selection within linear and
curved exponential families. A Bayesian approach to model selection is to com-
pute (via integration) the probability that the data is generated by a model
given a prior over the parameters and to select the model that maximizes
this probability. We call this probability the marginal likelihood. Although, in
principle, this Bayesian approach is appealing, in practice it is often impossi-
ble to evaluate the integral (even by sampling techniques) when the number
of parameters is large. When the dataset consists of many cases, asymptotic
results for approximating the marginal likelihood are useful.

Schwarz (1978) considered the problem of evaluating the marginal likeli-
hood when a model is an affine subspace of the natural parameter space of
an exponential family. He derived an asymptotic formula for the log marginal
likelihood, logP�Data �Model� = L�θ̂�N−d/2 logN+Op�1�, whereL is the log
likelihood, θ̂ is the maximum likelihood estimator, d is the dimension of the
affine subspace and N is the sample size. This formula has become known
as the Bayesian information criteria (BIC). We note that Schwarz’s origi-
nal result applies to the undirected graphical models discussed in Section 2
because these models define a linear subspace of the natural parameter
space.

Haughton (1988) established, among other results, that BIC, under some
regularity assumptions, is an Op�1� asymptotic approximation of the log of
the marginal likelihood for curved exponential families. The main regular-
ity assumption of her work, and of Schwarz’s work, is that the prior distri-
bution expressed in a local coordinate system near the maximum likelihood
solution is bounded and bounded away from zero. Other regularity assump-
tions are used to insure that with sufficient data, a unique model is selected
with high probability. When these assumptions are acceptable, Haughton’s
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results on model selection apply to all graphical models discussed in Section 3,
since these graphical models are shown to be curved exponential families. In
particular, these results on model selection apply to DAG models with several
families of local distributions including decision trees and leaky noisy-or dis-
tributions. Several of these families do not have a known closed-form formula
for the marginal likelihood.

We note that although researchers have been using BIC for selecting mod-
els among graphical models with hidden variables, especially mixture models
[e.g., Fraley and Raftery (1998)], this methodology has not yet been estab-
lished as an asymptotic approximation of a Bayesian procedure as it has for
CEFs. In Section 4, we show that graphical models with hidden variables are
SEFs and usually not CEFs. This result implies that the justifications given
by Schwartz and Haughton for BIC do not apply to graphical models with
hidden variables and that a generalization of their arguments is needed. We
offer stratified exponential families as a natural class for which the validity
of BIC might be investigated.

2. Linear exponential families. In this background section we give a
definition of linear exponential families (LEFs) and discuss the well-known
representation of undirected graphical models as LEFs [e.g., Barndorff-Nielsen
(1978), Lauritzen (1996), respectively].

2.1. Definition of linear exponential families. A family (or model) is a set
of probability density functions. A probability density in an exponential family
is given by

p�x�η� = e�η� t�x�	−ψ�η��(1)

where x is an element of a sample space χ with a dominating measure µ and
t�x� is a sufficient statistic defined on χ taking values in Rk with an inner
product ��� �	. The sample space χ is typically either a discrete set, Rn, or a
product of these. We use the notion of a variable to describe the product sample
space. A variable has a domain which is either finite or R and the product
sample space is the Cartesian product of the domains for the variables of
interest. The quantity ψ�η� is the normalization constant.

Every probability distribution for a finite sample space χ belongs to an
exponential family. For example, a sample space that consists of four outcomes
can be written in the form of (1) by choosing t�x� and η as follows: t�x� =
�t1�x�� t2�x�� t3�x�� where ti�x� = 1 if the outcome of x is i, 1 ≤ i ≤ 3 and
zero otherwise, and ηi = log�wi/w0� where wi is the probability of outcome i,
1 ≤ i ≤ 3 and w0 = 1−∑3

i=1wi is the probability of the fourth outcome.
When the vector η has k coordinates and when p�x�η� cannot be repre-

sented with a parameter vector smaller than k, then the representation ismin-
imal and the order (or dimension) of this family is k, and the parameters are
called natural parameters. It is known that this order is unique for each family.
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The natural parameter space is given by

N =
{
η ∈ Rk

∣∣∣∣ ∫ et�x�η−ψ�η�dµ�x� <∞
}
�

The set of probability distributions whose densities have the form (1) are
denoted by � . If for each η in N there exists Pη in � , then � is said to
be a full exponential family; if, in addition,N is an open subset of Rk, then �
is said to be a linear exponential family. The name “linear exponential family”
comes from the fact that the log densities form a vector space over R where
the coordinates of t�x�, called the canonical statistics, are the basis of the
vector space and its dimension is the order of the family. Linear exponential
families include many common distribution functions, such as multivariate
Normal and discrete distributions. (A linear exponential family in a minimal
representation is often called a regular exponential family.)

A subfamily of a linear exponential family is a subset �0 of � . A subfamily
can be described by a mapping f � → N which defines �0 via N0 = �f�θ��
θ ∈ ��. When f is a linear mapping of rank p, and � is an open set, a new
linear exponential family is formed of order k − p. In other words, a linear
transformation f imposes p independent linear constraints on the parameters
and these constraints can be used to reparameterize the family with k − p
natural parameters. In Sections 3 and 4, we discuss exponential families that
are formed by nonlinear transformations f.

2.2. Undirected graphical models. In this section, we discuss the repre-
sentation of undirected graphical models as linear exponential families.

Let G be an undirected graph such that each vertex i in the vertex set
corresponds to a variable xi. We consider three cases: (1) all xi are discrete;
(2) all are continuous and their joint density is a multivariate nonsingular
Gaussian; (3) some are continuous and some are discrete with a joint condi-
tional Gaussian (CG) distribution. An undirected graphical model w.r.t. G is
the set of probability distribution functions such that all of the saturated inde-
pendence facts implied by the graph hold; that is, xi and xj are conditionally
independent given the remaining variables whenever nodes i and j are not
adjacent in G. Since discrete, multivariate Gaussian, and CG distributions
over a fixed set of variables belong to a linear exponential family and since
saturated independence constraints are linear restrictions when expressed in
terms of the natural parameters, undirected graphical models define linear
exponential families. We now discuss the three cases.

A discrete undirected graphical model is a family of probability distributions
over a finite set U of variables each having a finite domain such that for some
set of pairs of indices ��i� j��, xi and xj are conditionally independent given
U\�xi� xj�. Consider, for example, the graph given by a cycle of size 4 with
variables x1� � � � � x4 arranged clockwise. Then the independence constraints
imposed by this graphical model are that x1 and x3 are conditionally indepen-
dent given �x2� x4�, and that x2 and x4 are conditionally independent given
�x1� x3�. Suppose, for simplicity, that the four random variables are binary
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(having exactly two states) and denote by wi the probability of the joint ith
state of the four binary variables (1 ≤ i ≤ 15) where w0 = 1−∑

wi. Each inde-
pendence constraint translates to four equations of the form wiwj = wkwl.
Dividing each equation by �w0�2 and taking the log, yields eight linear equa-
tions in terms of the natural parameters ηi = logwi/w0. In general, discrete
undirected graphical models are log-affine models which are LEFs [Lauritzen
(1996), page 76).

A Gaussian undirected graphical model is a family of multivariate non-
singular Gaussian distributions in which some of the off-diagonal elements
tij of the precision matrix (the inverse of the covariance matrix) are set to
zero. Note that setting tij to zero is equivalent to requiring that variable xi
and xj are conditionally independent given the remaining variables. Recall-
ing that a multivariate nonsingular Gaussian distribution belongs to a linear
exponential family and the fact that setting the off-diagonal elements of the
precision matrix to zero is equivalent to placing linear restrictions on the natu-
ral parameter space yields the conclusion that Gaussian undirected graphical
models are linear exponential families. For details see Lauritzen [(1996), pages
124–132].

A conditional Gaussian undirected graphical model is a family of con-
ditional Gaussian (CG) distributions over a set of discrete and continuous
variables defined by a set of saturated independence constraints stating that
variables i and j are conditionally independent given the remaining variables.
That CG undirected graphical models can be represented as linear exponen-
tial families is shown in Lauritzen and Wermuth (1989). See also Lauritzen
[(1996), pages 171–175].

3. Curved exponential families. A curved exponential family of dimen-
sion n is defined to be a subfamily of an exponential family of order k such
that N0 ⊂ N is a n-dimensional smooth manifold in Rk. A subfamily of an
exponential family �0 ⊆ � is often described by a mapping f �→N which
defines �0 via N0 = �f�θ��θ ∈ �� and where � is an open set. Alterna-
tively, a subfamily can be described by a set of constraints on S0 given by
N0 = �η ∈ Rn�h�η� = 0� where h Rk → Rk−n. The relationship of these
alternatives and a method, called implicitization, for finding constraints from
a mapping f is discussed in Geiger and Meek (1998).

In this section we recall the definitions of smooth manifolds and show that
DAG models correspond to smooth manifolds and are therefore curved expo-
nential families. We illustrate that there are DAG models which are curved
and not linear exponential families. Conditional Gaussian DAG models and
conditional Gaussian chain graphs are also curved exponential models.

Curved exponential families were studied by Efron who explored geomet-
rical interpretation of various statistical measures using these families [e.g.,
Efron (1978)]. A treatment of this topic is given by Kass and Vos (1997). We
study curved exponential models because the standard asymptotic theory is
valid for these models. In particular Haughton’s (1988) results on model selec-
tion apply to all graphical models discussed in this and the previous section.
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3.1. Manifolds. A diffeomorphism f U ⊂ Rn→ Rm is a smooth (C∞) 1–1
function having a smooth inverse. A subsetM of Rn is called a k-dimensional
smooth manifold in Rn if for every point x ∈ M there exists an open set U
in Rn containing x and a diffeomorphism f U ∩M → Rk. When f is only
assumed to be continuous and to have a continuous inverse (namely, a homeo-
morphism), then the setM is called a topological manifold. Since composition
of diffeomorphisms is a diffeomorphism, we get the following proposition.

Proposition 1. If g A ⊂ Rn→ B ⊂ Rn is a diffeomorphism, thenM ⊆ A
is a smooth manifold if and only if g�M� is a smooth manifold and N ⊆ B is
a smooth manifold if and only if g−1�N� is a smooth manifold.

Another way to verify whether a subset of Rn is a smooth manifold is given
by the following theorem [e.g., Spivak (1965)].

Theorem 1. Let A ⊂ Rm be open and let h A → Rm−n be a smooth
function such that h′�x� has rank m− n whenever h�x� = 0. Then h−1�0� is a
n-dimensional smooth manifold in Rm.

Note that the rank of the Jacobian matrix h′ in Theorem 1 is m−n if h has
the form hi�x1� � � � � xm� = xn+i − fi�x1� � � � � xn� for i = 1� � � � �m− n where fi
are smooth functions because in this case the �m − n� ×m matrix h′ factors
as [Q�m−n�×n�Im−n] where Im−n is the identity matrix of size m− n.

3.2. Discrete DAG models. A discrete DAG model B���n�m� is a mapping
Bn�m � ⊂ Rn → Rm where ��n�m and Bn�m are given as follows [Pearl
(1988)]. Let �x1� � � � � xk� be an ordered sequence of variables each having a
finite set of possible values. Let pi be a subset of �x1� � � � � xi−1�, called the
parents set of xi, and let ui = �x1� � � � � xi−1�\pi. Let xji , pji and uji be the
jth value of xi, pi and ui with j ≥ 0. Let �xi�, �pi� and �ui� be the number
distinct possible values for the variable or set of variables. The components of
Bn�m � ⊆ Rn → Rm are defined by θxai �pbi �uci = θxai �pbi , for all a > 0, b ≥ 0 and
c ≥ 0. Note that there are n = ∑

i��xi� − 1��pi� source coordinates denoted by
θxai �pbi andm =∑

i��xi�−1��pi��ui� = �∏i �xi��−1 target coordinates denoted by
θxai �pbi �uci . The set � is the cartesian product of �i�j over i and j where �i�j =
��θx1i �pji � � � � � θx�xi �−1i �pji

��0 < θxki �pji < 1�
∑
k>0 θxki �pji < 1�. The target coordinates

of Bn�m are called the conditional space parameters.

Theorem 2. For every discrete DAG model B���n�m� the set Bn�m��� is
a n-dimensional smooth manifold in Rm.

Proof. Define the components of a function h by hi�a� b� c�θ� = θxai �pbi �uci −
θxai �pbi �u0i where a > 0, b ≥ 0 and c > 0. Thus, h has

∑
i��xi� − 1��pi���ui� − 1� =

m−n components. In other words, h imposes m−n constraints on the target
coordinates θxai �pbi �uci . Note that in light of the definition of h and Bn�m, we have
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h−1�0� = Bn�m���. Also note that h′ has the form [Q�m−n�×n�Im−n], where Im−n
is the identity matrix and so h′ has full rank. Thus, according to Theorem 1,
Bn�m��� is a n-dimensional smooth manifold in Rm. ✷

A second definition of a discrete DAG model B̂ is obtained by defining B̂n�m
with the equations wxv11 �����x

vk
k
= ∏k

i=1 θxbi �pci where x
b
i is equal to x

vi
i and pci is the

cth value of pi obtained by the projection of �xi11 � � � � � xikk � to the coordinates
that correspond to the variables in pi. The mapping Bn�m��� → B̂n�m��� is
a diffeomorphism for positive θ values and so the conclusion of Theorem 2
remains valid under this definition. The components of the image of � under
B̂n�m are called the joint space parameters.

The practical significance of DAG models stems, among other reasons, from
the small number of network parameters compared to the number of joint
space parameters. When the number of network parameters is still too large
because �pi� is too large for some i’s, additional factorizations are usually
introduced. These include decision tree and decision graph models [Friedman
and Goldszmidt (1996); Chickering, Heckerman and Meek (1997)] noisy-or
gates, leaky noisy-or gates, max-gates and causal independence models [Pearl
(1988); Henrion (1987), Heckerman and Breese (1996); Meek and Heckerman
(1997)]. These models share the following characteristic.

For each variable xi in the DAG model, a subset of ki states of pi are
designated as reference states. The components of Bn�m � ⊂ Rn → Rm are
defined by θxai �pbi �uci = fi�θxai �p0

i
� � � � � θ

xai �p
ki−1
i

� for all a > 0, b ≥ ki and c ≥ 0
where fi are smooth functions. We call DAG models defined in this way DAG
models with explicit local constraints. The number of network parameters is
given by n =∑

i��xi� − 1�ki where ki is often much smaller than pi.
When the number of reference states is zero, namely each fi is the constant

function, we get a discrete DAG model. In the case of a noisy-or model, the
reference states are the states where exactly one parent is on and the other
parents are off [see Pearl (1988)]. For leaky noisy-or model, the reference
states also include the state when all the parents of xi are off. For decision
tree models, the reference states are those that correspond to a path from the
root to a leaf in the decision tree; all parents on the path are at a specified
state and all those not on the path are at state zero. Note that for decision
trees, noisy-or and leaky noisy-or models, the functions fi are all polynomial
functions.

Theorem 3. For every discrete DAG model B���n�m� having explicit local
constraints the set Bn�m��� is a n-dimensional smooth manifold in Rm.

Proof. Suppose the local constraints are given by fi. Define the compo-
nents of a function h by

hai� bi� ci�θ� = θxai �pbi �uci − fi
(
θxai �p0

i u
0
i
� � � � � θ

xai �p
ki−1
i u0i

)
�



512 GEIGER, HECKERMAN, KING AND MEEK

where �a > 0, b ≥ 0, c > 0) or �a > 0, b ≥ ki, c = 0). Note that h has∑
i��xi� − 1�[�pi���ui� − 1� + ��pi� − ki�

] = m − n components. The conclusion
now follows from Theorem 1 and the comment that follows. ✷

Recall that for a discrete distribution with u states each associated with
a positive parameter wi such that

∑
i wi = 1, the map ηi = logwi/w0, i =

1� � � � � u − 1 defines a diffeomorphism between the natural parameter space
η and the parameters �wi�u−10 . Consequently, due to Theorem 2, we have
established the following claim.

Theorem 4. Every discrete DAG model B���n�m� with explicit local con-
straints is a curved exponential family of dimension n.

3.3. Gaussian graphical models. The parameters of a multivariate non-
singular Gaussian distribution can be described in various ways. The most
common representation is by the elements of a covariance matrix . and a vec-
tor of means µ. A second representation is by a precision matrix .−1 and µ.
These two representations are related by the diffeomorphism f . → .−1.
A third representation is constructed as follows. Assign a total order to the k
variables. Specify the regression coefficients bi� j of xi given x1� � � � � xi−1 and
the conditional variance and conditional means of xi given x1� � � � � xi−1. The
third representation is called the regression parameterization and is related
to the second representation by a well-known diffeomorphism [(e.g., Shachter
and Kenley 1989)].

A Gaussian DAG model is a family of multivariate nonsingular Gaussian
distributions in which some bij are set to zero [Shachter and Kenley (1986)].
A Gaussian undirected graphical model was defined in Section 2.2 to be a
family of multivariate nonsingular Gaussian distributions in which some of
the off-diagonal elements of the precision matrix are set to zero. Both models
define a map Bn�m � ⊂ Rn → Rm. It follows from Theorem 1 that Bn�m���
is a n-dimensional smooth manifold in Rm since the components of h can be
defined as projections and so h′ has the form [Q�m−n�×n�Im−n] where Im−n is
the identity matrix and Q is a matrix of zeros.

The difference between the two models is that the restrictions formed by
setting elements of the precision matrix to zero define linear constraints in the
natural parameter space and therefore Gaussian undirected graphical models
are also LEFs while the restrictions set by a Gaussian DAG model are not lin-
ear in the natural parameter space. To demonstrate the latter fact we note that
the restriction b31 = 0 imposed by the Gaussian DAG model x1 → x2 ← x3
can, in terms of the precision parameters, be written as t1�2t3�3 = t1�3t2�3 and
thus is not linear in the natural parameter space. See Geiger and Heckerman
(1994) for the relationships between ti�j and bi�j for this three-node model.

We note that Spirtes, Richardson and Meek (1997) show that Gaussian
mixed ancestral graphs (MAGs) define smooth manifolds. Since Gaussian
MAGs are a generalization of Gaussian DAG models, their results also imply
that Gaussian DAG models define smooth manifolds.
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4. Stratified exponential families. This section is divided into four
parts. First, we provide some mathematical background, then we define strati-
fied exponential families (SEFs) and show that graphical models representing
discrete, Gaussian, and conditional Gaussian with or without hidden variables
are SEFs. In Section 4.3 we show that graphical models with hidden variables
are usually not CEFs and in the final subsection we discuss a method to com-
pute the dimension of a SEF.

4.1. Mathematical prerequisites. The set of all polynomials in x1� � � � � xn
with real coefficients is denoted byR�x1� � � � � xn�. Let q1� � � � � qt be polynomials
in R�x1� � � � � xn�. A variety V�q1� � � � � qt� is the set ��x1� � � � � xn� ∈
Rn�qi�x1� � � � � xn� = 0 for all 1 ≤ i ≤ t�. A variety is also called an algebraic
set.

A subset V of Rn is called a semialgebraic set if V = ⋃s
i=1

⋂ri
j=1�x ∈

Rn�Pi�j�x� ⇔ij 0� where Pij are polynomials in R�x1� � � � � xn� and ⇔ij is one
of the three comparison operators ���=� 	�. Loosely speaking, a semialgebraic
set is simply a set that can be described with a finite number of polynomial
equalities and inequalities. A variety is clearly a semialgebraic set.

A map f X → Y where X ⊆ Rn and Y ⊆ Rm are semialgebraic sets, is
called semialgebraic if the graph of f is a semialgebraic set of Rn+m. Note that
if f is a polynomial map, then f is a semialgebraic map because its graph can
be described by m polynomial equalities: yj − fj�x� = 0, where 1 ≤ j ≤m. A
key result about semialgebraic sets is given by the Tarski–Seidenberg theorem
[see, e.g., Benedetti and Risler (1990)].

Theorem 5 (Tarski–Seidenberg). Let f X → Y be a semialgebraic map.
Then the image f�X� ⊆ Y is a semialgebraic set.

We note that some smooth manifolds are semialgebraic sets and some are
not. Similarly, some semialgebraic sets are smooth manifolds and some are
not. Consider, e.g., the variety V�x2−y2z2+ z3� which can be described para-
metrically as a (two-dimensional) surface in R3 by x = t�u2 − t2�, y = u
and z = u2 − t2 (see plot in Figure 1). This variety is not a smooth manifold
because, locally, at each point of the y-axis other than the origin the surface
looks like the intersection of two smooth manifolds, as evident from the figure.
To prove that the variety V�x2−y2z2+z3� is not a smooth manifold it suffices
to observe that as we approach any point on the y-axis other than the origin
we have two (two-dimensional) tangent planes where each plane contains a
tangent vector that is not spanned by the other tangent plane.

Another important result about semi-algebraic sets is that they admit a
stratification. We will first illustrate this concept with the variety V�x2 −
y2z2+z3�. This variety can be described as a union of several two-dimensional
smooth manifolds along with a one-dimensional smooth manifold, the y-axis.
These smooth manifolds define a stratification of the variety.

Formally, a stratification of a subset E of Rm is a finite partition �Ai� of
E such that (1) each Ai (called a stratum of E) is a di-dimensional smooth
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Fig. 1. A plot of part of the variety V�x2 − y2z2 + z3�.

manifold in Rm and (2) if Aj ∩Ai �= �, then Aj ⊆ Ai and dj < di (frontier
condition) where Ai is the closure of Ai in Rm. See Akbulut and King (1992)
for a more general definition.

A stratification is called semialgebraic if every stratum is semialgebraic. A
stratified set is a set that has a stratification. The dimension of a stratified set
is d1, the largest dimension of a stratum. A key theorem about semi-algebraic
sets is the Stratification theorem [see Benedetti and Risler (1990)].

Theorem 6 (Stratification). Every semialgebraic set has a semialgebraic
stratification.

We note that if E is a stratified set and f is a diffeomorphism, then f�E�
is also a stratified set. This proposition, that stratification is preserved under
a diffeomorphism f, is proved as follows. Let �Ai� be a stratification of A. We
show that �f�Ai�� is a stratification of f�A�. Clearly, �f�Ai�� is a partition of
f�A�. Due to Proposition 1, the image of a smooth manifold Ai under a diffeo-
morphism f is a smooth manifold f�Ai� and so condition (1) of the definition of
stratified sets is satisfied. The frontier condition is satisfied because Ai ⊆ Aj
implies f�Ai� ⊆ f�Aj� which, due to continuity of f, implies f�Ai� ⊆ f�Aj�
as needed for satisfying the frontier condition.

4.2. SEFs and graphical models. We define a stratified exponential fam-
ily (SEF) of dimension n as a subfamily of an exponential family having a
natural parameter space N of order k if its parameter space N0 ⊂ N is a
n-dimensional stratified set in Rk. In this section we show that N0 defined
by some graphical models with or without hidden variables is a stratified set
because it is a semialgebraic set or diffeomorphic to one. Consequently, these
models are SEFs.

All graphical models considered in the previous sections are SEFs because
LEFs and CEFs are subsets of SEFs. Every one of these models is a set of
distributions that satisfy all the independence constraints represented by a
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graph G. For discrete and Gaussian graphical models an independence fact is
expressible as a finite set of polynomial equalities. Combined with the inequal-
ities which state that parameters of the discrete distribuiton are positive and
that variances are positive, respectively, the resulting graphical model corre-
sponds to a semialgebraic set.

There are several classes of graphical models defined by a set of conditional
independence constraints that can accommodate a combination of discrete and
continuous variables using conditional Gaussian distributions. Among these
models, in addition to the models discussed in the previous sections, are AMP
chain graphs [Andersson, Madigan and Perlman (1996)] and reciprocal graphs
[Koster (1997)]. These graphical models all correspond to semi-algebraic sets
because independence facts in CG distributions are expressible as polynomial
equalities.

We now discuss graphical models with hidden variables. In particular we
show that discrete DAG models with hidden variables correspond to semial-
gebraic sets. We note that a similar claim holds for any graphical model rep-
resenting CG distributions of which we are aware as long as the distribution
over the observable variables is in the exponential family.

A discrete DAG model B���n�m� with hidden variables is a DAG model
where �, n, m and Bn�m are given as follows. Let �x1� � � � � xk� be an ordered
sequence of variables each having a finite set of possible values. Partition this
set of variables into two disjoint nonempty sets H and X. The variables in H
are hidden. Those in X are observable. For each xi define two disjoint sub-
sets of �x1� � � � � xi−1�, the observable parents pi ⊆ X and the hidden parents
hi ⊆H.

The components of Bn�m � ⊆ Rn → Rm are defined by wa =
∑
b

∏k
i=1

θxai �pai �hbi where a are (vector) values of the observed variables X and b are
(vector) values of the hidden variables H. The values xai and p

a
i are obtained

by the projection of a to the coordinates that correspond to xi�pi. Similarly, the
value hbi is obtained from b. As before, the domain � of Bn�m is the Cartesian
product of sets of the form ��t1� � � � � t�xi�−1��0 < ta < 1�

∑
a ta < 1�. Note that

n =∑k
i=1��xi� − 1��pi��hi� and m = ∏k

i=1 �xi� − 1.
The Tarski–Seidenberg theorem guarantees that for a discrete DAG model

with hidden variables, Bn�m��� is a semialgebraic set because it is the image
of a semialgebraic set under a polynomial mapping. Similarly, we note that
Gaussian DAG models with hidden variables also correspond to semialgebraic
sets due to their parametric definition via a polynomial mapping called the
trek-rule [see, e.g., Spirtes, Glymour and Scheines (1993)]. Consequently, the
image of these graphical models can be described with a set of polynomial
equalities and polynomial inequalities.

We have thus shown that N0 defined by each of the models considered in
this paper is a stratified set because it is a semialgebraic set or diffeomorphic
to one. We note that graphical models which represent a mixture of Gaussian
distributions are not SEFs because the distributions represented are not in
the exponential family.
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4.3. Graphical models with hidden variables are not CEFs. It is clear that
SEFs are a class of models that is strictly larger than CEFs; however, it
remains to show that this new class contains graphical models which are not
contained in the smaller classes. In this section we show that many graphical
models with a hidden variable which are SEFs are not CEFs.

We concentrate on a class of graphical models which are often called naive
Bayes models. We show that naive Bayes model are stratified exponential
families but are usually not curved exponential families. The proof extends to
wider classes of graphical models.

Let H�F1� � � � �Fn be a set of variables each having a finite set of pos-
sible values denoted by dom�H��dom�Fi�, respectively. Let �dom�H�� = k
and �dom�Fi�� = ki and let p�h� stand for p�H = h� where h ∈ dom�H�.
A naive Bayes model is a set of discrete distributions for the sample space
dom�F1� × · · · × dom�Fn� such that

p�f1� � � � � fn� =
∑

h∈dom�H�
p�h�

n∏
i=1
p�fi�h��(2)

where fi ∈ dom�Fi�. The variable H is called the class variable and each Fi
is called a feature. When k = 2 we get a Binary naive Bayes model and when
ki = 2 the feature Fi is binary and its domain is �fi� fi�. In applications,
H denotes a mutually exclusive and exhaustive set of classes and each Fi
is a measurement that has a finite set of possible outcomes. By observing
outcomes of Fi, a common task is to infer how many classes H should have,
or when the number of classes is known, to find the most likely class given
the measurements. We focus on inferring the number of classes and more
generally on model selection.

We note that equation (2) defines a mapping gn�k� k1����� kn  A ⊂ Rn̂ → Rm

where n̂ = k−1+∑n
i=1�ki−1�k is the number of coordinates on the right-hand

side and m = �∏ni=1 ki� − 1 is the number of coordinates on the left-hand side
minus 1 (since these coordinates sum to 1). The set A is an open set of Rn̂

defined by the following inequalities. For each h ∈ dom�H� and fi ∈ dom�Fi�,
1 ≤ i ≤ n, we have 0 < p�h� < 1, 0 < p�fi�h� < 1, and for each Fi and
h ∈ dom�H� we have

∑
fi∈dom�Fi�p�fi�h� = 1. These are the usual restrictions

regarding strict probabilities. Note that the set A depends on n, k and ki but
this dependence is suppressed in our notation.

In order not to clutter our notation, we first present the results for naive
Bayes model with binary features and then extend to naive Bayes model with
features for which ki ≥ 2, and to other graphical models. When all ki equal 2,
the mapping defined by equation (2) is denoted by gn�k A ⊆ Rn̂→ Rm where
n̂ = nk+ k− 1 and m = 2n − 1. For binary naive Bayes models with n binary
features, the mapping defined by equation (2) is denoted by gnA ⊆ Rn̂→ Rm

where n̂ = 2n+ 1 and m = 2n − 1. The set gn�k� k1� ���� kn�A� is called the image
of a naive Bayes model.

We now show that the image of a naive Bayes model with k classes and n
binary features is not a smooth manifold when n ≥ 2k. Assume �h1� � � � � hk�
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are the k values of dom�H� and �fi� fi� are the two values of dom�Fi�. Let
the source coordinates of gn�k be t1� � � � � tk−1, aic, 1 ≤ i ≤ n, 1 ≤ c ≤ k, where
tc = p�hc� and aic = p�fi�hc�. Note that tk = 1 − ∑k−1

c=1 tc is not a source
coordinate. The target coordinates of gn�k can be indexed as follows:

wi1i2···ir =
k∑
c=1
tc

∏
i∈I
�1− aic�

∏
i∈�I
aic(3)

where each index i has two possible values, I is the set of r indices �i1� � � � � ir�
which are assigned with their second (or last) value and I is the set of the
remaining n− r indices. The first coordinate, when I = �, is denoted by w�.

Theorem 7. The image of a naive Bayes model with k classes and n ≥ 2k
binary features is not a smooth manifold.

Proof. The crucial fact we use is that if the image of gn�k were a smooth
manifold, then the image would have a tangent hyperplane at each point and
the dimension of that tangent hyperplane could not exceed the dimension of
A, which is kn + k − 1. Furthermore, if the image of gn�k were a smooth
manifold, then ∂gn�k/∂aic evaluated at a point x in the domain of gn�k would
be a tangent vector to M at the point gn�k�x� in the image. This is because
these partial derivatives are columns of the Jacobian matrix for gn�k and the
Jacobian matrix gives the mapping between the tangent space of A and the
tangent space of M. The proof provides a point in the image at which there
are more than kn + k − 1 linearly independent tangent vectors. Hence, the
dimension of the tangent hyperplane is too large for the image to be a smooth
manifold. (See, for example, Figure 2 where there are three independent tan-
gent vectors at the origin while the surface has only two dimensions.)

Suppose now that the image of gn�k is a smooth manifold M in R2n−1.
Pick some j ≤ n and some point xj ∈ A with tc = 1/k and aic = 1/2 for
all c and i �= j. Furthermore, for xj, let aj1 �= aj2, ajc = 1/2 for c > 2,

Fig. 2. Three types of surfaces.
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and 1/2 =∑k
c=1 tcajc (i.e., aj1+aj2 = 1). Note that y = gn�k�xj� is independent

of which j we choose because wi1i2···ir = �1/2�n.
Consider the partial derivatives ∂gn�k/∂aic, c = 1�2, evaluated at

x1� � � � � xn. Each partial derivative, as well as any linear combination of par-
tial derivatives, is a tangent vector at y. We show that there are n+n�n−1�/2
linearly independent tangent vectors at y. Consequently, since kn + k − 1 <
n+n�n−1�/2 for n ≥ 2k we reach a contradiction: the number of independent
tangent vectors is greater than the dimension of A. Consequently,M is not a
smooth manifold at y.

We select the following n+n�n− 1�/2 tangent vectors: ∂gn�k/∂ai1 + ∂gn�k/
∂ai2 evaluated at xi, 1 ≤ i ≤ n, and ∂gn�k/∂aj1 − ∂gn�k/∂aj2 evaluated at xi,
1 ≤ i < j ≤ n. We consider these vectors as columns of a matrix and examine
the submatrix formed by the first 1+n+n�n− 1�/2 coordinates, denoted w0,
wi�wij, i < j. By subtracting line w0 from each of the other lines wi and wij,
removing w� from the matrix, and pulling the common constant from each
column, we get a convenient square matrix of size n+n�n−1�/2. This matrix,
which consists only of zeros and ones, has the form[

I B′

B C

]
�

where I is the identity matrix of size n × n, B′ is the transpose of B and
every line wij when restricted to B has two ones, in column i and j, and
zeros otherwise (in B), and the square matrix C has zeros on the two main
diagonals and ones otherwise. By subtracting lines wi and wj from line wij,
1 ≤ i < j ≤ n, we get a diagonal matrix as needed. These calculations are
facilitated by the equation

∂wi1i2 ··· ir/∂ajc�xl� = �1/k��1/2�n−2 ·




−�1− alc�� j ∈ I� l ∈ I� j �= l,
−alc� j ∈ I� l ∈ �I� j �= l ,
1− alc� j ∈ �I� l ∈ I� j �= l,
alc� j ∈ �I� l ∈ �I� j �= l,
−1/2� j� l ∈ I� j = l,
1/2� j� l ∈ �I� j = l�

and by the fact that al1 + al2 = 1 for 1 ≤ l ≤ n. ✷

Suppose now that the features are not all binary. Let fiji be the jth element
in dom�Fi�. Let aicji stand for p�fiji �hc� and let tc = p�hc�. Then the target
coordinates of gn�k� k1� ���� kn can be indexed as follows:

wi1i2···ir =
k∑
c=1
tc

∏
i∈I

(
1−

ki−1∑
ji=1
aicji

)∏
i∈I
aicji �(4)

where each index i has ki possible values, I is the set of r indices �i1� � � � � ir�
which are assigned with their last value and �I is the set of the remaining n−r
indices.
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Theorem 8. The image of a naive Bayes model with k classes and n fea-
tures is not a smooth manifold, whenever n ≥ 2�k′ − 1�k, where k′ = maxi ki,
ki = �dom�Fi��.

Proof. We use the same idea as in the proof of Theorem 7 and so we only
describe the relevant changes. The image of a naive Bayes model is discussed
in the notation of equation (4). The point y for which we count the number
of linearly independent tangent vectors is given as follows. Let tc = 1/k and
aicji = 1/ki, for all i �= j, 1 ≤ ji ≤ ki and 1 ≤ c ≤ k. Let aj11 �= aj21 and
ajcji = 1/kj otherwise. Finally, let 1/kj =

∑k
c=1 tcajcji (i.e., aj11+aj21 = 2/kj).

Note that y = gn�k� k1� ���� kn�xj� is independent of which j we choose because
wi1� ���� in =

∏
i�1/ki�. We now compute the same derivatives as in Theorem 7,

namely, with respect to ai11 and ai21 (which are denoted in the previous proof
by ai1 and ai2�. The 1 + n + n�n − 1�/2 lines are also selected as before; in
line w0 every index is assigned its first value. In line wi, 1 ≤ i ≤ n, index i is
assigned its last value and all other indices are assigned their first value. In
the next n�n−1�/2 lines, wij, j > i, the indices i and j are assigned their last
value and all other n− 2 indices are assigned their first value. The resulting
matrix, after pulling constants from each column, is identical to the one given
in the proof of Theorem 7 and so its rank is n + n�n − 1�/2. Now, since the
dimension of the image is at most k− 1+∑n

i=1�ki − 1�k < k− 1+ n�k′ − 1�k
and since k− 1+ n�k′ − 1�k < n+ n�n− 1�/2 when n ≥ 2�k′ − 1�k, the image
is not a smooth manifold at y. ✷

The proof technique of Theorems 7 and 8 can, with minor modifications,
be used to show that the image of any discrete DAG model with a hidden
variable H with n children is not a CEF whenever n�n + 1�/2 is larger than
the cardinality of the state space over the observable variables. We note that
these proofs exhibit one singular point y at which the image of a graphical
model is not a smooth manifold. They do not describe the set of all singular
points at which the image is not a smooth manifold. They also do not determine
whether the point y is singular because the image is not a topological manifold
at y or because it is not smooth at y. (See Figure 2 for an example of this
distinction).

In the Appendix we give full answers to these questions for binary naive
Bayes model with n binary features. In particular, we show that the image is
not even a topological manifold at singular points and that the singular points
are precisely those for which p�fi�h� = p�fi�h� for all values of i, except at
most two values �i1� i2� where inequality is possible. Additional results are
provided in the Appendix that shed light on the geometry of the image of
binary naive Bayes models with binary features. We derive a formula that
provides the two possible source points for every nonsingular point in the
image of a binary naive Bayes with n binary features.

4.4. Computation of the dimension. The dimension of a SEF is the dimen-
sion of the highest stratum. In this section we present an algorithm that
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computes the dimension of a SEF when specified as an image of a polynomial
mapping composed with a diffeomorphism. For this discussion, it is sufficient
to consider only the polynomial portion of the mapping because diffeomor-
phisms do not change the dimension.

The next lemma suggests a randomized algorithm for calculating the maxi-
mal rank of the Jacobian matrix of a polynomial mapping. The algorithm and
Lemma 9 were also studied more generally for analytical mappings in Bamber
and van Santen (1985). A proof for polynomial mappings, which is all we need,
is much simpler and thus included herein.

Lemma 9. Let g Rm → Rn be a polynomial mapping. Let J�x� = ∂g/∂x
be the Jacobian matrix at x. Then the rank of J�x� equals the maximal rank
almost everywhere.

Proof. Let d be the maximal rank of J�x�. Because the mapping g is
polynomial, each entry in the matrix J�x� is a polynomial in x. When diago-
nalizing J�x�, the leading elements of the first d lines remain polynomials in
x, whereas all other lines, which are linearly dependent given every value of
x, become identically zero. The rank of J�x� falls below d only for values of x
that are roots of some of the polynomials in the diagonalized matrix. The set
of all such roots has measure zero. ✷

A randomized algorithm for computing the maximal rank of J�x� is now
evident. At the first step, the algorithm computes the Jacobian matrix J�x�
symbolically from g�x�. This computation is possible since g is a vector of
polynomials in x. Then it assigns a random value to x and diagonalizes the
numeric matrix J�x�. Lemma 9 guarantees that, with probability 1, the result-
ing rank is the maximal rank of J�x�.

The next theorem shows that this algorithm computes the dimension of the
image of a polynomial mapping. Recall that the dimension of the image is
defined to be the dimension of the highest stratum of the image.

Theorem 10. Let g A ⊆ Rm→ Rn be a polynomial mapping where A is
a semialgebraic open set. Let J�x� = ∂g/∂x be the Jacobian matrix at x. Then
the maximal rank of J�x� is equal to the dimension of g�A�.

This theorem is a special case of the following theorem [with V = Rm and
PV�x� being the identity matrix].

Theorem 11. Let g  Rm → Rn be a polynomial mapping. Let A be an
open semialgebraic subset of Rm and let V be an algebraic subset of Rm. Sup-
pose that A∩V is contained in the nonsingular points of V. For x ∈ A∩V, let
J�x� = ∂g/∂x be the Jacobian matrix of g at x, and let PV�x� be the matrix
of orthogonal projection to the tangent space of V at x. Let d be the maximum
over x ∈ A ∩ V of the rank of the matrix J�x�PV�x�. Then g�A ∩ V� is a
semialgebraic set whose dimension is d.
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Proof. We recall a few facts about semialgebraic sets. Let A and B be
semialgebraic sets. If A ⊂ B then dim�A� ≤ dim�B�. Also dim�A ∪ B� =
max�dim�A��dim�B��. The closure A is semialgebraic and dim�A� = dim�A�.
Finally, any semialgebraic set has only a finite number of connected
components.

We prove this theorem by induction on d. By Proposition 2.4.3 of Akbulut
and King (1992), we know the entries of PV�x� are rational functions, whose
denominators do not vanish on the nonsingular points of V. Consequently,
there is an algebraic subsetW ⊂ V so thatW∩A is the set of points x ∈ A∩V
at which J�x�PV�x� has rank less than d. [The subset W is given by the
vanishing of all d× d minors of J�x�PV�x�, or, alternatively, see the proof of
Lemma 9.] By induction, we know that g�W ∩A� has dimension less than d.
In particular, let W0 =W and let Wi be the singular points of Wi−1 if i ≥ 1.
We apply this theorem with A replaced by A −Wi+1 and V replaced by Wi.
Note that if x ∈ Wi then the tangent space of Wi at x is contained in the
tangent space of V at x and so the rank of J�x�PWi�x� is less than or equal
to the rank of J�x�PV�x� which is less than d. So by induction the dimension
of g�A ∩ �Wi −Wi+1�� is less than d. So if B is the closure of g�A ∩W�, then
B is semialgebraic and dim�B� < d.

Let C = A− g−1�B�. Note that C is an open semialgebraic set and J�x� ×
PV�x� has rank d at all points x ∈ C ∩V. We have reduced to showing that
dim�g�C∩V�� = d. Take any point y ∈ g�C∩V� and any x ∈ C∩V∩g−1�y�.
Theorem 5.4 of Bröcker and Jänich (1982) gives a local description of g near
x in V. In particular, there is a neighborhood U of x in V so that g�U� is
a d-dimensional submanifold of Rn and g−1�y� ∩ U is a submanifold of V.
So if x′ ∈ g−1�y� ∩ V is close enough to x, a neighborhood of x′ in V will
be mapped to the exact same d-dimensional submanifold as a neighborhood
of x. Consequently, if x′ is any point in the same connected component of
C ∩V ∩ g−1�y� as x, a neighborhood of x′ in V will be mapped to the exact
same d-dimensional submanifold as a neighborhood of x. Since C∩V∩g−1�y�
is semialgebraic, it has only a finite number of connected components. Hence a
neighborhood of y in g�C∩V� is a finite union of d-dimensional submanifolds.
So dim�g�C ∩V�� = d. ✷

In the context of graphical models g is the mapping from the network
parameters � to the joint space parameters W. For example, for naive Bayes
models g is replaced with gn�k�k1� ����kn . We have implemented the algorithm in
Mathematica and used it to find the dimension of several graphical models
with hidden variables. Here we summarize the results for gn�k� k1� ����kn . [Imple-
mentation details can be found in Geiger, Heckerman and Meek (1996).]

For k = 2, the maximal rank of gn�k computed by the algorithm was full;
namely, all results were consistent with the formula min�2n + 1�2n − 1�. In
the Appendix, among other results, we prove that the maximal rank is indeed
full for every n. For k > 2, the maximal rank of gn�k found by the algorithm
was min�nk+ k− 1�2n − 1�, except when (n = 4, k = 3), where the maximal
rank is 13 rather than 14. This drop in dimension has also been observed
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by Goodman [(1974), page 221]. When n = 2, the maximal rank of gn�k�k1�k2
can be far from full. Settimi and Smith (1998) show that for k < min�k1� k2�
the dimension drops by k�k−1�. The algorithm confirms this dimension drop.
Other examples are discussed in Geiger, Heckerman and Meek (1996).

5. Discussion. An obvious challenge remains open: is BIC a valid asymp-
totic expansion for the marginal likelihood P�Data�model� when the model is
a stratified exponential family?

One solution to this problem may be as follows. Exclude from the stratified
model all points aside of the highest stratum. As a result, only a measure
zero set (with respect to the volume element of the highest stratum) of points
is excluded. The remaining set is a smooth manifold and so BIC is a correct
asymptotic expansion, under the appropriate regularity conditions, as long as
the MLE point converges to a point that has not been excluded.

This requirement about convergence is not always satisfied. To be concrete,
suppose points in R2 are generated from a standard two-dimensional normal
distribution N��mx�my�� I�. Suppose also that we have, a priori, two equally
likely models. The first model consists of all standard two-dimensional normal
distributions for which ��mx�my��m2

x =m3
y� and the second model consists of

all those distributions for which ��0�my��my < −1�. The first model has one
singularity at (0,0). Although this singularity has measure zero with respect to
the first model, we cannot exclude it from the model. In particular, the MLE
value for the first model will converge to (0,0) whenever the second model
contains the true distribution, an event that will happen with probability 1/2
according to our prior. A more careful asymptotic analysis of the behavior at
singular points is needed.

There are other obstacles in applying Haughton’s results to graphical mod-
els with hidden variables. These consist of Haughton’s (1988) technical
assumptions, as well as the assumptions that the prior is bounded and bounded
away from zero in a local coordinate system on the natural parameter space.
Priors are usually defined on the network parameters and when the prior is
transformed to the natural parameter space, it is not necessarily bounded. In
particular, for a DAG model with a hidden variable, the prior on the natural
parameter space is usually not bounded whenever the prior on the network
parameters is bounded and bounded away from zero.

APPENDIX

In this Appendix we study the imageM of a binary naive Bayes model with
n binary features. In particular, we characterize the set of points S for which
the image is not a topological manifold, show thatM\S is a smooth manifold,
show that every point inM\S has exactly two sources and provide an explicit
formula that computes these source points. In addition we resolve a conjecture
made in Geiger, Heckerman and Meek (1996) by showing that the dimension
of these models is full, namely, 2n+1 when n ≥ 3. For n = 1�2, the dimension
is 2n − 1.
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These results are facilitated by a sequence of diffeomorphisms some of
which are applied to the source coordinates and some to the target coordi-
nates. Such transformations are valid because they preserve the properties
we study herein. Our starting point is equation (3) with k = 2, ai1 = ai,
ai2 = bi, t1 = t and t2 = 1− t.

Using a nonsingular linear transformation on the target coordinates we
obtain the following mapping:

zij···r = taiaj · · ·ar + �1− t�bibj · · · br�
where zi stands for the probability of the ith feature being true, zij stands for
the probability that the ith and jth features are both true, etc.

We now apply a diffeomorphism on the source coordinates where s, x1,
x2,� � � , xn, and u1,� � � , un are the new coordinates as given by

t = �s+ 1�/2� ai = xi + �1− s�ui� bi = xi − �1+ s�ui�
The mapping in the new source coordinates becomes

zi = xi�
zij = xixj + �1− s2�uiuj�
zijk = xixjxk + �1− s2��xiujuk + uixjuk + uiujxk� − 2s�1− s2�uiujuk�

z12···r = x1x2 · · ·xr +
r∑
i=2
pi�s� ·

(∑�products of i u’s and r− i x’s�)
where pi�s� = 1/2�1 − s2���1 − s�i−1 − �−1�i−1�1 + s�i−1�, and, in particular,
p2�s� = 1− s2 and p3�s� = −2s�1− s2�.

Now we subtract products of the first n coordinates to get rid of the leading
terms. So, we do zij ← zij − zizj. Then we subtract products of the first n
coordinates with one of the next n and choose two coordinates to get rid of the
second terms, namely, zijr← zijr − zijzr − zirzj − zjrzi − zizjzr, and so forth.
We end with the mapping

zi = xi� zij = p2�s�uiuj� � � � � zij···r = pr�s�uiui · · ·ur�
Let us denote this mapping with Fn U ⊂ R2n+1 → R2n−1, where U is the

set of �x�u� s� ∈ Rn ×Rn ×R such that

0 < xi < 1� −1 < s < 1�

−xi < �1− s�ui < 1− xi�
xi − 1 < �1+ s�ui < xi�

We denote the coordinates ofFn withFni �x�u� s�=xi,Fnij�x�u� s�=p2�s�uiuj,
Fnij···r�x�u� s� = pr�s�uiuj · · ·ur, etc.

We are now ready to analyze the image of U under Fn. Let M = Fn�U�
be the image of U. Let S be the set of points in M for which at most one of
the coordinates zij is nonzero. Let S′ be the set of points in M for which all
coordinates zij are 0. Note that S′ ⊂ S.
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Theorem 12. The dimension of the image of a naive Bayes model with
n ≥ 3 binary features is 2n+ 1.

Proof. The dimension of the image of a naive Bayes model is equal to
the maximal rank of Fn because Fn is obtained from gn by composition with
diffeomorphisms. Thus one just needs to compute the maximal rank of the
Jacobian matrix of Fn. Let Jn denote this Jacobian matrix. We show that the
maximal rank of Jn is 2n+ 1 for n ≥ 3.

The matrix Jn has two blocks along the main diagonal where the first block
of size n is an identity matrix. It remains to argue that the second block has
a maximal rank of n+ 1. We establish this claim by selecting n+ 1 rows and
showing that this submatrix has full rank. The rows selected, among many
other valid possibilities, are those that correspond to the target coordinates
z1�i, 2 ≤ i ≤ n, z23 and z123. Assuming the columns of the second block are
organized according to the order u2� � � � � un� u1� s, then this submatrix of Jn
is


p�s�u1 0 0 0 ��� p�s�u2 −2su1u2
0 p�s�u1 0 0 ��� p�s�u3 −2su1u3
0 0 p�s�u1 0 ��� p�s�u4 −2su1u4

��� ���

0 0 0 0 p�s�u1 p�s�un −2su1un
p�s�u3 p�s�u2 0 0 ��� 0 −2su2u3

−2sp�s�u1u3 −2sp�s�u1u2 0 0 0 −2sp�s�u2u3 −�2sp�s��′u1u2u3



�

where p�s� = 1− s2. Using two row operations, we get a diagonal matrix with
a maximal rank of n+ 1 as claimed. ✷

Theorem 13. Let S be the set of points in M for which at most one of the
coordinates zij is nonzero. The setM−S is a smooth manifold and this set is
double covered by Fn.

Proof. Take any point z ∈M−S. Then we have zij �= 0 and zk= �= 0 with
ij �= k=. So if Fn�x�u� s� = z, we must have ua �= 0 for a = i� j� k� =. So u
must have at least three nonzero coordinates. Without loss of generality, we
may suppose that ui �= 0 for i = 1�2�3. Consequently, z12, z13, z23 and z123
are all nonzero.

Then we can solve for �x�u� s� = Fn−1�z� as follows:
xi = zi�

u1 = ±
√
z12z13z23 + �z123�2/4/z23�

s = −z123/�2u1z23��
ui = z1i/�p2�s�u1� for i > 1�
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In particular, there are exactly two points in the inverse image, and if we
choose one of these points (by choosing the ± sign) we have a smooth local
inverse for Fn. Consequently, M − S is a smooth manifold and it is double
covered by Fn. ✷

Theorem 14. Let S be the set of points in M for which at most one of the
coordinates zij is nonzero. The set M is not a topological manifold at points
of S.

Proof. A topological manifold is locally compact. (A space is locally com-
pact if each point has a compact neighborhood. Since each point in a topologi-
cal manifold has a neighborhood homeomorphic to closed disc, any topological
manifold is locally compact.) We will show that M is not locally compact at
points of S\S′. Recall that S′ is the set of points inM for which all coordinates
zij are 0. Loosely stated, the reasonM is not locally compact at points of S\S′
is that points arbitrarily close to the edge of U are mapped arbitrarily close
to any point of S−S′. Finally, we argue thatM is also not locally compact at
points of S′.

To be precise, pick any z′ ∈ S−S′ and suppose it has a compact neighborhood
N inM. Pick ε > 0 small enough that N contains the intersection ofM with
the ball of radius ε around z. Pick a large constant b. We may as well suppose
that z′12 �= 0, but all other zij are 0. Consequently the only nonzero coordinates
of z′ are z′i and z

′
12. Pick any �x′� u′� s′� ∈ U so that Fn�x′� u′� s′� = z′. After

applying σ , we may as well assume that u′1 > 0. For small enough δ > 0,
consider the point �x′� uδ� sδ� in U where

sδ = 2z′1 − 1�

uδ1 = 1/2− δ�
uδ2 = z′12/��1/2− δ�p2�sδ���
uδ3 = ε/b�
uδi = 0 for i > 3�

We show here that �x′� uδ� sδ� ∈ U if δ is small enough. Since x′i ∈ �0�1�
and sδ ∈ �−1�1�, by the above description of U, we must only show that

−xi < �1− s�ui < 1− xi�
xi − 1 < �1+ s�ui < xi�

These are trivially true if i > 3, and true for large enough b if i = 3. We
also have

−x1 < 0 < �1− sδ�uδ1 = �1− 2δ��1− x1� < 1− x1�
x1 − 1 < 0 < �1+ sδ�uδ1 = �1− 2δ�x1 < x1�

If z′12 > 0 then since �x′� u′� s′� ∈ U we have

x′1 > �1+ s′�u′1 = z′12/��1− s′�u′2� > z′12/�1− x2�
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so z′12/x
′
1 < 1 − x′2. Likewise z′12/�1 − x′1� < x′2. So if δ is small enough, we

have the remaining inequalities,

−x2 < 0 < �1− sδ�uδ2 = z′12/��1− 2δ�x′1� < 1− x′2�
x2 − 1 < 0 < �1+ sδ�uδ2 = z′12/��1− 2δ��1− x′1�� < x′2�

Similarly, if z′12 < 0 then u′2 < 0 and we have

x′1 > �1+ s′�u′1 = z′12/��1− s′�u′2� > −z′12/x′2�
1− x′1 > �1− s′�u′1 = z′12/��1+ s′�u′2� > z′12/�x′2 − 1��

and so for small enough δ,

−x2 < z′12/��1− 2δ�x′1� = �1− sδ�uδ2 < 0 < 1− x1�
x2 − 1 < z′12/��1− 2δ��1− x′1�� = �1+ sδ�uδ2 < 0 < x1�

Now we have

Fni �x′� uδ� sδ� = z′i�
Fn12�x′� uδ� sδ� = z′12�
Fn13�x′� uδ� sδ� = p2�sδ�ε�1/2− δ�/b�
Fn23�x′� uδ� sδ� = εz′12/�b�1/2− δ���
Fn123�x′� uδ� sδ� = −2sδz′12ε/b

and all other coordinates of Fn�x′� uδ� sδ� are 0. So if b is large enough (for
example b > 2 ≥ 1/2+ 6�z′12�) we see that Fn�x′� uδ� sδ� is within ε of z′, so it
is in the compact N. Letting δ approach 0, compactness of N gives us a limit
point z′′ ∈N. We see that z′′i = z′i, z′′12 = z′12, z′′23 = 2εz′12/b, z

′′
13 = p2�z′1�ε/�2b�,

z′′123 = −2sδz′12ε/b, and all other coordinates are 0.
Note that z′′ is in M − S so we have an explicit formula above for its

inverse image. In particular, if Fn�x′′� u′′� s′′� = z′′ then x′′ = x′, s′′ = sδ,
u′′1 = 1/2, u′′2 = z′12/p2�sδ�, u′′3 = ε/b and all other u′′i are 0. But this point
is not in U, which can be seen by converting back to the original coordinates
a′′1 = x′′1 + �1 − s′′�u′′1 = z′1 + �2 − 2z′1��1/2� = 1, which is outside the allowed
range.

So we have a contradiction. Consequently,M is not locally compact at S−S′
and hence is not a manifold there. Note also thatM cannot be locally compact
at S′ since any point of S′ has arbitrarily close points in S−S′ so any compact
neighborhood of a point in S′ is also a compact neighborhood of a point in
S−S′, which we have just shown cannot exist. ✷

At this point one might argue that perhapsM is not a topological manifold
for a mere technical reason. Suppose we considered M′ = Fn��U� where �U is
the closure of U. Since �U is closed and bounded, it is compact, so its imageM′

is also compact, and hence locally compact. Hence, there is still the possibility
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that M′ could be a topological manifold. Moreover, taking �U is not unreason-
able, we are just allowing our probabilities to be 0 or 1. Nevertheless, M′ is
not a topological manifold. In fact, we can show that at points of S−S′,M′ is
locally homeomorphic toRn+1×c�D2×Sn−3� where c�D2×Sn−3� is the cone on
a 2-disc D2 cross the n− 3 sphere (A cone on a set A is the set of points lying
on some straight line between a point in A and the origin). We can also show
that at points of S\S′,M is locally homeomorphic to Rn+1 × c�R2 ×Sn−3�.
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