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A NOTE ON MINIMAX FILTERING!

By LEo BREIMAN

A minimax procedure is found for filtering the ‘‘signal’’ from the
‘‘noise’’ in a stationary time series when it is known only that the spectral
distribution function of the ‘‘signal’’ lies in a convex set defined by linear
inequalities.

1. Summary. The problem we solve here is: Given second order stationary

processes
(LY {Z),  —ee<n< o
such that
X, =Y, + Z,

where the {Y,} variables are uncorrelated with the {Z,} variables. The spectral
distribution function G(d2) of the {Z,} process is assumed known. But all that
is known about the spectral distribution function F(d4) of the {Y,} process is that
it lies in the set .5 defined by the M inequalities

S(—z,ir]fm(z)F(dz)éla m=1,...,M,
where the f,, are nonnegative and continuous. Find the linear filter
?% = Z an—ka

which is minimax for estimating the Y, component in the sense that P, mini-
mizes the maximum of

E(Y, -1,y
where the maximum is taken over all {Y,} processes whose spectral distributions
lie in ..

2. Background. The background for this problem is that frequently the ob-
served process, {X,}, —oo < n < oo, consists of a rapidly fluctuating component
{Z,}, superimposed on a slowly changing component {Y,}. We want to smooth
(filter) out the rapidly fluctuating component so as to isolate the long-term
process {Y,}.

In many particular applications, the spectral distribution of the noise can be
assumed known, in the sense that it can be reasonably accurately estimated.
For example, if the {Z,} process is assumed uncorrelated then all that is needed
is a good estimate for the common variance. If {Y,} is slowly changing it is not
difficult to get such estimates. For instance

. 1
0 = me’(Xkﬂ — X,)*.

Received February 8, 1972; revised May 2, 1972.

1 This work supported by U.S. Department of Transportation, Federal Highway Administra-
tion Contract Number FH-11-7627 to System Development Corporation.

Key words and phrases. Stationary processes, minimax filtering.

175

C%;J
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éfr )2
The Annals of Probability. RIKORN
www.jstor.org



176 LEO BREIMAN

If we also knew the covariances (or spectral distribution) of the {Y,} process,
we could solve for the optimal linear filter in the standard way. Often all that
is known about the {Y,} process are the observations on the {X,} process. We
can, in principle, estimate the spectrum of the {Y,} process from these observa-
tions. Since {Y,} is assumed slow-changing, its spectrum is mainly concentrated
in the low frequencies. But, estimating low frequency spectrum involves esti-
mating covariances of widely separated variables in the {Y,} process. This often
necessitates a larger sample size than is available.

Another procedure would be possible if one could find a frequency w, such
that {Y,} contains no frequencies higher than w,. Then use a low-pass filter on
the data which clips off everything above w,. Again, with limited sample size
w, may be difficult to estimate. Further, the {Y,} process may intrinsically con-
tain arbitrarily high frequencies.

The procedure we suggest is as follows: Do a preliminary rough smoothing
of the data. Use this to get an estimate of the expected mean square values of
some of the derivatives of the {Y,} process. For instance, letting A be the first
difference operator, get some estimate for E|AY,[>. Suppose that estimate is
B,°. Then the problem can be formulated as: Find the filter which is minimax
against all F(d4) satisfying

EIAynlz — S(—x,x] lei(n+1)l _ ei”lle(dZ) § ‘312
or
e € — 1PF() < B2

There is no necessity to work only with first differences. We might wish to
estimate the mean square of the second difference operator and minimax over
all processes satisfying

E|AYY, ! < 6.

Or perhaps we want to use both pieces of information at once and minimax over
processes satisfying

EAY,P<8r,  ENY,} < pp
simultaneously.

Notice that E|AY,|* and E|A*Y,|* are simple linear functions of the variance
and first two autocovariances of the {Y,} process. Thus, (assuming the auto-
covariance of the {Z,} process known) these expected squared differences can
be estimated by using the appropriate linear combinations of the standard esti-
mators of the autocovariances of the {X,} process. However, this procedure is
usually very inefficient.

Another question is how many differences E|A*Y, |*should be estimated and used
in the procedure outlined above. The answer depends on two considerations:
First, how many can be easily and accurately estimated? We have used first,
and sometimes second differences also—but never more. Second, how large a
filtering error is bearable? The more restricted the class of spectral distribu-
tions for {Y,}, the smaller the resulting minimax mean square filtering error
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will be. This error can be computed from the formulas that follow, and if it is
not acceptable, more restrictions can be imposed.

Assuming that the bounds defining the set .5~ can be accurately estimated,
the procedure we propose gives a guaranteed upper bound on the RMS filtering
error. No other method we know of can give the same guarantee.

3. The minimax filter. Write
Y, = §eY(dd),  Z, = §eZ(dd)
where all integrals without limits will be over the range [ —z, x). Then E|Y(d2)|* =
F(d2), and E|Z(d2)]* = G(d2). Denote
$(4) = X e~ Ma,
so that
E(Y, — X a_,.X.) = E[§ Y(d2) — § $(A)Y(d2) — § $(A)Z(d)]*

= E[f (1 — ¢(A)Y(d2) — § $(1)Z(d2)[* .
Therefore, we state the problem: Find the ¢ which minimizes the maximum
over % of

I(¢, F) = [§ |1 — $(DI'F(dA) + § [$(D)'G(dA)] -

Consider the class S, of all continuous functions #(1) = 0 such that

maxg. . § 0(A)F(di) < 1.
To characterize this class define the set B which is the convex hull of £}, - .-, f,.
That is

B={Ytanfu an=0, 21a, =1}.
We assert:

PROPOSITION. S, consists of those continuous functions 6(2) = O such that there
is an f € B satisfying
(%) < If(2), all 2.

The proof of this is deferred while we point out its use. Consider all ¢(2)
such that |I — ¢|*€ S,. Call this class R,. Then for ¢ in R,

(6, F) <1+ § |4 dG .
For the ¢ that minimizes max;,. - I(¢, F), || — ¢|* is in some S,, ] = 0. Hence
min, max,. - /(¢, F) = min, miny ., (! + § |¢|*dG) .

If the minimizing value of / is /*, then the minimax ¢ is the ¢ € R,. which
minimizes § |¢|*dG. Put y(2) = 1 — ¢(4). We now minimize

§19]"dG = § |1 — ()" dG

over all ¢ in R,. The way to do this is clear: Look at any f(4) € B. We will
first minimize over all functions (1) satisfying |y(4)] < (If(4))}. It is not hard
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to see what the minimizing y(4) is: If If(A) = 1, put y(4) = 1. If[f(A) < 1, put
7(2) = (f(2))*. Hence

ming ., § |4°dG = min,_, § [(1 — ([f(2))})*]*dG .
But now the problem is reduced to an ordinary minimization problem over the
n 4 1 variables /, a;, - - -, a,. That is, minimize the expression

L4 §[(1 = (S anfu)) T dG()
over I, a;, -+, a, subject toa,, 20, m=1,...,nand } a, =1. At this
point we consider the problem solved.
The proposition above looks as through it should surely be in the literature.
But we cannot find it, so we give a proof.

LEMMA. Let B be a compact convex set of continuous functions and g a continuous
function such that there exists no fe€ B with f = g everywhere. Then there exists a
positive finite measure g such that

§gdp>supsey§fdp.

Proor. This is more or less a standard result, but since we cannot locate a
reference in the form cited, we give a proof. Take

A={f—g9;feB}.
Let D be the cone of nonnegative functions. Then D is closed and convex. A4
is closed, convex, and compact. A standard result ([1] page 417) yields the

fact that if 4 and D are disjoint, there exists a finite measure x and a constant
a such that

(A) Shdpy > a, all heD
and
(B) §(f—9)dpe < a, all feB.

Furthermore, we must have that { hdy = 0, all he D. Otherwise if (hdy =
— 0, then for the function nh(2)

§ (nh)ydy = —no .
This implies that p is a positive measure and a« < 0. Hence, for any f¢ B,
§fdp <§gdp + «
which implies
SUp,ep § fdp < §gdu + a.
CoRroLLARY. Let C be a compact and convex set of continuous functions. Denote
Cr={mp=z0,sup,.§fdp = 1}.
Then if g is continuous and satisfies
SUp,ec+ §gdp < 1,
there exists an f e C such that g < f everywhere.
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PrROOF. Suppose not; then by the lemma there exists a positive measure p

such that
§gdu>supec§fdp.
Renormalize g so that
Supec § fdp = 1.

Then this renormalized p is in C* but we get the contradiction § g dp > 1.

Now a quick comparison shows that this corollary is the proposition we wanted
to prove in a thinly veiled form. The solution could also have been obtained
using, instead, the fact that /(¢, F) has its maximum on one of the extreme points
of %, This approach leads to a more complicated computation.
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