A NOTE ON CONTINUOUS PARAMETER ZERO-TWO LAW1

BY WILLIAM WINKLER

The Ohio State University

Let $\{X_t\}$, $0 \le t < \infty$, be a Markov process with state space (E, \mathscr{E}) . Let m be a σ -finite measure on (E, \mathscr{E}) and let the $L_{\infty}(E, \mathscr{E}, m)$ operator induced by the transition probability $P_t(x, A), x \in E, A \in \mathscr{E}$, be conservative and ergodic for all t > 0. Let (m) abbreviate m modulo 0. For fixed $\alpha > 0$, set $h^{\alpha}(x) = \lim_{t \to \infty} ||P_t(x, \cdot) - P_{t+\alpha}(x, \cdot)||$, where $||\cdot||$ is the total variation.

THEOREM. Either $h^{\alpha}(x) = 0$ (m) for a.e. $\alpha \in \mathbb{R}_{+}$ or $h^{\alpha}(x) = 2$ (m) for a.e. $\alpha \in \mathbb{R}_{+}$. In particular, if $\{X_t\}$, $0 \le t < \infty$, is a Markov process satisfying a Harris type recurrence condition, then $h^{\alpha}(x) = 0$ (m) for a.e. $\alpha \in \mathbb{R}_{+}$.

1. Introduction. In a recent paper Ornstein and Sucheston (1970) proved the following: Let P(x, A) be a Markov transition probability, and assume that there exists a σ -finite measure m such that m(A) = 0 implies P(x, A) = 0 m-a.e. and m(A) > 0 implies $\sum_{k=0}^{\infty} p^k(x, A) = \infty$ m-a.e. Then the total variation of the measure $P^n(x, \cdot) - P^{(n+1)}(x, \cdot)$ is either m-a.e. 2 for all n or it converges m-a.e. to 0 as $n \to \infty$. Here we obtain an analogous result for continuous parameter Markov processes.

Let $(\mathbb{R}, \mathscr{R}, \mu)$ be the real line with Lebesgue measure. Let (E, \mathscr{E}, m) be a σ -finite measure space. Let $\{X_t\}$, $0 \le t < \infty$, be a Markov process on a measure space (Ω, \mathscr{F}) with state space E and let $P_t(x, A), x \in E, A \in \mathscr{E}$, be the transition probabilities associated with $\{X_t\}$. Let the notation (m) abbreviate m modulo 0. Assume that for each t, m(A) = 0 implies $P_t(x, A) = 0$ (m), then the functions $P_t(\cdot, \cdot)$ define positive linear contractions Q_t on $L_1 = L_1(E, \mathscr{E}, m)$ and P_t on $L_\infty = L_\infty(E, \mathscr{E}, m)$. Identifying under the Radon–Nikodym isomorphism L_1 with the space of m-continuous finite signed measures φ on \mathscr{E} , we define Q_t and P_t by:

(1)
$$Q_t \varphi(A) = \int \varphi(dx) P_t(x, A) \qquad \varphi \in L_1;$$

(2)
$$P_t h(x) = \int P_t(x, dy) h(y) \qquad h \in L_{\infty}.$$

An operator Q on L_1 is called *conservative* and *ergodic* if for each $0 \not\equiv f \in L_1^+$, $\sum_{i=0}^{\infty} Q^i f = \infty$ (m). In a similar manner, an operator P on L_{∞} is called *conservative* and *ergodic* if for each $0 \not\equiv h \in L_{\infty}^+$, $\sum_{i=0}^{\infty} P^i h = \infty$ (m). $P = Q^*$, the adjoint of an L_1 -operator Q, is conservative and ergodic if and only if Q is conservative and ergodic (see Ornstein and Sucheston (1970) page 1633). We assume that P_t is conservative and ergodic for all t > 0.

Received June 8, 1972.

¹ This paper is based on a part of the author's Ph. D. thesis prepared at the Ohio State University under the direction of Professor Louis Sucheston.

AMS 1970 subject classifications. Primary 6060; Secondary 6062.

Key words and phrases. Markov process, conservative and ergodic, transition probability, zero-two law, Harris conddition.

Let $\alpha > 0$ be fixed. P_{α} is said to satisfy the *Harris Condition* if there exists a σ -finite measure π_{α} on (E, \mathcal{E}) such that for all $A \in \mathcal{E}$, $\pi_{\alpha}(A) > 0$ implies

$$(3) P_x\left[\sum_{k=0}^{\infty} 1_{\{X_{k,\alpha} \in A\}} = \infty\right] = 1 \text{for all } x \in E$$

(see e.g. Harris (1956), Jain (1966)). The probabilistic meaning of the Harris Condition is that starting from any point $x \in E$, with probability one the process $\{X_{k\alpha}\}, k = 1, 2, \dots$, visits an arbitrary set A of positive π_{α} -measure infinitely many times.

For t > 0, $\alpha + t > 0$, define

$$h_t^{\alpha}(x) = ||P_t(x, \, \bullet) - P_{t+\alpha}(x, \, \bullet)||.$$

Here || || is the total variation. We show that for each

$$\alpha > 0 \lim_{t\to\infty} h_t^{\alpha}(x) =_{\text{def}} h^{\alpha}(x)$$

exists for m-a.e. x. Assume that for all $f \in L_{\infty} P_t f(x)$ is bimeasurable with respect to $(\mathbb{R} \times E, \mathbb{R} \times \mathscr{E}, \mu \times m)$ (here we assume that $\mathbb{R} \times \mathscr{E}$ is complete with respect to $\mu \times m$).

2. Preliminary results and main theorem. Here we prove the following:

THEOREM 1. Either $h^{\alpha}=0$ (m) for almost every $\alpha>0$ or $h^{\alpha}=2$ (m) for almost every $\alpha>0$.

LEMMA 1. For fixed $\alpha > 0$, h_t^{α} , $0 \le t < \infty$, satisfies:

- (a) $0 \le h_t^{\alpha} \le 2$ (m) for all t > 0,
- (b) $P_r h_s^{\alpha} \ge h_t^{\alpha}$ (m) where r + s = t,
- (c) $h_t^{\alpha} \ge h_s^{\alpha}$ (m) where t < s,
- (d) $\lim_{t\to\infty} h_t^{\alpha} = h^{\alpha}$ (m), constant,
- (e) $h^{\alpha} = h^{-\alpha} (m)$.

Proof. The proofs (a)—(d) do not differ substantially from the discrete parameter case (see Ornstein and Scheston (1970) and Foguel (1971) page 275).

It is easy to see that $h_t^{\alpha}(x)$ may be also defined as

$$\sup \{ P_t g(x) - P_{t+\alpha} g(x) : -1 \le g \le 1, g \in L_{\infty} \}$$

where the supremum is in the L_{∞} sense (see e.g. Foguel (1971) page 279). Now we prove (e). We have

$$h_t^{\alpha}(x) = ||P_t(x, \cdot) - \dot{P}_{t+\alpha}(x, \cdot)||$$

= $||P_{t+\alpha}(x, \cdot) - P_{t+\alpha-\alpha}(x, \cdot)|| = h_{t+\alpha}^{-\alpha}$.

Taking the limit as $t \to \infty$ we obtain $h^{\alpha} = h^{-\alpha}$ (m).

LEMMA 2. (i) $h^{\alpha+\beta} \leq h^{\alpha} + h^{\beta}$ (m). (ii) $h^{\alpha-\beta} \leq h^{\alpha} + h^{\beta}$ (m).

Proof of (i).

$$||P_t(x, \cdot) - P_{t+\alpha+\beta}(x, \cdot)|| \le ||P_t(x, \cdot) - P_{t+\alpha}(x, \cdot)|| + ||P_{t+\alpha}(x, \cdot) - P_{t+\alpha+\beta}(x, \cdot)||$$

implies $h_t^{\alpha+\beta}(x) \leq h_t^{\alpha}(x) + h_{t+\alpha}^{\beta}(x)$ for all $x \in E$. Taking the limit as $t \to \infty$ we have $h^{\alpha+\beta} \leq h^{\alpha} + h^{\beta}$ (m).

(ii) follows immediately from (i) and Lemma 1 (e) since $h^{\alpha-\beta} \leq h^{\alpha} + h^{-\beta} = h^{\alpha} + h^{\beta}(m)$.

LEMMA 3. For each $\alpha > 0$, $h^{\alpha} = 0$ (m) or $h^{\alpha} = 2$ (m).

PROOF. Assume that $h^{\alpha} < 2$ (m). Then $2 > h^{\alpha} = \lim_{t \to \infty} h_{t}^{\alpha} = \lim_{n \to \infty} h_{n\alpha}^{\alpha} = 0$ (m) by the discrete parameter zero-two law.

For fixed $\alpha > 0$ we observe from Lemma 2 that $h^{n\alpha} \leq nh^{\alpha}$ (m) for all positive integers n. Then, using Lemma 3, we have that if $h^{\sigma} = 2$ (m), then $h^{\sigma/n} = 2$ (m) for all positive integers n, and also if $h^{\sigma} = 0$ (m), then $h^{k\sigma} = 0$ (m) for all positive integers k.

LEMMA 4. Assume that for every $f \in L_{\infty}P_tf(x)$ is bimeasurable in the product $(\mathbb{R} \times E, \mathbb{R} \times \mathcal{E}, \mu \times m)$. Then for m-a.e. $x, h^{\alpha}(x)$ is measurable in α .

PROOF. For fixed α , t > 0 we have

$$h_t^{\alpha}(x) = \sup \{ P_t g(x) - P_{t+\alpha} g(x) : -1 \le g \le 1, g \in L_{\infty} \}$$

where the supremum is in the L_{∞} sense, $h_t^{\alpha}(x)$ is measurable in x because we can assume that the supremum is taken over a countable number of g(see e.g.) Dunford and Schwartz (1958) page 336). For fixed δ , t > 0 we can find a sequence $g_k^{\delta,t}(x)$, $-1 \le g_k^{\delta,t} \le 1$, such that if

$$\begin{split} f_k{}^{\delta,t}(\alpha,\,x) &=_{\mathrm{def}} (P_t - P_{t+\alpha}) g_k{}^{\delta,t}(x) \;, \\ f_k{}^{\delta,t}(\delta,\,x) \nearrow h_t{}^\delta(x) \;(m) \end{split} \qquad \text{as } k \to \infty \;. \end{split}$$

For fixed δ , t, k > 0, $f_k^{\delta,t}(\alpha, x)$ is bimeasurable in (α, x) . Set $e_k^t(\alpha, x) = \sup_{\delta} f_k^{\delta,t}(\alpha, x)$. Again we may assume that the supremum is over countably many δ , which implies that $e_k^t(\alpha, x)$ is (α, x) -bimeasurable for each integer k > 0 and real t > 0. For fixed k, β , t > 0,

$$f_{k}^{\beta,t}(\beta,x) \leq e_{k}^{t}(\beta,x) = \sup_{\delta} f_{k}^{\delta,t}(\beta,x)$$

=
$$\sup_{\delta} (P_{t} - P_{t+\beta}) g_{k}^{\delta,t}(x) \leq h_{t}^{\beta}(x) (m) .$$

This implies that for fixed β , t > 0 $e_k^t(\beta, x) \to h_t^{\beta}(x)$ (m) as $k \to \infty$. Hence, for fixed t > 0, $h_t(\alpha, x) =_{\text{def}} \lim_{k \to \infty} e_k^t(\alpha, x)$ exists and is bimeasurable in (α, x) . Since for every α , t > 0 $h_t(\alpha, x) = h_t^{\alpha}(x)$ (m), we may take $h_t(\alpha, x)$ as our version of $h_t^{\alpha}(x)$. For s, t > 0,

$$(P_{t+s} - P_{t+s+\alpha})g(x) = (P_t - P_{t+\alpha})(P_s g(x)) \le h_t{}^{\alpha}(x)$$

 $\mu \times m$ -a.e. since $-1 \le P_s g \le 1$ if $-1 \le g \le 1$. Taking the supremum of the left-hand side we have that $h_{t+s}^{\alpha}(x) \le h_t^{\alpha}(x) \ \mu \times m$ -a.e. Because $h_t^{\alpha}(x)$ is decreasing in t and bounded below by 0, we have that $h^{\alpha}(x) = \lim_{t \to \infty} h_t^{\alpha}(x)$ is bimeasurable in (α, x) , hence, for m-a.e. x, $h^{\alpha}(x)$ is measurable in α .

REMARK. Assume that $\{X_t\}$, $0 \le t < \infty$, takes values in a topological measure space $(E, \mathcal{E}', \mathcal{E}, m)$ (i.e. (E, \mathcal{E}') is a Hausdorff space, \mathcal{E} is the σ -algebra

generated by \mathscr{E}' , and m is a σ -finite measure on \mathscr{E}). Also assume that $\{X_t\}$, $0 \le t < \infty$, has right continuous paths (i.e. $X_t(\omega)$ is right continuous in t for all $\omega \in \Omega$). We then have that $X_t(\omega)$ is bimeasurable in (t, ω) (see e.g. Meyer (1966) page 70). Then, for $f \in L_{\infty}$, we have that $f[X_t(\omega)]$ is bimeasurable in (t, ω) which in turn yields that $P_t f(x) = E_x[f[X_t(\omega)]]$ is bimeasurable in (t, x). To be precise, $P_t f(x)$ is bimeasurable in (t, x) with respect to $(\mathbb{R} \times E, \mathscr{R} \times \mathscr{E}, \mu \times m)$ (see e.g. Blumenthal and Getoor (1968) page 41).

Now we prove a continuous parameter version of the zero-two law.

THEOREM 1. Either $h^{\alpha}=0$ (m) for μ -a.e. $\alpha>0$ or $h^{\alpha}=2$ (m) for μ -a.e. $\alpha>0$.

PROOF. Let $A=\{(\alpha,x):h^{\alpha}(x)\neq 0 \text{ and } h^{\alpha}(x)\neq 2\}$. For arbitrary $\alpha>0$, set $A^{\alpha}=\{x:(\alpha,x)\in A\}$, and for arbitrary $x\in E$, set $A_x=\{\alpha:(\alpha,x)\in A\}$. From Lemma 3 we have that $m(A^{\alpha})=0$ for all $\alpha>0$, and hence, by Tonelli's Theorem (see Dunford and Schwartz (1958) page 194), we have $\mu\times m(A)=0$ and for m-a.e. $x\in E$, $\mu(A_x)=0$. Thus, for the purpose of our discussion, we may assume that for each fixed $\alpha>0$, $h^{\alpha}(x)=0$ for all $x\in E$ or $h^{\alpha}(x)=2$ for all $x\in E$. Let $B_1=\{\alpha:h^{\alpha}=2\}$ and $B_2=\{\alpha:h^{\alpha}=0\}$. Assume that $\mu(B_1)>0$ and $\mu(B_2)>0$. By Lemma 2 $h^{\alpha-\beta}\leq h^{\alpha}+h^{\beta}$ for α , $\beta\in B_2$. Then $\delta\in B_2-B_2=\{\alpha-\beta:\alpha,\beta\in B_2\}$ implies $h^{\delta}=0$. But by a standard fact of measure theory (see e.g. Hewitt and Stromberg (1965) page 143) B_2-B_2 contains an open interval around the origin, hence there exists an interval I=(0,c) such that $\alpha\in I$ implies $h^{\alpha}=0$. By the remark following Lemma 3, we have $B_2=\mathbb{R}_+$ which is a contradiction. In fact, we proved that $h^{\alpha}(x)=0$ $\mu\times m$ -a.e. or $h^{\alpha}(x)=2$ $\mu\times m$ -a.e.

COROLLARY 1. Let $\{X_t\}$, $0 \le t < \infty$, satisfy the hypotheses of the theorem and in addition, for each $\alpha > 0$ in a set of positive measure, let $\{X_{k\alpha}\}$, $k = 1, 2, \dots$, be recurrent in the sense of Harris. Then $h^{\alpha} = 0$ for μ -a.e. $\alpha > 0$.

PROOF. From Theorem 1 either $h^{\alpha}=0$ or $h^{\alpha}=2$ for μ -a.e. $\alpha>0$. Using the aperiodicity of $\{X_{k\alpha}\}$, $k=1,2,\cdots$, and the results of Ornstein and Sucheston ((1970) page 1638), we have $h^{\alpha}=\lim_{k\to\infty}h^{\alpha}_{k\alpha}=0$ for μ -a.e. $\alpha>0$.

REFERENCES

- [1] Blumenthal, R. M. and Getoor, R. K. (1968). Markov Processes and Potential Theory. Academic Press, New York.
- [2] DUNFORD, N. and SCHWARTZ, J. T. (1958). Linear Operators: Part I. Interscience, New York.
- [3] FOGUEL, S. R. (1971). On the zero-two law. Israel J. Math. 10 275-280.
- [4] HARRIS, T. E. (1956). The existence of stationary measures for certain Markov processes. Proc. Third Berkeley Symp. Math. Statist. Prob. 2 113-124. Univ. of California Press.
- [5] HEWITT, E. and STROMBERG, K. (1965). Real and Abstract Analysis. Springer-Verlag, Heidelberg.
- [6] JAIN, N. C. (1966). A note on invariant measures. Ann. Math. Statist. 37 729-732.
- [7] MEYER, P. A. (1966). Probability and Potentials. Blaisdell, Waltham, Mass.
- [8] Ornstein, D. and Sucheston, L. (1970). An operator theorem on L_1 convergence to zero, with applications to Markov kernels. *Ann. Math. Statist.* 41 1631-1639.

DEPARTMENT OF MATHEMATICS THE OHIO STATE UNIVERSITY COLUMBUS, OHIO 43210