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A NOTE ON CONTINUOUS PARAMETER ZERO-TWO LAW!

By WiLLiIAM WINKLER
The Ohio State University

Let {X;}, 0 < < oo, be a Markov process with state space (E, &).
Let m be a o-finite measure on (E, &) and let the Lo(E, &, m) operator
induced by the transition probability Pi(x, 4), x€ E, A€ &, be conservative
and ergodic for all # > 0. Let (m)abbreviate m modulo 0. For fixed a > 0,
set h%(x) = limi—eo || Pe(x, ¢) — Piral(x, *)||, where ||+]] is the total variation.

THEOREM. Either h*(x) = 0 (m) for a.e. a€ R, or h*(x) = 2 (m) for a.e.
a€Ry. In particular, if {X:},0 <t < oo, is a Markov process satisfying a
Harris type recurrence condition, then h*(x) = 0 (m) for a.e. a€R;.

1. Introduction. In a recent paper Ornstein and Sucheston (1970) proved the
following: Let P(x, A) be a Markov transition probability, and assume that
there exists a o-finite measure m such that m(4) = 0 implies P(x, A) = 0 m-a.e.
and m(A4) > 0 implies Y7, p*(x, A) = co m-a.e. Then the total variation of the
measure P*(x, «) — P"*!(x, +) is either m-a.e. 2 for all n or it converges m-a.e.
to 0 as n — co. Here we obtain an analogous result for continuous parameter
Markov processes.

Let (R, &, 1) be the real line with Lebesgue measure. Let (E, &, m) be a
o-finite measure space. Let {X,}, 0 < ¢ < oo, be a Markov process on a measure
space (Q, &) with state space E and let P,(x, 4), xe E, A€ &, be the transition
probabilities associated with {X,}. Let the notation (m) abbreviate m modulo 0.
Assume that for each ¢, m(A4) = 0 implies P,(x, A) = 0 (m), then the functions
P,(., ) define positive linear contractions Q, on L, = L(E, &, m) and P, on
L, = L(E,#,m). Identifying under the Radon-Nikodym isomorphism L, with
the space of m-continuous finite signed measures ¢ on &, we define Q, and P,
by:

O Q.¢(A) = § p(dx)P(x, A) pely;
@ P,h(x) = § P(x, dy)h(y) helL.,.

An operator Q on L, is called conservative and ergodic if for each 0 = fe L,*,

20 Q'f = oo (m). In a similar manner, an operator P on L, is called consery-
ative and ergodic if for each 0 £ he L. *, 32, PPh = oo (m). P = Q*, the
adjoint of an L,-operator Q, is conservative and ergodic if and only if Q is
conservative and ergodic (see Ornstein and Sucheston (1970) page 1633). We
assume that P, is conservative and ergodic for all ¢+ > 0.
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Let a > 0 be fixed. P, is said to satisfy the Harris Condition if there exists a
o-finite measure z, on (E, &) such that for all 4 e &, x,(4) > 0 implies

3) PlYeo Lixygesy = 0] =1 forall xeE

(see e.g. Harris (1956), Jain (1966)). The probabilistic meaning of the Harris
Condition is that starting from any point x e E, with probability one the process
{Xi}, K =1,2, ..., visits an arbitrary set A of positive z,-measure infinitely
many times.

Fort > 0, a + ¢t > 0, define

he(x) = ([P, *) = Prpa(s #)| -
Here || || is the total variation. We show that for each
a > 0 lim,_, 2,%(x) = 4¢ h*(X)
exists for m-a.e. x. Assume that for all fe L, P, f(x) is bimeasurable with respect

to (R X E, R X &, ¢ X m) (here we assume that R X & is complete with
respect to u X m).

2. Preliminary results and main theorem. Here we prove the following:

THEOREM 1. Either h* =0 (m) for almost every a > 0 or h* =2 (m) for
almost every a > 0.

LEMMA 1. For fixed @ > 0, h,*, 0 < t < oo, satisfies:

@) 0Zh~*<2(m) forall t>0,

(b) P.h>=h>(m) where r+s=t,

() h* = h>*(m) where t<s,

(d) lim,, k> = h* (m), constant,

(e) h* =h=(m).

Proor. The proofs (a)—(d) do not differ substantially from the discrete para-
meter case (see Ornstein and Scheston (1970) and Foguel (1971) page 275).
It is easy to see that #,%(x) may be also defined as

sup{P,9(x) — Py 9(x): —1=g=1,9e L.}

where the supremum is in the L, sense (see e.g. Foguel (1971) page 279).
Now we prove (¢). We have

he(x) = [|Pfx, ) = Pyio(x, #)|
= [|Pera(®s *) = PryacalXs o)l = A, .
Taking the limit as ¢ — co we obtain A* = h=* (m).
LEMMA 2. (i) A**F < b + B® (m). (ii) h*~F < h* + BP (m).
PRroOOF OF (i).

IIPt(x’ ') - Pt+u+ﬂ(x’ ’)” = ”Pt(x’ ') - Pt+a(x’ ’)”
+ ||Pt+a(x’ ') - Pt+zx+ﬁ(x’ ')”
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implies A,"*(x) < h,%(x) + hf,,(x) for all x ¢ E. Taking the limit as 1 — co we
have h**f < h* + hP (m).

(ii) follows immediately from (i) and Lemma 1 (e) since A*~% < h* + h=¢ =
h* + h#(m).

LEmMMA 3. For each a > 0, h* = 0 (m) or h* = 2 (m).

PROOF. Assume that 2* < 2 (m). Then2 > h* = lim,_, h,* = lim,__ k%, = 0
(m) by the discrete parameter zero-two law.

For fixed a > 0 we observe from Lemma 2 that 4" < nh* (m) for all positive
integers n. Then, using Lemma 3, we have that if #* = 2 (m), then 4°/* = 2 (m)
for all positive integers n, and also if A’ = 0 (m), then #* = 0 (m) for all
positive integers k.

LEMMA 4. Assume that for every fe L. P,f(X) is bimeasurable in the product
(R X E,R X &, ¢ X m). Then for m-a.e. x, h*(x) is measurable in a.

Proor. For fixed a, t > 0 we have
h(x) = sup {P,g(x) — P, 9(x): —1 < g<1,g¢ L.}

where the supremum is in the L, sense, h,*(x) is measurable in x because we
can assume that the supremum is taken over a countable number of g(see e.g.
Dunford and Schwartz (1958) page 336). For fixed 6, > 0 we can find a
sequence g,%%(x), —1 < ¢,%¢ < 1, such that if

[P, X) =gor (P, — P, 0)9,74 (%) , then

[0, x) /" hl2(x) (m) as k> 0.
For fixed 4,1t k > 0, f,%(«, x) is bimeasurable in (a; x). Set ef(a, x) =
sup, f,”*(a, x). Again we may assume that the supremum is over countably
many J, which implies that e(a, x) is (a, x)-bimeasurable for each integer
k > 0 and real + > 0. For fixed k, 8,t > 0,

[i#(B, x) < e,'(B, x) = sup; f,*(8, x)
= sup, (Pt - PHﬁ)gk""(x) = hcﬁ(x) (m) .
This implies that for fixed 8, 1 > 0 ¢,%(3, x) — h/(x) (m) as k — co. Hence, for
fixed 1 > 0, h(a, x) =4 lim,_, ¢,'(a, x) exists and is bimeasurable in (a, x).
Since for every a, t > 0 h(a, x) = h,*(x) (m), we may take &,(a, x) as our version
of h,%(x). Fors,t> 0,
(Peys — Piiora)9(x) = (P, — Pt+a)(Pag(x)) = h(x)

¢ X m-ae. since —1 < P,g<1if —1<g<1. Taking the supremum of
the left-hand side we have that Ay, ,(x) < h,%(x) ¢ X m-a.e. Because h%(x) is
decreasing in r and bounded below by 0, we have that A%(x) = lim,_,, &,%(x) is
bimeasurable in (a, x), hence, for m-a.e. x, h%(x) is measurable in a.

REMARK. Assume that {X,},0 < # < oo, takes values in a topological measure
space (E, &, &, m) (i.e. (E,&") is a Hausdorff space, & is the g-algebra
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generated by &7, and m is a o-finite measure on &). Also assume that {X.},
0 < 7 < oo, has right continuous paths (i.e. X,() is right continuous in ¢ for
all € Q). We then have that X,(») is bimeasurable in (¢, w) (see e.g. Meyer
(1966) page 70). Then, for f'e L., we have that f[X,(w)] is bimeasurable in (¢, ®)
which in turn yields that P,f(x) = E,[ f[X,(®)]] is bimeasurable in (¢, x). To be
precise, P,f(x) is bimeasurable in (¢, x) with respect to (R X E, & X &, p X m)
(see e.g. Blumenthal and Getoor (1968) page 41).
Now we prove a continuous parameter version of the zero-two law.

THEOREM 1. Either h* = 0 (m) for p-a.e. @ > 0 or h* = 2 (m) for p-a.e. a > 0.

ProOF. Let 4 = {(a, x): h*(x) # 0 and A*(x) # 2}. For arbitrary a > 0, set
A* = {x:(a, x) € 4}, and for arbitrary xe E, set 4, = {«: (a, x) € A}. From
Lemma 3 we have that m(4%) =0 for all « > 0, and hence, by Tonelli’s
Theorem (see Dunford and Schwartz (1958) page 194), we have ¢ x m(4) = 0
and for m-a.e. xe E, p((4,) = 0. Thus, for the purpose of our discussion, we
may assume that for each fixed @ > 0, A%(x) = O for all x € E or h*(x) = 2 for
allxeE. Let B, = {a:h* =2} and B, = {a: h* = 0}. Assume that pu(B,) > 0
and p(B;) > 0. By Lemma 2 h*~# < h* + h* for a, B€ B,. Thende B, — B, =
{« — B:a, Be B,} implies * = 0. But by a standard fact of measure theory
(see e.g. Hewitt and Stromberg (1965) page 143) B, — B, contains an open
interval around the origin, hence there exists an interval I = (0, ¢) such that
a el implies A~ = 0. By the remark following Lemma 3, we have B, = R,
which is a contradiction. In fact, we proved that A*(x) = 0 p x m-a.e. or
h*(x) =2 p X m-a.e.

CoROLLARY 1. Let {X,}, 0 < t < oo, satisfy the hypotheses of the theorem and
in addition, for each a > 0 in a set of positive measure, let {X,,}, k = 1,2, ...,
be recurrent in the sense of Harris. Then h* = O for p-a.e. a > 0.

Proor. From Theorem 1 either #* = 0 or A* = 2 for p-a.e. « > 0. Using
the aperiodicity of {X,,}, Kk = 1,2, ..., and the results of Ornstein and
Sucheston ((1970) page 1638), we have A% = lim,_, A%, = O for p-a.e. a > 0.
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