The Annals of Probabzlt!y
1973, Vol. 1, No. 2, 322-328

MAXIMAL INEQUALITIES AND THE LAW OF
THE ITERATED LOGARITHM!

By WiLLiaM F. Stout
University of Illinois

A supermartingale maximal inequality is derived. A maximal in-
equality is derived for arbitrary random variables {S., n = 1} (let So = 0)
satisfying E exp[u(Sm+n — Sm)] < exp(Knu?) for all real u, all integers
m =0 and n = 1, and some constant K. These two maximal inequalities
are used to derive upper half laws of the iterated logarithm for super-
martingales, multiplicative random variables, and random variables not
satisfying particular dependence assumptions.

1. Law of the iterated logarithm for supermartingales. Let (Q, 5, P) be the
underlying probability space. Let S, = 0and &, = (¢, Q). Throughout Section

1, {S,, , n = 0} denotes a supermartingale (i.e., o-fields &, , c &, C &,
E[S, | 1] < S,_,a.s.,and S,_,is &, _, measurable for eachn = 1). LetY; =
S; — S, for i > 1. First we derive the basic maximal supermartingale inequality.

LemMa 1.1. Suppose Y; < ca.s. for each i = 1 and some constant 0 < ¢ < oo.
Fix 2 > 0 such that ic < 1, let

T, = exp(iS,) exp[—w/le + Acf2) B BV )]

forn=1,andletT, = 1. Then{T,, , n = 0} is a nonnegative supermartingale,

thus satisfying

(1.1) P[sup”;,, T,>a] < a™? foreach a > 0.
Proor. We first show that {T, ,n = 0} is a supermartingale. Fixi > 1.

Using A¢c < 1, series expansion ylelds

. exp(AY;) < 1 + AY; + Y2(22)(1 + Ac[2) .
us
E[exp(AYy)| ] < 1+ (#/2)(1 + 2¢/2)E(Y? | F5)  as.

since E(Y;| % ;_,) < 0 a.s. Hence
(1.2) E[exp(AY;)| ;1] < exp[(#/2)(1 + Ac[2)E(Y;?| F ;)] a.s.
since 1 + x < e® for all real x. Fixn = 1.
E[T,|F,.] = exp(iS,_,) exp[— (#/2)(1 + ic[2)
X DI E(Y? | F)]E[exp(AY,) | F ]

<T a.s.,

n—1
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using (1.2). Thus(T,, &, n = 0) is a nonnegative supermartingale, as desired.

Fix a > 0. Let ¢ be the smallest integer n > 0 such that T, > « if such ann
exists; otherwise let t = oco. {T,,,, n = 0} is also a nonnegative supermartingale
with first element equal to one. Hence, for each n > 1,

1 = ET,,, = aP[t < n].

AR

Letting n — oo, we obtain
12 aP[t < o] = aP[sup,;, T, > a ,
completing the proof.
P. Meyer ([5], pages 70-72) has established a result similar to Lemma 1.1. It

is this result of Meyer’s that provided the stimulus for Section 1.
Lets,? = Y2, E[Y?| 5 ;_,] and 4, = [2 loglog (e* V s,%)]t for n > 1.

THEOREM 1.1. Suppose 5.’ < oo a.s. for each n > 1 and s,’ — o a.s. Let K;
be & ;_, measurable for i > 1. Suppose for some constant 0 < K < % that

(1.3) limsupK; < K a.s. and Y, < K;s;/u; a.s.

1

for eachi = 1. Then there exists a function ¢(+) such that ¢(K) < 1 and ¢(x) | O as
x | O for which
limsup S,/(s,4,) < 1 4 ¢(K) a.s.

REMARKS. The form of ¢(.), although not very important, is given in the
proof below. The most important application of Theorem 1.1 is Corollary 1.1
below, in which case K; — 0 a.s. is assumed.

PrRoOOF OoF THEOREM 1.1. Let Y/ =Y, I(K; < K)fori>1land S,/ = 37, Y/
for n > 1. Since P[Y; = Y;i.0.] = 0, it suffices to show limsup S,’/(s,#,) <
1 + ¢(K) a.s. in order to prove the theorem. Fix a real number p > 1 and an
integer k > 1. Let #, be the smallest integer n > 0 such that s2,, > p*. Since
5341 1s &, measurable for each n > 0, it follows that ¢, is a stopping rule; i.e.,
(t, = n)e &, for each n > 0. Hence

S, ® =8, if n<t;
= S:k if n>1t,
defines a supermartingale {S,*’, n > 0}. Fix ¢’ > 0 and choose ¢ such that
(1.4) (A +0)pr>143.
P[S, > (1 + 0)s,u, i.0.]
< P[sup,kz,,20 . > (1 + 5)s‘k—1+1u‘k—1+1 i.o. in k]
(1.5) = P[sup,z, S,* > (1 + 9)s,, _ 114, 4, 1.0, in k].
sfk_1+1 ”3,,_1+1/[2P2k log log (¢* v p**)]
= p*loglog (¢ Vv p**~V)/log log (e* Vv p*)

= p?.
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Thus
(1.6) P[sup,z S,* > (1 + 0)s,,_ 114y, 4, 1.0. in k]
=< Pfsup,;, S,* > (1 + d')[2p* log log (¢* v p**)]t, i.0. in k}.
We will produce 1 > ¢(x) | 0 as x | 0 such that
(1.7) 2= P{Sup,zy S, > (1 + 9")[2p™ loglog (¢* v p™) ]} < o0
for all 6" > ¢(K). It will then follow by the Borel-Cantelli lemma and (1.4)
through (1.7) that P[S,’ > (1 + d)s,u,i.0.] = 0 for all § > p[1 + ¢K)] — 1.
Since p > 1 is arbitrary, the result will then follow for all 6 > ¢(K). Thus
lim sup S,’/(s, 4,) < 1 + &(K) a.s., the desired result, will follow from (1.7).
For each n > 0 and & sufficiently large
S — S, < Ks, [u,,
< Kp*/[2loglog (e v p*¥)]} a.s.
by (1.3), the definition of #,, and the fact that s,/u, is non-decreasing in n. Let
(5.%) = D, E[(S;® — S| &) for n = 1. We apply Lemma 1.1 to
{S.®, &F,, n = 0} for k sufficiently large, taking
¢ = Kp*/[2 log log (e* Vv p*)]} and A= (1 4 d¢")[21oglog (¢* v p*)]i/p*
with T, = exp(4S,®) exp[— (43/2)(1 + A¢/2)(s,®)*] forn = land T, = 1. Ac =
(1 4+ d")K. Choose ¢’ < 1, thus implying ic < 1 as required in order to apply
Lemma 1.1. Note that sup,., (s,¥)* < s}, a.s.
P{sup,., S,® > (1 4 &")[2p* log log (e* V p*)]}}
= P[sup,.,S,*® > Ap™] = P[sup,,,exp(4S,*) > exp(4*p*)]
< P(sup,, T, > exp[2p* — (22)(1 + 2c[2)s3,]}
< P{sup,z, T, > exp[p™ — (#/2)(1 + ¢/2)p*]}
< exp[— %% + (422)(1 4 Ac/2)p*] by Lemma 1.1.
Substituting for 4 and c,
—Ap* 4+ (2)2)(1 + 2c[2)p™ = —(1 + 0')[1 — K(1 + 0")/2] log log (e* V p*) .

Letgp(x) = (1 + x)[1 —K(1 4+ x)2] —1for0<x<1,0< K <. gg(e)
is increasing. Moreover g,(0) < 0, g,(1) > Oforeach 0 < K < 4. Let ¢(K) be
the zero of g, () foreach0 < K < 3. g']K(x) increases to a strictly positive num-
ber as K | 0 for each fixed x. Thus 1 > ¢(K) for each 0 < K < 4 and ¢(K) | 0 as
K|0. Also (1 + 0'[1 — K(1 + 9')/2] — 1 > Oforall 1 = ¢’ > ¢(K). Choose
such a ¢’. Then there exists 8 > 1 such that

P{sup,z, S, > (1 4 8")[2p* log log (e v p™)]}}
< exp[—pBloglog (¢’ v p*)] = (2k log p)~*
for k sufficiently large. Y i, (2k log p)=# < co, establishing (1.7) and thus com-
pleting the proof.
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CoRoLLARY 1.1. Suppose s,* < oo a.s. for each n = lands,? > o a.s. Let K,
be F;_, measurable for each i > 1 with K, — 0 a.s. Suppose

(1.8) Y; < K;s;fu; a.s.

1,

fori=1. ThenlimsupS,/(s,u,) < 1a.s.

Proor. limsup K; = 0 a.s. Thus Corollary 1.1 follows immediately from
Theorem 1.1.

Corollary 1.1 is essentially the generalization of the upper half of Kolmogorov’s
law of the iterated logarithm given in [9]. The method of proof given here is
different and considerably simpler than that given in [9]. Note that Theorem
1.1isa generalization of Corollary 1.1 since the hypothesis K, — 0 a.s. is replaced
by the weaker hypothesis limsup K; < K < 4 a.s. A similar generalization for
independent random variables is given by Feller in [4].

2. Law of the iterated logarithm for generalized Gaussian random variables. In
Section 2 we use the maximal inequality approach of Serfling [7] to derive an
upper half law of the iterated logarithm for generalized Gaussian random vari-
ables. According to Chow [2], a random variable X is generalized Gaussian
with parameter A if there exists a positive number 4 such that E exp(uX) <
exp(4’A/2) for all real u. Normal and uniformly bounded random variables each
with mean zero provide two examples of generalized Gaussian random variables.
It is easy to see that X generalized Gaussian implies EX = 0. Throughout Sec-
tion 2 {X;, i > 1} will denote an arbitrary sequence of random variables. Let
Spn = Limp X;form = 0andn > 1and S, = S, , for n > 1. First we derive
the basic maximal inequality for generalized Gaussian random variables.

LemMa 2.1, Let S, , be generalized Gaussian with parameter An for some positive
number A and all m = 0 and n > 1. Then for each v > 2, there exists a positive
constant K, such that

(2.1 E max,_, |S, .|" < K, (An)*" forall m>0 and n>1.
ProoF. Fixv>2,m>=0,and n > 1.
(2.2) E|Spal" = v §& x*7'P[|S,, .| > x] dx .

Pl|Sn,a| > x] < [Eexp(uS,,.) + E exp(—uS,, )] exp(—ux)
=< 2 exp(#*An[2) exp(—ux)

for all real u and all positive x by hypothesis. Taking u = x/(4n), it follows that
2.3) P[|Sp.A| > x] < 2 exp[—x¥/(24n)]

for all positive x. Combining this inequality with (2.2), it follows that

(2.4) E|S,, " = 2v {§ x*~'exp[—x*/(2An)] dx = J (An)*

where J, = 12T (v/2).
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Using the maximal inequality approach of Serfling ([7]) it is easy to complete
the proof. For, according to Serfling,

(2.5) E|S,,.l" < 9*"(n)

for some v > 2, all m > 0 and n > 1, some function g(+) non-decreasing with
2g(n) < g(2n) for all n = 1 and g(n)/g(n + 1) — 1 as n — oo implies that there
exists a positive constant 7/, for which E max;, |S, ;| < 1,9*/*(n) for all m = 0
and n = 1. By (2.4), g(n) = J,**A4n satisfies (2.5). Thus Emax,g, |S, " <
K, (An)” for each m = 0 and n > 1 as desired, taking K, = 1, J,.

It is now an easy matter to state a law of the iterated logarithm for generalized
Gaussian random variables.

THEOREM 2.1. Let S, , be generalized Gaussian with parameter An for some
positive number A and all m = 0 and n = 1. Then

(2.6) lim sup |S,|/(2ndloglogn)t < 1 a.s.
Proor. The proof is standard and consists in showing
limsup|S, |/(2n, Aloglogn,)t < 1 a.s.
for an appropriate integer subsequence {n,, k = 1} and then showing that
S

n

max — S,,l/(2n, Aloglogn,)* - 0 a.s. as k-— oo .

NpSN<Np4q I

For details one can consult the proof of Serfling’s Theorem 4.1 ([8]) which is
virtually identical to the proof of Theorem 2.1.

The essential characteristic of Theorem 2.1 is that the X;’s are not assumed
to have a specific dependence structure. That S,, , is generalized Gaussian with
parameter Anform = 0 and n > 1 is the only restriction. A variety of depend-
ence structures satisfy this assumption. For example, X;’s independent with
mean zero and |X;| < 4! a.s. or more generally X;’s martingale differences with
|X;| < At a.s. satisfy the assumption. X;’s independent normal random variables
with mean zero and variance A also satisfy the assumption. Note that the con-
clusion of Theorem 2.1 is sharp when the X,’s are independent normal random
variables with mean zero and variance 4. An essentially weaker version of
Theorem 2.1 is proved by Csaki [3] where {S,, n = 1} is in addition assumed to
be a submartingale. A result due to Serfling (Theorem 4.1, [8]) is closely related
too: Let |X;] < Ata.s.and EX; = Ofori = 1and (2.3) and (2.4) hold for m = 0
and n > 1. Then (2.6) holds.

Theorem 2.1 yields a known law of the iterated logarithm for multiplicative
random variables.

DEerFINITION 2.1. Random variables {X;, i = 1} are multiplicative if E(X; X; - - -
X)) = Oforalll1 <i <i<---<i,andall n > 1. Note that a martingale
difference sequence {X;, i = 1} with EX, = 0 and all moments finite is a multi-

plicative sequence. It is easy to prove (see Azuma [1]) that if the X;’s are
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multiplicative with |X;| < 4ta.s. foralli > 1, then S,, , is generalized Gaussian
with parameter n4 for allm > 0 and n > 1.

COROLLARY 2.1. (Takahashi [10] or Serfling [8]). Let {X,,i > 1} be multipli-
cative with |X;| < At a.s. for some constant A and all i > 1. Then

limsup|S,|/(24nloglogn)! < 1 a.s.

Proor. Immediate from the remark preceding Corollary 2.1 and from
Theorem 2.1.

The basic Lemma 2.1 together with the maximal inequality approach of
Serfling [7] can be used to give a relatively simple proof of an important and
sharp law of the iterated logarithm for uniformly bounded equinormed strongly
multiplicative random variables (Theorem 2.2 below) due to Takahashi [10].

DEFINITION 2.2. A multiplicative sequence {X;, i > 1} is said to be equinormed
strongly multiplicative (ESMS) if EX;? = 1 foralli > 1 and E(X71 X2 - - - X7») =
]'[;?=1EX;],:' foralll1 <i i, < --- <i,all rssuch that r; = 1 or 2 for j =
1,2,...,n,and all n > 1. The lemma below, whose proof we give for com-
pleteness, is due to Serfling [6].

LEMMA 2.2. Let {X;,i = 1} be a uniformly bounded ESMS sequence. Then,
givend > 0,
E exp(uS,) < exp[(1 + 0)u*n/2] forall n>1
and |u| sufficiently small.

PROOF. Series expansion shows that e < 1 4 x 4 (1 4 d)x*/2 for |x| suf-
ficiently small. Fix n = 1. Thus

Eexp(uS,) = E [[i-, exp(uX;)
S ETI 1 + uX; 4 (1 4 9w’ X?)2]

for u sufficiently small, using the uniform boundedness of the X,’s. Using the
ESMS assumption,
Eexp(us,) < [1 + (1 + oyu2]"
< exp[(1 + d)u*n/2].

THEOREM 2.2. (Takahashi [10]). Let ’{Xi, i = 1} be a uniformly bounded ESMS
sequence. Then
limsup |S,|/(2nloglogn)t < 1 a.s.

Proor. Fixn = landé > 0. By Lemma 2.2, Eexp(uS,) < exp[(1 + d)un/2]
for |u| sufficiently small. Let u, = (2loglogn/n)t. Thus Eexp(u,S,) <
exp[(1 + d)u,’n/2] for n sufficiently large. Taking n, = [exp k?] for k = 1
where a satisfies (1 4- 0)™* < a < 1, it follows that >3, Eexp [, 8., —2(1 +
d) log log n,] < co. Thus, with probability one, 335, exp[u,, S,, — 2(1 + 9) X
log log n,] < oo and therefore u,, S, — 2(1 + 9)loglogn, < 0 for k sufficiently
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large. Thus with probability one, S, /(2n, loglog n,)t < 1 + § for k sufficiently
large. Replacing X; by —X; for i > 1, with probability one

2.7 |S,,//(2m, log log m)t < (1 + 0)

for k sufficiently large. As previously remarked, S,, , is generalized Gaussian
with parameter An for some constant 4, allm = Oand n > 1. Thus, (2.1) holds
by Lemma 2.1. Proceeding in the standard way (again see the proof of Theorem
4.1 in [8)),

max S, — S,,|/(2n, loglog n,) — 0 a.s.

npSn<ng g

follows easily. Combining this with (2.7), it follows that

limsup |S,|/(2nloglogn)t < 1 a.s.
as desired. '
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