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A LINEAR EXTENSION OF THE MARTINGALE
CONVERGENCE THEOREM

By JaMEs B. MACQUEEN
University of California, Los Angeles

Let X1, Xz, - - - be a sequence of random variables satisfying E(Xn+1| X,
Xn-1, 0 X)) =a1Xn + a2 Xp-1+ -+« + Xpk1,n=k,wherea; +az + -+ +
ar = 1. Under certain general conditions, mainly that sup, E|Xy| < oo, it
is shown that X, — ¥Y» —a.s. 0, where {Y,} is a solution of the homogene-
ous equation y, = @1¥n-1 + @2¥n-2 + +++ + arya—k. Several applications of
possible theoretical interest are described. Also, the results suggest some
extensions of classical results in the theory of random walks which are
outlined.

1. Introduction. Consider a sequence of random variables X, X,, - . . satisfy-
ing for all n = &,
(1) E(X”H‘X”, Xn—v Tt Xl) = aan + aaXn—l + .-+ aan—k+1 ’
where a,, a,, - - -, a, are given constants, a, + 0, and

(2) Z'{ a, = 1.
Such a sequence will be called—for lack of a better term—a linear martingale. The
purpose of this paper is to provide an elementary extension of Doob’s (1953)
well-known martingale convergence theorem to such sequences.

Let ry, r,, - - -, r, be the roots of the characteristic equation,

(3) rf— (@t a4 ... 4+ a) =0,
corresponding to the homogeneous equation
“ Zann =W Z, + A2, F s G2, gy

Our main result is the following:

THEOREM 1. Let X,, X,, --- be a linear martingale with sup, E|X,| < oo, and
with the roots of (3) all having moduli |r;| < 1, those roots r; with |r)| = 1 being
simple. Then there exists a sequence of random variables Y,, Y,, ..., such that
with probability one, the homogeneous equation (4) is satisfied by the sequence and
X, —Y,—0.

The case of multiple roots with moduli equal to one is of a class with the case
where some roots have moduli greater than one, in that both cases give rise to
unbounded solutions of (4). By repeated application of (1) we observe that
E(X,| Xy X4_ys -+, X)), n > k, is given by the solution to (4) with z, = X,
z, = X,, ---,z, = X,. Thus in both cases it seems clear that a contradiction of
the hypothesis sup, E|X,| < co would be reached immediately unless X, X,, - - -,
X,, and hence X, ,, X, ,, - - -, all correspond precisely to one of the bounded
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solutions of (4), and, ab contrario, the conclusion of Theorem 1 would still be
true. We do not treat these cases further.

Conditions (1) and (2) above may be considered as defining a stochastic dif-
ference equation and then Theorem 1 characterizes the “solution” under certain
additional conditions, mainly sup, E|X,| < co. Thus under these conditions X,
is asymptotically stationary and “harmonic” (cf. Wold and Jurreen [5] page
164), that is, asymptotically of the form 33,p, cos (nf; + 1;) (see (9') below).
However, as will shortly be apparent, Theorem 1 is essentially a version of the
martingale convergence theorem, and the process defined by (1) and (2) appears
to be more closely akin to the usual martingale than the usual stationary process
studied by means of such equations. This is because of the special assumption
that 31 a; = 1, which keeps the process centered somewhere in its recent past.
Such a process has to settle down to a deterministic pattern of behavior if it is
to remain bounded away from infinity. In the martingale case this is shown by
the upcrossing inequality which proves that continued variation of X, is incom-
patible with the condition sup, E|X,| < co. Theorem 1 is based indirectly on
this same relationship.

It may be worth pointing out, however, that if the sequence of random vari-
ables V,, V,, - - satisfies E(V,, |V, Voosy +-s V) =6V, + b,V , + -+ +
bV, k4o = k, then an associated linear martingale can be defined as follows:
Set X, = V,c~" where c is any nonzero real root of the equation ¢* — (b,c*~ +
byc*=* + ... 4 b,) = 0, such a root being assumed to exist. Then X, X,, - - -
is a linear martingale with @, = b,¢™%, a, = b,c"%, - .., a, = b,c*. Some infor-
mation about the behavior of V, V,, - - -, may thus be provided by analysis of
the latter. It may also be worth pointing out that processes satisfying (1) and
(2) may be defined in the following essentially equivalent way: Take X, X,, - - -,
X,_, and U, as given and let X, = U, + b, X,_, + b, X, , + -+ +b,_ X, 11
for n > k, where the random variablesU,, U, ,,, - - - satisfy E(U, | X,_;, X, s -+,
X)=U,_, m=>2k+1, and b, b,, ---, b,_, are constants. We have X,,, =
Un+l + len + -+ bk—IXn—k+2 - (_Xn + Un + len—l + o+ bk—an—k+l) =
X =V — Uy + (A +8) X, + (b, — b)) X, + oo + (b — b)) Xy —
b, 1 X, i1, With the coefficients of the X’s in the latter summing to one and with
EWU,;, — U, | X,s X,ys -+, X;) = 0. In view of this, the process X, X,, - - - so
defined may be analyzed directly. We have not found it interesting or techni-
cally convenient to do so, especially in view of the possible applications and the
immediate technical reduction of the problem in Lemma 1 below. The con-
verse relation between the above definition and (1) and (2) is implicit in Lemma 1.

Examples illustrating possible application of the linear martingale model are
given in Section 3.

2. Proof of Theorem 1.

LemMa 1. Let U, =X, + 4, X,_,+ -+ + A X, _,,,, n=k, where A; =
2ii-;a;. Then the sequence of random variables U,, U,,,, --- is a martingale
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sequence with sup, E|U,| < oo, and is uniformly integrable if the sequence X,
X,, - -- is uniformly integrable; moreover, U, — U with probability 1, and in the
case of uniform integrability, E(U|U,) = U,.

ProoF. E(Un+l| Um Un—l’ R Uk) = E(E(Un+1 l Xn’ Xn-v Tt X1)| Un’ Un—l’ Tt
U)y=aX,+aX,  + - +aX, o+ X, + A4 X, + -+ A4 X, =
U,. Using the triangle inequality it is easy to show that sup, E|X,| < co im-
plies sup, E|U,| < oo and that if the sequence X, X,, - - - is uniformly integrable,
so is the sequence U,, U,,,, ---. Application of the martingale convergence
theorem completes the proof.

From Lemma 1 we see that
(5) i1 = U — U, =X, — (@ X, +0,X, .+ - +a,X,_,,,)—0

with probability one and, in fact, };7_, 6, = U, — U, converges. However, ex-
amples will readily show that convergence of 3] ; alone is not enough to iden-
tify the limiting behavior of X, X,, -- - as belonging to the class of solutions of
(4). For this purpose we will use the following lemma, which characterizes
solutions to the discrete renewal equation in a form suitable for the problem at
hand.

LEMMA 2. Let x;, X,, - - -, X, be given numbers and for n = k + 1, define x,
recursively by

(6) Xpt1 = 5n+1 +ax, +ax, 3+ -0+ A X

Then forn = k + 1,

(7) X, =2z, + 5nvk + an—lvk+l + o+ 5k+lvn—l ’

where z,, z,, - - - is the solution of (4) withinitial valuesz, = x,,2, = X,, - -+, 2, = X,,
and v,, v, - - - is the solution of (4) with initial values v, = 1, v, = v, = --- =
v, = 0.

Proor. The sequence x,, x,, - - - is uniquely defined by (6), hence (7) can be
verified by direct substitution.

Consider first n = k + i for 1 <i < k. In this range the left side of (6)
becomes

Zipivr + OV + OppiViss + -0+ 041 Vi
and the right side becomes
Oppivi + 0Zpyi + @2+ - 4,244,
+ A0,V + Opica Vi + -0 Op1Vpsia]
+ af041i Y+ -+ 01 Virissl

+ a[04410]
+ X+ X+ e A X
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In the above triangular array, terms with the same subscripts on ¢ are arranged
in columns. Since v, =0 for n <k, v,,; =av,,; , + --- + a;v, for 0 <
j < k; hence on collecting terms in columns we see the two sides are equal.
Equality of the two sides for n > 2k is shown similarly by extending the above
array to the right as far as necessary, and down until i = k.

To apply Lemma 2 we employ the well-known fact from the theory of linear
recursion that every solution of (4) is of the form }}; y,(n)r,” where 7, is a poly-
nomial in n (with complex coefficients) of degree one less than the multiplicity
of r;, there being one such polynomial taken in the sum for each distinct root.
The coefficients in the polynomials, altogether k in number, are to be determined
from boundary conditions. Thus let z, = Y ;a,(n)r," and let v, = X, B(n)r;"
where the coefficients in the polynomials «; and §; are determined from the re-

spective initial conditions specified in Lemma 2 with z; = X;, i = 1,2, .-+, k.
Then, using (7) with J, defined by (5), we have
3 X, = N [aimyr® + (9, Bi(kyr¥ + 6, Bi(k + 1)rf+* + ...

+ Opy1 Bi(n — 1)r* )]

For integers i such that |r;| < 1 the contribution to (8) is easily seen to tend
to zero with probability one. For such i, a,(n)r;" — 0 and for the series in
parentheses we have, for every fixed m, 4, 8,(k)r* + - - - + 0,_, Bi(k + m)yr*™ —
Osince Y, d, converges, and for every fixed m, |0,_,,_; fi(k + m + rftm+ip ..o 4
0ps1 Bi(n — Dr*Y| < (max,, |9,|)L;|r;|**™ where L, is the finite limit of the sum
Bk + m + Dr| + Bk +m + 2)r2| + -+

For i such that |r,] = 1 the polynomials «; and 8; are simply constants since
by hypothesis such roots are simple, and we may write the corresponding con-
tribution to (8) in the form

;" Br (O Y + G e+ 0,177)

Since 8, 6,,5 - - - are the increments of a martingale the series in parentheses
is a martingale transform. A theorem of Burkholder applies ([2] Theorem 1,
page 1496) to show that the series converges with probability one. Let ¢, be
the finite limit. (Of course, in the case where r; has a nonzero imaginary part,
the integers i in question will appear in pairs corresponding to conjugate pairs
of roots with corresponding conjugate coefficients in the above, and their re-
spective limits will be conjugate.)

Finally, if we let

) Y, = 2 (a; + Birifoyr”
where the sum is taken over integers i such that |r,| = 1, then Y, satisfies (4)
and Y, — X, — 0 as was to be shown.
Equation (9) is readily put in the form
(%) Y, = 2i;p;c0s (nf; + 1)
where the ¢, are amplitudes of the roots r; with || = 1, while p; and 7, are



A MARTINGALE CONVERGENCE THEOREM 267

(real) random variables. There will be one constant term in the sum for the root
r = 1 (so that cos (nf; + 7,) = 1 for that root); one term for the real rootr = —1
if it occurs, in which case the corresponding term reduces to p,(—1)*; and one
term for each of the conjugate pairs of roots with imaginary parts. From (9’)
it is clear that the random contribution to the asymptotic behavior of X, is a
random phase and intensity for each of the basic frequencies determined by the
persistent part of the solution to (4).

3. Remarks. If all roots of (3) except the single invariable root r = 1 have
moduli less than one, then only the constant term corresponding to r = 1 will
appear in (9) (i.e., all solutions of (4) are asymptotically constant), and we
conclude X, — X with probability one. Since U, = X, + 4,X, , + --- +
A, X, 1 — U, with probability one, we have U = X(1 4+ 4, 4+ --- 4+ 4,) with
probability one. Let 4 =1+ 4,4+ ... + 4,. Then E(U|U,) = E(X|U)u.
We note also that 4 + 0, since on dividing (3) by r — 1, the reduced equation
isrtt  A4,rt2 4 ... 4+ 4, =0, and if 4 = 0, r = 1 would be a root of mul-
tiplicity of at least two. In fact p 3 0 is already implied by the hypotheses of
Theorem 1, by this same argument.

This relation between X and U appears to be particularly useful in the case
uniform integrability where E(U|U,) = U, = X, + 4, X, + --- + 4, X,. In
this case the latter formula together with the above observations yield the fol-
lowing corollary of Theorem 1.

CoroLLARY 1. If X,, X,, - - - is a uniformly integrable linear martingale (hence
sup, E|X,| < oo) with (3) having the one simple root r = 1, and with the moduli of
the remaining roots being less than one, then X, — X with probability one, and

(10) E(X‘Xk’ Xk—v ] Xl) = (Xk + Aan—l + -0+ Ale)//" ’
where p =1 + A, + --- + A4,. -

As will be illustrated in the examples which follow, (10) provides a surpris-
ingly simple method for calculating certain absorption probabilities.

In the case where the a; are nonnegative, an easy check that the condition on
the roots of (3) in Corollary 1 is satisfied is provided for by the following lemma.
(In fact all the examples given below utilize this case.) If the a; are nonnegative,
and the greatest common divisor of the integers i such that a; > 0 exceeds one,
we will say the a; are arithmetic, while if the greatest common divisor is equal
to one, we will say the a; are aperiodic.

LeEMMA 3. If the a; are nonnegative and aperiodic then there is only one root of
(3) with a modulus of one and the remaining roots have moduli less then one.

Proor. If|r|>1,wehavel < |r¥|=|a;r* '+ ... + a,| < aj|r]¥™ + a,|r]** +
.-+ 4+ a, < |r|¥~7 where j is the first integer such that a;>0, which is impossible.
If |r| = 1, then evidently |r|* = |a,r*"! + ... + a,| = a)|r|* + ay|r]**2 + - .. +
a, which is possible only if the arguments of the terms 7*~7 for which a; > 0 are
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all equal to the argument of r*. Since ri=/ = r¥=i/r*~% has modulus one and
argument zero, r*~4 = 1. Thus r is an nth root of unity where 7 is no larger
than the largest common divisor of the differences i — jamong pairs i, j for which
a; and a; are both positive. By hypothesis this largest divisor is unity. Hence
r = 1. But there is only one root r = 1, since on dividing out r — 1 from (3)
we obtain the reduced equation r*=! + 4,r*=* 4+ ... 4 A4, which is, of course,
positive when » = 1 since the g; are all nonnegative. Thus all the roots but one
have moduli less than one as was to be shown.

We remark that if the a; are nonnegative and aperiodic, a proof of the situa-
tion covered by Corollary 1 and Lemma 3 can be obtained directly from famil-
iar results in the study of random walks. Consider (5) (X,,; = 0,41 + @, X, +
a, X, ,+ -+ + a,X,_,,,, n = k) as the equation for the expected total future
income, X,,,, of a man who starting from state n 4 1, n > k, receives d,,, im-
mediately and moves to state n + 1 — i with probability a;, and who receives
(the initially given) X; immediately if he is in state j < k, but his income stops
the first time he reaches such a state. Thus his expected income will be

Xoi1 = 0,11+ Pasa(m)0, + Papi(n — 1)0,_y + -+ + ppa(k + 1)d,1,
+ ()X, + prk — DX, + -+ pla(1)X,

where p,..(j) is the probability the man visits state j, j > k 4 1, starting from
n+1, and pb,,(i), i =1,2, ---, k is the probability the man hits state i on
entering the set {1, 2, - - -, k} for the first time. It is clear from the interpreta-
tion that this formula will satisfy (5). From the renewal theorem it follows that
as n— oo, p,(j) — 1/p, and a basic result on hitting probabilities (see, e.g.,
Spitzer [4] P7, page 285) yields p,°(i) — A4,/ where we set 4, = 1. Thus the
series 0,.1 + Pusa(m)0, + - + pup(k + )0, — (X511 0,14)/ e = (U — Up)/p
(using Lemma 1) and X, —» X = (U — U,)/p + U,/ = UJp. From this we get
the formula E(X|U,) = U,/¢ in the uniformly integrable case as above.

In the arithmetic case with the a; nonnegative, the zeros which appear between
positive a; make it possible to decompose the process into several separate linear
martingales. The number of such martingales required will be equal to the
greatest common divisor of the i for which a; is positive. Thus a complete proof
of Theorem 1 in the case of nonnegative g, is possible along the above lines.

The following simple example illustrates the above decomposition and the
more general phenomenon of a random harmonic limit as well.

ExaMmpLE 1. Let each X, be either Oor 1, and leta, = a, =0, a, = a, = }.
Let X, = X, = 0, X, = X, = 1. Then given this initial sequence, the sequences
X, X;, - - and X,, X,, --- both converge immediately independently of one an-
other to either 1 or 0, and in each case the limit is 1 with probability 2. There
are thus four limiting sequences: two all 0’s, two all 1’s and two oscillating
between 0 and 1 but differing in phase. Their respective probabilities are §, §,

$ %
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The following application of Corollary 1 is suggested by the classical problem
of achieving a given goal by means of fair gambles, starting with a given initial
fortune.

ExAMPLE 2. Let X, satisfy 0 < X, < 1, with the a; nonnegative and aperiodic,
and consider the problem of determining for given X, X,, ---, X, a sequence
of random variables X,,;, X;,, --- subject to (1) which maximizes p =
lim,_, P[1 = X, = X,,, = ---] (that is, the probability that X, is equal to 1
for all n sufficiently large). Clearly, the distribution of the limiting random
variable X subject to (10) which assigns maximum probability to X = 1 will
concentrate the remainder on 0, whence the maximal probability is.(X, +
A Xy + -+ + A)/p = E(X| Xy, Xi_y» - -+, X)). This is easily achievable, e.g.,
by choosing each succeeding distribution of X, to concentrate on 0 or 1 subject
to (1).

In the above case where 0 < X, < 1 and with probability one X, — 1 or else
X, — 0, the concept of “total variance” for a martingale (see Dubins (1971))
extends as follows. We wanttofind S = E(d2,, + 03,0 + -+ - | Xp» Xyrs - -5 X))
where o}, = E([ X3 — E(Xp 1| Xpo Xty - o, X)P | X Xy -+ o, Xy) = E(05 41| Xos
Xn—v Tt Xl) = E([Un+l - U,,]le,,, Xn—v Tt X1)~ We have E([U” - Ukllek’
Xee - X) = E(U,— U, ) +--- + (U — UpT | Xips Ximps -+ 5 Xy) = E(o,’ +
i+ - + 02| X Xy - - -, X)) since Uy, Uy,,, - - - is a martingale sequence.
But E(U, — UyF| Xy Xy o -0 X) > B(U — UV | Xy Xy yy -5 X) = (2 —
U)U,Jp + UX1 — U,/p)since U = por 0, and P[U = p| X, Xpys - -+, Xj] =
U,/p. This reduces to
(11) = (1 — UYU,.

The above argument can be applied in certain first passage time problems.
To illustrate, consider the following process: Let X,,, = (X, + X,_, + -+,
X, _is1)/k + €,.1, n = k, where the rv’s ¢, are independent with Ple, = +1] =
Ple, = —1] = 4. Given X,, X,_,, ---, X;wewant tofind' T = E(¢| X, X, _;, - - -
X,) — k where ¢ is the least integer i such that |X;] = ¢. It is easy to obtain a
reasonably sharp approximation for T using the fact that E((U,,, — U,)’| X,,
X,_,, ---, X)) = 1. The process X,, X,, - - - is a linear martingale with a; = 1/k,
i=1,2,..-,k. If we “stop” the process at ¢ and replace X,,,, X,,,, - - - with
X’t 1 X’, .2 - - - where the latter sequence is the deterministic projection of X,
X,, - - -, X, into the future, thatis, X,,, = (X, + X,.; + -+ + X,pp)/ks Xiyo =
(X,t+1 + Xt + -+ Xt—k+2)/k’ Yt+3 = (X,Hz + Yt+1 + .-+ Xt—k+3)/k" Tt thfn
the modified process, call it X/, X/, ---, where X,/ = X,, n <, X, =X,
n > t, is also a linear martingale with o, = 1/k, i=1,2, ---, k, and is uni-
formly integrable. Let U,’ = X,/ + 4, X}, , + --- + A X,_, = X, + [(k — 1)/
k1X,_,+ --- + (1/k)X,’. Then U,” — U’ with probability one. Also E((U’" —
UN | X, X_r» -+ -, X)) = T. If the first time X, leaves the interval (—c, c)

1 This problem was suggested by a result of Blackwell’s (1963) characterizing the expected
time until an #-dimensional random walk leaves a spherical set.
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occurs at +c, then U’ = U/ = ((k + 1)/2)c — (k — 1). The latter inequality
follows from the fact that X, =1 + (X,_, + .-+ + X|_,)/k = ¢ while the vari-
ables X;_,, X}_,, ---, X;_, are all less then c. Subject to these conditions the
minimal value of X, + ((k — 1)/k)X]_, + --- + (1/k)X|_,,, occurs when
X ypi=ci=1..-,k—2, X, , =c— (k—1). (Asomewhat sharper bound
is clearly possible.) Considering that X, < ¢ + 1, we have also U’ <1 +
((k + 1)/2)c. Analogous inequalities hold at —c so we find, then, considering
E(U' — U, = E(U')* — (U, that

(12) [’%lc—(k—l)}a—Uk’éTg['“zfchT_U,,’.

The left side is exact if k = 1 and X, and ¢ are both integers.

While the above bound on T was first noted in connection with the total vari-
ance concept, another somewhat more direct derivation is possible along the
following lines: LetT, = —(U)%, T, =1 — (Up,p)% -+, T, =n — 1 — (U,
Then T, is a martingale. If T, is stopped at ¢ where ¢ is the least n for which
|Xyin| = cand T,,,, T,,,,- - - are all replaced by T, then the modified martingale,
say T/, T/, --- has T, - T’ with probability one, and E(T'|X,, X,_,, -- -,
X) = —-U}? = E(t| Xy, X4 - - -5 X)) — E(U,, | Xo» Xioys -+ -5 X;). By bound-
ing U, ,, as above, using the facts that | X, ,,| = ¢, while | X,,,_;| < c¢,and|¢,| < 1,
the above bound is again obtained.

If the above process is modified sothat X, |, =¢,,, —d+ (X, + X,_; + --- +
X,_,.1)/k where d is a positive constant, then the same method prov1des an
equally elementary bound for the expected number of steps for X, to fall below
zero for the first time. The relevant martingale here is 7, = n — 1 + (U,,,)/d
and the inequality for T* = E[r| X,, X,_,, - --, X;] where ¢ is the least n such
that X,,, < 0, is

Uy _(@d+1)

U,, d+
e (e,

ExAMPLE 3. Imitation processes. Suppose there are N persons in a group who
on the nth occasion, n = 1,2, - .., each chose one of a finite set of actions.
Let 7,~* = 1 if the vth person chooses action @ on the nth occasion and 0 other-
wise so that 3], 7,»* = 1. The probability of each person making the various
choices is influenced by the past choices of the others (possibly himself) accord-
ing to the following relation:

(13) P[Igi?l = 1 |Hn] = £V=1 M’v,z(allna'z + aﬁla zl + + aklg’—zk-q.l) 9

where H, stands for the complete history of all past choices of all persons as of
time n, and w;; is an N X N stochastic array, i.e., Z,w, , =1 for all v and

z2 v,z

w,,=0. Thus w, . is the “weight” the vth person gives to the zth person’s be-
havior, and the a; represent weighing of past actions according to their recency.
We assume also that, given H,, the /2 are (conditionally) independent with

respect to @. Thus our process is actually Markov in the space of all the histories,

A



A MARTINGALE CONVERGENCE THEOREM 271

of length k, of the past choices of the N persons. With a; > 0 and each w,, > 0
it is clear that eventually everyone will be choosing the same action on each
occasion. Making this assumption, we show how to calculate p,, the probability
that action « is eventually the common choice, as a function of the initial &
choices of each of the persons. The method is very simple.? If w,, > 0, then
there is a set of positive numbers w, satisfying Z,w, =1, w, = Z, w,w,,. (If
we consider w, , as the transition distribution of a Markov chain, w, is the sta-
tionary distribution.) We multiply both sides of (13) by w, and sum over v.
Then X,* = Z,w,I,*" is seen to satisfy (1), and X,* — X* with probability one.
The only possible values for X« are 1 or 0; hence

(14)  pa = E(X*| X7 Xi_yy -5 X7) = (X + 4K + - + A X0 .
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and at that time discussed the problem with Leo Breiman. Breiman, using the
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coo 4+ (Xy — E(Xi41] Xp» - -+, X)) oObtained a partial characterization of the
asymptotic behavior somewhat like Lemma 1, but valid for certain infinite se-
quences of weights a,, a,, - - .. However, at that time the author did not realize
what now appears to be obvious, that the correct asymptotic statement was that
X, tends to one of the solutions of (4). Upon realizing this quite recently, the
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