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AN INFINITE PARTICLE SYSTEM WITH ZERO
RANGE INTERACTIONS!

By THoMAs M. LIGGETT
University of California, Los Angeles

Existence and uniqueness is proved for Spitzer’s zero range interaction
process. It is then shown that a certain class of measures on the configura-
tion space is invariant for this process.

1. Introduction. One of the simplest models of an infinite particle system with
interactions introduced by Spitzer in [7] is the one he calls “zero range interac-
tion.” It describes the random motion of infinitely many indistinguishable
particles on a countable set S, which have the property that at any given time,
each particle interacts only with the other particles which occupy its site at that
time. Furthermore, the interaction that does occur is of the speed change type.
The motion is described in terms of (a) a probability transition function p(x, y)
on S, and (b) a nonnegative speed change function c(k) which is defined for
ke Z,, the nonnegative integers. At any time ¢ = 0, there are to be finitely
many particles at each point of S. A particle which is at x € § at time ¢ will
make a transition to y € S during the period (¢, ¢ + At) with probability

c(k)p(x, y)At + o(At) ,

where k is the number of particles at x at time ¢. In particular, if c(k) were
constant, all the particles would move according to independent Markov chains
on S with transition function p(x, y) and exponential holding times with constant
parameter. On the other hand, if ¢(k) = k=%, the interpretation would be that
each site has an exponential clock with parameter one, and that when the clock
at site x rings, a particle in chosen at random from those at x and it is moved
to y with probability p(x, y). The interaction among particles, then is one which
changes the speed with which a given particle undergoes its motion according
to the total number of particles which occupy its site.

The general problem of obtaining sufficient conditions for the existence of
processes of the type described above has been treated by several authors (see
[1], [2], and [4]). These results, when applied to the zero range interaction
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model, always require that c(k) satisfy the condition

(1.1) sup, ke(k) < oo .

An interpretation of this is that there are strong attractive forces between
particles at the same site. One reason this condition is unsatisfactory is that,
in particular, it does not include the case of independent motions (i.e., c(k)

constant). In this paper, we will obtain an existence theorem for the zero range
interaction process under the assumption

(1.2) L = sup, |(k + 1)e(k + 1) — ke(k)| < oo .

Following this, we will prove a conjecture of Spitzer [7] concerning the set of
invariant measures for this process under the same assumption.

The reason that condition (1.1) arises in earlier work on this subject is that it
is, in fact, needed if one is to prove the existence of the process beginning with
an arbitrary configuration of particles. This can be seen most clearly by
considering the case c¢(k) = 1 with an initial configuration which puts 7(x)
particles at x where Y], 7(x)p(x, y) = oo for some y. In this case, one would
have infinitely many particles at y at all times ¢ > 0. Hence one of the principal
problems involved in extending the existence results beyond condition (1.1), is
to determine a class of configurations which is sufficiently large to be interesting,
but also has the property that the process remains in this set for all finite times
with probability one if it begins in it. A similar problem arose in a deterministic
context in [3].

Motivated by the example given above, we introduce a positive function a(x)
defined on the countable set S which satisfies a(x) — 0 as x — co. The space
of configurations of particles which will be considered is then

S ={n(s)|n(x)eZ, for xeS and I, n(x)a(x) < oo}.

For n e &7, put ||7|| = X, n(x)a(x). The g-algebra of subsets.of .2~ which we
will use is the smallest one with respect to which 7(x) is measurable for each
xeS.

Let c)(a) be the space of all functions 8(x) on Ssuch that lim,_, [B(x)/a(x)] = 0,
with norm given by ||8|| = sup, |8(x)/a(x)|. Throughout this work, we will make
the following assumption relating a(+) and p(-, «):

(1.3) (PB)(x) = X3, p(x, y)B(y) defines a bounded operator on ¢, (a) .

A discussion of this assumption will appear at the end of Section 3. In particular,
it will be shown there that for a given p, an « exists which satisfies our require-
ments if and only if lim,_., p(x, y) = O for each ye S. A simple example of a
permissible « in a special case is the following. Suppose S = Z, and p satisfies
p(x,y) = p(0,y — x)and 33, p(0, x)e'*! < co. Then a(x) = e~'“! satisfies assump-
tion (1.3), and thus any configuration of particles for which ¥, y(x)e~'*! < oo
is in %7, and therefore can be used for an initial configuration for the process.
A somewhat more general situation which illustrates the breadth of the allowed
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initial configurations is that in which p(x, y) is doubly stochastic. It will be seen
in Section 3 that in this case, there exists an a which satisfies };, a(x) < oo in
addition to (1.3). Then if {»(x)} is any collection of nonnegative integer-valued
random variables for which sup, E(7(x)) < oo, then {5(x)} € % with probability
one, and therefore they can serve as an initial distribution for the process.

In order to state our main existence theorem, we need the following notation.
If e % and x, ye S, then 7, and 7,, € % are defined by

N, (u) = n(u) + 1 if u=x
= n(u) otherwise ,
N.,(1) = 9(x) — 1 if u=x and p(x) =1
=70 + 1 if u=y and gp(x) =1
= n(u) otherwise ,
if x # y, and 5,, = 7. So, 7,, is the state reached if a transition occurs from x
to y.

THEOREM (1.4). Assume that c(+) satisfies (1.2), and p(-, +) and a(+) satisfy
(1.3). Then there exists a Markov process {n,} with state space . such that
E®(||n]]) £ e*!(||n]| + 1) for some @ > 0, and for each xe S and k € Z, the func-
tion h(t, n) = P2(n(x) = k) satisfies:

SUp,,, SUp, |A(t, 7,) — h(t, 7)€ co(@) foreach 1,>0,
h(t, n) is continuously differentiable in t for each n € S, and

(1.5) g; h(t, 1) = Z.,yes 2x)e@(x)pCx, YA 22,) — A2, 7)]

for each ne 7 and t = 0. Conversely, if {,} is a Markov process on .57 so that
for each xe S and k € Z_, the function h(t, n) = P"({,(x) = k) satisfies:
h(t, 1) is weak * continuous on bounded sets of fo; t=0,
and
h(t, 1) is continuously differentiable in t and satisfies (1.5)
for each 1) such that 3, 7(x) < oo,

then §, is a version of 7,.

We also prove the following conjecture of Spitzer [7], which was proved by
Holley [2] under assumption (1.1) and additional assumptions on p(-, +). For
0 < p < lim inf,_, kc(k), define a measure v on Z, by

_ o
MO =T )

where 7 is chosen so that Yz, v(k) = 1. Let ({(x), xe S) be independent and
identically distributed random variables with distribution v.

THEOREM (1.6). In addition to the assumptions of Theorem (1.4), take p(, ¢) to
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be doubly stochastic and a(+) to satisfy 3, a(x) < oo. Then ({(x), x € S) lies in
7 with probability one, and the induced measure on 7 is an invariant measure
for the process ,.

REMARK. It will be shown in Section 3 that if p(., ) is doubly stochastic,
then there exists an a(+) which satisfies (1.3) and };, a(x) < oo.

The remainder of the paper is devoted to the proofs of Theorems (1.4) and
(1.6). In Section 2, the relevant semigroup of operators is constructed on a
space of continuous functions on .%7. One interesting technical point that arises
here is that the semigroup turns out not to be strongly continuous unless the
space is appropriately renormed. In Section 3, the proof of Theorem (1.4) will
be completed, and assumption (1.3) will be discussed. Theorem (1.6) will be
proved in Section 4.

2. Construction of the semigroup. Throughout this section, we assume that
c(¢), p(+, +) and a(.) satisfy (1.2) and (1.3). As defined in Section 1, % is a
closed subset of /,(«), which is the dual of ¢y(a). So B(.%") can be defined to be
the space of all real-valued functions on % which are weak * continuous on
(norm) bounded subsets of %" and which satisfy the growth condition

2.1y tim, ;. L — 0.
|11l

For fe B(7), put ||f]| = sup, |f()|/(1 + [I7])- Let
C(7) = {f e B [ £1] = sup, |f(m)] < oo}

As will be seen later, the required semigroup of operators will be strongly
continuous on B(.%") but not on C(.%"). The idea of the construction is, then,
to apply the Hille-Yosida theorem to an appropriate generator on B(.%), and
then to show that when the semigroup so generated is restricted to C(.%"), one
obtains a semigroup of contractions.

In order to define the generator of the semigroup, put

G, = {f € C() Isup, | f(n.) — f(n)| € exf@)} -
Since sup, c¢(k) < oo (by (1.2)) and

sup,7 |f(vzy) - f(’?)l = sup,y |f(77z) - f(n)l + sup, |f(771/) - f(’?)l ’

the sum

22) Q, /() = Za1(x)e((x) Zy P DS (724) — f()]

converges absolutely and uniformly on bounded sets of .o for f e G,. Put
G={feG|QfeB(¥)}.
LEMMA (2.3). G is dense in B(S7).

Proor. First we show that G, is dense in B(.%). Let S, be finite subsets of S
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so that S, 1 S, and define
T = S
2.9) W(X) =7(x)  xeS§,
=0 x¢sS,.
For fe B(.%), put
) =fTan) i [f(Tup)l =0

=0 otherwise .

Then f, € G,, since sup, | f(y,) — f(y)| = O for all but finitely many x. We must
show that ||f, — f|| — 0. Take », € % and consider two cases. If ||7,|| — oo,

then |f(1,) — fu(.)| = |f(7.)] + |(Ta7.)|, and hence

1f(24) — fa@a)I[1 + ||7all]7* — O

since ||T,7,|| < ||7./| and f satisfies (2.1). If 9, —,.ne ¥, then T,%, —,.7
and therefore f,(y,) — f(y) and f(»,) — f(y). Since bounded sets in % have
weak * compact closures, it follows that ||f, — f|| — 0.

Now, to show that G is dense in G,, take fe G, and take & ¢y (a) so that

B(x) > 0 and sup, |f(7,) — f(1)| = B(x). For 2> 0, define
9:(7) = f(n) exp{—2 2. n(x)B(x)} -

Since ||g, — fI| < AIIA1DAIBI), 9. —f as 2 — 0. g, € Gy, so it remains to be
shown that Q,g, € B(.%"). Q,g, is weak * continuous on bounded sets since the
convergence of (2.2) is uniform on bounded sets. Now

9:(7.) — 9:()| = [1 + 2| £1[[18(x) exp {—4 31, n(#)B(u)}
so that

12:9:(m) = [1 + 2|11 sups e(k) 2. 2(x)[B(x) + PB(x)]

X exp{—2 31, n()B)} .
Hence, Q,g, satisfies (2.1).
Before proceeding, we need the following simple result.

LeEMMA (2.5). For fe B(.), put

M = sup, Stn) and m = inf,)_M.._ .
T+ il 1+ {lll

Then if M > 0, thereis an n, € % so that M = f(n,)]/(1 + ||n4]|), and if m < 0,
there is an y,, € 7 so that m = f(0,,)/(1 + ||7.l])-

Proor. It suffices to prove the first statement. Take 7,e€. % so that
f)/(L + ||7.]]) > M > 0. By (2.1), |[n,|| is bounded in n, so by extracting a
subsequence we may assume that », —,. 7. Then f(3,) — f() and
So

Mz SO 5 gim SOy
ol T T (lmll

and M = f(n)/(1 + |Ill)-
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If T is a linear operator on a Banach space X, Z(I') and (') will denote
its domain and range respectively. T is called dissipative if f — AI'f = g implies
that ||f|| < ||g|| whenever fe Z(T') and 2 > 0. Let Q, be the restriction of Q,
to G.

LEMMA (2.6). Put o = (||P|| + 1) sup, c(k) where P is the operator on c,a)
defined by (1.3). Then Q, — ol is dissipative in B(.").

ProorF. Take fe G and 2 > 0, and define g = f — A(Q, — wI)f. In order to
show that ||f|| < ||g||, assume that ||f|| = sup, f(y)/(1 + ||7||). The other case
is treated similarly. By Lemma (2.5), there is a { so that f({)/(1 + ||C]]) = ||f]|-
since [7,,]l = [I7l| + a(y) — a(x) whenever y(x) # 0,

(00 4 d0) = 2 T et pt N[+ S A ”,7”]

—_9() f() () = a(x)
= 4 3. 1(0)e(n(x))p(x; ¥) . :
1+ Il ! LA {7l 1+ Il
Evaluate this expression at { and use the nonnegativity of {(x), ¢({(x)) and
p(x, y) to obtain

1AL + 20) < 1]l + A1f1| Sy CEREE)PE, y) EQLE 2()

1+ [cf
= llgll + Al sups c(OIIPI| + 1T,
which completes the proof. The last inequality follows from 3, p(x, y)a(y) <
|| P|] a(x)-

Now, by Lemmas (2.3) and (2.6), Q, — oI is a dissipative operator on B(.%")
with dense domain. Therefore Q, has a minimal closed extension which will be
called Q (see Lemma 3.3 of [5], for example). We will need the following
technical lemma in Section 3.

LemMmA (2.7). G = G, n Z(9).

ProoF. G C G, by definition of G, and G c Z(Q) since Q is an extension of
Q,, which has domain G. To show that G, n Z(Q) c G, take fe G, N Z(Q).
Since f e Z(Q), there is a sequence f, € G so that f, — f and Qf, — Qf. Since
f€ Gy, Q,f is well-defined and is continuous on bounded sets of .o, Since f, — f,
Qf..(7) — 2, f(n) for all y such that 37, n(x) < co. Therefore Qf(n) = Q, f(7) for
all such 7, and Qf = Q, f follows by continuity since {5 € % | 3}, n(x) < oo} is
dense. But Qf € B(.%), so Q,f e B(.%) and hence fe G.

The next result shows that Q satisfies one of the important properties of the
generator of a semigroup of operators.

LemMA (2.8). Take 0 < 2 < [L(1 + ||P|)]"". Then SB(I — iQ) = B(¥).
Furthermore,

@) if f— 2Qf =g and sup, |9(7.) — 9(7)| < B(x) € c(a), then sup, |f(n,) —
f(n)| < B(x) where Becya) is the unique solution of (1 — AL)A(u) = B(u) +

AL 3, p(us y)B(y), and
(b) iff—AQf =gandg =0, then f = 0.
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ProoF. Let 7, = {5 e ¥ | X, 9(x) < n}, and B, be the set of real-valued
functions f on %, such that f(0) = 0 and sup, |f(1.) — f()| € c,(a). Then B, is
a Banach space with norm

NP = sup. ) — f()]
() = sup.,, L
Since for each x, y € §, » € %7, if and only if 5,, € .97, the expression on the right
side of (2.2) defines a bounded operator Q, on B, with ||Q,|| < L[1 + ||P||]] +
2n sup, c(k). Supposef,geB,,0 < AL(1 + ||P||) < 1, and

2.9 f-Qf=g.

Let 7(x) = sup, |9(n.) — 9(n)| and 7(x) = sup, |f(7.) — f(7)|. Evaluate (2.9) at »
and at 7,, and substract to obtain

1f(na) — I [1 + 2 2. 9(x)e(n(x))] = [9(7.) — 9(0)]
+ A7(u) 3, p(X)e(n(x)) + AL 33, p(u, Y)F@) + F()] -

Since ), 7(x)c(n(x)) is bounded on %7, it follows that (1 — AL)7(x) < r(v) +
AL ¥, p(u, y)7(y). Since y and 7 are in ¢,(a), and AL(1 + [|P|[) < 1, this may
be iterated to obtain 7 < [(1 — AL)] — ALP]™'y. Therefore

I7Il < (1 — 2L — aL || P~ [I7]] -
Since ||7|| = N(f) and ||7|| = N(g), this says that Q, — L(1 + ||P||)] is dissipa-
tive. Since Q, is also bounded, it follows that 2(I — iQ,) = B,. Now take

g€ G, and fecy(a) so that g(0) = 0 and sup, |9(7,) — 9(»)| < B(x)- Then g
restricted to .7, is in B,,, so for each n there is a unique f, € B, for which

fa() — 2 Zan(x)e(n(x)) 2, p(x, D a(02y) — [o(0)] = 9(7)

for e &7,. By the uniqueness statement, f,.,(7) = f.(7) for € &7, so there
is a function f defined on 4 = 3., %7, for which -

f() — 2 Za 9(x)e(n(x)) 2y P M (124) — ()] = 9(n)

for all » € 4. Note that A4 is dense in %7, In order to extend f to all of %7,
define a metric on % by

d(y, §) = 2. [n(x) — L()| B(x) »
where f is defined in (a) above. This gives the weak * topology on bounded
sets of .97, since f e c,(a), and a bounded sequence 5, € % converges to 7 in
the weak * topology if and only if %,(x) — 7(x) for each xeS. Since
A1) — fn)| < B(x) for ne A, |f(7) — A(Q)] < d(y, {) on A and hence f can be
extended uniquely to all of % as a continuous function on bounded sets. It is
easy to check that |||f]|| < |||g|||, and that if g = 0, then f = 0. So fe G, and
f—2Q,f=g. Therefore Q,feG, C B(%), so fe G C Z(Q) and Q,f = Qf.
We have now shown that Z2(I — Q) D {g € G,|g(0) = 0}. Since 1 e Z(Q)and
Q1 =0, (I — 2Q) D G,. But (I — 2Q) is closed, since Q is a closed opera-



PARTICLE SYSTEMS WITH ZERO RANGE INTERACTIONS 247

tor and Q — oI is dissipative. The proof is then completed by using Lemma
(2.3).

Let p,(x, y) = et Yo, (¢"/n!)p™(x, y), where p™(x, y) is the n-step transition
probability for the Markov chain which has 1-step transition probabilities p(x, y).

THEOREM (2.10). Q generates a strongly continuous semigroup S(t) of operators
on B(.S7) such that ||S(t)f|| < e*t||f|| for all fe B(.). Furthermore,

(@) S(nl =1,

(b) iffe B() and f = 0, then S(t)f = 0, and

(¢) if feG,, then S(t)f € G, and

sup, |S(0f(1.) — S(Of()| = &* T, pu(x, y) sup, | f(n,) — f(n)! -

Proor. The main statement is an immediate consequence of the Hille-Yosida
theorem since Z(Q) is dense in B(.%"), Q — ol is dissipative, and Z(I — AQ) =
B(%) for all sufficiently small 2 > 0. Another consequence is that S(7)f =
lim,_, (I — (t/n)Q)~"f. To prove (a), it suffices to show that 1e Z(Q) and
Q1 = 0, which is true because 1€ G, and Q,1 = 0. Finally, (b) and (c) follow
from (b) and (a) of Lemma (2.8) respectively. In order to obtain (c), note that
if f = (I — 2Q)~"g and sup, |9(7.) — 9(7)| = B(x) € ¢,(), then

[f(n.) — fo)l = [ — AL(T + P)]"B(x) -
The proof is concluded by substituting ¢/n for 1 and taking the limit as n — oo.

THEOREM (2.11). If fe C(Y), then S(t)f € C(7) and |||S(O) ]Il < |IIf1Il-
Therefore, when restricted to C(), S(t) is a (not necessarily strongly continuous)
semigroup of contractions on C(.7).

Proor. If m < f < M, then m < S(r)f < M by (a) and (b) of the previous
theorem.

REMARK. To see that S(?) is virtually never strongly continuous on C(.%), it
suffices to consider the case of independent motions, ¢(k) = 1. Fix xand y and
take fe C(%") and 7, € % to be given by

f(77) =1 if 77(}1) =0 and 77,‘(14) =nhn if uw=x
=0 if p(y)=1 =0 if w+x.
Then S(9)f(n.) = [1 — pux, y)]", so S(#)f does not converge to f uniformly on
S

We conclude this section with some simple results which will be needed for
the construction of the Markov process which corresponds to S(r).

LemMma (2.12). (a) If fe C(X) and |f(n)| < ||7|| for each y e 7, then

\ IS(ft)] = e[llnll + 1] -
() If f. e C(), sup, |||f.ll| < oo, and f, — O uniformly on bounded sets of
S, then S(t)f,, — O uniformly on bounded sets.
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Proor. (a) By assumption, fe B(%) and ||f|| < 1. So ||S(?)f|| < e** by
Theorem (2.10), and the conclusion follows from the definition of the norm in
B(SY).

(b) The assumption implies that ||f,|| — 0. Therefore ||S(?)f,|| — 0 and the
conclusion follows.

3. Construction of the process. Since %" is not a locally compact Hausdorff
space, the standard theorems which permit the construction of a Markov process
from its semigroup of operators do not apply directly. Therefore, we devote
the first part of this section to the consideration of this construction problem in
our context.

We begin with a (not necessarily strongly continuous) semigroup of contrac-
tions on C(%7") which satisfies

(3.1)  sup{IS(f(n)l|fe C() and |A(Q)] < |[&]| forall (e} < oo
foreach 7e¢. %, and

3.2) iff,, € C(&7), sup, |||fall] < c0, and f, — 0 uniformly on
bounded sets, then S(7)f,(y) - 0 for each 7e. ¥ .

Note that the semigroup constructed in Section 2 has these properties by Lemma
(2.12).

THEOREM (3.3). Under these assumptions, if t > 0 and 7 € 7, there exists a
probability measure «,(n, d§) on .87 so that for each f e C(")

(3.4) SOf (1) = § f(O)r.(n, dC) .
Proor. If T = {x,, - - -, x,} is a finite subset of S, define
”T(kv Tt k,,) = S(t)1(C(zl)=k1,~-,C(z,,)=k,.)(77)
for k;e Z,. By (3.2), .

Dikgenrky, wp(ky, oo k) =1,
so {r,} forms a consistent set of probability measures. Therefore, there is a
measure ¢ on Z_ 5 so that

ML Z2[0(x) = ki -, Lxa) = Ko} = @p(hy, - - o5 k)
So, if f is any bounded function on Z,S which depends on only finitely many

coordinates, § f({)u(d) = S(¢)f(n). Let S, be finite subsets of S so that S, 1 S.
Then if £,({) = min {n, 3,5, C(x)a(x)}, (3.1) gives

sup, |§ fu(D)u(dd)| = sup, [S()fa(n)] < oo
By the monotone convergence theorem, § ||{|| #(d) < oo, so u() = 1. Let
m,(n, d{) be p restricted to .. Then (3.4) holds for those fe C(") which
depend on finitely many coordinates. If fe C(.%7) is arbitrary, define f, € C(.-%)
by f.(§) = A(T,£), where T, is defined in (2.4). Then f, — f uniformly on
bounded subsets of .7, and (3.4) follows from (3.2).
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LEMMA (3.5). If Fis a measurable set in .57, then n,(), F) is a measurable func-
tion of 7.

Proor. If F is a finite dimensional set, 1,e C(.%"), so m,(y, F) = S(t)1,(n)
which is continuous in 7 on bounded sets, and hence measurable. The conclu-
sion for general measurable F follows now from the monotone class theorem.

THEOREM (3.6). There exists a Markov process 7, with state space .57 so that
Pr(p. € 4) = =,(n, 4) .

Proor. By Lemma (3.5), the finite dimensional distributions of the process
can be written down in the standard way. The existence of the process then
follows from a result in [6] (the corollary on page 83) since .27, with the topology
of weak * convergence on bounded sets is a complete separable metric space.
It is not difficult to see that the s-algebra of Borel sets relative to this topology
is the same as the one generated by the finite dimensional sets.

The following two results will complete respectively the existence and uni-
queness parts of Theorem (1.4). Let S(f) be the semigroup constructed in
Section 2, and 7, be the Markov process constructed from it in Theorems (3.3)
and (3.6).

THEOREM (3.7). Ifue S and k € Z,, h(t, 7) = P(7,(u) = k) satisfies

(3.8) SUp,<,, SUp, |h(t, 7,) — h(t, 9)| € ci(a) for all 1,
(3.9) h(t, 1) is continuously differentiable in t for each n e &7,
and

d
(3.10y pr h(t, 7)) = Xayes 1(X)e((x))p(x, PIAE, 9,,) — A(E 7)] -
Proor. Put
h(p) = h0,9) =1 if p@) =k
=0 if p)+k.
Then k¢ Z(Q), in general. However, as shown in the proof of Lemma (2.3),
if 8 € c)(a) with 8(x) > O for all x and &,(y) = k() exp{—24 X, 7(x)B(x)}, then

@) h, e Gc Z2Q),
(b) ||k, — k|| >0as2—0,and
(©) 1hi(n.) — hi(n)| = 28(x) for x +# u.

By the Hille-Yosida theorem, S(¢)k, € Z(Q), S()k, is continuously differentiable
in ¢, and

L S(h,() = QSOR() -
By part (c) of Theorem (2.10), S(#)k, € G,, so S(¢)k; € G by Lemma (2.7). So,

(3-11) dit SOh(n) = Zay 7(X)e((3))PCx; VS(O:(72) — SOR(7)] -
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Since h(t, n) = S(t)h(n), it suffices to take the limit in (3.11) as 2 — 0. This can
be done because the sum on the right-hand side converges uniformly in 4 for
each 7 € %7 by (c) above, and S(#)k,(y) — S(¢)h(y) for each e .o by (b) and
the fact that S(7) is a bounded operator on B(.%). ! .

THEOREM (3.12). Suppose {, is a Markov process on S such that for each u e S
and k e Z_, the function h(t, n) = P/, (u) = k) satisfies:

(a) h(t, n) is weak * continuous on bounded sets for t = 0, and
(b) k(t, p) is continuously differentiable in t and satisfies (3.10) for all n e 7
such that 3, n(x) < oo.

Then , is a version of the process 7, constructed in Theorems (3.3) and (3.6).

Proor. When restricted to %, = {5| 3], »(x) < n}, Equation (3.10) takes the
form dw/dt = T'w(t) where I" is a bounded operator. Using standard uniqueness
theorems for ordinary differential equations in Banach spaces, we conclude that
h(t, y) = P1(y,(u) = k) for e ,. Since |, -, is dense in .9 and both sides
of this identity are continuous in 7, it holds for all » € %. So, the processes 7,
and ¢, have the same finite dimensional distributions, and are therefore versions
of one another.

We conclude this section with some brief remarks concerning assumption
(1.3). First note that this assumption is equivalent to

(3.13) lim,_, P%Y) 0 for each yes,
a(x)
and
(3.14) 2y p(x, y)a(y) £ Ma(x) for some constant M.

We will only verify that these two conditions imply (1.3), since the proof of the
converse is similar. If 8e ¢)(a), then for ¢ > 0 there is a finite set T C S such
that |3(x)| < ea(x) for x¢ T. By (3.14),

|PA(0)| = Zyer P(%: Y) B + eMa(x) .
Therefore, since ¢ is arbitrary, PS e c¢,(a) by (3.13). Finally,

[PA(X)| = |IBIl Zy P(xs Y)a(y) = M |B]] a(x) ,

so ||P|| is the smallest M for which (3.14) holds.

Given a transition function p(x, y), we wish to be able to construct an «
which satisfies (3.13) and (3.14). This is done in two parts. First it is shown
that if « satisfies the second requirement, then it can be modified slightly so as
to make it satisfy both. Then it is noted that there are many choices available
which satisfy (3.14).

THEOREM (3.15). If a satisfies (3.14) and ¢ is a concave, non-decreasing func-
tion on [0, co) such that ¢(0) = 0 and ¢'(0) = oo, then &(x) = ¢(a(x)) satisfies
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both (3.13) and (3.14). Furthermore, if 3, a(x) < oo, then ¢ can be chosen so
that 3, d(x) < oo.

Proor. From the assumptions, it follows that o(Mr)/p(7) < max (1, M) = M
for all t > 0. Apply ¢ to (3.14) to obtain

2 P(x, )a(y) £ (2, p(x, )a(y)) £ o(Ma(x)) < Ma(x) .

From (3.14), sup, p(x, y)/a(x) < oo for each yeS. So (3.13) follows from
lim, ., a(x)/a(x) = 0. For the second part of the proof, assume in addition that
2z a(x) < oco. Let a, be the enumeration of the values of @, ordered so that
a, | 0. ¢ will be constructed by defining ¢(a,) appropriately and then inter-
polating linearly. Since Y2, i(a; — a;,,) < oo, We may put
A =[ZEni(e; — ;)77 where 0<7<1.

Then 0 <A <A <. <A, 100 and N2 m(a,, — a,,)A, < co. Define
go(“m) = ?:m (ai - a'i+l)Ai’ Since

A, = (@) — ¢(Am+1) if @, +a,,

Ap — Ay

gD(a,,,) SatiSﬁeS go(am) l O’ [¢(am) - ¢(am+l)]/(am - am+l) T o, and Z:=1 go(am) <
co. Therefore the function ¢ defined by linearly interpolating these values has
the properties required in the statement of the theorem.

THEOREM (3.16). There exists a positive function a on S such that lim,_, a(x) = 0
which satisfies (1.3) if and only if lim,_,, p(x, y) = O for each y € S. Furthermore,

if p satisfies
(3.17) K=sup, >.p(xy) < oo,
then a can be chosen so that Y, a(x) < oo.

Proor. To prove the sufficiency of the condition, take 0 < 2 < 1 and a
positive function y on § such that Y}, y(x) < co. Define

a(xX) = 2y L= AP )r(y) -
Then « satisfies (3.14) with M = 2%, and a(x) > O for all xe S. To show that
lim,_, a(x) = 0, it suffices to that
(3.18) lim, ., p™(x,y) =0
forn = 1 and ye S. The proof is by induction on n. For n = 1, it is true by
assumption. Assume then that it is true for n — 1, and write

P (% y) = 2, p(x, 2)p" (2, ) - ;
If ¢ > 0, then by the induction hypothesis there is a finite set 7 C S such that
p"V(z,y) < ¢ for z¢ T. Therefore,

PU(XY) S Dier P(X,2) + ¢,
and (3.18) follows immediately. Finally, « can be modified slightly in such a
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way that it satisfies (3.13) by Theorem (3.15). If (3.17) holds, then

Supy Zzp(”)(x’ .y) é K" 4
so Y7, a(x) < oo if 2K < 1. For the proof of necessity, it suffices to observe
that
P(x, 2)a(z) = T, p(x; y)a(y) = Ma(x)
for ze S by (3.14).
REMARK. It is interesting to note that (3.17) arose as an assumption in the
existence theorem for the exclusion model in [4]. This is consistent with the fact

that if 7, a(x) < oo, then any configuration of particles for which sup, n(x) < oo
can be used as an initial configuration.

4. Invariant measures. In this section, we present a proof of Theorem (1.6).
In addition to (1.2) and (1.3), it will be assumed throughout that p(x, y) is
doubly stochastic and )], a(x) < oo. The following lemma will be needed.

LeMMA (4.1). For each finite subset T C S, there exists a function p,(x, y) on
S X S so that

Pr(%, ) Z 0, pr(x,y) =0 if xeT or yeT,
Y. pr(x,y)=1foryeT, 2, Pr(%:)) = 1 for xeT, and

(4.2) |pr(x, y) — p(x, )| < min {3, 7 p(x, 2), X.er P(25 P)}
for x,yeT. Furthermore,
(4.3) Pr(x,y) = P(%, )) 5

4.4)  Z.1pr(x,2) — p(x, ) >0 and 3, |pr(z, ) — P2, )) 0
as T S for each x,y € S.

Proor. Since p(x, y) is doubly stochastic,

Q= 2,er Dieer P(X5Y) = Zaer Dyer P(X5)) -
Define

pr(x, ) = p(x, ) + Q7 [ Zeer PX5 D) D2 P(25 ))]

for x,ye T, and p,(x, y) = O otherwise. Then p,(x, y) has the properties re-
quired in the first statement of the lemma. But (4.3) follows from (4.2), and
(4.4) follows from (4.3) and an application of Scheffé’s theorem.

Now, let ({(x), x € S) be the random variables defined at the end of Section 1.
Since E({(x)) < oo and is independent of x, E[Y, {(x)a(x)] < oco. Therefore
(¢(x)) lines in & with probability one, so p can be defined as the induced
measure on 7. Then § ||| x(dy) < oo.

LemMA (4.5). If fe Gy, then § |2 f(n)] p(dn) < oo and § Q, f(n)p(dn) = 0.

ProorF. The integrability of Q, f is immediate because Q, () is bounded by
a constant multiple of ||y||. For finite subsets T of S, let p,(x, y) be the functions
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obtained in Lemma (4.1), and put

Q; f(n) = L. n(x)e((x)) T, pr(%s Pf(72) — ()] -

Then Q, is the generator for the zero range interaction process on the finite set
T. Spitzer ([7], page 255) has shown that § Q, f(y)u(dp) = 0. To carry out the
limiting argument, let 8(x) = sup, |f(y,) — f(7)|, and note that

192 f(7) — Quf(0)] < sup, e(k) X, 7()BX) + B()] |p2(x, y) — plx, )] -

Since § 7(x)p(dy) < oo and is independent of x, this implies that § |Q, f(y) —
Q,f(n) | #(dy) is bounded by a constant multiple of

2iay [BX) + B0 |pz(x, y) — p(x, y)| -

This tends to zero as T 1 S by Lemma (4.1) and the fact that Y, f(x) < oo, which
is a consequence of § e c)(a) and 3}, a(x) < oco. Therefore, § Q, f(y)p(dy) = 0.

PROOF OF THEOREM (1.6). By Lemma (4.5),

(4.9) § Qf(n)u(dy) = 0

for all fe G. Since g, — g in B(.%) implies that § g,(p)u(dy) — § 9(p)u(dy), it
follows that (4.6) holds for all fe Z(Q). So,

§ S(O)f(n)e(dn) = § fln)p(dn)

for all fe B(.%/), and therefore for all fe C(.%). By (3.4), § p(dp)z,(y, F) =
u(F) for each finite dimensional set F in .9, and hence for each measurable
set.
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