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CONDITIONS FOR CONTINUITY OF RANDOM PROCESSES
WITHOUT DISCONTINUITIES OF THE SECOND KIND

By OLAV KALLENBERG
University of Goteborg

In this paper it is shown that the classical local conditions for sample
continuity of random processes without discontinuities of the second kind
may be replaced by weaker ones of a simpler form. When such a process
is obtained as the limit in distribution in the Skorohod topology, the new
conditions may be conveniently restated in terms of the sequence.

1. Introduction. Continuity of sample functions is usually discussed under the
assumption of separability. The standard results for this case are the sufficient
conditions of Loéve ([3], pages 515-519). In the particular case of sample func-
tions in D-spaces, i.e. spaces of right-continuous functions with left-hand limits,
it is possible to weaken the general conditions. In fact, a random process ¢ in
D[0, 1] is known (see [3], page 515 or [1], page 136) to be a.s. sample continuous
if

. 1
(1) lim, o, SUPscgo1m 4 PEewn — &1 > ) =0, 5>0.

Although sample continuity is a local property in the sense that a.s. continuity
in some interval T only depends on the distribution of {£,, t € T}, it is yet impos-
sible (cf. Section 3) to deduce (1) from the condition

2) lim,_,, %P(}sm —£>8=0, 46>0 andall r.

Nevertheless, (2) turns out to be sufficient for sample continuity in D-spaces.
By symmetry we can replace (2) by

3) lim, _,, % P&, — &4 >8 =0, 46>0 andall ¢,
and we shall show that even

) lim inf,_,, % P — €al > 9) =0, 5>0 andall ¢,
suffices. Note that (2) can be replaced by the stronger moment condition

(5) lim,_,, % El,— &, |*=0 forall ¢,

where @ > 0 is arbitrary, and similarly for (3) and (4). Throughout, ¢ + / and
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t 4 should be replaced by ¢ at closed right end-points, and similarly at closed
left end-points.

Further weaking of the conditions is possible. In fact, the event {|§,,, —
§,-| > 6} in (2) may be replaced by events of the type {§,_€ I, §;,, € I,}, where
I, and [, are any disjoint compact intervals, and similarly for (3) and (4). In
particular this means that the moments in (5) may be replaced by truncated
moments, provided the truncation is arbitrary. (By this we mean that the
random variable |§,,, — &,_|* in (5) may be truncated at an arbitrary level,
before we take the expectation.) Finally, we permit bi-continuous transforma-
tions of “time”. All these improvements have resulted in Theorem 1.

In typical applications, the random process & under consideration is obtained
as a limit in distribution of some sequence {£,} of processes. It would then be
convenient to use conditions for sample continuity of & stated in terms of the
distributions of &,, §,, - - -. Such conditions are given in Theorem 2.

In Section 3 we show that, when applicable, our results are always sharper
than the classical ones for separable processes. We also prove the impossibility
of giving necessary and sufficient conditions for sample continuity in terms of
upper bounds on P(§,e 1., &, € 1,).

2. Main results. Let D(a, b)), —c0 < a < b < oo, denote the space of real-
valued right-continuous functions with left-hand limits defined on (a, b), and
similarly for semi-closed and closed intervals. For simplicity, our results are
stated and proved for open intervals, but they are easily seen to be generally true
provided ¢ 4 # or ¢ 4 is replaced by ¢ at closed right end-points, and similarly
for closed left end-points.

Our random processes & are assumed to be measurable with respect to the o-
algebra generated by all one-dimensional projections &, = £(¢). Thus the random
elements in D[0, 1] coincide with those defined in [1], while the elements in
D[0, o) (and more generally in D[a, b), D(a, b] or D[a, b]) are those of [2], [4].
We now state our main result.

THEOREM 1. Let & be a random process in D(a, b), —co < a < b < oo, and let
g be an arbitrary strictly increasing and continuous function on (a, b). Then & isa.s.
continuous on (a, b) if any one of the following relations holds for all te g=(a, b)
and all disjoint compact intervals I, I,:

() Timy oy — P(E 0 0)u € L (€ o O € 1) = 0,
(i) lim,_,, % P((§o9)nel, (§0g)el) =0,

seey 1e 1
(iii) lim inf,_,, Y P((Eog)n€l, (60 9)snel) =0.

A lemma is needed for the proof.

LEMMA 1. Let T = (a, b), —co £ a < b < oo, and let y be a T-valued random
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variable. Then
(i) sup,e, limsup,_,, % Pe<np<t+h) >0,
(ii) sup,., limsup,_,, ’llz— Pi—h=<np<1t>0,
(iif) sup,., lim inf,_,, % Pt —h<y<t+h>o0.

ProOF. Let ¢,de T be such that p = P(c < 9p<d)>0, and let G be the
function defined by

X —C

Gx)=Plc<n<x)—p , c<x<Ld.
—c
Note that G(c +) = G(d —) = 0. Suppose that (i) is false. Then
. 1
SUP;e (¢,a) lim SUPj o+ '}T (G(t + h) - G(t _)) <o,
so for each ¢ € (c, d) there must exist some 7, > 0 with
G(t+h —G(r—) <0, he(©,7),
and this in turn implies
G(t+h) —Gt—k) <O, h, k€ (0,94,),

for some 6, € (0, 7,]. Since any compact sub-interval of (c, d) has a finite covering
of intervals (t — d,, r 4 4,), we thus obtain

G(tH) —G(s) <O, cls<td,

which yields the contradiction G(d —) < G(c 4). This proves (1), while (ii)
follows by the symmetric argument.

To prove (iii) we construct a sequence T, 5 T, O ... of sub-intervals of
Ty = (¢, d) by successive division into equal parts and choosing in each step the
part with greatest probability for . Thus |T,| = 2-"|T,| and P(y € T,) = 2="p.
Let e T be defined by 7,~ | {#}, and let e (0, |T,|) be arbitrary. If ne N is
such that 2=" < A/|T,| < 2-"+!, then

1 1
—P(t—h<p<t+h=_P@rneT,)>2"T|*2"p=_PL |
7 snst+h)z-Pel,)> 27T P 2|7

and (iii) follows.
For the proof of Theorem 1 (and 2) we shall need a “modulus of continuity”
w,, x € D[a’, b'], defined by

() wo(h) = inf,y maxy o, sup {|x(u) — x(v)|:u, v et 1)},
where the infimum extends over finite sets {r;} of points satisfying

=6< <<t =5 t—t . >h, j=2,3,....r—1,
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(cf. the definition of w,’ in [1], page 110). Note that lim,_, w,(h) = 0 for all
x e D[a, b'], (cf. [2]).

Proor or THEOREM 1. Since & is continuous whenever £ o g is, it suffices to
assume that g(r) = ¢. If £ is not a.s. continuous in (a, b), then there must exist
real a’, &’ with a < @’ < ¥’ < b and disjoint compact intervals J,, J, such that §
with positive probability has at least one jump from J, to J, in T = (@', §'). Let
A denote this event, let § > 0 be the length of the gap between J, and J, and
choose d > 0 such that P(w,(d) > d/3) < P(A), where w, is defined by (6). Note
that the event B = {4, w,(d) < /3} has then positive probability.

Given B, we now choose one of the jumps from J, to J, in T at random and
denote its position by 7. (The measurability of 7 is easily verified.) By Lemma
1 there exists some ¢ € T with

limsuph_,H—Il;.P(tgy <t+h|B)>0.

Let I,, I, be obtained from J,, J, by addition of intervals of length /3 at each
end. By definition of w, we then get for h < dand ¢t 4 h < &’

PE,_el, &, ,el)=ZPt<n<t+hB)=Pt=n=t+ h|B)P(B),
and so

lim sup,_,, —}11— PE,_el,§,,el)>0.

But this contradicts (i) and hence proves that (i) is in fact sufficient. The
sufficiency of (ii) and (iii) is proved in the same way.

We now turn to the corresponding limit theorem. Let us write §, —, & for
convergence in distribution of £, to § in the sense of [1]. For convenience we
refer to [1] for some simple facts about weak convergence in D-spaces, though
only the space D[O0, 1] is treated in [1]. For extensions to the general case, see

[2]. [4].
THEOREM 2. Let &§,&,,&,, --- be random processes in D(a, b), —co < a <

b < oo, such that &, —, & and let g be an arbitrary strictly increasing and continuous
function on (a, b). Then § is a.s. continuous if

(i) lim inf, ,, lim inf, % P((Exo )€l (§nog)nel) =0

for all t e g7*(a, b) and all disjoint compact intervals I,, I,. If P(§,_ + §,.) = O for
all te (a, b), then & isa.s. continuous if anyone of the following relations holds for
any t, I, and I, chosen as above:

(i)  lim,_,, liminf, .. 717 P60 g€l (Eyog)mel) =0,

(i) lim,_,, liminf, . % P((€, 0 g)pely (Erog)el)=0.
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To use (ii) or (iii) we need an efficient criterion for P(§,_ # &,,) = 0 to hold
at r. Such a criterion is given in the following lemma which is also needed for
the proof of the first assertion.

LEMMA 2. Leté&,§,,§,, - - - be random processes in D(a, b), —oco < ¢; < b= oo,
with &, —, & and let t € (a, b). Then P(§,_ + §,.) = 0 if and only if
)] liminf, , o, liminf,_ P(§,(t — k) el,&,(t + k)el) =0
for all disjoint compact intervals I, and I,.

Proor. Let J, and J, be any disjoint compact intervals and let g, 7, and I, be
defined as in the proof of Theorem 1. For 4, k > 0, let 4,, C D(a, b) be the set
of functions with at least one jump from J,° to J,” in (¢t — &, t + k). Since 4,, is
obviously open in the Skorohod topology, we get, recalling the definition of w;
in (6),

P(§ € 4,,) < liminf, ., P(§, € 4,,)
< lim inf, ... [P(w (k + k) > 3/3)
+ P(€n € A we (B + k) = 6/3)]
< limsup, ., P(w (h + k) > 6/3)
+ liminf, ., P(§, € Ay, we (B + k) < 9/3),
where w, is defined with respect to some fixed interval [a’, '] C (a, b) and where
we assume @’ < t — h < t + k < b'. Now the first term on the right tends to

zero as h, k — O (this follows easily from Theorem 15.2 in [1]), while the second
term at most equals

liminf, ., P, (t — hel,§,(t + k)ely),
so if (7) holds we get
PE,_elP 6 el?) = P(Mhi {6 e Au)) =1lim, o, P(E€4,)=0.

Since J, and J, were arbitrary, this proves that P(§,_ # §,,) = 0.
Suppose conversely that P(§,_ # &,,) = 0, and choose #, k > 0 such that

8) P # Sicne) = Pllevie # Sias) = 0.
Then
limsup, .. P(E,(t — h)e I, &,(t + k)el,) < P&, €1y e l)

for any disjoint compact intervals 7, and I, (cf. [1], page 124). Now i — &
and &,,, — &,, as h, k — 0, which implies (£,_, §.44) —4 (6. &,,), so we get

limsup, 4oy PEp€ 1 Eppel) S P(E_eh,§,el) S P(E,_#6,)=0.
Since # and k in (8) can be chosen arbitrarily close to zero ([1], page 124), this
completes the proof of (7).

ProoF oF THEOREM 2. If (i) holds, then P(¢,_ = &,,) = 0, t € (a, b), by Lemma
2, and hence '

((n o D> En o 9)ern) =a (€ 0 9)es (€ © Dean) -
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From (i) we thus obtain

. 1
lim inf, ,, - P((Eo9) €l (E0g)unel)) =0,

and the a.s. continuity of & follows by Theorem 1. The second assertion is
proved by similar arguments.

3. Comments on the sharpness. In this section we compare our results with the
classical ones and also discuss the possibilities of further improvements.
First we show that (2) is actually weaker than (1). If we put
Pn = ”—Z(Z;ok_z)_la tn = ZI?:npk —Pn/z’ neN’
x,H=10—=2|t—t|/p) VO, neN,te]0,1],
and let £ be defined by P(§ = x,) = p,, ne N, then (2) is easily verified. But
(1) cannot hold since for ¢t = ¢, and & = p,/2, ne N, we have
BP0 — &l > 0) =2, 0e(0,1).
It is interesting to notice that even (1) is weaker than the general conditions
for separable processes. To see this, suppose that the condition
Pl — &l 2 9() = qh), ast<t+hsgb,

is satisfied for some non-decreasing functions g and ¢ with
.92 <oy 327027 < oo,
(cf. [3], page 517). Let 6 > O be arbitrary and choose n = n(h) € N such that
(2" + 1)g2™™) <4, lim,_, 2" = oo .
Putting m = [A2"] + 1, we get

sup, P(I€n — &l > 0) < msup, P(|§,14/m — & > 6/m)
< msup, P(|€,,4m — & > 9(h/m))
< mq(h/m) < (h2" + 1)q(27")
~ B2g(27") = o(h) h—0,

and (1) follows. This means that no improvement is attainable by using the
general conditions for separable processes.

Similar results hold for the moment conditions. In particular, it is seen that
for processes in D-spaces the general condition

Elf — &" = c|h|/llog [, ast<t+h=<0b,

for some ¢ > 0 and 5 > r > 0, (cf. [3], page 519), may be weakened in four
respects: (1) The denominator |log |4||'** may be omitted, (2) no uniformity in
t is required (provided &, is replaced by &, ), (3) moments may be replaced by
truncated moments, and (4) “time” may be transformed bi-continuously.
Finally, we show that the conditions of Theorem 1 are not necessary for
sample continuity and that in fact no condition of this type can be both
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necessary and sufficient. This is hardly surprising since in general the distribu-
tion of § is not determined by its two-dimensional projections. To prove the
above assertion it suffices to construct a pair of random processes £ and 7 in
D[0, 1] such that £ is a.s. sample continuous while 7 is not, and yet

P(n,el,nel) < P, el, & el

for arbitrary s, € [0, 1] and disjoint compact intervals I,, I,. In fact, we may
even prove the stronger

THEOREM 3. For each ¢ > 0 there exist random processes & and v in D[0, 1] such
that & is a.s. continuous while 7 is not, and moreover,

P(y, € By, 1, € B,) _
P, e By, €, €B)

for all s, t € [0, 1] and disjoint Borel sets B,, B,. (Here 0/0 is to be interpreted as
1)
ProoF. Let f be the function on R with period 1 satisfying

J =(@x=H VoAl ||

1i<e

IA
ol
-

and put
£(t) = fla + 1), te[o, 11,

where a and 8 are independent random variables such that « is uniformly
distributed on [0, 1] while 8 has density (4x*)~?, x > %. By elementary calcula-
tions we get

P, =0,8.,=1|8) =g(hp), t,t+ hel0, 1],
where g has period 1 and satisfies
9(x) = (x| — VO, X < %.

For 4 € (0, 1) we thus obtain
h
P& = 0,80 = 1) = Eg(hp) = § §7 9(hx)x~*dx = -y gy~ dy = 1k,

where 7 is a constant < 1. If { is defined by
€O = Ljizay » te[o,1],
then
P, =0, =1)=1h, 0<t<t+h<1,
and hence
P, eB,(,eB) < P, eB,&,eBy)

for any s, t € [0, 1] and disjoint Borel sets B,, B,. To prove the assertion it thus
suffices to put » = { with probability ¢ and » = § with probability 1 — ¢,
independently of « and 8.
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