The Annals of Probability
1973, Vol. 1, No. 3, 504-508

A NOTE ON THE RATE OF CONVERGENCE
AND ITS APPLICATIONS!

By RasuL. A. KHAN
University of Wisconsin

Let S, denote the partial sums of i.i.d. random variables with mean
zero and moment generating function existing in some neighborhood of the
origin. We give explicit upper bounds for Pn* = P(S» = a + bn for some
n = m)and P, = P(|S.| = a + bn for some n=m), a=0, b > 0. These
bounds immediately give the rate of convergence for the strong law of large
numbers. An application is also made to a sequential selection procedure.

1. Introduction and summary. Let X, Xj, ... be i.i.d. random variables with
EX, =0,andsetS, = X, 4+ ... + X,. Assuming the existence of moment gen-
erating function (mgf) in some neighborhood of the origin, we derive upper
bounds for P,* = P(S, = a + bn for some n > m) and P, = P(|S,| = a + bn
for somen > m), a = 0, b > 0. This problem for more general boundaries f(n)
has been considered by Robbins (see [2] and the references therein). Fora = 0,
the bound for P, gives the rate of convergence for the strong law of large
numbers. These bounds are shown to be useful for certain sequential selection
procedures.

2. Bounds for P, * and P,. We begin with
Pt = P(S, = a+ bn for some n= 1), a>0,6>0.

Assume that ¢(0) = Ee’*1 < oo for0 < 6 < C < oo. Notingthat Z, = e?a[¢(8)]~"
is a positive martingale with EZ, = 1, we obtain

€)) P(Sn = loge + n log;ﬁ(ﬁ) for some n = 1> < 1e.

Setting (loge)/0 = a > 0, ¢(0) = log ¢(0), (1) gives
2) P(S,, =a+ Mﬁ(@_ for some n > 1> e

uniformly in 0 < ¢ < C. From (2) it follows that

3) P(S, Z a + bn for some n = 1) < inf,pcp.p0) 500 €70 = €70

where a(b) = sup, ;<. {0 : ¢(0) < b0} (b > 0). Note that a(b) > 0.

LEMMA. The function a(b) defined above is continuous and non-decreasing. More-
over, if there exists a t,(b) such that (ty(b)) = bt(b) (i.e. if the equation ¢(0) = b
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(b > 0) has a solution, which is necessarily positive and unique), then a(b) = t,(b).
The equation ¢(0) = b0 has a solution if lim,_ ¢'(f) = co.

ProoF. ¢(f) is a continuous convex function with ¢(0) = 0 and ¢’(0+) = 0.
Now consider P(S, = bn for somen > 1), 56 > 0. Theline f,(n) = sn + b — s
(0 < s < b) passes through the point (1, b), so that

P(S, = f,(n) forsome n = 1) < P(S, = f,(n) for some n = 1)
uniformly in 0 < s < 6. Thus
4 P(S, = bn for some n = 1) < exp{—sup,.,<, (b — s)a(s)}.
Hence from (3) and (4) we have
%) P(S, = a + bn for some n = 1)
< min [exp(—aa(b)), exp{—sUPc.z; (b — s)a(s)}]

where a = 0, b > 0.
Considering the line f,(n) = s(n — 1) + a + b (0 < s < b) through the point
(1, a + b), one also obtains

(6) P(S, = a + bn for some n = 1) < exp[—sup,.,<, (@ + b — s)a(s)] .

ExaMpPLE. Let P denote the probability under which X, X,, - - - are i.i.d.
N(O, 1) random variables. Then ¢(0) = e?*?2, and ¢(0) = b0 gives a(b) = 2b.
Thus (5) gives

(7) P(S, = a + bn for some n > 1) < min [e~2?, =],
which is better than the usual bound e=** (@ > 0, 6 > 0). Further, (6) gives
) P(S, = a + bn for some n > 1) < exp(—(a + b)*/2) if b=a.

Note that the bound exp (—(a + 6)*/2) is better than e~** or the improved bound
(7) if b = a. Also we have

P(S, = a + bn for some n = 1)
<SPS, =za+ b)+ P(S,=a+ bn for some n = 2)

<1 —-®a+b)+ P(S, =a+ 2b+ s(n—2) for some n > 1)
uniformly in 0 < s < b. Hence it follows that
) P(S, = a4 bn forsome n=1) < 1 — ®O(a + b) + e **f(a, b)
where f(a, b) = exp[ —(a — 2b)*/4], and

Du) = 27)~2 §*, exp(—r}2) dt .

The bound given by (9) is crude when a and b are small. However, fora = 0,
b > 0, we have

P(S, =z bn forsome n > 1) <1 — Ob) + e,
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while the bound obtained by Robbins [2] is
P(S, = bn for some n > 1) < 2(1 — O(b)).

Since 1 — ®(b) ~ (2b’z)~te~""” (as b — oo0), lim,_,, e ¥*/(1 — (b)) = 0.
Hence (9) is asymptotically better.

Now consider P,* and P,. The system of lines f,(n) = s(n — m) 4+ a + bm
(0 < s < b) pass through the point (m, a 4+ bm). It follows that

(10) Pt = P(S, = a + bn for some n = m)
< exp[—supy..g; {@a + bm — sm}a(s)] .
Note that
P,* < P(S, = bn for some n = m)

< exp[—msup, ,<; (b — s)a(s)] >0 as m-— oo .

As a bound for the right hand side of the inequality (10) (which is sharp if
() < e??), we have

P.* < exp[—1i(a + bm)a((a + bm)[2m)] if bm=a
< exp[—1(a + bm)a(b)] if bm<a.
Assuming that ¢(—60) < oo for 0 < § < D < oo, it follows that
(11) P(S, < —a — bn for some n > 1) < e 2®

where (b) = sup,.,<, {0: ¢_(0) < b0} (b > 0), and where ¢_(0) = log ¢(—06).
Note that 3(b) > 0. Thus

(12) P(S, < —a — bn for some n = 1)
= min [exp(—af(b)), exp{—supy,<, (b — 5)B(s)}] -

It follows from (5) and (12) that

P(|S,| = a + bn for some n > 1)
(13) = min [exp(—aa(b)), exp{—sup,s, (b — s)a(s)}]

+ min [exp (—af(b)), exp{—sup,s, (6 — )B(5)}] -
It further follows that
(14) P, < exp[—sUpy,s; (@ + m(b — 5))a(s)]
+ exp[—supy,g, (4 + m(b — 5))B(s)] -

The inequality (14) leads to the following.

THEOREM. Lei X), X,, - - - bei.i.d. random variables with EX, = 0, and mgf ¢(0)
existing in some neighborhood of 6 = 0. Then for every ¢ > 0, there exists a number
p (0 < p < 1) depending only on ¢ and ¢ such that

P(|S,| = en for some n = m) < 2p™

where p = exp[—min {SUpy.,z, (¢ — $)a(s), SUPys. (¢ — HBE))].
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3. A sequential selection procedure. Let 7, 7,, - -+, m, be k populations with
distribution functions F(x — 6,), - - -, F(x — 6,) where 0,’s are unknown location
parameters. Assuming the usual A-configuration: ¢, < ¢, < ... <0, , <0, — A
(A > 0), we want to select z, with a given probability of error. Let X; be the
random variable associated with the population =, (1 </ < k). Since the distri-
bution of X; — 0, is independent of #,, denote it by F(y). We assume that g(r) =
§ exp(ty) dF(y) < oo for |f] < 1, < oo, and hence

o JE X =0+ Moo, 0Zoh =0"=((y— M dF(y) < co.
Let{X,;:j=1,2,...,n} (1 £i < k) be k independent sequences of independent
random variables from respective populations ;. We want to select the popula-
tion with the largest location parameter such that for a given e, 0 < ¢ < 1,
(15) P(CS) =1 —¢
where CS = correct selection. Using the results of Section 2, we will show that

Paulson’s elimination procedure [1] can be used to accomplish (15).

The elimination procedure. Let f(n) = 0 be such that f(n)/n — 0 as n— co. At
the nth stage eliminate r; if

(16) max, 27, X,; — 25 Xy > f(n)

where v runs over all populations not previously eliminated. After (k — 1) pop-
ulations have been eliminated (if ever), stop and assert the remaining population
as the one with the largest location parameter.

Clearly, the procedure terminates with probability one. To compute the prob-
ability of error, it suffices to consider ¢, = ... =0, , = 6, — A. From (16) we
have
(17) Py(error) < (k — 1)Py(X7-, Xyy — 23%=y X,.; > f(n) forsome n =1).
Setting YV, = (X}; — X,,; + 8)/o2t, 0= ... =0,_, =0, —A, Y, Y,, --. are
i.i.d. with £Y, = 0, EY? = 1. Let ¢,(r) denote the mgf of X. Then

Oy (1) = exp[1A[02]6 (1/028) ¢y (—1/02})
= g(t/a2b)g(—t]/o2}), 0 <1< 024 =1 < o0
Let P denote the probability under which the distribution of Y, corresponds to
¢y (1). Setting S, =Y, + --- 4 Y, (17) gives

(18)  Perror) < (k — )P (S, = ) for some n = ).
g2t g2}

Specializing to linear functions (i) f(n) = d > 0, and (ii) f(n) = (¢ — An)*, 0 <
¢ < 00,0 A< A< oo, (18) reduces to

(19) Py(error) < (k -~ 1)P(S, = a + bn for some n = 1)
where a = d/o2}, b = A/o2! for (i), and a = ¢/d2}, b = (A — 2)[02} for (ii). The
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inequalities (3) and (19) lead to

(20) P,(error) < (k — 1) exp [—0% a(a%ﬂ for (i)‘, . and

A—12 .
P,(error) < (k — 1) exp[—é a< i ﬂ for (ii).
These inequalities lead to (15) by proper choice of d, ¢ and 2. The inequalities
(20) can be improved by using the improved inequality (6). We now give some
examples.

EXAMPLE 1. dF(x — 0) = (2z)~texp(—(x — 0)*/2)dx, —oo < 6 < co. Here
o =1, g(f) = €2, so that ¢(r) = g(t/2})g(—1/2}) = e*2. Hence the inequality
(8) gives Paulson’s result [1]. The error bounds are given by

P,(error) < (k — 1) min {e~%, e~2*/4}, and
PA(CI'I‘OI') é (k _ 1) min {e—c(A—Z)’ e—(A—1)2/4} .

Note that the bound exp(—(a + 5)?/2) in (8) can be used by properly choosing
d, c and 2.

EXAMPLE 2. dF(x — 0) = e '*~%dx, —co < 0 < co. Here E,X =0, ¢* =2,
g(n =1 =) 1| < 1. Thus ¢(r) = g(¢/2)9(—/2) = (1 — /)7, 0 <t < 2,
and ¢(f) = log ¢(r) = —2log {1 — 1*/4). Since ¢'(f) > oo as t — 2, a(b) is the
solution of ¢(f) = bt (b > 0). The probability of error can be made arbitrarily
small by choosing the constants involved.

EXAMPLE 3. dF(x — 0) = e " ?dx, x =20, —co < 0 < co. Here EX =
0+1,=1,9) =1 -0t 1;6(t) = g(t2H)g(—t/2}) = (1 — £#/2)7,
0 < t < 2% Hence a(b) is the solution of ¢(r) = log ¢(r) = bt (b > 0).

Acknowledgment. I am thankful to Professor Herbert Robbins for his inspiring
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