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A NOTE ON FINE’S AXIOMS FOR QUALITATIVE PROBABILITY!

By FRED S. ROBERTS
The Institute for Advanced Study, Princeton®

Fine gives axioms on a binary relation < on a field of events, with
A 5 B interpreted as ‘“4 is (subjectively) no more probable than B,”
sufficient to guarantee the existence of an order-preserving probability
measure and an additive order-preserving probability measure. It isnoted
that one of Fine’s axioms, that the order topology have a countable base,
can be replaced by the more appealing axiom that there is a countable
order-dense subset.

Let 4 be a set and < a binary relation on 4. We shall say that a real-valued
function f on A is an order-preserving function if for all a, b € A,

(1 asbefla) < f(b).

Suppose & is a field of events and = is interpreted as “is (subjectively) no
more probable than.” If P is an order-preserving function on (&, <), we shall
call it a measure of qualitative probability. (Fine (1971) calls P a qualitative
probability.) We give an alternate proof of a theorem of Fine which gives
conditions on (%, <) sufficient for the existence of a qualitative probability
measure and we state an alternate set of conditions. Fine also gives conditions
on (%, =) sufficient to guarantee that there is an additive qualitative probability
measure, i.e. a qualitative probability measure P such that for all 4, Be .5
with 4 N B = @,

) P(A U B) = P(A) + P(B) .

An alternative to Fine’s theorem follows easily from our results.

To state Fine’s theorem on qualitative probability, we introduce some defi-
nitions. Given a simple (linear) order (4, <), let a < & hold if and only if
~[b < a]. If ae A, the open rays at a are {be A: a < b}and {be 4: b < a}.
If a and b are in A, the open interval (a, b) is {ce A: a < ¢ <b}. The order
topology .7 (A, =) is the topology having as base all open intervals and open
rays.

If & is a field of events and =< is a binary relation on &, standard axioms
for the existence of a qualitative probability measure on (%, <) are the follow-
ing conditions, which are required to hold for arbitrary 4, B, Ce 7.
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Cl. (&, =) is a simple order.
C2. ¢ < AP
C3. AsB,CN(AUB) =@ =AUC=xBUC,Cn(4AUB)= Q.

THEOREM 1 (Fine). If & is a field of events and = is a binary relation on &~
satisfying C1, C2 and C3, then there is a (not necessarily additive) qualitative pro-
bability measure on (%, <) if and only if

C4. The order topology 7 (F, =) has a countable base.

Fine’s result holds in a more general setting and with fewer assumptions and
it follows from a well-known theorem characterizing the representation (1) for
binary relations on arbitrary sets. To see this, let us recall that if < is a binary
relation on a set A, we say B & A is order-dense if for every a, b € A such that
a, bg Band a < b, there is ¢ € B such that a < ¢ < b. The reader should note
that order-denseness is different from denseness, which requires the existence of
c even if a or b is in B. To see the difference, note that the odd integers are
order-dense in the integers, but not dense. (Denseness in the order sense should
be distinguished from denseness in the topological sense, which is studied in the
context of order-preserving functions by Fleischer (1961).) The improvement
in Fine’s Theorem is contained in the following result.

THEOREM 2. Suppose A is a set and < is a binary relation on A satisfying Cl.
Then the following are equivalent:

(i) There is an order preserving function on (A4, ).
(ii) C4. The order-topology .7 (A, <) has a countable base.
(iliy C4’. (A, =) has a countable order-dense subset.

REMARK. In a Corollary to Theorem 1, Fine observes that under C1, C2, and
C3, the existence of a countable dense subset of (%, <) implies the existence
of a qualitative probability measure and calls this sufficient condition “more
appealing” than C4. In the same sense, we find the existence of a countable
order-dense subset of (%, <) a more appealing condition than C4.

The equivalence of (i) and (iii) in Theorem 2 was apparently first proved by
Milgram (1939). Birkhoff (1948) also offered a proof, though it has some gaps.
A recent version of the proof can be found in Krantz, et al. (1971, Theorem 2,
page 40). Theorem II of Debreu (1954) asserts that (ii) implies the existence of
an order-preserving function continuous in the order-topology. Thus, that (ii)
implies (i) is a Corollary of Debreu’s Theorem. Fleischer (1961) notes that (i)
implies (ii) because “Second countability in the order topology is characteristic
for real sets.”*

We shall furnish a direct proof of the equivalence of (ii) and (iii). This,
together with the Krantz, er al. proof of the equivalence of (i) and (iii), will

3 If we want to require P(X) = 1 for X = |J {4: A€ <}, then we must add the axiom ¢ < X.
4 The author thanks Professor Peter C. Fishburn for drawing his attention to the results of
Milgram, Debreu and Fleischer.
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provide a direct proof of Theorem 2. To prove that (iii) implies (ii), suppose B
is a countable order-dense subset of (4, <). Let ussay an open interval (a, b)
is a gap with lower and upper endpoints a and b respectively if for all ce 4,
~[a < c] or ~[c < b], i.e. if (a, b)) = @. Let A4,* be the set of lower endpoints
of gaps, 4,* the set of upper endpoints of gaps and A* = A* U A,*. Then 4*
is countable. To see this, note that 4,* — B can be mapped into B in a one-to-
one fashion. For if (a, b) is a gap and a¢ B, then be B. Thus 4* — B is
countable. Sois 4,* — B. Finally,

A* = (A* — B) U (4,* — B) U (4* N B).

(This proof of the countability of A4* is the same as one of Krantz, er al. (1971,
page 41).) A countable base <7 for the topology .77 (4, <) is now given by the
collection of all {a} such that a € 4* plus the collection of all open intervals
(a, b) such that a, be B.

Finally, to prove that (ii) implies (iii), suppose <#'is a countable base for the
topology .77 (4, <). By the Axiom of Choice, there is a function ¢: ZF— 4
such that ¢(0) € 0 for each 0 € <Z; ¢ picks one representative from each set in
ZB. (The proof of the equivalence of (i) and (iii) also uses the Axiom of Choice.)
Let

B = {c(0): 0 <Z}.

Clearly B is countable. We show it is order-dense. Suppose a < b and a, b ¢ B.
If (a, b) is a gap, then {a} must be in the base &%, and so ¢({a}) = ais in B, which
is a contradiction. Thus there is u € 4 such that a < u < b. Similarly (a, ) is
not a gap, so there is ve A such that a < v < u < b. If (v, u) is a gap, then
ve B or ue B, as desired. If (v, ) is not a gap, then there is w e (v, 4). Since
B is a base, there is a set 0 e <& such that we 0 C (v, u). In particular, it
follows that v < ¢(0) < u, so a < ¢(0) < b. This completes the proof of
Theorem 2.

Finally, we note that if .5 is a field of events and < is a binary relation on
", then by the Corollary to Theorem 2 of Fine (1971), sufficient conditions
on (%, =) for the existence of an additive qualitative probability measure are
given by conditions C1 to C4 and an additional condition, C5, which asserts
the existence of almost uniform partitions. (For the exact statement of C5, the
reader is referred to Fine’s paper.) It is easy to see that the same proof implies
that sufficient conditions are also given by CI to C3, C4’ and C5.°
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