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BOUNDARY CROSSING PROBABILITIES ASSOCIATED WITH
MOTOO’S LAW OF THE ITERATED LOGARITHM!

By MICHAEL J. WICHURA
University of Chicago

For certain recurrent diffusion processes, Motoo has given an integral
test which allows one to determine whether an increasing function belongs
to the upper or lower class relative to the process at hand. We show that
a refinement of his methods yields asymptotic estimates for the tail proba-
bilities of the time of last crossing of an upper class function g in cases
where the speed measure of the process has sufficiently thin tails and the
curve g increases sufficiently slowly. Similar results are derived for certain
extremal processes and for non-decreasing stable processes.

1. Statement of results: diffusions. Throughout this section, our terminology
and notation is, for the most part, that of the second half of D. Freedman’s
recent book on Brownian motion and diffusion.

Let (X(7)),2, be a diffusion process in natural scale with state space I = (— oo,
o). Let g: [0, c0o) — (0, o0) be an increasing function which diverges to co.
Motoo (1959) showed that if the total mass, m(I), of the speed measure, m, for
X is finite, then

(1.1) §=(1/9(r))dt < oo implies P {X(f) = g(t) i.0.as 1T 0} =0

for all xel;
(1.2) §=(1/9(r)) dt = oo implies P {X(t) = g(f) i.0.as 1] 0} =1

for all xel.

When (1.1) (respectively (1.2)) holds, g is said to be in the upper (respectively,
lower) class, written g € 7/ (respectively, g € 7). By means of an appropriate
transformation, Motoo used his result to give simple proofs of iterated logarithm
type results for the radial part of d-dimensional Brownian motion (d > 1). In
simplified form, Motoo’s argument can be found in It6 and McKean (1965),
Section 4.12.

It is our purpose here to show that a refinement of Motoo’s method yields an
asymptotic expression for

(1.3) P{X(1) = g(t) for some > 1,)

(as 1, T o) for certain upper class functions g. Roughly speaking, our result is
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438 MICHAEL J. WICHURA

that if the tails of the speed measure m decrease sufficiently rapidly, and if g € Z7

increases sufficiently slowly, then (1.3) is asymptotic to

dt

9(1)

as f, T oo0). Itis to be noted that, in accordance with Freedman’s convention,

our speed measure is twice the usual choice (confer Lemmas 4.2 and 4.3 below).
Any diffusion Y can be transformed to one in natural scale by means of a

monotonic transformation. It may be of some help to review how this is ac-

complished in the following common situation. Suppose that Y has infinitesimal

generator I', satisfying

Do) = 5O () + o) (9)]2

where p, and ¢, > 0 are continuous functions; roughly speaking, starting from
state y, Y behaves instantaneously like a Brownian motion with drift coefficient
ty(y) and scale (or diffusion) coefficient ¢,%(y). Take for S any increasing solu-
tion to the equation I'S = 0, and put X(r) = S(Y(¢)). Then X = (X(1)),50 is @
diffusion whose infinitesimal generator I', is of the same form as I'},, with drift
coefficients z,(x) = 0 and scale coefficients given by

0x%(X) = o (ST (x))(S'(S7(x)))?
(here S~ denotes the inverse of §). As X is driftless, it is in natural scale; more-
over, its speed measure m is given by

m(dx) = 20,7 %(x) dx .

1 o
—

m(I)

See Breiman (1968) pages 386-387 for details. In view of the monotoneity of S,
X crosses g if and only if Y crosses S~g, so our results can easily be interpreted
in terms of Y.

Here is the main result:

THEOREM 1.1. Let (X(t)),5, be a diffusion in natural scale, with state space I =
(— o0, ) and speed measure m satisfying

(1.4) mié: ] = x} = O(1/x)

as x 7 co. Suppose that g: [0, co) — (0, oo) satisfies

(1.5) 9(f) 1 oo as t1 oo
(1.6) G(t) = {7 dufg(u) | O as t1 oo
(1.7) G(H(1 4+ =) ~ G(1) as t] oo,

for some ¢ < %. Let p be an initial distribution satisfying

(1.8) of&: || = x} = O(1)x7) as x1 oo
for some y > 0. Then

(1.9) P {X(t) = g(t) for some t = t,} ~ G(t,)/m(I) as ] .
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Condition (1.7) implies (confer Freedman (1971), Theorem 74, page 213) that
the convex function G must satisfy

(1.10) G(t) = ae#*

for all large ¢, for some appropriate positive numbers a« and 8. The function g
does not need to be smooth, nor to satisfy a “smooth growth” condition analo-
gous to (1.7). Indeed, given any increasing function f for which f{(r) > ¢ for all
t, there exists a step function g such that (1.5), (1.6), and (1.7) hold, while
lim sup, g(¢)/f(f) = oo; to see this, determine #,, n > 1, inductively so that
to1 — 1, = f(1,), and set g(r) = 2"f(¢,)for te[t,, t,,,), n = 1. It is undoubtedly
true that (1.9) holds under a condition that is less artifical than (1.7); however,
(1.7) seems to be about the weakest condition under which our method of proof
canyield (1.9). By (1.4), condition (1.8) is satisfied when one takes m* = m/m(I)
for p; in this connection it is of interest to note that, under our general assump-
tions, m* serves as an invariant measure for X (confer Maruyama and Tanaka
(1951) page 139-140). Another situation in which (1.8) is trivially satisfied arises
‘when p is degenerate; thus (1.4)—(1.7) imply

(1.11) P {X(t) = g(t) for some ¢ = t,} ~ G(t,)/m(I)

for all states x. However, (1.9) does not follows from this because there is no
guarantee that the 1 + o(1) terms implicit in (1.11) are bounded. Along the
same lines, it should be noted that (1.9) does not in general hold for arbitrary
p. To see this, suppose X has the property that

lim,;, P,{X reaches x bytime 1} =0

yToeo
for each x and #; this is to say that 4 oo is a natural boundary and is equivalent
to the condition {~ xm(dx) = oo (confer Breiman (1968) pages 366-367). Take
any g satisfying (1.5) and choose x()’s increasing to co with ¢ in such a way that
lim,,, P,,{X reaches g(#) by time 7} = 0. Then the left-hand side in (1.9) is
minorized by (1 + o(1))p([x(#), o)), which can be made to tend to 0 as slowly
as desired by choosing p appropriately.

Theorem 1.1 has several variants, of which we mention three.

(A) Suppose that in (1.4) one strengthens the condition on the right hand
tail of m by demanding that

§= xm(dx) < oo,

i.e., that 4+ oo be an entrance boundary (confer Breiman (1968) page 366). Then
in (1.8) the condition on the right-hand tail of p can be dropped entirely; one
can even allow p to give positive mass to 4 oco. If both + oo are entrance bound-
aries, then (1.9) holds for every p.

(B) The conclusion (1.11) remains in force if (1.4) is weakened to

m{§: |§] = x} = O(1/x?) for all ¢ < 1
and if (1.7) is strengthened to
lim, , lim inf,;, G(#(1 + ¢))/G() = 1.
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(C) Under (1.5)—(1.7), (1.9) is valid for a diffusion X in natural scale with
state space I = [0, oo), for which 0 is an instantaneous state (confer Freedman
(1971) page 107) and for which one-sided versions of (1.4) and (1.8) hold; more-
over, (1.9) holds for any p if 4+ oo is an entrance boundary.

Here are some consequences of Theorem 1.1. The first is a sharpening of

Motoo’s (1959) upper class criterion for the Uhlenbeck process, corresponding
to the infinitesimal generator

(1.12y T'fix) = f"(x)]2 — axf'(x)
(a > 0).

CoROLLARY 1.1. Let (U(t)),y, be the Uhlenbeck diffusion process with generator
(1.12). Let ¢: [0, c0) — (0, o0) be a function such that

(1.13) $(1) 1 oo as 1 oo
(1.14) V(1) = adn=? {2 P(u)e=*"* ™ du < oo for large t
(1.15) (1 + 7)) ~ W(2) as t1 oo,

for some ¢ < §. Then for each initial distribution p satisfying
(1.16) pl€: €] = x} = O(e ™) as x1 oo
for some y > 0, one has
P{U(t) = ¢(r) for some t = t)} ~ W(t) as t,] oo.
For example,
P {U(1) = ((log(?) + (3 + 0) log, 1)/a)t for some t = 1} ~ af(w*d log’ t;)

for 6 > 0.
Next, we give a sharpening of Motoo’s (1959) upper-class criterion for d-
dimensional Brownian motion (confer Lévy (1954) page 55):

CoROLLARY 1.2. Let (R(?)),5, be the radial part of a normalized d-dimensional
Brownian motion process (d = 1). Let ¢: [0, co) — (0, co) be a function satisfying
(1.13) and

(1.17) U(t) = (['(d[2)2%42) 7 {7 gi(u)e P9 @ dufu < oo for large t
(1.18) W(ete!'™") ~ W(eh) as t1 oo
for some ¢ < L. Then for each initial distribution p on [0, co) satisfying

(1.19) p([x, 00)) = O(e~7%) as x| oo
for some y > 0, one has

(1.20) P{R(u) = (u + 1)ip(u) for some u = u} ~ ¥(uy)

as u, 1 co.
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As special cases, one has for a < §

(1.21) P{R(u) = (2u log* u)? for some u > uy}

~ (al'(d[2))"}(log up)*+@/2-bag-1087uq
as u, 1 oo; for ¢ > 1,

/2 |op 4/2
1.22 P {R(u) = (2cu log,u)t for some u > u,)} ~ ¢ B2 Uy
(122)  P(R@) z (2eu log,u) 24~ e e

as u, 1 oo (log,u denotes log (log (#))); and for & > 0, k > 3

P,{R(u) = (2u(log,u + (d/2) logsu + (log,u + - - -
(1.23) + log,_,u + (1 + 9) log, u)))* for some u > u,}

~ 1/(['(d/2)0 log_,u,) .
An analogous result holds in regards to the Feller-Erdds-Kolmogorov-Petrovski
criterion for univariate Brownian motion (B(f)),s,; namely if ¢ satisfies (1.13),
(1.17), and (1.18) with d = 1, and if p satisfies (1.16), then
(1.24) P{B(u) = (u + 1)’p(u) for some u > u)} ~ W(u,)/2
with ¥ defined by (1.17).
The “lower class” result of Spitzer (1958) is refined to

CoROLLARY 1.3. Let (R(?)),y, be the radial part of a normalized 2-dimensional
Brownian motion process. Let ¢ : [0, co) — (0, o) be a function such that

(1.25) G(u) | 0 as u 1 oo
(1.26) U(u) = {7 (2v|log ¢(v)|) 1 dv < oo for large u
(1.27) Tete ™) ~ W(e') as t1 oo
for some ¢ > §. Then for each initial distribution p satisfying (1.19), one has
(1.28) P{R(u) = (1 + u)ip(u) for some u = u)} ~ W(u,)

asu, | oo.

In particular, for § > 0 and

Brp() = umtose? if k=1
— i~ loggu) -+ (logy_ju) (loggu)l+s , lf k ; 2 ,
one has
1.29 P{R(u) < ut), ;(u) for some u > u} ~ (20 log,’ u,)!
I 0 g
as u, 1 oco.

Finally, here is a sharpening of the corresponding result in higher dimensions
(confer Dvoretzky and Erdos (1951)):

CoRrOLLARY 1.4. Let d > 3, and let (R(u)), 5, be the radial part of a normalized
d-dimensional Brownian motion process. Let ¢ : [0, c0) — (0, o) be a function such
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that

(1.30) d(u) |0 as ul oo
(1.31) W) = (T(d]2 — 1)2¢Y)1 {= pi~Yv)v~'dv < o0 for large u
(1.32) T(ete ™) ~ W(et) as t1 oo
for some ¢ < &. Then for each initial distribution p satisfying (1.19), one has
(1.33) P{R(u) < (1 + uw)t(u) for some u = u} ~ ¥(uy)

as u, | co.

In particular for k = 1, 6 > 0,

(1.34) P,{R(u) < u((logu) - - - (log,_, u)(log, u)'*?)="4=» for some u = uy}
~ (T(dJ2 — 1)2¢15 log,? uy)™* .

For univariate Brownian motion, Strassen (1967) has a result which is much
superior to (1.24), in that it applies to a broad class of “smooth” upper class
functions, and is formulated in terms of the density of the time, 7', of last cross-
ing, instead of the tail probabilities of 7. It is to be suspected that there is a
Strassen type version of Theorem 1.1. Strassen gives a summary of the relevant
literature prior to 1967. Among recent related results, the work of Robbins
and Siegmund (1970) merits special attention. In this paper martingale techniques
are used to find the exact value of (1.3) when X is univariate Brownian motion
and g belongs to a certain class of curves. These exact results are a major im-
provement over the asymptotic ones. Unfortunately the Robbins-Siegmund
curves are defined through a rather complicated procedure. One consequence
of this is that, aside from some important special cases, most of these curves do
not have closed form expressions, and can at best be evaluated asymptotically.
Another consequence is that is difficult to tell whether a given curve is in the
Robbins-Siegmund class. In contrast, it is generally easy to check whether a
given curve satisfies Strassen’s conditions, or those we have used here. Neither
Strassen nor Robbins-Siegmund impose a condition like (1.18) (which is (1.7) in
disguise), so their methods apply to curves which are much farther from the
“boundary” between the upper and lower classes. In this connection we note
that the restriction on a in (1.21) is due entirely to (1.18); in view of Strassen’s
results, (1.21) is undoubtedly true for all .

2. Statement of results: maxima and minima of processes. The methods used to
establish Theorem 1.1 and its corollaries can be used in connection with other
stochastic processes. We present here some results concerning the partial maxima
and minima of certain processes.

To begin with, fix an integer k = 1, and for each ¢ = 0, let V,(¢) be the kth-
smallest ordinate of points with abscissa < ¢ in a homogeneous Poisson process,
N, in [0, o). The process V, = (V,(1)),s, is @ Markov process whose sample
paths are right-continuous, non-increasing step functions. Fors < randy > x,
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one has
PIV(9) Z 3, Vi) 2 1)
= Dogise—1 € (X)) (i) G(k — i, 55y — x)G(k — i,'t — 5; %),
where G(r, 2; §) = 27 {¢ z7~"e~** dz/T'(r) is the probability assigned to the interval
[£, oo) by the Gamma G(r, 2) distribution. It follows that V,(s) has a Gamma
G(k, s) distribution, and that
P{Vi(r) = x| Vi(s) = y}
= Dlosisk—1 Bk — 1, x[y; )G(k — i, t — 55 %), if x<Zy
=0, if x>y,
where B(n, p; j) = (})p’(1 — p)»~7; in particular, ¥, has stationary transition
probabilities. Given that V,(s) = y, the process remains in state y for a length
of time which is exponentially distributed with parameter y (i.e., G(1, y)), and
then jumps down to a state x which is distributed according to the Beta (k, 1)

distribution on (0, y) (the density is kx*~/y*, 0 < x < y). The following theorem
gives some information on how fast V,(r) | 0 as 7 ] co.

THEOREM 2.1. Let ¢ : [0, 00) — (0, o0) be a function such that

2.1 d(u) T oo as uf oo
(2.2) W) = ({3 E(v)e ¢ dv/v)/T'(k) < oo for large u
(2.3) W(ete!'™*) ~ W(e") as t1 oo
for some ¢ < &. Let p be an initial distribution on (0, oo] such that

(2.4) 0((0, v]) = O(v7) as v]0
for some y > 0. Then

(2.5) P{Vi(u) = (u)/u for some u = us} ~ ¥(u,)

asu, T oo.

The natural choice for p places unit mass at + co; we shall, however, use other
degenerate p’s in the corollary below. This result sharpens the upper half of the
following integral test, which can be proved by the same methods: if ¢ satisfies
(2.1) and if p is an arbitrary initial distribution on (0, co], then

§ PE(v)e~¢™v1 dv { f : } implies P, {V,(4) = ¢(u)/u i.0.} : {

Now let (U,),, be a sequence of independent random variables, each uniformly
distributed over (0, 1). Fix k = 1, and for n > 1, let m,(n) be the kth smallest
of U, U, -+, Uy, The process (my(n)),., can be represented using the
(Vi(%))¢=0 process introduced above, in the following manner. Put 7, = 0 and
let T, < T, < --- <T,< --- be the successive abscissae of points of N (the
Poisson process from which ¥, was derived) in (0, o) X (0, 1). The(T, — T,_,)’s
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are i.i.d. G(1, 1) random variables; moreover, the process (m,(n)),; has the same
distribution as (V(T,)).»1, conditional on V,(0) = 1. Theorem 2.1 then leads to

COROLLARY 2.1. Let (m,(n)),s, be as defined above. Let ¢: [0, 00) — (0, o0)
be a function satisfying (2.1), (2.2), (2.3), and, in addition
(2.6) $(v) = o(v)
for some ¢ < &. Then
2.7) P{m,(n) = ¢(n)/n for some n = v} ~ {2 P¥(t)e~¢ 1= dt/T'(k)
asy — oo.

For example, when ¢(u) = y log,u, the right-hand side of (2.7) is asymptotic
to
r* log)" v/(T(k)(r — 1) logr ")
(r > 1). Corollary 2.1 extends easily to the case of non-uniform U,’s by means
of probability integral transformations.
A result analogous to Corollary 2.1 holds for the partial maxima of certain
recurrent diffusion processes:

COROLLARY 2.2. Let (X()).5, be a diffusion in natural scale, with state space
I = (— oo, o0) and with speed measure m satisfying
(2.8) mig: ¢ = x} = O(1/%)
as x 1 co. Let ¢ be a function satisfying (2.1), (2.6), (2.2) (with k = 1), and (2.3).
Then for each state x
(2.9) P, {sup.., X(f) < t/(m(I)¢(t)) for some t = t} ~ W(t,)
(with W defined by (2.2) with k = 1).

Via appropriate transformations, one can get results similar to those of Corol-
lary 1.2 of Section 1. As special cases we mention the following: for a normalized
univariate Brownian motion process,

Pymax,, B(r)/(r + 1)} < (2log, (1 + 5) + log, (1 + )
(2.10) — 2log, (1 + s) — log (c*4r))t for some s = s}
~ clog, so/((c — 1) log,~s,)

(¢ > 1,57 o0), and for the radial part of a d-dimensional Brownian Motion

Py{max, ., R(r)/(r + 1)t £ (2log, (1 + 5) + dlog; (1 + )
(2.11) — 21log, (1 + s) — log (c*4I'*(d/2)))* for some s > s}
~ 2clog, 5,/((2c — 1) log,*~'s,)
(¢ > 3,51 ).
For the process (m,(n)),s,, the integral test corresponding to (2.5) was in effect
established by Barndorff-Nielsen (1961) (see also (1963)). Robbins and Siegmund
(1972) reestablished this result, and used their martingale methods to get exact
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expressions for the tail probabilities for the time of last crossing of certain func-
tions. Pursuing a line of investigation initiated by Darling and Erdos (1956),
they also established the integral test corresponding to (2.10).

3. Statement of results: non-decreasing stable processes. We present here a re-
finement of Breiman’s (1968) law for non-decreasing stable processes. Let (X{(?)),5,
be such a process, having exponent a € (0, 1), and intensity m; thus for each ¢

log (E(e~?*®)) = mt {5 (7% — 1)x~ " dx = —tmI'(1 — a)f*/a
(6 = 0). Set
A=a/(l —a), g =T — aym)/*=(1 — a)/a .
Breiman showed that for any function ¢ : [0, o) — (0, o0) satisfying

3.1 &(s) T o0 as 57 oo,

one has
§= (f(s))te* dsfs
<o) . . =0
{ } ifand only if P{X{(s) < s/*p!/*[¢*(s) i.0. as sT oo} § )

= o0

Actually, this integral test was in effect first established by Lipshutz (1956) in
the context of partial sums of i.i.d. random variables in the domain of attraction
of the law of X(1). Our methods yield

THEOREM 3.1. Let X be as above. Suppose that ¢ satisfies (3.1), and that for
some ¢ < %, one has

(3.2) W(ete!' ") ~ W(et) as t1 oo,
where -
(3.3) W(s) = 2ra)~t {2 P¥(s)e ¢ ds[s < oo .
Let p be an initial distribution on [0, co) such that

p([x, o)) = O(x~7) as x1co
for some y > 0. Then
3.9 P {X(s) < sV u?[p4(s) for some s = s} ~ W(s,) as 5,1 oo.

In particular, for ¢(s) = clog,s (c > 1), the right-hand side of (3.4) is as-
ymptotic to (c log, s,)}/((2za)}(c — 1)log:~'s,)). For a result related to Theorem
3.1, see Robbins and Siegmund (1970) page 1427.

4. Proof of Theorem 1.1 and its corollaries.

(A) Preliminaries. The proof of Theorem 1.1 is based on the principle that
rare independent events are almost disjoint (confer, e.g., Chung (1968) page 60).

LemMA 4.1. Let A,, n = 1, be (pairwise) independent events in some probability
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space, and suppose that 3, P(A,) < oo. Then
P(Ungk An) ~ ank P(An)

as k] oo.

Proor. This follows from the more precise relation

rk(l - Tk) é Te — Zn*p;n,pgk P(An n AP) é P(Un;k An) é Tk
where 7, = X,2. P(4,). [
The next three lemmas are all to be considered in the following context. Let
(X(7)).20 be a diffusion in natural scale, with state space / = (— o0, ), and speed

measure m having total mass m(I) < co. For ael, let ¢, denote the first hitting
time of a. For xe/land n > 0, set

4.1 e,M(x) = E(t,") .

Note ¢,%(x) = 1; we shall write e,(x) for e,V(x).

The moments (4.1) are related to the speed measure through the following
recursion formulas, which can be found in Mandl (1968) page 112 (for n = 1,
confer also Freedman (1971), Formula 67b page 128).

LEMMA 4.2. Forn = 1 and x to the right of a, one has

(4.2) e,M(x) = n {2 G, (x; y)e, " (y)m(dy)
(4.3) =n§; ({7 e, V(y)m(dy)) du
where

G(xy)=y—a, if asy<x
=x—a, if xZ<y<oo.

A dual result holds for x to the left of a. Adding the “left” and “right” ver-
sions of (4.2) for n = 1 gives the well known

LEMMA 4.3. For any two states x, y in I,
(4.4) () + e(x) = |y — x|m(l) .

From Lemma 4.2, it is clear that the less mass their is in the tails of m, the
more moments 7, will have. The following lemma makes this more precise:

LEMMA 4.4 If the speed measure m satisfies
4.5) m([x, o)) = O(1/x%) as x1 oo
for some 6 in ((n — 1)/n, 1), then e,™(x) < oo for each a and x in I with a < x.
If m satisfies (4.5) with 6 = 1 then for each a in I one has
(4.6) E (e’s) < for |0] sufficiently small

for any initial distribution p on [a, co) satisfying p([x, o0)) = O(1/x7) as x 1 oo for
some y > 0. Finally if m satisfies {= xm(dx) < oo, then (4.6) holds for any initial
distribution p on [a, o).
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ProOOF. Suppose first that (4.5) holds. Fix a in I. If m* is a speed measure
such that m([x, c0)) < m*([x, c0)) for all x = a, then e, ™ (x) < (e, (x))* for all
nand all x = a; this follows from (4.3) and induction on n. Thus we'may without
loss of generality assume that m has a continuous density over [a, co) satisfying

4.7) m(dx)/dx < k(a)/(x — a + 1)'*?
for some k(a) < oo.
Suppose now ¢ = 1. Choose and fix { in (0, 1) with { < y. Then (4.7) holds
with 6 replaced by 1 — ¢, and (4.3) implies
e (x) = (r(@)/(C(1 — O))(x — a + 1)
for x = a. Use (4.3), (4.7) with ¢ replaced by 1, and induction on n to get

e"(x) = nl (#(@)/(E(1 — O))"(x —a + 1)F

for x 2 aand n = 1. Thus relative to the initial distribution p, the moment
generating function of 7, is finite at least in the interval {6 : |0] < x(a)/({(1 — ©))}.
Next, suppose (n — 1)/n < 6 < 1. Use (4.3), (4.7), and induction to get

e, "(x) = n! K(@)"(x — @ + 1)*"/d,(5)
where
d,(0) = [6(1 — 9)][(20 — 1)(2 — 29)] - - - [(nd — (r — L))(n — nd)] .
To finish up, suppose that §= xm(dx) < co. Then by (4.2) sup,., e,(x) < oo,
and so (confer Freedman (1971) pages 111-112)
Sup,», E,(e’7s) < oo
for all |0| sufficiently small. [J

REMARK. Lemmas 4.3 and 4.4 are valid also in the case that / = [0, oo0) with
0 an instantaneous state (confer Freedman (1970) pages 135-136).

We shall make use of the following simple estimate of the rate of convergence
in the strong law of large numbers:

LeEMMA 4.5. Let V\, V,, - - - be independent random variables whose moment gen-
erating functions are finite in a neighborhood of 0, and suppose that V,, V,, - .. are
identically distributed and have mean zero. Put S, =V, + ... + V,. Let 0 <
¢ < 1. Then there exists a number § > 0 such that

(4.8) P{|S,/n] = 1/m° for some n = m}
< P{|S,/n| = 1/n° for some n = m} < e='™'7%
for all large m.

Proor. Observe that
P[S, = m=¢ for some n = m} < 5,s, inf,., ($*(1)0"(1) e ™)

where ¢* (respectively ¢) is the moment generating function of ¥, (respectively,
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of V,). Using the fact that

() =1+ 0(?)
for ¢ near 0, it is easy to deduce that the nth term in the sum above is majorized
by

e_C”l—%
for a suitable { > 0, and thus that (4.8) holds, with § chosen < £. ]

(B) Proof of Theorem 1.1. We turn now to the proof of Theorem 1.1. Using
(1.7) choose and fix ¢ < { such that

4.9) G(t(1 + 5t7°)) ~ G(7)

as t 1 co. Define Markov times 7',, n > 0,and S,, n > 1, inductively as follows:
T, =1,

and for n > 1

(4.10) S, =inf{t > T, ,: X(r) = 1}

T,=inf{t > §,: X(r) = 0}.

In view of (1.4), Lemmas 4.4 and 4.3, and the strong Markov property, relative
to p the random variables 7,, (T, — T,_;), n = 1, are independent and have
moment generating functions finite near 0, and the (T, — T,_,)’s are identically
distributed with mean

r= (1 —=0m) =md).
For n > 1, put
(4.11) M, =sup{X(t): T, , < t<T,}=sup{X(1): S, <t<T,}.
For each ¢, > 0, define k = k(%) to be the largest multiple of x not exceeding
ty; thus 7, ~ kg as 1,1 co. Also, set ¢ = ¢(t,) = 1/t,° (confer (4.9)). Set
L, ={M, = g(np(l 4 ¢)) for some n = k(1 + ¢)?}
U, ={M, = g(np(1 — ¢)*) for some n > k(1 — ¢)}
C, = {X(1) = g(r) for some = 1}
Ay =A{IT,/n — p| = ey for some n = k(1 + ¢)}
B, ={|T,/n — p| = ep for some n = k(1 — ¢)}.
Using ke* 7 oo and the monotoneity oflg, one finds that for ¢, large
L, — A, {M, = g(T,) forsome n = k(l 4 ¢)'} — 4, < C,
c{M, = ¢(T,,) forsome n=k(l —¢)+1}UB, Cc U, UB,,
and so
(4.12) P(L,) — P(A4,) < P,(C,) < P(U,) + P,(B,) -

By the strong Markov property, the M,’s are i.i.d. random variables, and
because (X(/)),s, is in natural scale, we have

(4.13) P{M, = 7} = P{X hits 7 before 0|X(0) = 1} = 1/y
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for y > 1. Lemma 4.1 now implies that as 7, T co

(4.14)  Py(Ly) = (1 + o)) (1 + €))7 Tazsarer (1 + €)/g(np(1 + ¢))
= (L4 o) §5asen (9(0) 1 dt = (1 + 0(1))G(t)]/ 12 -

by (4.9). A similar argument shows that as 7, 1 oo

(4.15) P(U,) =< (1 + o(1))G(1,)/ e -
Moreover, Lemma 4.5 implies
(4.16) P(A4,) < P,(B,) < et T2

for some number # > 0 and all large 7,. Since ¢ < 1 — 2¢, (4.16) and (1.10)
imply P,(B,) = 0(G(t)), and combining this with (4.12), (4.14), and (4.15) we
get

Py(Crp) ~ G(t)]
as t, 1 co.

(C) Proof of Corollary 1.1. The scale function for the process U is (confer
Breiman (1968) page 386)

4.17) S(y) = Sye*dz.
Note
S() = (2ay)~te*(1 + O(1/y%)
asy 1 oo, and
S$7(x) = (a7 '[log (x) + 27! log, x + log (2at) + o(1)])?

as x T oo (S~ denotes the inverse of the function S). The process (X(1)),5, =
(S(U(1)))ez 1s in natural scale, and its speed measure m has density

m(dx)[dx = 2/(S(S7(x)))’
with respect to Lebesgue measure on / = (—oo, co0). In particular,
(4.18) m(I) = 2§ 1/S'(y) dy = 2(x/a)} ;
moreover as |x| T oo,
m(dx)/dx = (1 4 o(1))/(2ax?log|x|) .
Corollary 1.1 now follows directly fromr Theorem 1.1.

(D) Proof of Corollary 1.2. We give the proof for d > 2; the proof for d = 1
is similar, but requires a few changes stemming from the fact that S(0) below
is finite for d = 1 (see (4.19)). Put Y(r) = e'R¥et — 1), t = 0. (Y(£)),2, is a
diffusion process with infinitesimal generator

L) = 9" 0)2 + (d = 91 (y)
(confer Itd and McKean (1965), page 163), and thus scale

(4.19) S(y) = \¥ z-¥e* dz
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Note that
(4.20) S(y) = 2y7*e"(1 + O(1/y)) as y1 oo
(4.21) S7(x) = 2log(x) 4+ dlog,x + (d — 2)log(2) + o(1)" as x7 oo
while
(4.22) S(y) = log(y) + 0(1), if d=2

= —2(1 +o()/((d — 2p**), if d=3  as yl0O
(4.23) S=(x) = O(l)e !, if d=2

= (2(1 4+ o(1))/((d — 2)|x]))¢-2, if d=3 as x| —o0.
Put (X(#)).20 = (S(Y(?))):2o- Then X is a diffusion in natural scale whose speed
measure m has density

m(dx)/dx = 2/(4S~(x)(S"(S7(x)))")
with respect to Lebesgue measure on / = (— oo, oo). In particular
(4.24) m(I) = 2§ y*ev|(4y) dy = T(d[2)21~" .
Moreover, from (4.21) and (4.23), it is clear that (1.4) holds and that — oo is an
entrance boundary. Since
P{R(u) = (u + 1)}(u) for some u = uy}
= P2 {X(t) = S(¢{*(e! — 1)) for some t = 1}

(ty = log (4, + 1)), Corollary 1.2 follows from Theorem 1.1.

(E) Proof of Corollaries 1.3 and 1.4. We use the same notation as in part (D)
above. Here one has

P {R(u) < (u + 1)¥)(u) for some u = uy}
= P_g{X*(t) = —S(¢*et — 1)) for some t = 1}
where (X*(1)),5y = (— X(#)),,- Corollaries 1.3 and 1.4 follow from this, Theorem
1.1, and (4.22) and (4.24).

5. Proof of Theorem 2.1 and its corollaries.

(A) Proof of Theorem 2.1. We begin by transforming ¥, in much the same
way that the process R was transformed in part (D) of Section 4. For each
t = 0, put X(r) = e‘V(e'). X = (X(1)),2, is a Markov process with

P{X(7) 2 y| X(1) = x} = Zosizi— Bk — 1, e7y/[x; d)
X Gk —i,1 —e 9 y), if y<etx
=0, if y>eix
(t < 7). Thus X has stationary transition probabilities, and because X{(¢) has a

Gamma G(k, 1) distribution for each ¢, X is stationary. In this connection, we
note that as 1 } oo

(5'1) LX(t)]X(O):z d G(k’ 1)
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(the left-hand side denotes the conditional distribution of X(r), given X(0) = x).
We shall have need of the infinitesimal generator of X. To get this, observe that
given X(0) = x, for small 1, the process moves (alongan ‘“‘exponential” trajectory)
to e‘x with probability 1 — tx 4 o(f) and with probability zx + o(r) to a state y
distributed according to the density ky*~!/(e‘x)*, 0 < y < xe!. Thus for any con-
tinuous bounded function f with a continuous derivative, one has

(5:2)  lim, o (E,f(X(7)) — f(x)/t
= kxt7k 5 f(E)E5 1 dE — xf(x) + xf'(x) = [f(x)
(x > 0).
Notice that
P(V,(u) = ¢(u)/u for some u = u)} = P, {X(1) = ¢(e*) for some = ¢}

where #, = log (4,), and where p* is the law of V,(1) under the initial distribution
p. It is easily checked that (2.4) holds with p replaced by p*. So to prove
Theorem 2.1 it suffices to show that when (2.1) holds

(5.3)  Pu{X(1) = ¢(1) forsome 1= 1} ~ (§3 ¢*(D)e=® di)/T (k) = W*(1,)

provided

WH(e(1 + 1)) ~ WH(7)
for some ¢ < 1. The argument used to prove (5.3) is similar to that used to
prove Theorem 1.1, with the successive returns to state 1 playing the role of the
T,’s (see (4.10)). The only details we shall give here concern the mean recurrence
time of state 1, and the distribution of the maximum of X between successive
visits to state 1. As an analogue to Lemmas 4.3 and 4.4 one has

LeMMA 5.1. For each state x > 0, let t, be the time of first return to x. Then
t, is a strictly positive random variable for which

(5.4) #(x) = E,(z,) = T(K)er/x*
and for which
(5.5) E (e'+) < oo for all 0| sufficiently small

whenever o is an initial distribution for X such that
0((0, x]) = O(x7) as x| 0

for some v > 0.

Proor. We evaluate /(x) using the renewal theorem (confer Breiman (1968)
page 219) which implies that
(5.6) lim, , lim,,, P {visit x during [z, 1 + h)}/h = 1/p(x) .
Write

P {visit x during [t, t 4 h)}
= Jhicisa SJ‘, P {visit x during [0, A)}P,{X(?) € dy}
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where
B=10e),  J=[etxx),  J=[x kY, = [k, 00).

Using the instantaneous behavior of X and (5.1), one easily finds that (ast 1 oo and
then A | 0) the term involving J, is 0; that involving J, is (1 — 0(h))P {X(?) € J,};
that involving J, is O(h'); and that involving J, is o (k). It follows that the left-
hand side of (5.6) is x times the density of the invariant distribution, G(k, 1),
for X evaluated at x, i.e. x*e=#/I'(k). This proves (5.4). Standard arguments
utilizing geometic waiting times suffice to establish (5.5); we omit the details. []

Since the sample paths of X move upwards continuously and downwards in
jumps, one has, for x < z

P,{supts,x X(t) = z} = P,{X(o,) = z}

where ¢, is the first exit time from the interval [x, z). As an analogue to (4.13),
one has

LEmMMA 5.2. P (X(o,) = z} ~ e*x7*[(e*z7*) as z | 0.

Proor. Suppose we can find a function f: (0, co) — [0,1] such that the restric-
tion of f to [x, co) is continuous, f = 0 over (0, x), f = 1 over [z, =), and
(-7 Lf(y) =0
for all y in (x,z). Then standard results in the theory of Markov processes
(confer Dynkin (1965) pages 141-3) imply that f(y) = P{X(s,) = 2} for all y;

we want f(x).
Using (5.2), (5.7) becomes

(5.8) k §2 65 f€) dE — () + V() = 0.
Differentiate this to get
"0 = (= kp)f'(y) =03
thus over (x, z), f must have the form
f(y) = a(§zejt*dr + B) = h(y) -

Choosing «a so that #(z) = 1 and then § so that 4 satisfies (5.8) at y = x, one
finds ,

) = (Syetfttdr 4 e [x*)/(§; e'[t* di + e[x*),
and so
f(x) = (€°/x")[(§z e[t* dt + e°[x*) ~ (e°]x¥)[(e*[2")
asz 1 oo. J

(B) Proof of Corollary 2.1. Choose ¢ < % so that (2.3) and (2.6) hold. For
t >0, set ¢, = 1/t and write A(r) for ¢(¢)/t. Put J, = (1/(1 +¢,), 1 + ¢,).
Making use of the 7,’s introduced prior to the statement of the corollary, we
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have
P{m,(n) = h(n) for some n = v}
= P{V(T,) = h(n) for some n = v|V,(0) =1}
(5.9) < P{T,/ng¢J, for some n = v}
+ P{V,(n/(1 + ¢,)) = h(n) for some n = v|V,(0) =1}
< P[T,/ngJ, for some n = v}
+ P{V,(u) = h(u(1 + 0,)) for some u = t(v)| V,(0) = 1}

where #(v) = v/(1 + ¢,) and J,, is ¢_ for © = t~(u) (¢~ denotes the inverse of the
function ). The substitution v = #(1 4 4,) and (2.6) and (2.3) imply that

§7 (uh(u(1 + 0,))) exp[—uh(u(1 + 3,))]u du
~ $anaarsy (Vh(0))* €xp[—vR@)/(1 + 0,)]0~" dv
~ {= PH(v)e v 1 dv .
It follows from Theorem 2.1 that the second term of (5.9) is asymptotic to ¥(v),
with ¥ defined by (2.2). But (2.3) implies ¥(v) = #e*° (confer (1.10)), and
Lemma 4.5 implies that the first term of (5.9) is < e=*'"*. Thus
P{m,(n) = h(n) for some n = v} < (1 + o(1))¥(v)
as v 7 co. The analogous lower bound is established by applying the same sort of
reasoning to the following relation, wherein (1 + ¢ )*zf(r) = sup,. (¢()(1 + &,)°):
P{V(T,) = h(n) for some n = v|V,(0) = 1}
= P{Vi(z(1 + ¢,)*) = f(r) forsome 7 = v|V,(0) = 1}
— P{T,¢J, forsome n =},
(C) Proof of Corollary 2.2. Choose ¢ < % so that (2.3) and (2.6) hold, and set
¢, = 1/t°. Define T,, n = 0, as in part (B) of Section 4 (see (4.10)), but with 0, 1
replaced by x, x 4+ 1 if x > 0, and define M, by (4.11). Write p for m(I), g(¢)
for t/(¢¢ (1)), and determine k = k(%,) as in Section 4 (B). Over {X(0) = x}, one
has
{ITun — ¢ <&, forall n= k(1 + 2¢,/p)}
N {max; , M; < g(n(¢ — ¢,)) forsome n = k(1 4 2¢,/p)}
C {max_ ., X(r) < g(tr) for some ¢ > t,}
C{|T,af/n — p| = &, forsome n = k(1 — 2¢,/p)}
U {max; ., M; < g(n(¢ + ¢,)) for some n = k(1 — 2¢,/p)} .
We will omit the rest of the proof, which is similar to that used in Section 4 (B)
and in part (B) above. In this connection, we note that, e.g. when x < 0, 1/M;
is uniformly distributed on (0, 1) for each j (confer (4.13)).
(D) Proofof (2.10)and (2.11). Firstconsider (2.10). Put U(f) = e~**B(e‘ — 1),
t = 05 (U(?)),2o is the Ornstein-Uhlenbeck process of Section 1 (confer Corollary
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1.1), with « = 4. For suitable functions f, Corollary 2.2 implies
P{max, _, B(r)/(r + 1)} < f(log (1 + s)) for some s = s5,}
(5.10) = Pymax,., U(r) < f(t) for some ¢ = 1, = log(1l + s,)}
~ 77 5 (Sf(0) T exp [—1/(rSf(0)] dt
where 7 = 2(2x)! (confer (4.18)) and S is given by (4.17). For
f(1) = (2log (1) + log,t — 2 log,t — log (c*4r))t,

it is easily checked that (5.10) is asymptotically equivalent to the right-hand side
of (2.10).

The proof of (2.11) is carried out in much the same way, utilizing the trans-
formation Y(r) = e~*R%(e* — 1) introduced in Section 4, part (D). One finds that
for suitable functions f,

Py{max, ., R(r)/(r + 1)} < f(log (1 + 5)) for some s = 5.}
~ 07§, (S(fH(D) 7" exp [—1/(3S(F*(1)))] dt
where ¢, = log (1 + s,), d is given by (4.24) and S by (4.19).
6. Proof of Theorem 3.1. The proof of Theorem 3.1 draws upon Breiman’s
arguments and the methods utilized in Sections 4 and 5 above. We will omit
the details, except for the analogues of Lemmas 5.1 and 5.2. For ¢ = 0, put

Z(t) = X(e*)/e*/*; as Breiman shows, Z is a stationary Markov process with sta-
tionary transition probabilities.

LEMMA 6.1. For each state x, let T, be the time of first return to x for the Z
process. Then (with respect to P,) T is strictly positive with probability one, and

(6.1) E(z,) = a/(xD(x)),
where D denotes the density of the stationary distribution for Z, i.e., the law of X(1).
Moreover for any initial distribution p on [0, o) satisfying
o([x, 00)) = O(1/x7) as x1 oo
for some y > 0, one has
(6.2) E, (e’z) < oo for all |0| sufficiently small.
The proof is similar to that of Lemma 5.1 and will be omitted.

Now let 0 < z < x be two states, and let ¢, denote the first exit time of the
Z process from the interval (z, x], and put

u:v(z) = Px{Z(gz) = Z} *
LEMMA 6.2. For each x,

u(2) ~ (ap[2m)H/(z e~ xD(x))
asz | 0.

Proor. This is basically Breiman’s Theorem 3, with closer attention being
given to the constants of proportionality. Tracing through Breiman’s argument
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(and making a few minor corrections), one finds

u(z) = /(1 + §: 0(5) d€)

where
(6.3) §20(6) &€ = (1 + o(1))R(2)m §5 D(E)/(x — §)*dS
with
R(z) = {3 exp[z74(—& + pEn))ET" dS
(0 =1/1 —a) and B =ml'(l — a)/a). The Laplace transform of x—
e D()(x — §) = dE is
s > ml(l — a)s*te~#" = —(d/ds)e~#*,

so the right-hand side of (6.3) is in fact (1 4 o(1))R(z)xD(x). Laplace’s method
can be used to get the asymptotic expansion for R(z), with the result that

R(z) ~ cz/er™
where
¢ = Qa/w' (L))}t = Qrfap)?

with ¢, = (af)’ being the point that maximizes w: r — —r + r*.
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