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THE PROBABILITY LIMIT IDENTIFICATION FUNCTION
EXISTS UNDER THE CONTINUUM HYPOTHESIS

By JOSEF STEPAN

Charles University

The paper deals with the existence under the continuum hypothesis of
the probability limit identification function, the definition of which has
been presented by G. Simons in 1971.

1. Introduction. Consider a probability space (2, %7, P) and denote by & the
space of random sequences -2” = (X, X,, - --), defined on (Q, .2, P), whose
coordinates converge in probability. Let the probability limit associated with
Z e & be denoted by p(-2”), a random variable. A function f: R* — R* is
called a probability limit identification function (PLIF) on &’ c & if for all
Zed’,

O {0 eQ: (e () # p(<27) (@)}
is contained in a P-null set of %"

G. Simons (1971) introduced this concept and proved that there exists a PLIF
on Z if and only if there exists a PLIF on &*, the set of -2"¢ & whose coordi-
nates are 0-1 variables and whose probability limit is a constant almost surely.

Let & = {P.Z7~': 227 &'} (where P-2"~' denotes the probability measures
induced on (R*, <#'~) by -Z”). The purpose of this paper is to prove that there
exists a PLIF on &’ C & whenever the cardinality of 97 < R,, where R,
denotes the cardinality of the set of countable ordinal numbers. From this, it
easily follows that there exists a PLIF on & under the continuum hypothesis.
The main mathematical tool used in our proof is transfinite induction.

2. Notation and Definitions. Let R be the space of sequences x = (x,, x,, + - )"

of real numbers. Consider the usual product topology and denote by <z~ its
Borel g-algebra. Let .7 be the set of all probability measures 2 on <2 such that
the sequence of coordinates {x,, x,, - - -} is convergent in probability ., i.e.

(2) F={p:p{xeR:|x, — x,| >e} >0 n,m— oo forall ¢ > 0}.
A standard result of measure theory says that for each x e .Z” there exists a
measurable function G, : (R, &~) — (R}, <8") such that x, — G, in probability
o, ie.
3) p{xeR=:|x, — G, (x)| > ¢} —0 n— oo forall e >0.
This gives us an opportunity to modify the definition of the PLIF.
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DEFINITION. A map f: R* — R* will be called a PLIF on .&” c Z7if for each
p €. there exists a A[p] e &=, p(A[p]) = 1 such that

Alp] € {xe R=: f(x) = G (x)} .
Obviously, this definition does not depend on the choice of the G,’s.

Let us make some simple observations about PLIF’s. Considering &’ c &,
one can easily see that all PLIF’s on &' = {P.27~': 27¢ &'} are PLIF’s on &”
in the sense of Section 1. and that they are p-measurable with respect to each
p© €. Suppose that fis a PLIF on .2 and x = (x;, X,, - - ) € R* is such that
lim,_,, x, € R*. Then f(x) = lim,_. x, since a unit mass at the point x, ¢,, belongs
to .. On the other hand it follows from the fact that a sequence convergent
in probability has a subsequence convergent almost surely, that the elements of
7 are supported by the set

A= {xeR”:x = (x, X,, ---) has a finite cluster point} .

Hence, an arbitrary value is admissible for f at an x ¢ A4.

Now, let us introduce some notation and a definition. Denote the set of
natural numbers by N and the set of strictly increasing sequences of its elements
by .4 Take p, ge.#" We shall say that p is a subsequence of g and write
p = q if there is a k € N such that p, = ¢, fori = k, wherei < n;e N for all
i. The relation < is reflexive and transitive.

Take p = (p, Py, -+ +) €47 X = (X;, Xy, - - ) € R™and put x(p) = (x,, %,,,* - *),
Denote by C(p) the set of those x € R* for which lim,_,, x, exists and is an ele-

n—0 T p,

ment of R'. Put lim x(p) = lim,_, x, for x e C(p). The following is a reformu-

n—o0 p,

lation of the known Riesz theorem.
REMARK 1. pe & if and only if there is a measurable function
G: (R>, &#*) — (R, F")
such that for each p’ € _#" there exists p < p’ that
plxe C(p): lim x(p) = G(x)} = 1
holds.

(The measurability of the set {x € C(p): lim x(p) = G(x)} follows from the fact
that both G and C(p) are <&~-measurable.)

3. The existence of probability limit identification functions. First, let us prove
a lemma that will be utilized in the course of the transfinite construction.

Lemma 1. Let (p', p*, - --) be a non-increasing finite or countable sequence of
elements of " and consider p ¢ 7. Then there exists p e " such that

pxe C(p):lim x(p) = G,(x)} = 1
and
p=p, forall neN.

(The function G, is defined by (3).)
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Proor. The finite case does not give us any troubles. Suppose that (p!, p?, - - -)
is a countable sequence. Using a diagonalization argument we are able to find
P’ € ¥ such that p’ < p" for all ne N. The assertion now follows readily from
Remark 1. ’

The following simple lemma will be useful also in the sequel.

LeEMMA 2.
card #=c¢ (= card R).

Proor. Denote by ¢, a unit mass at a point x € R=. It is very simple to see
that
{¢@e,...,: a€ R} C .

hence we have card > ¢. On the other hand the set of all probabilities on
Z£* has no more than a continuum of points since it can be topologized as a
separable metric space (see [1] page 239).

Now, here is our transfinite construction.

THEOREM. Consider &' < 7 such that card & < R,. Then there is a PLIF
on .

Proor. (Some known facts about the ordinal numbers will be used in the
course of the proof without any references; for these see [2].)
It is clear that we can restrict ourselves to the case card &7 = R,. Let Q be
the first uncountable ordinal number. Since

card {e: @ ordinal, a < Q} = R,

we are able to enumerate the elements of the set Z°’ by the ordinal numbers
a < Q, ie.

F = {p,ra < Q).
Put G, = G,, where G, is the probability limit determined by (3). Using a
transfinite construction we shall show that there is a net {p,: § < Q} c .#" such
that

4) BB =py=<p;
and

() pix € C(py): lim x(pg) = Gy(x)} = 1
for all 8, g’ < Q. '

Let p, € .#" be a sequence satisfying (5) for 8 = 0 and suppose that we have
constructed p,e.#" for all ordinal numbers which are smaller than an ordinal
a < Q such that (4), (5) hold for all 8, f’' < «a.
There are two possibilities. If the « is an isolated ordinal number then there is
an a’ < «a such that '’ + 1 = a. It follows from Lemma 1 that we can find a
Po =< P, such that (5) is true for 8 = a. It is easy to see that the elements of
the set {p,: 8 < a} satisfy conditions (4) and (5) for 8, §’ < a + 1.

If the « is a limit ordinal number then we have an increasing sequence of
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ordinal numbers 5, < 8, < - -- such that the « is the smallest ordinal which is
larger than each $,. Hence the p, ’s form a non-increasing sequence. Employ-
ing Lemma 1 once more we arrive at some p, € .4 such that

Pe = Ps, forall neN
and (5) holds for 8 = a.

Take B < a«. Then there is a nye N such that 8 < 8., < a. Hence p, < p,.
It follows from these considerations that we have obtained the set {p,: § < a +
1}, the elements of which satisfy (4) and (5) for all 8, f’ < « + 1. Now, the
existence of the net {p,: § < Q} that satisfies (4) and (5) for all 8, g’ < Q follows
from the principle of transfinite induction.

Let us finish the proof. Put

A, = {x e C(p,): lim x(p,) = G,(x)}

and define f(x) = G (x) for xe A, and a < Q. f is well defined on the set
A= u {4, a < Q}since if xe A, N A, then

G(x) = lim x(p,) = lim x(p,) = Gor(X)

which follows from the fact that either p, < p,, or p,, < p,. It is clear that all
extensions of f from 4 to R~ are PLIF’s on &

REMARK 2. Considering the PLIF’s in the sense of Section 1 it follows from
Theorem and Lemma 2 that under the continuum hypothesis there is a map
f+ R® — R* which is a PLIF on & for all probability spaces (Q, %7, P).

At least two problems with regard to PLIF’s seem to be open.

Is there any <#~-measurable PLIF?

Is is possible to prove the existence of PLIF’s without using the continuum
hypothesis?

Also the author has not managed to describe the maximal subset of R~ where
the values of the PLIF’s are determined. Both the topological and geometrical
descriptions of the set & seem to be necessary for these purposes (e.g. to char-
acterize the subsets of R~ which are contained in a p-null set of <z~ for each
re ).
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