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DEGENERACY PROPERTIES OF SUBCRITICAL
BRANCHING PROCESSES

By J. CHOVER, P. NEY AND S. WAINGER
University of Wisconsin

This paper describes the limit behavior of sub-critical, age-dependent
branching processes for which the Malthusian parameter does not exist.

1. Introduction. In this paper we apply several results about “functions of
measures”—a subject we discussed in [5]—to the limit theory of subcritical
branching processes. We consider a class of processes for which the socalled
“Malthusian parameter” does not exist, and present results about the correspond-
ing limit distributions for population size, conditioned on nonextinction. We
include variants and simplifications of the relevant material from [5], adapted to
the present setting.

Let f(s) = X 7., pxs* be the particle production generating function of an age-
dependent branching process with particle lifetime distribution function-G(-)
(see [1] or [6] for background). We take the process to be subcritical, i.e.,
f'(1) = m < 1. Let Z(t) denote the number of particles at time ¢, and F(s, t) =
1 P{Z(1) = k}s*, |s| < 1. Let G(a) = §3 e~ dG(t) denote the Laplace-Stieltjes
transform of G. Then one defines the Malthusian parameter of the process as the
(unique) root, call it @ = a(m, G), of the equation mG(a) = 1, provided such a
root exists. Roughly speaking, the Malthusian parameter will exist if the tail of
G decreases faster than exponentially as ¢ — oo; and will fail to exist if the tail
decreases slower than exponentially.

In case a(m, G) does exist, the limit distribution

(1.1) lim,_, P{Z(t) = k| Z(t) > 0} = b, k=0
is nondegenerate. Indeed it was proved by Ryan [8], and in Athreya-Ney [1], that
lim,_, e=*[1 — F(s, t)] = Q(s)

exists for 0 < 5 < 1, and that Q(s) = 0 if and only if }] p;jlogj = co. On the
other hand if a(m, G) fails to exist by virtue of “slower than exponential” decrease
in the tail of G, the limit distribution (1.1) will be degenerate (5, = 1). This was
shown by Chistyakov [3] for small m and by ourselves [4] for general m < 1 (see
also Athreya-Ney [1]). The existence/non-existence of « is, however, a crude
index for the nature of the limit in (1.1). There are borderline classes of distri-
butions for which « fails to exist but whose tails decrease faster than exponentially.

Received March 19, 1972; revised December 4, 1972.

AMS 1970 subject classifications. Primary 60G99; Secondary 60J80, 60K0S.

Key words and phrases. Age-dependent (non-Markovian) branching processes, conditioned
limit laws, sub-exponential distributions, Yaglom theorem.

663

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to &)

L2

The Annals of Probability. RINOIN

Www.jstor.org



664 J. CHOVER, P. NEY AND S. WAINGER

Our main results (in Section 4) answer the degeneracy question for a large class
of distributions.

In Section 2 we introduce the classes of distributions which we shall study, and
present a main lemma regarding them. In Section 3 we discuss asymptotic prop-
erties of F(s, t) and of the means y(r) = EZ(f). In Section 6 we append a brief
description of an alternative approach to the main theorem, using a contraction
principle.

2. Distributions with large tails. Let G(.) denote a probability distribution
function on [0, c0), G(0) = 0; and let G,(+) denote the n-fold convolution of G
with itself. We shall consider the following conditions for G:

2.1) lim, .. 11_—_60_2((:)) exists = ¢ (< o0) ,
and

o 1—G—b) .
2.2) lim, .. —T% exists = ¢(b)

for all real 5. From (2.2) it follows easily that ¢(b) = e*® for some p = 0, and
the convergence is uniform for b in compact sets. In terms of p, we formulate a
third condition:

(2.3) 6 et dG(t) exists = d (< o).

For a fixed d = 1, let >/(d) denote the set of distributions G which satisfy (2.1),
(2.2), and (2.3). The constants ¢ in (2.1) and d in (2.3) are related: necessarily
(2.4) c=2d.

We proved this equality in [5] for the case d = 1, and for the case d > 1 when
G is a lattice or an absolutely continuous distribution. The methods of proof
for Theorems 1 and 4 of [5] in fact extend without change to all G on [0, co) and
d = 1, yielding (2.4). We shall not repeat the steps here. (A further note: It
is easy to show directly that if (2.1) holds, then ¢ > 2 necessarily; and if ¢ = 2,
then necessarily p = 0 in (2.2)—see [1] or [3]. Also (2.2) does not imply (2.1).
For a related counterexample, and an elementary proof of (2.4) under other

hypotheses, see Rudin [7].)
Here are several examples of densities whose distributions are in .S(1):

9(t) ~ at™® | a>0,b>1.
9(t) ~ exp{—at*} a>0,0<a<l.
9(t) ~ exp{—t/log*t} .

One way to construct densities whose distributions are in d) for d > 1 is to

multiply densities whose distributions are in .~(1) by negative exponentials.
Thus if

(2.5) G is absolutely continuous and  G'(t) ~ t~be~! b>1,

then G is such a distribution. One can easily compute d and see that d > 1.
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(Distributions of the form (2.5) in fact lie in the intersection between our classes
A(d) and the class of G with faster than exponential tail decay.)

The following lemma describes the most important property of distributions
in the class &(d). It could be derived—just as the equality ¢ = 2d—by the general
methods of [5]; however, we include here a more elementary proof which takes
advantage of our using only tails of distributions.

For any 7, 0 < y < 1 define

(2.6) U(t) = Dvco 7"GL(1) -
LeMMA 1. If Ge A(d) and yd < 1, then

2.7) lim,_ (=N —-U0O _ 1
o 1 — G(r) (1 — rdy

Proor.! Observe that
I-=nN"-U(@ _ n 1= G,(1)
(2.8) 1 —G( = 2aT iT(I) .

We will show (by induction) that

(2.9) L= Gut) _, ygns as 1— oo,
1 — G(»r)
and that given any ¢ > 0 there is a K < oo such that
1 —G,(»)
2.10 — /< K(d " forall t=0.
(2.10) o S K@+ all 1z
This allows us to take the limit as ¢t — oo through the right side of (2.8), and then
(2.9) implies (2.7).
Suppose first that (2.9) holds for some fixed n. Then for any 0 < 4 < ¢

1 —Gp(r) _ -a 1l =G (t—y) 1 =Gt —y)
S e & R S T s i w4

. 1 =G, (t—)) 4G
t S 0 () -
Integrating by parts,
. 1 —G,(t—y) ;
1 e O\ SV, [ ¢
im, o §ia =G 400)
(2.12) = —1 4+ [1 — G,(4)]e + §§ e dG,(y)

—dr—1 as A — oo

1In the case when d = 1 and 7 < C-1, where
G(r) — Go1)
1-G@ °
a proof somewhat along the following lines is contained in Chistyakov [3].

C = sup;
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(since § e’ dG,(y) = d*). Thus also

. a1l =G —y)
lim, . \{4——"\V " 2/ 4G
im,_, §§ [~ GQ) 6))]
: G(r) — Gy(t) _ y; ¢ 1 =Gt —y)
2.13 =1 ot =N lim, \t_, ——— ) 4G
(2.13) I G0 im,_ ., §_4 = G »
—d as A-— co. (We have used (2.12) here.)

The induction hypothesis together with (2.11), (2.12), (2.13) implies (2.9) for
n + 1 and hence for all n.

Next assume (2.10) is true for fixed n, pick any ¢ > 0, and choose 0 < 4 <
T < oo so that

a1l =G —y) €
2.14 t-a - PN T ) dG d+ —,
(2.14) WPy §574 = T 400 < d+
and choose K so that
(2.15) 2Br K< oo,
ed
where
1 G(t) — G(t — A)
B, =14+ __ - .

T + = 6(T) =+ sup;r 1= 6()

Then

suPreo 1 e < 1+ supesiar 85 - 2 a6 )

1 — Gn(t — y)
175D w00)

1 —G,(t—y) . I—G(t—y)dc;(
1 —G(t—y) 1 — G(¥)

< B, + [sup,go '11—_:'%%)]

+ SuptZT S:—A

+ SUp.zr §67° ¥)

a1 —G@it—y)
X [Supth §6 1——G(t)dG(y):| ’

which, by (2.13) and the induction hypothesis, < B, + K(d + ¢)*(d + ¢/2) for 4
and T sufficiently large. Via (2.15) this implies (2.10), with n replaced by (n + 1).
This completes the proof.

CoroLLARY 1. If Ge SA(d) and yd < 1, then

lim,.,, L =" = U0 —8) _ oo,
I=n"=U,0

COROLLARY 2. If G e SA(d) and yd < 1 then

lim,_ 1 =001+ V(1) _ 1—7
- 1 — G(¥) (1 — ydy




SUBCRITICAL BRANCHING PROCESSES 667

Proor. The left side above

— 11 1 n 1 n(t) n(t)
= lim G . -
e 7 nr 1 — G M LT 1 — G(1) .
Apply Lemma 1.

CoROLLARY 3. If h(t) is of bounded variation and right continuous, G € &(d),
ryd < 1 and h(t) ~ 1 — G(t) then

W)« U,(0) _ 1+ yleg(—p) — 1]
1 —G() (1 — rdy

where n(t) = h(t) — [1 — G(t)] and " denotes the Laplace transform. (Note that
7(—p) exists by (2.3).)

ProoF. Forany 0 < 4 < ¢
(2.16) h(t) « U (t) = [1 — G(1)] = U(t) + Jy(1) + Jo(1)

where

lim,_,,

_eea HE—y) _ _
AGIERY {1—_——6(’—_*}‘5 1} [1 — G(t — y)]dU.(y)

() = §ia{h(t — y) = [1 = G(t = y)}dU(y) -
Since by hypothesis # ~ 1 — G, Corollary 2 implies that
(2.17) Ji(t) = o[1 — G(1)].
(The little o is as 4 and t — oo.) Since 7 is of bounded variation, we can inte-
grate J, by parts to obtain

50 = 9A)| 7 | = Ut = A = 70)| 2~ U0

— §8 |1 = U= |#n0).

Now apply Lemma 1 and Corollary 1 to conclude that

_ IO payess T 0y
lim,_ IT(_;ZI_) = n(A)e (1 — rd) 7(0) (1 — rdy

S )

By integrating by parts and letting 4 — co, we see

lim, It _ eri(—p)
1 =G (1 — rdy

The result now follows by (2.16) and Corollary 2.

3. Asymptotic behavior of Z(¢). The generating function F(s, ) is the unique
bounded solution of the equation

(3.1) E(s, 1) = s[1 — G()] + §i fLF(s, t — y)]dG(y) -
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From this one shows that p(r) = EZ(r) is the unique bounded solution of

(3.2) p(t) =1 — G(t) + m §§ p(t — y) dG(y) ;
and hence that

(3.3) p(r) =[1 — GO * U, (1),
where

(3.4) Un(t) = Lo m™G (1)

and + denotes convolution. For proofs of the above facts see [1] or [6].
THEOREM 1. If G € 5A(d) and md < 1, then

1—m
3.5) p(t) ~ m [1 — G()] as t— oo .

Proor. Corollary 2.

THEOREM 2. If G € S(d) and md < 1 then

1 — F(s, 1)
1 — G(@)

Proor. Given any ¢ > 0, there is a , such that

(3.6) lim,_,, = L(s) existsandis =1 —s.

m—e<l—_f(“)§m for 1=zu>u,.

Fix s. Since F(s, ) /' 1 (see [1]), there exists 4, such that ¢, is a continuity point
for G and such that F(s, r) > u, for t > t,. Then by decomposing the integral in
(3.1) from 0 to t — t,and ¢+ — 7, to t one can show that

Ry (1) + (m —¢) §i[1 — F(s, 1 — )] dG(y)
(3.7) <1 —F(s0)

< Ro(1) + m §[1 — F(s, 1 — )] dG(y)
where

(3-8)  R.() =1 =91 = GO + §tii+ {1 — fIF(s, t — )]} dG(y)
— M §imig+ [1 = F(s, 1 — y)] dG(y) -
((x)* = max (0, x)).
Iterating (3.7) we obtain
R, () x U, () <1 — F(s, 1) < R(t) » Up(1),
and since R, < R, _,
3.9 R.()*xU,_() =1 — F(s,t) < R, (1) + Up,(7) .

Applying Corollary 3 with y = m — ¢ and m, the existence of the limit in (3.6)
is immediate from

LeMMA 2. If Ge SA(d), d > 1, md < 1, then R,(t) is of bounded variation, ~
const. [1 — G(¢)], and right continuous.
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Proor orF LEMMA 2. With a little manipulation in (3.8), one can write R, (?)
as sums and differences of monotone functions; hence it is of bounded variation.
The right continuity is trivial.

For the asymptotic behavior, it is sufficient to show that

(3.10) §i_, £(t — ) dG(y) ~ const. [1 — G()] , t— o0,

for any monotone, bounded right continuous §(-). Via integration by parts, the
left side of (3.10)

= ()1 — G(t — 1)] — EO)[1 — G(1)] — oo [1 — G(t — )] d<(y) -

The conclusion follows from the defining properties of S~(d).
The fact that the limit in (3.6) is = 1 — s follows from the fact that
1 — F(s, 1) > (1 — 5)[1 — G(#)], which is clear from (3.1).

4. The limit law for Z(r). We have seen that when d = 1, G(¢) — G(t — b) =
o[l — G(#)] as t — co. Using this fact in (3.8), we can conclude that

R,(1) = (1 — 5)[1 — G(1)] + o[1 — G(] -
Hence by (3.9) and Corollary 3

.1) Lisy = L=
1 —m
Thus .
lim,_., Es?* = lim F(s, ) = FO, 1) _ ¢

1 — F(, 1)

(Z(f) = Z(t) conditioned on non-extinction.)
This fact was proved for /(1) < co and m < ¢! (see the footnote to the proof
of Lemma 1) by Chistyakov [3]. Thus

THEOREM 3. If G e S4(1), then

4.2) lim, ., P{Z(t) = 1|Z(t) 0} =1,

i.e. the Yaglom limit law is degenerate.
This contrasts with the case d > 1, for which we have the following result.
THEOREM 4. If Ge SA(d), d > 1, md < 1, then

(4.3) lim,_, P{Z(t) = k| Z(t) > 0} = b, exists

and 0 < b, < 1, i.e. the limit law is nondegenerate.

ReMARK. Ifd > 1and md = 1, then the Malthusian parameter exists and (4.3)
is known to be nondegenerate.

Proor or THEOREM 4. The existence of the limit in (3.1) follows from Theorem
2. To prove that b, < 1 it is sufficient to show that L(s) is not a linear function
of s. To this end the following formula is useful.
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LeMMA 3. IfGe SAd),d > 1, md <1,0=<s =<1, then
@4) L) = (1 — md){(1 — ) + §5 (1 — f[F(s, D])oert di} ,
where the integral in (4.4) converges.

ProOF OF LEMMA 3. Let A(s, ) = f[F(s, 1)], and observe that
1 — a6, 1) _ lim,__ 1 — fIF(s, )] 1 — F(s, 1) _ mL(s)
1 — G(¥) 1= F(s,t) 1 —G() ’
As, 0) = f(s) »
and A(s, f) is increasing in ¢, with (s, ) /' 1 as 1 — co. Thus, integrating by
parts we have

@.5)  lim,_.

i 145t —y) dG(y)
G(

T —G(r)
=1t — a5 DT ST - )+ 57 =2 e )

1 — G(?)
— eT[1 — (s, T)] = [1 — f(s)] + §5 e*(s, dy)
as t — oo. Integrating by parts again we see that

L= A1 =3) gG(y) = §7 pen[1 — (s, )] dyy

4.6 lim, ., §i_
@) lime. S

Next, since
1 — (s, 1) = 0(1 — G(v))
observe that for some constant K < oo,

3 t—Tl_Z(s’t_y) i z—Tl“G(t_y)
4.7) lim,_., §% ——17(0— dG(y) < lim,_, K {7 W daG(y) ,

where by (2.1) and (2.3) the right side goes to 0 as T — oo.
Finally, by (4.5)

1 — A(s, t — )
%0 4o

= mL(s) i e dG(y) — mdL(s) as T—co.
Combining (4.6), (4.7) and (4.8).

@.8)  lim,_.§¢

@9) tim_ .5t —L [I-i(sézt;— M dG(y) = mdL(s) + §5 per'[1 — F(s, y)] dy -

Combining (4.9) with (3.1) yields (4.4).

REMARK. If d = 1, then the limit in (4.6) is zero, implying (4.1).
Returing to the proof of Theorem 3, it is sufficient to show that

I(s) = § (1 — fIF(s, )])per dt
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is not linear in s. If it were, then we would have

I(s 4+ 0) + I(s — 0) — 2I(s) = 0
or .
5 pe™{2f[F(s, ] — fIF(s + 8, 0] — fTF(s — 3, )]} dt = 0.
But due to the convexity of fand F the integrand is < 0, and hence must be
= 0. This implies that f and F are linear, a contradiction.
To see that b, > O note that b, = — L’(0)/L(0), and it is clear that L(0) — L(h) =
h(1 — md)~* and L(0) is positive.

S. Some remarks. Consider an arbitrary one of the Z(r) particles existing at
time ¢, and consider its “generation number,” i.e. the number of ancestors it has.
It can be shown that in a certain average sense

(i) if G(¢) € (d) for d = 1, then this generation number converges to a finite
limit as ¢ — co;

(ii) if the Malthusian parameter for m, G exists, then the generation number
goes to oo as t — oo.

These ideas are discussed in detail in Athreya and Ney [2].

It is interesting to observe here, however, that the class {<4(d); d > 1} playsa
borderline role for branching processes. Namely

(a) If G e &A1) then the process is degenerate in two senses: the conditioned
limit law is concentrated at 1, and the (conditional) distribution of the generation
number of live particles converges to a proper distribution (see [2]). /

(b) If the Malthusian parameter exists, then the limit law in the Yaglom
theorem is nondegenerate, and the generation number goes to co as r — co (as
one would expect).

(¢) If Ge{d), d > 1}, then the conditioned limit law is nondegenerate as
in (b), but the generation numbers are finite as in (a).

6. An alternate method. In this section we briefly sketch an alternate method
for obtaining limit results such as in Theorem 2, which exposes the nature of the
integral in

(6.0) F(s, 1) = s[1 = G()] + S f1F(s, t — ¥)) dG(y)

as inducing a contraction transformation in an appropriate function space, when
[ is a subcritical generating function.. We consider here only smooth G, with
continuous nonzero density g, and write out assumptions about convolution ()
in terms of ¢.

THEOREM 2'. Let the continuous nonzero density g on [0, oo) satisfy the following
conditions:

6.1) lim, . ¢ ;(‘t})(t) exists = ¢ (< o0)

(6.2) lim -"(’_—)b) exists = ¢(b)

t—oo g(t
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for all real b. Necessarily ¢(b) = e®* for some p = 0. Assume that p > 0 and that

(6.3) §& eftg(t) dt  exists = d (< o).
(Necessarily ¢ = 2d). Suppose moreover that
. t .
(6.4) lim,_,, lf(*(zf(t) exists =0 (0< 0 < ),
and finally, that md < 1. Then
1 — F(s, 1)

(6.5) lim,_,., exists = L(s) > 0.

9(r)

OUTLINE OF PrROOF. The main idea—similar to that in [5S]—is to construct a
(metric) space W of functions w which have a required limiting property
(lim,_, w(#)/g(?) exists), and to show that for fixed s the function 1 — F(s, ) lies
in W—or at least “close enough” to some element w, e W. To this end we fix s
and rewrite (6.0) in the form

(6.6) 2(1) = n4(1) + $a=* h(2(t — y)a(y) dy ,

where z(f) = 1 — F(s, 1), A is a positive constant to be chosen later, h(x) = 1 —
f(1 — x),and 7, is a remainder term. (Equation (6.6) will have a unique solution
subject to 0 < z(f) < 1.) Note that #’(0) = f’(1) = m < 1. Since we expect the
solution z(7) in (6.6) to approach 0 as 1 — oo, the fact that ' < 1 for small argu-
ments suggests that the right-hand side of (6.6) may represent a contraction
operation on z. If we can show this operation to be acting in the constructed
space W, we shall have a fixed point w,—a solution of (6.6) with the desired limit
property. Actually we cannot achieve this goal exactly, but we can carry the
program through for solutions w of a slightly modified version (6.6’) of (6.6), and
then show that the fixed point w, of (6.6") can be taken so close to the solution
z of (6.6) that its limit properties carry over to the latter.

For the required modification, choose ¢ > 0, and choose some continuous in-
creasing function y(f) = y(#; 4, €) with y(r) = 1 for + > some 1,(4, ¢), and satis-
fying the technical requirement

(67) %s:ga—y)g(y)dyg(l+e>ss°ewg<y>dy, . izo0.

Now let W consist of all functions w on [0, co) such that 0 < w(r) < 1fort =0
and lim,_, w(r)/(1 — G(r)) exists; and define a metric

P(W1, W) = sup,., ;E—g [wi(r) — wy(?)] W, woe W

W will be complete with respect to p. We use 7(7) also to modify (6.6) for small
values of the argument r — y, namely:

(6.6 w(t) = 04(0) + $* B (1 — y)w(t — y))9(y) dy = Tw .
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(A solution to (6.6) must also be unique, subject to the requirement 0 < w(r) < 1
for t = 0.) The main tasks now are (a) to show that the transformation 7 defined
by the right hand side of (6.6’) maps W into W; and (b) to show that T is a
contraction, thatis, o(Tw,, Tw,) < 0p(w,, w,) for some constant ¢ with0 < 6 < 1,
and w,, w, € W. Actually (b) is easier to accomplish than (a); and for the proof,
we must choose ¢ sufficiently small in (6.7). Once we know T to be a contraction
in W, we have a (unique) function w,e W satisfying (6.6’)—and for which
lim,_,, wy(?)/9(t) exists = A(4, ¢). Then, we can return to the original solution
z(f) = 1 — F(s, t) of (6.6), compare it with w(), and get an inequality

for some fixed K. We canshow that i(4,, ¢,) — L = L(s) > 0for suitable sequences
¢, > 0and 4, — oo. Thus it follows finally that lim,_, z(?)/(1 — G(t) = L(s).
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