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ON THE REPRESENTATION OF SEMIMARTINGALES

By HaNs FOLLMER

University of Erlangen

We show that L!-bounded semimartingales (quasi-martingales, F-
processes) correspond to finite signed measures on the o-field of previsible
sets. This representation of semimartingales as signed measures is used to
derive in a unified manner the main decomposition theorems for semi- and
supermartingales.

0. Introduction. Just as supermartingales may be viewed as the stochastic
analogue of decreasing functions on the real line, the quasi-martingales of Fisk
[2] and Rao [11] resp. Orey’s F-processes [9] resp. the semimartingales in the
sense of Meyer [6] are the natural counterpart of functions of bounded variation.
This is not only suggested by Fisk’s original definition. It is also apparent from
Rao’s representation of a L!-bounded semimartingales as the difference of two
nonnegative supermartingales. Here we add another aspect: semimartingales
may be viewed as signed measures. More precisely: to any L'-bounded semi-
martingale X = (X,),,, over a nice system (Q, %, &, P) corresponds a finite
signed measure P¥ on the previsible sets in Q x (0, co] such that

(0.1) PX[A x (1, o]] = E[X,; A] (t=0,4Ae.7).

This representation of X by a signed measure is an immediate consequence of
the Rao decomposition of X and the author’s construction in [3] (resp. Meyer’s
in [8]) for a positive supermartingale—which in turn is based on the Ito-Wata-
nabe factorization (resp. the Doob-Meyer decomposition). The purpose of this
paper is to develop a converse procedure. The signed measure P¥ is constructed
directly from the definition of a L'-bounded semimartingale or, as we shall call
it, a “process of bounded variation” (Section 1). The measure is then used to
derive some of the main facts on semi- and supermartingales (Section 2). The
Rao decomposition of a semimartingale appears as the Jordan decomposition of
P*, the various Riesz decompositions follow by splitting P* on suitable subsets
of Q x (0, oo], and the Doob-Meyer decomposition and the 1to-Watanabe fac-
torization are obtained by using certain projections of P¥ to Q. Let us recall that
a part of this program, namely the Doob-Meyer decomposition of a potential of
class (D) via a measure on Q x (0, oo] has already been carried out by C.
Doléans-Dade in [1].

Thanks are due to Claude Dellacherie who pointed out two serious errors in
the original version.
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1. Processes of bounded variation and signed measures. Let us fix a probability
space (2, .7, P) and an increasing right-continuous family (7,),,, of o-fields
which generates .%. We do not assume that the fields are complete, and the
reason will become apparent in (1.4).

(1.1) DerFINITION. Let X = (X,),,, be a real-valued process adapted to
(- )iz0 such that the random variables X, are integrable and E[X,] is right-
continuous in . We say that X is a process of bounded variation if

Var (X) = sup i, E[|X,, — E[X,,, |01 + E[1X,,[]] < oo

where the supremum is taken over all finite sequences 0 =1, < t, < --- <
t, < oo. Note that this definition does not depend on the specific version of X.

(1.2) REMARKS. 1. Our use of the term ‘“bounded variation” is motivated
by (1.6) below which extends the classical relation between functions of bounded
variation and finite signed measures on the real line. For a martingale our
terminology reduces to Krickeberg’s in [4]: it is a process of bounded variation
if and only if it is bounded in L'. Let us emphasize that a process of bounded
variation in our sense may have paths which, considered as functions of a real
variable, are not at all of bounded variation (take Brownian motion stopped at
time 1).

2. Ttiseasy to check that any process, which can be written as the difference
of two nonnegative supermartingales, is a process of bounded variation. It is
less obvious that the converse holds as well: this is the Rao decomposition (2.1)
below.

Orey showed in [9] that processes of bounded variation have the same path
regularities as supermartingales, and the following theorem is in essence due to
him.

(1.3) THEOREM (Orey). Any process of bounded variation has a right-continuous
version which is adapted to ().

ProoF. We have only to combine Theorems 2.2 and 2.3 in [9] with the usual
construction for supermartingales as presented in [5] VI 3, 4. Note however
that a slight modification is needed since our o-fields are not complete. The
details of this are the same as in [3] (1.1).

Let us now introduce the product space Q: = Q x (0, oo] together with the
o-field 7 of previsible sets in Q. .7 is generated by the processes which are
adapted to (%) and have left-continuous paths or, equivalently, by the sets
A x (1, 00] with t 2 0 and 4e .5, (cf. [7] Appendix 3). We are going to
associate to any process X of bounded variation a signed measure on &, and this
requires some regularity condition on the underlying o-fields.

(1.4) ASSUMPTION. (%) is the right-continuous modification of a standard
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system (7)), i.e. 7, =, F for any r > 0. The notion of a standard
system is taken from Parthasarathy (cf. [10] V). It means that

(i) each space (2, 27°) is a standard Borel space, and that
(i) M A4; # © whenever (4;);_,, ... is a decreasing sequence of sets such that
A; is an atom of .=} for some increasing sequence (¢;);_,,,....

Actually we could do without (ii), but then we would have to replace Q by a
less transparent inverse limit space (as suggested by [10] V Theorem 3.2). Let
us rather try to justify our assumption by the following “‘canonical.”

(1.5) ExampLE. Let Q be the set of all right-continuous paths on a nice state
space with absorbing point A, which have left limits at least before being
absorbed by A. Taking the usual o-fields . ,° which describe the path behavior
up to time ¢, we obtain indeed a standard system (cf. [3] or [8]).

Let us now fix a right-continuous process X = (X,) adapted to (7).
(1.6) THEOREM. X is a process of bounded variation if and only if there is a
signed measure P on 27 such that
(1.7 PI[A x (t, o]] = E[X,; A] (t=0,4¢e.5).

P* is uniquely determined by X, and its total variation |P*| satisfies |P¥|(Q) = Var
(X)-

(1.8) REMARK. The theorem establishes a 1-1 correspondence between pro-
cesses of bounded variation and those finite signed measures Q on .>” whose
projections Q,(A4) = Q[4 x (f, co]] (A€ 27,) are absolutely continuous with
respect to P (to Q corresponds the process dQ,/dP).

ProoOF. (i) Assume that X is of bounded variation. For each n =1, 2,
let us partition the closed interval [0, oo] into n2" 4- 1 dyadic intervals J, , such
thatJ, , = (K27, (k + 1)27"] for 0 < k < n2". WriteQ = Qx R=Q+4+Qx D
where R = (0, co] 4 D denotes the disjoint union of (0, co] and an extra copy
D of the dyadic rationals Now let =7, be the o-field on Q generated by the
sets A x J,, (A€.7 5,0 < k < n2") where J,, is the disjoint union of J, ,
and the point d ¢ D which represents the dyadic rational d = k2-*. Setting

Q.4 x J, ] = E[Xygon — Xpsr—n; A]  for 0 <k < n2

= E[X,; A] for k = n2»
we obtain a signed measure Q, on &, whose total variation |Q,| satisfies
(1.9) |0,/[Q] < Var (X)
since

|Q.[A4 x J, 1]l £ E[Xig—n — E[X(piry3—n | F 1a-n]s 4]

for 0 < k < n2" and 4 € . j-,, and similarly for k = n2". It is easy to check
that (Q,),-1,... is a consistent sequence of measures. Our assumption (1.4)
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implies that (&,),_, , ... is a standard system' as required in the extension Theorem
4.1 in [10] V. We may thus conclude: there is a finite signed measure Q on
«Q, Vo1 ) such that the restriction of Q to &, coincides with Q,. Moreover
we may conclude that Q is concentrated on Q: For de D and 4 € '%,° we have

Q[A4 x {d}] = lim, Q[4 x ({d} + (d, d + 27"])]
= lim, E[Xyi2-n — X3 A],

and this is 0 by right-continuity of X and by uniform integrability of (X, P I
(cf. Theorem 2.3 in [9]). Now note that the restriction of \/2_, &, to Q is Just
7, and define P¥ as the restriction of Q to (Q, 7). It is clear from our con-
struction that P¥ satisfies (1.7) at least when 7 is a dyadic rational and 4 ¢ &
the rest of (1.7) is obtained by approximation, and this is done in Lemma (1.10)
below. We should mention that the extension Theorem 4.1 in [10] is only
formulated for probability measures. But our situation is easily reduced to this
case: because of (1.9) we may write Q, = Q,’ — Q,” where (Q,’) and (Q,”) are
consistent sequences of nonnegatlve measures (cf. e.g. [4]), and now we may as
well assume Q,/(Q) = 0.(Q) = 1.

(if) Suppose that P* is a finite signed measure on .27 such that (1.7) holds.
Note first that (1.7) implies the right-continuity of E[X,] = P*[Q x (1, oo]].
Now take 0 < s < ¢t < oo and 4 = {X, > E[X,| .Z ]} (we set X, = 0). Then
we have

[PEIQ % (s, ] = [P*[A4 x (s, A]]] + [P¥[A° x (s, 1]]]
= E[|X, — E[X,[.Z]]],

and this shows that X is of bounded variation with Var (X) < |P*|(Q). The
converse inequality follows via (1.9). To show the uniqueness of P* we have
only to note that (1.7) determines P* on the sets 4 x (s, ] (s < t, Ae .F,)
which generate ..

For the rest of this section we assume that X is a right-continuous process of
bounded variation. Whenever T is a stopping time (i.e. {T < t} € &, for any
t 2 0), we write 4 x (T, co] instead of {(w,)|we 4,1 > T(0)} and (T, ]
instead of Q x (7, oo].

(1.10) LemMA. If T is a stopping time and Ae ., (cf. [5] IV, D35) then we
have

(1.11) P¥[A x (T, 00]] = E[Xp; A 0 {T < o]

Proor. Both sides make sense: 4 x (T, oo] is previsible since its indicator
function is a left-continuous process adapted to (.5,), and X, is measurable by
the right-continuity of (X,). Our constraction of P¥ shows that (1.11) holds at
least for all those (.7 )-stopping times which assume only dyadic values (split
into the sets where such a stopping time is constant). Now take a general T and
approximate it from above by a decreasing sequence of dyadic & S-stopping
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times T, (cf. [5] IV D43). Then we may conclude

PI[A x (T, oo]] = lim,;,, PX[(4 n {T < a}) x (T, o]]
= lim,;, lim,;, P¥[(4 n {T < a}) x (T, A a, oo]]
lim, o E[X,_ . A 0 {T < a}]
atew E[Xp; A 0T < a}]
= E[X,;; A0 (T < »}] .

aloo

In order to justify the fourth step we have to show that each sequence
(XT”M)“M‘,_, is uniformly integrable. This is settled by Orey’s argument for
Theorem 2.3 in [9]: if uniform integrability were violated we could derive

SupK E[Zf:l |E[XTnkAa - XTnk+1Aa[‘7~T”k+1/\a]|] = ©©

for a suitable subsequence (n,) (same proof as for (14) in [9]). But on the other
hand, since (1.11) is valid for the (.#?)-stopping times T, A a, the left side is
majorized by

supx iy [PY|[(Ta,_, A @, T, A a]] < [PY][Q] < oo

(cf. (ii) of the previous proof), and this is the desired contradiction.
Let us shortly illustrate how properties of the process X can be read off from
the measure P*; cf. [3] for a continuation of this list, and also (2.5) below.

(1.12) PROPOSITION. X is a martingale iff P¥ is concentrated on Q x {oo}, a
supermartingale iff the restriction of P¥ 1o Q x (0, co) is nonnegative, a positive
supermartingale iff P is a positive measure, and a potential iff P* is nonnegative and
concentrated on (0, Q).

Proor. Immediate from (1.7).

2. The decomposition theorems. Let X = (X,) be a right-continuous process of
bounded variation in the sense of (1.1), and let P¥ be the associated signed
measure on &,

2.1) TueorEM (Rao decomposition). X can be written as the difference of
two nonnegative supermartingales.

PrROOF. Let P* = (P¥)* — (P¥)~ be the Jordan decomposition of the signed
measure P* into its positive and negative part. (P¥)* and (P*) satisfy the
requirements in (1.8) and thus correspond to two processes of bounded variation
X* and X~, which are in fact nonnegative supermartingales due to (1.12). The
decomposition X = X* — X~ follows via (1.7).

(2.2) DEFINITION. Let us call the supermartingales X+ and X~ above the
positive resp. the negative variation of X, and the supermartingale |[X| = X* 4+ X-,
which corresponds to |P¥|, the total variation of X.
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Let us now assume that X is a nonnegative supermartingale.

(2.3) THEOREM (Riesz decomposition I). X can be written as the sum of a
martingale and a potential. ’

Proor. Split P¥ into its restrictions on Q x {oo} and Q x (0, co).

Let us recall that a right-continuous process (Z,) adapted to is said to be in
class (D) if the family of random variables Z, (T a finite stopping time) is
uniformly integrable. (Z,) is called a local martingale if there in an increasing
sequence of stopping times T, with sup T, = co P-a.s. such that the stopped
processes (Z; ).z are all martingales of class (D).

(2.4) THEOREM (Riesz decomposition II). X can be written as the sum of a
local martingale and a potential of class (D).

Proor. In view of (2.3) we may assume that X is a potential. Take the stopping
times R, = inf {r > 0| X, > n} and define K as the previsible set M7_; (R,, co].
Split P¥ into its restrictions P* on K and P” on K° and denote by Y = (Y,) and
Z = (Z,) right-continuous versions of the corresponding supermartingales. Y is

a local martingale since any of the stopped processes (Y, ,,) is a martingale:
E[Y, .. Al = PY[K N (A x (R, A 5, 00])]

= PYK 0 (4 x (R, A1, 00])] = E[Y,,.: 4]

nA8?

fors < tand 4¢ . ,. Asto Z, define S, =inf{t > 0| Z, > n} = R, and note
lim E[Z, ] < lim E[Z,, ] = lim P*[K* N (R,, oo]] = 0
which shows that Z is a potential of class (D) ([5] VI T 20).

For the deeper decompositions we need the following criterion. Let us say
that a set K € 7 is evanescent if its projection on Q has P-measure 0.

(2.5) THEOREM. X is of class (D) if and only if P* vanishes on evanescent sets.

ProoOF. (i) Assume that P¥ vanishes on evanescent sets. Let us also assume
that X is a potential (otherwise use (2.3) and note that the conclusion is im-
mediate for martingales). It is then enough to show lim E[X, ] = 0 where R, is
defined as in the proof of (2.4). Fix ¢ > 0, take a > 0 such that E[X,] < ¢ and
define K = N, (R,, a]. The projection of K on Q is the set N, {R, < a}
which has P-measure 0 since the paths of a right-continuous supermartingale do
not “explode.” Hence

0 = PY[K] = lim P*[(R, A a, a]] = lim E[XR”M — X]
which implies
lim E[XRM] < lim E[XR”M] =E[X,]<ce.

(i) Now let X be of class (D). For a martingale the conclusion is again
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immediate, and so we may assume that X is a potential. Take an evanescent set
E ¢ &7 and suppose PX[E] > 0. Then there is a previsible subset F of E with
PX[F] > 0 such that the “debut of F” T(w) = inf{r > 0|(w, ) e F}(we Q) is
previsible in the following sense: there is an increasing sequence of stopping
times 7, which satisfy 7, < T everywhere and 7,1 T P-a.s. (the proof is the
same as in [7] 214, if we replace the capacity used there by the measure P¥). F
is evanescent since E is, and thus we may conclude T, 1 co P-a.s. Now we
obtain the desired contradiction: since

0 < P[F] = lim, PY[(T,, co]] = lim, E[X, ],
X cannot be a potential of class (D) (cf. [5] VI, T 20).

(2.6) REMARKS. 1. A potential X is a local martingale iff P¥ is supported
by some evanescent set. To see this write X as the sum of local martingale Y
and a potential Z of class (D). If P¥ is supported by some evanescent set then
PZ vanishes by (2.5) so that X = Y. Conversely, if X = Y then P¥ is supported
by the evanescent set K = (7_, (R,, oo] (recall the proof of (2.4)).

2. Suppose that X is a potential of class (D); this is the case considered by
C. Doléans-Dade in [1]. Let us denote by (.#,*) the usual “completion” of
(&) (first adjoin all P-nullsets in & to the fields .5, then take the right-
continuous modification), and by .** the g-field generated by the left-continuous
processes adapted to (% ,*). (2.5) implies that &% is contained in the P¥*-com-
pletion of 7. This shows that P¥ is equivalent to Doléans-Dade’s measure in

[1].

3. Let us denote by .5 the product of .~ with the usual o-field on (0, co].
If X is of class (D) then we may extend P* to .57 as indicated in [1]: For any
bounded . -measurable process Y = (Y,) we define

2.7) EX[Y] = E*[Z]

where Z = (Z,) is the projection of Y on & and this definition is legitimate by
(2.5) since different projections differ at most on an evanescent set (cf. [7]214).

Let us now recall how C. Doléans-Dade obtained the Doob-Meyer decompo-
sition of a potential of class (D) via the measure P¥ (cf. [1] and the previous
remark). By an increasing process A = (A,),s, we mean as usual a right-continu-
ous process adapted to (% ,) with 4, = 0 and increasing paths. A is called
integrable if sup E[A4,] < oo, and A is previsible if and only if it is “natural” in
the sense of [5] VII D18 (cf. [7] 312).

(2.8) THEOREM (Doob-Meyer-Ito-Watanabe decomposition). X can be
written as the difference of a local martingale and an integrable and previsible in-
creasing process.
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Proor (Doléans-Dade). By (2.4) we may assume that X is a potential of class
(D). In view of (2.5) and (2.6) we have only to reproduce Section 3 of the proof
in[1]: the random variable A4, of the increasing process A4 appears gs a P-density
of the projection 7,(4) = P*[4 x (0, t]] (A€ .5"), and from (2.5) we may con-
clude, as indicated in [1] resp. [3] (1.1), that (4,) is adapted to (%7,) and also
previsible.

Let us conclude our discussion of supermartingales by looking at the factoriza-
tion of X into a local martingale and a decreasing process.

2.9) THEOREM (Ito-Watanabe factorization). X can be written as a product
(2.10) X, = M(1 - 4) 0=t <o)
P-a.s., where M = (M,) is a local martingale and A = (A,) a previsible increasing
process whose paths are bounded by 1. This factorization is unique at least up to
T, =inf{r > 0| X, = 0}.

Suppose we have such a factorization. Assume (stopping if necessary) that
M is a martingale of class (D). Then we can write

E*[Y] = E[M, \y Y, dA,]
for any previsible process ¥ = (Y,) = 0, since it is clearly true for processes of
the form Y, I, ,; with some . -measurable function Y,. Our assumption implies
that X is of class (D) and so we can extend P* to the product field .& via pre-

visible projection; cf. (2.6). Now take Y = Y,/ ,; where Y, = 0 is .5 ,-measur-
able, and denote by (Y,_) the previsible projection of Y. We have

EX[Y] = E[M,\}Y,_dA,)] = E[\} M,_Y,_dA,]
= E[Y, \} M,_dA,]

due to [5] VII T16, T19. But the proof of (2.8) shows that the left side coincides
with E[Y,B,] if B = (B,) is the increasing process in the Doob—-Meyer decompo-
sition of X. Thus we obtain

B, =\tM,_dA, = {{ X, (1 — A,_)"dA, (t<Ty).

This implies the uniqueness of B up to T, and the Itd—Watanabe-Meyer formula
for 4 in terms of B:

I — A, = exp(§; X, dBy") [[,s. (1 — X2 AB,) (1 < Tx)

where B¢ is the continuous part of B and where we set AB, = B, — B,_. The
use of the measure P* does not seem to simplify the work which has still to be
done for a complete proof of (2.9), and so we refer to [12] for the remaining
arguments.

Let us now return to the general case where X = (X,) is a right-continuous
process of bounded variation. In view of the Rao decomposition (2.1) we can
immediately write down the analogues of the additive decompositions (2.3),
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(2.4), (2.8). In particular we have the following counterpart of the Doob-
Meyer decompostion (2.8). 27 denotes the class of all processes ¥V = (¥,) which
can be written as the difference of two integrable increasing processes.

(2.11) THEOREM (Fisk-Orey-Rao). Any right-continuous process of bounded
variaton can be written in the form X, = M, + V, where M = (M,) is a local
martingale and V = (V,) is a previsible process in 27,

This representation of X as a semimartingale in the sense of [6] is unique (cf.
[6] page 107).

(2.12) REMARK. Let ussay that a right-continuous process X = (X,) adapted
to (7,) is locally of bounded variation if there is an increasing sequence of stop-
ping times T, with sup T,, = co P-a.s. such that the stopped processes (X7 ,.)iz0
are all of bounded variation. The quasi-martingales in [2] and [11], the F-
processes in [9] and the local semimartingales in [6] are all locally of bounded
variation. Conversely, any process which is locally of bounded variation is a
local semimartingale in the sense of [6], i.e. can be written in the form X, =

M, + V, where (M,) is a local martingale and (V) is a previsible process which

is locally in class 27 (just patch together the unique decompositions (2.1) of the
stopped processes (X7 ,.))-

! Note added in proof. This is not literally true. To be correct, define Q, on
Q = Q x ((0, o] + D) where D is an extra copy of the dyadic rationals, using
Jor = J,. + {d} instead of J, , in the construction above, where d ¢ D represents

n,k —

k2-». The corresponding system (.7,) is indeed standard. Now use right-
continuity of X and Th. 2.3 of [9] to conclude that the resulting measure Q on
Q is in fact concentrated on Q.
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