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LAST EXIT TIMES AND ADDITIVE FUNCTIONALS!

BY R. K. GETOOR AND M. J. SHARPE
University of California, San Diego

The various objects examined in this paper arise in the study of last
exit times and balayage of additive functionals for standard Markov pro-
cesses. The most important results concern the characterization of the
Laplace transform of an entrance law, the relationship between the last exit
distribution from a set and the capacitary measure of the set, the charac-
terization of projective sets and d-sets, and a last exit decomposition formula
for finite sets F which expresses the distribution of X; in terms of the last
exit from F prior to ¢.

1. Introduction. This paper contains a number of variations on the theme that
there is a close relationship between last exit times and the balayage of additive
functionals. A number of these results (especially in Sections 2 and 3) are more
or less known (at least implicitly). In particular, some of the ideas in Section 2
appear in a very general form in Azema [1]. Still it seemed worthwhile to give
a systematic and explicit presentation of these ideas. We shall treat standard
processes throughout this paper, but by making use of the Ray compactification
many of the results, appropriately modified, extend to right continuous strong
Markov processes.

In Section 2 we describe the balayage of an additive functional 4 on a set D
in two steps. The first step amounts to sweeping the mass of the measure d4, on
an interval I during which the process avoids D onto the last time the process
was in D prior to /. In the second step one takes the natural (or previsible)
projection of the object obtained in the first step. Combining this with a change
of variable one obtains the very useful formula (2.13), due originally to Azema
[1]. (Since the first draft on this paper was written we have discovered that B.
Maisonneuve uses a similar approach to balayage in his thesis “Systemes regen-
eratifs.”) In Section 3 we study the distribution of the last exit place from a set
D. Of special importance is the relationship (3.5), under duality hypotheses,
between the capacitary measure of D and this last exit distribution. Related
results have been obtained recently by Chung [6]. Such results go back, at least
for Brownian motion, to McKean [9], and for general infinitely divisible processes
to Port and Stone [15]. Section 4 is somewhat more technical in nature. We
give some characterizations of projective sets and d-sets—concepts which have
arisen in the study of the balayage of additive functionals. In Section 5 we
present a last exit decomposition (5.21). Such decompositions for Markov chains
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were originally investigated by Chung. See [5] for a good survey of such results,
and also [14] and [8] for recent developments. Our main contribution here is
the method of attack. Our basic tools are Azema’s formula and the simple change
of variable (2.4), together with the analytic result on entrance laws in Section 6.
Sections 3, 4, and 5 are completely independent of one another and may be read
in any order. Finally in Section 6 we characterize the Laplace transform of an
entrance law. The result is used in Section 5. Since this characterization may
be of some independent interest, we have written Section 6 in such a manner
that it is completely independent of the earlier sections of this paper. This result
is due to Neveu [13] in the chain case.

We would like to thank R. M. Blumenthal for a conversation which put us on
the right track to understanding the last exit decomposition in Section 5.

2. Balayage of additive functionals. We begin this section with some remarks
on a change of variable formula which contains most forms ordinarily used in
the theory of processes. See, for example, [10] VII, T. 12 and [2] V, (3.42). To
avoid mentioning technical trivialities at subsequent points of the paper, we shall
spell out carefully the relevant facts now.

Suppose r, is a right continuous increasing function on [0, co) taking values
in [0, co]. Let r, = lim,_, r,. It is not assumed that r, = 0. For 0 < 5 < oo,
let I, = sup{t: r, < s}, the sup of the empty set being defined to be 0. Let L, =
sup{t: r, < s}. The following facts are standard:

2.1) ly = 0, [, is left continuous on [0, co] with values in [0, co]; L, is right
continuous on [0, co) with values in [0, co]; I, = L, for all but countably many
s€[0, o).

(2.2) ro=inf{s: I, >t}
=inf{s: L, > 1} for all re][0, ),

the inf of the emply set being defined to be co.
(2.3) {s:0< 1, b} = (ry, 1] for 0 < b < co.

Using (2.3) and the monotone class theorem, one sees that if m is a right con-
tinuous increasing function on [0, co) and m(oco) = lim,_,, m(r), then for any
positive Borel function g on [0, oo), one has

(2.4) §io,ee0 9(0) dm(r) = $6, ey GUN ot cony d(3) -

In the special case where m is continuous on [0, co), the term /, may be replaced
by L, in the right-hand integral, which can then be written {i=g(L,) dm(s).
However, note that g(L,) may fail to be defined at s = r,,.

Suppose, for the remainder of this section, that X = (Q, .57, &7, X,, 0,, P*)
is a standard Markov process with state space (E, &). Let M be a fixed exact
MF of X. For most applications, M will be of the form M, = 1, ,,.(f) where
T is the hitting time of some Borel set. Let S = inf{t: M, = 0} A L.

t—oo



552 R. K. GETOOR AND M. J. SHARPE

(2.5) DEFINITION. A process {4,} is called a raw additive functional (RAF)
of (X, M) in case the following two conditions are satisfied almost surely:

(a) t— A, is non-decreasing, right continuous, continuous at r = S, 4, = 0,
and A is constant on [S, co);
(b) foreach rand s >0, 4,,, = A, + M,(A,06,) on {t < {}.

A raw additive functional of (X, M) which is adapted to (.>7) is just an ad-
ditive functional (AF) of (X, M) in the usual sense. The term AF will be reserved
exclusively for adapted processes. If A4 is a RAF of (X, M) and if, for some
a = 0, A has finite a-potential u,*(x) = E* " e~** dA,, there exists a unique NAF
B of (X, M) such that u,? = u,* for all 8 = a. Call B the natural projection of
A. (Note that B is independent of «.)

It is an unfortunate fact that the general theory of processes cannot be applied
routinely to the theory of standard processes because of the special role played
by the stopping time { in the latter theory. We mention here only one aspect
of a “‘general theory” of standard processes. Let J denote the stochastic interval
{(r, ): 0 < t < {(w)}. A function Y defined on J will always be extended to
[0, c0] x Q by setting ¥ = 0 on {(7, w): 1 = {(w)}. The smallest of ¢-field on J
containing all adapted processes on J which are left continuous on (0, ) is called
the previsible o-field on J. An increasing process 4 on Jis extended to [0, co] x Q
by setting 4, = A,_ for + = {. To distinguish between the two conventions for
extension to [0, co] x Q, one should think of the first extension being for func-
tions, the second being for measures. An obvious modification of the proof of
Meyer’s integration lemma (VII, T 17 of [10]) shows that if Y is a positive pre-
visible process on J and if 4 and B are integrable (relative to all P*) increasing
processes on J, not necessarily adapted, such that forall x € E, E*{4,, — A4,| &} =
E*{B, — B,| .5} for all t > 0, then for all xe E

(2.6) E*§\¢ Y,dA, = E* " Y,dB, .

Of course, both integrals in (2.6) are really over [0, {). Finally if 4 and B are
RAF’s of (X, M) with the same finite potential, that is, E*(A4,,) = E*(B.) < o
for all x, then the condition above (2.6) holds and, hence, so does (2.6).

In the remainder of this paper the equality of two processes means that they
are indistinguishable.

Fix now a set D e ™ where £" denotes the nearly Borel subsets of E. Let
T=T,=inf{tr>0: X,e D}. TheprocessT* = t+ T, 00, =inf{s>1: X, e D}
is increasing and right continuous. Define L* = inf{r: 7* > s} and [* = sup{r:
T* < s}. Then (L) is right continuous, () is left continuous, and /* = L*~ if
0 < s < oo. If D/ denotes the fine closure of D, then one also has L* =
sup{r < s: X,e D’}and I' = sup{t < s: X, e D}. If Dis replaced by D’ through-
out, then the processes (T*), (L), and (/*) are unchanged, and so in many situ-
ations there is no loss of generality in assuming that D is finely closed. The
behavior of the above defined processes under shifting is summarized by the
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following formulas, where a* = a Vv O:

(2.7) T' o0, =T —u;
(2.8) Lfol, = (L — u)*;
(2.9) Fof, = (I""" —u)t.

We frequently write T(¢) for T, L(s) for L, and so on.
For fixed M and D as above, if 4 is a RAF of (X, M) having finite potential
u,(x) = E*A,, the raw balayage of A on D is the process 4, defined by

(2'10) "4~D(t) = AT(:) - AT .

It is easy to see, using (2.7), that 4, is a RAF of (X, M). The action of (2.10)
can be expressed by saying that the measure d4,, on (0, co) is obtained by placing
the mass of d4 on the interval (L!, T*], during which X is not in D, at the point
Lt, provided L' > 0. Even if 4 is adapted, 4, is generally not adapted. The
potential of 4, is given by
uz,(x) = ExA~D(°°) = E*(A. — Ay) = Qpu,(x)

where {Q,} is the semigroup for (X, M). It follows that the natural projection,
A,, of A, isa NAF of (X, M) having potential Q,u ,(x), and hence is the balayage
of A on D as defined by Motoo. See [2] V. 4. The a-balayage, 4, of 4 on D
can be obtained using the above procedure as follows: if 4 is a RAF of (X, M)
having finite a-potential u,"(x) = E* {{e " dA,, then 4,'” = {{e~**dA, isa RAF
of (X, M*), where M, = M,e*, and has finite potential. Its balayage A4,'® on
D is NAF of (X, M*) so A,%(t) = {;e* dA,'“(s) is a NAF of (X, M) having a-
potential u§ «(x) = Q,"u,*(x).

As an application of the construction of balayage given above, we prove a
formula, first obtained by Azema [1] for Hunt processes, which will be used in
Section 5.

(2.11) ProOPOSITION. Let A be a RAF of X having finite a-potential. Let
De&™ L(s)y = L* =sup{t < s: X,e D'}, I(s) = I* = sup{r < s: X, e D}, and let
B= be the a-balayage of Aon D. Thenif Y isa bounded or positive previsible process
on J one has, for all xe E,

(2.12) E* (5 Y,eo dB = E* § Yy, L jocrisyery € dA, .

In particular, if A is continuous and 0 < u < oo, taking Y, = f(X, )1, ,1()10,0)()s
one has for all xe E
(2.13) E? §ou f(X)em dB = E* §7 (X, ) jocrioysu €™ dA, -

Proor. Let B, = {{e~*dB,” and A4," = (e **dA,. Then A~ is a RAF of

(X, e~) and B is its balayage on D. If 4“ is the raw balayage of 4= on D one
has, by (2.6),

(2.14) E*\¢Y,dB, = E*\¢ Y,dA,” = E* \7 Y,dA%,,, .
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Applying (2.4) with m(t) = 4,2, r, = T(t), we find
E7\¢ Y, dAy,, = E* o Yie 1(0<l(s)<°°) dAs
= E* SSO Yi 1(o<t<s)<C) dAc” .
Then (2.12) follows from (2.14), and (2.13) holds since the special choice of
Y just above (2.13) is previsible on J.
The following result will be used in Section 5.
(2.15) LEMMA. Let G = G < D n D and let A be a continuous RAF of X

having a finite a-potential. Suppose also that A,* is continuous. Then A,*(t A Tp)
is the a-balayage on D of the RAF, A,, .. of (X, Tj).

Proor. The conditions on G and D guarantee that P,*P,* = P,~and P,*P,* =
Py ([2] page 63). Let {Q,} be the semigroup for the subprocess (X, 7). The
RAF 4,,,, has a-potential v*(x) = E* {{¢ e~** dA, so its a-balayage on D has a-
potential

Qpv(x) = E*{e™"0v* (X ); Tp < Te}
= E*{e *"pE*tp ([6 e~ dA,; T, < Tg}
= EI{S<TD,TG] e~ dAt; T, < TG} .
Since T, < T, we obtain
O v(x) = E* S(TD,TG] e~ dA,
= Py%u,*(x) — Pgsou,(x).
On the other hand, the a-potential of 4,*(r A T}) is
E* {76 e d A, (1) = uu(x) — Pooit (%)
= Ppou,(x) — Pg*Pyou,*(x) .
The equality of these a-potentials proves the statement of the lemma.

3. Last exit distributions. If D is a nearly Borel subset of E, we define L =
L, = sup{s: X, e D} to be the “last exit” time from D. Clearly L < {. In the
notation of Section 2, L, = L* = [X. In this section we shall study the distri-
bution of X(L—) and the joint distribution of L and X(L—). The results are a
special case of (2.13), but in order to emphasize their essential simplicity we
shall give a direct proof. Moreover, in-order not to be overburdened by tech-
nicalities, we shall not give the most general possible results. Our results are
related to those obtained recently by Chung [6]

3.1 DEerINITION. Let D be a nearly Borel subset of E. Then D is transient
if (i) L, < oo almost surely and (ii) P,1 is a natural potential. We say that D
is transient on [0, {) if L, < { almost surely.

By the definition of natural potential condition (ii) above is equivalent to the
condition that for each x if {T,} is an increasing sequence of stopping times with
limit T = { almost surely P=, then P*[T, 4 Tpo0 0, <(]—0asn—oco. Itis
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immediate that if D is transient on [0, {), then D is transient. Here is a simple
sufficient condition that a set be transient.

(3.2) PROPOSITION. Suppose that there exists a nonnegative function f with Uf
finite and D C {Uf = 1}. Then D is transient. If, in addition, there exists a sequence
{C,.} of stopping times increasing to { strictly from below, then D is transient on [0, {).

Proor. Toseethat P, 1isanatural potential, let {T',} be an increasing sequence
of stopping times with lim 7, > { almost surely P*. Then

Py Uf(X) Z Py iz pay Uf(x) Z PA[T, + Tpo by < C]

and P, Uf(x) — 0 as n— oo since Uf(x) < coand lim 7, = {. Nowif L = L,
then {L = oo} C{n+ Ty00, < oo} = {n+ Tpo8, <} for every n and so by
the above argument L < oo almost surely. Under the additional assumption,

(L= c{{,+T,00, <} for all n, and as above one has L < { almost
surely.

Observe that if for some a = 0, U%f is lower semicontinuous for fe Cx* and
x — U(x, K) is finite for all compact subsets K of E, then any D ¢ £ with com-
pact closure in F satisfies the condition in the first sentence of (3.2).

The following condition on X will be useful in the sequel:

(LL) The trajectories t — X, have left limits in E, on (0, co) almost surely.

Since ¢+ — X, has left limits on (0, {) and ({, o0), the thrust of (LL) is that X,_
exists in E, almost surely on {{ < co}. It is known (I-9.15 of [2] or XIV-T17
of [12]) that a Hunt process satisfies (LL). Also if { is totally inaccessible, then
(LL) holds (XIV-T23 of [12]).

If D is transient, then P, 1 is the potential of a unique NAF, 4, = 4, thatis,
P,! = u,. Notethat u,(x) = P[T, < o] = P*[L > 0]. We come now to the
main result of this section.

3.3) ProrosiTiON. Let D be transient, L = L,, and A = A,. Assume, in ad-
dition, either that (LL) holds or that D is transient on [0, ). Then for each x € E,
s > 0, and Borel (or universally measurable) I' C E,
(i) PIX(L—)el', L >0]=U,(x,T)

(i) PIX(L—)el; L > s]=§ P(x,dy)U,(y,T)

(iii) E*fe*L; X(L—)el'; L > 0} = U,*(x, T").
Here U ,(x, +), respectively U *(x, +), a > 0, is the potential kernel, respectively a-
potential kernel, associated with the NAF, A.

Proor. Fix x ¢ E and consider the increasing process B, = /,.;.,. In general
B is not adapted, but since L < oo
E*{B, — B,| &} = P*[L > t| 5]
= P9 Lo0,>0|5,
= u,(X,) .
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On the other hand

E{d, — A,| 5 ) = E{A, 0 0,| 5} = u,(X).
Consequently from Meyer’s integration lemma
(3.4) E*\¢Y,dA, = E*\7 Y,dB, = E*{Y,; L > 0}

for every nonnegative previsible process Y. So far we have only used the fact
that D is transient. If (LL) holds, then letting Y, = I(X,.), Y, = I(X,_)], ..,(),
and Y, = e"*'[(X,_) and using the fact that A4 is natural, (3.4) reduces to (i),
(if), and (iii) of (3.3) respectively. On the other hand if L < ¢ almost surely B
does not charge {, and so by the extension of Meyer’s lemma mentioned in (2.6),
we may apply (3.4) to the above three processes Y defined only for 0 < r < ¢
to obtain the conclusion of Proposition 3.3 when D is transient on [0, {). This
establishes (3.3).
Suppose D is transient and (LL) holds. Applying (3.3i) with I" = E

PX(L—)eE, L > 0] = U,(x, E) = u,(x) = P[L > 0],

that is, X(L—) e E almost surely on {L > 0}.

In the remainder of this section we assume that the process X has a dual process
X relative to a ¢-finite measure & as in Section VI-1 of [2]. We refer the reader
to [2] for notation and terminology.

Suppose now that D € £ and that there exists a (necessarily unique) NAF, 4
with P,1 = u,. Then by a theorem of Revuz [16] there exists a o-finite measure
7, on E such that U, f(x) = § u(x, y)f(y)7,(dy). In particular P,1 = Uz,, and
7, is called the capacitary measure of D. Note that no Feller conditions on the
resolvent or coresolvent are being assumed. The argument at the top of page 287
of [2] shows that =, is carried by D U "D where "D is the set of points coregular
for D. If there exists a nonnegative integrable function fsuch that D c {fU = 1},
then =, is finite because

00 > ()P, 1(x) dx = § f(x)Un,(x) dx
= §fUdr, = 7,(D) = m\(E) .
Now suppose that the hypotheses of Proposition 3.3 hold. Then, in the present
situation, (3.3i) may be written l
(3.5) PLX(L—)edy, L > 0] = u(x, y),(dy) -
This gives a nice probabilistic meaning to the capacitary measure 7,. In par-

ticular, X(L—)e D U "D almost surely on {L > 0}. Also it follows from (3.3ii)
that for a bounded nonnegative fand + > 0

E{f(X, )i L > 1) = PU(fr,)(x)
and so, since U(fx,) = ||/IIP,1 < |I/II
(3.6) E(f(X,-; 0 < L < 1) = U(frp)(x) — P.U(fro)(x)
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Integrating (3.6) over a set F of finite measure,
Ve EX{f(X, ;0 < L < tydx =\ (I,U— I,P,U)fdn,
= § [§§ Pu(F, ) ds] f(x)m5(dx) ,
and letting F 1 E through a sequence of sets of finite measure we have

§ E{f(X;.); 0 < L < tydx = § [§; P(E, x) ds] f(x)m,(dx) .

In particular, if X is Markovian on E, that is, P,(E, x) = 1 for all ¢ and x, we
obtain the amusing formula

(3.7) §E<{f(X, ;0 < L <t}dx=1§fdr,.

Throughout this section we have assumed the parameter « = 0. There are,
of course, similar results for « > 0. We leave their explicit formulation to the
interested reader. Finally the aficionado of processes will doubtless have noticed
that, by considering the accessible and totally inaccessible parts of {, the con-
clusions of Proposition 3.3 and the ensuing discussion (especially (3.5)) hold for
every transient set D provided that X is special standard. We shall spare the
reader the details.

4. Projective sets and d-sets. Recall that a nearly Borel set D is called projec-
tive if for every @ > 0, the a-balayage on D of any CAF is also a CAF. See
[2] V. 4. Recall also that a nearly Borel set D is called a d-set if

4.1) PX, €D forall n, X, ¢D, T <L} =0

for all x € E whenever {T,} is an increasing sequence of stopping times with limit
T. See[7]. The object of this section is to investigate the relationship between
the definitions given above and to obtain alternate characterizations of such sets.
We make the following notational convention about random sets: a subset H
of [0, co] x Q is always denoted by a boldface letter, and its w-sections H =
H(w) are denoted by the corresponding letter, usually with @ suppressed.
For any set F e &, define Z, to be the subset of [0, co) x Q determined by

(4.2) Z,={(t, 0):1>0, X(w)eF}.

In conformity with the above convention, Z, = {t > 0: X () € F}. Denote by
Z, the closure of Z, in (0,¢) and let'Z, = {(t, w): te Z,(»)}. If F is finely
closed, Z, — Z, isa.s. countable. Recall that for a standard process X, a stopping
time T is accessible on {7 < (} if and only if X, = X,_ a.s. on {T < £} ([7]).

(4.3) PROPOSITION. Let D be a finely closed nearly Borel subset of E. Then D
is projective if and only if

(4.4) Z, — Z,,. contains the graph of no accessible stopping time.
Also, D is a d-set if and only if

4.5) Z, — Z, contains the graph of no accessible stopping time.
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Proor. It is known ([2] V. (4.3)) that D is projective if and only if 7* =
t 4+ T,o00,is q.l.c. in the sense that

(4.6)  P{lim, (T, + Tpo 0, ) # T + Tyo by, lim, T, + Tpob, <} =0

for all x € E whenever {T,} is an increasing sequence of stopping times with limit
T.

Assume that (4.4) holds. If {T,} is an increasing sequence of stopping times
with limit 7, define R, =T, + T,0 0, (T + T, 0,) and let R = lim, R,.
Certainly T< R< T+ T,00,. Since X,¢Don (T, T + Tj00,) and X, €D
on {R, <}, weseethat R=Ton A ={R<T+ T,06,, R<(}. But A=
[R=T}n{T<T+Tyob,;T< e ,and T, <T forall nonAsoTis
accessible on A. However R,1 Ton Aso TeZ,. By (4.4), Te Z, as.on A,
hence T = T + T, 06, on A, so A is null. By (4.6), D must be projective.

Assume now that D is projective. Suppose there exists a stopping time 7" which
is accessible on {T < ¢} such that T(w) € Z,(®) — Z,/(o) for @ € I', where T' is
not null. There exists an initial measure p, a subset I'y of I' with P#(I'g) > 0,
and an increasing sequence {7} of stopping times such that lim, T, = T and
T,< T forall nas. Pronl,. LetR, =T, + Ty00, . Then R, < T for all
na.s. PronTI,because TeZ,. But R, 1T + T,06,as. Pron by (4.6), so
T,00,=0. Thus X, ¢ D" a.s. P* on I, contradicting Te Z, — Z,,. Hence
(4.4) holds.

Turning to the characterization of a d-set, assume firstly that D is a d-set. If
T is accessible on {T' < {}and A = {T'e Z, — Z,}isnotnull, choose i, A, A
and (T,} such that P (A, > 0, {T,} increases, lim, 7, =T on Ajand T, < T
for all n on A,. Since X, ¢ D on Ajbutsup{r < T: X,e D} = Ton A,, we have
T,<R,=T,+T,o0, <Tas. PronA, forall n. But since D is a d-set,
(4.1) says X, e D a.s. on A,. Thus A is null and (4.5) holds.

Finally, suppose (4.5) holds. If T, increases to T then T isaccessible on I' =
{X; eD foralln, T, < T < { forall n}. By (4.5), T¢Z, — Z, a.s. on T', so
{X; eD for all n, X, ¢ D, T < {} is null, hence D is a d-set.

4.7) COROLLARY. If D e ™ and D is finely closed, then if D is projective, D
is a d-set.

(4.8) CoROLLARY. If D and F are finely closed, nearly Borel, projective sets,
then D U F is projective.

PROOF. Z,,, — Ly pyr © (Zy — Zpe) U (Zy — Zgr).

4.9) COROLLARY. If De &™ and if D is a finely perfect d-set, then D is
projective.

Finally, we give a characterization of projectivity which is similar to the
characterization of d-sets given by (4.1).

(4.10) PRrOPOSITION. Let D¢ &™ and suppose D is finely closed. Then D is
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projective if and only if both of the following conditions are satisfied.

(4.11) whenever {S,} is an increasing sequence of stopping times with limit S,
Xse D as.on{S, < S foralln, S<, Xs, € D for all n};

(4.12) Xr, # Xpp_as.on{X, eD — D", T, <}

ProoF. Suppose firstly that D is projective. If S, 1S, then S is accessible on

={S, < Sforalln, S<{, X5, € D for all n}. By (4.4), since Se Z, on A,
SeZy as. on A, so (4.11) holds. To obtain (4.12), notice that on {Xpp€
D— DXy, =X, ,T, <} =T, T,is accessible and T, e Z, — Z,.s0 I is
null.

Suppose now that D satisfies (4.11) and (4.12). Assume that D is not projec-
tive. Then there exists an accessible S such that [S] c Z, — Z,, with positive
probability. Choose an initial measure ¢, asetI' C {Se Z, — Z,,} with PyI)>0
and {S,} such thatlim §, = Sand S, < SforallnonT. LetL, = ' n {sup[t < S:
X,eD] = StandI', = ' — T',. Almostsurely PronT, R, =S, + T, 00, L <S
and lim, R, = S, hence by (4.11), X;e D" on I',. This contradicts the assump-
tlon SeZ, o on I'y so P«T")) = 0. However, a.s. P* on 'R, =S, +

oblg =S for sufficiently large n, whereas (4.12) implies that X, L F Xy _as.
on {X €D — D'}, and so X5 # X;_ a.s. on {Xge D — D). This contradicts
the assumed accessibility of S on I so P«(T')) = 0. It follows that D must be
projective.

S. A last exit decomposition. In this section we apply some of the preceding
techniques to obtain a “last exit” decomposition. Our result contains the recent
work of Pittenger [14], but our methods are quite different from his.

We begin by summarizing some results on local times. See [2]. Let b be a
fixed point in E that is regular for itself. Let 4 be a fixed version of the local
time at b and let « be the right continuous inverse of 4. Then z, is a subordinator
relative to P* (r may jump to infinity), and E’(e=*"") = e~ where

(5.1) g(a) = ra + § (1 — e=**)u(du) .

In (5.1), y =z 0 and v is a measure on (0, co] such that § (# A 1)y(du) < co. The
possible mass of v at infinity corresponds to the possible jump of ¢ to infinity.
It is easy to check the standard fact that y = lim,_., g(a)/a. Moreover

5.2 Et (e~ dA, = Eb \Fe " dt = g(a)?.
0 t 0

The following lemma contains a well-known fact about subordinators. Un-
fortunately we do not know a precise reference for it in the literature. Therefore
we shall give a proof in the spirit of this paper that we hope will amuse the
reader.

(5.3) LEMMA. Let 7(1) be a strictly increasing subordinator on a probability space
(Q, &, Pywithz, = 0 and E(e="*") = e~'9) where ¢ is given by (5.1). Ler A, be
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the (continuous) inverse of t and let Q denote the range of t. Then almost surely
(5.4) {5 I(s) ds = 74,

for all t. Of course, the integral on the left in (5.4) is just the Lebesgue measure of
Q n o0, 1].

Proor. Throughout the argument o is fixed subject only to the requirements
that r — 7,(w) is right continuous, strictly increasing, vanishes at r = 0 and for

t>0
(5.5) (@) = 71+ Tos[e@) — 7, (@)].
We now suppress  in our notation. Let K be the set of continuity points of
t — 7,. Then the complement of K in [0, co) is countable and one easily checks
that {r: 4,e K} C Q and that the difference of these two sets is countable. Bear-
ing these facts in mind and using (2.4) we have
a VeI () di = — S5 L(1) de~
= — 0 Ix(A,) dem = — 7 I (1) de""..
But from (5.5) we obtain
—de=t = aye~ "t dt + dJ(t)
where dJ is a purely discrete measure putting all of its mass on the set of dis-
continuities of r — r,. See [11], for example. Consequently
(el (t)ydt =y (Fetdt =7 (redA,,

and inverting Laplace transforms this yields (5.4) since both sides of (5.4) are
continuous in ¢ and vanish at r = 0.

If = is the subordinator corresponding to the local time at & as in the discussion
above Lemma 5.3, then Q differs from {r: X, = b} by a countable set and so
(5.4) yields almost surely P®

(5-6) §5 I(X) ds = 74, .
where I, is the indicator of {6}. Taking a-potentials we obtain
(.7 E* (7 emly(X,) dt = 7/9(c) -

In particular, it follows that y > 0 if and only if {6} has positive potential. But
then (5.6) holds almost surely P* for all x. This is clear if y = 0. If y > 0 the
left side of (5.6) is a nonzero CAF of X with fine support {5} and so is a multi-
ple of 4. Hence (5.6) must hold.

REMARK. One consequence of (5.6) is that if y > 0, then t — E%(4,) is abso-
lutely continuous with bounded density, y=—*P*[X, = b].

We now come to the main business of this section. Let F be a fixed finite
subset of E such that each point b ¢ F is regular for itself. Let 4° be a fixed
version of the local time at 4 for each b ¢ F. If h € &, (the bounded nonnegative
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Borel functions on E), define
B, = B,(h) = {ih(X,)ds .

Clearly F is projective. Therefore if for each a > 0, B* = B“(h') denotes the
a-balayage of B on F, then B~ is a CAF with fine support contained in F and
with u%« = P,*U%h. Consequently for each « > 0
(5.8) B(h) = Xaer Cu(R)A°

for appropriate constants C,*(#). Let us now fix a point 6 ¢ F. Applying Azema’s
formula (2.13) with f = I,, we obtain for each u > 0

J(x, @) = & E*{h(X,); X,:_ = b;0 < L' < uje=~t dt
(5.9 = E* {ye I (X,) dBS~
= C,*(hE* {yetdA},

since (5.8) implies that I,(X,)dB,” = C,*(h)dA,}. Of course, in (5.9), L' =
sup{s < 1: X, e F}—the last exit from F before ¢.

In order to evaluate the coefficient C,*(k) we set G = F — {b} and let (W)
be the resolvent of the process (X, T;), that is

Wef(x) = E® {§¢ e~ 'f(X,) dt .

Now ¢ — B,,,, is a CAF of (X, T;) and by (2.15) its a-balayage on F is just

(5.10) B;‘/\TG = ZueF Caa(h)Ag'/\Ta = Cba(h)Ab

tATq

because A% = 0 for allac G = F — {b}. Since t — B¢, , is the a-balayage of
q tATG yag

t— B, p, on F relative to the process (X, T,) its a-potential is given by
E*{e=*"FW*h(X,,); Tr < T4}, and so taking a-potentials in (5.10) we find
(5.11) Weh(b) = CX(h)E® {7 e ** dA,,r,

where we have written C*(#) = C,*(h) and A = 4°. (We shall continue to sup-
press these ’s for the next several paragraphs). But 1 — A4,,,, is a local time

at b for the process (X, T;) and so its inverse t, is a subordinator relative to P°.
If g(a) = g,(a) is the subordinator exponent of (r, P’), then (5.11) becomes

(5.12) Co(h) = g(a) Weh(b) .

It is clear from (5.12) that C%(h) is a measure in 4 which is carried by £ — G.
If c= is the restriction of C* to E — F, that is, for any ke b,

(5.13) en(h) = ga)Wo(hI,_p)(b)

then C*(h) = c*(h) + g(a)h(b)W"I,(b). Now applying (5.7) to the process (X, T;)
we see that W<l,(b) = r/g(a), and so

(5.14) Co(h) = 1h(b) + c*(h)

where 7 is a nonnegative constant depending only on b and c¢“ is the finite measure
on E — F given by (5.13).



562 R. K. GETOOR AND M. J. SHARPE

We next claim that there exists a unique entrance law 7,(+) = 7(+) for the
process (X, T;) such that
(5.15) ci(h) = (5 e, (h) dt .
We refer the reader to Section 6 for the definition and basic properties of an
entrance law. However, we point out that for each ¢ > 0, »,(+) is a finite measure
on E — F and that t — 7,(h) is right continuous if 4 is bounded and continuous.
In light of Theorem 6.9, proved in the next section, the existence of (y,) satisfy-
ing (5.15) will follow once we establish the following two properties of c*:

(5.16) lim,,,c*(1) =0}

(5.17) ci(h) — cf(h) = (B — a)c*(V*h),

where V¢ is the resolvent of (X, T;). Since W¢l = WeI, + Wel,_,, aW*1(b)—1
as a — oo, and g(@)/a — 7 as @ — oo, (5.16) is clear if y = 0. If y > 0, (5.7)
implies that aWeI,(b) — 1 as @ — oo and so (5.16) holds in this case also.

We come finally to the verification of (5.17). We may assume that &€ b,
and vanishes on F. Writing T,(f) = T,* =t + T, o 0, for typographical con-
venience and noting that t < T,(f) < T if t < Ty, we have for § +# a

WeVeh(b) = E* {16 e~ EX® {'F e~#h(X,) ds dt
= Eb (TG etf=t (Tr®) e~Pp(X,) ds dt
= Eb ([Ge'p~=)t {Tc e~Fh(X,) ds dt
— Eb (Jc et (Tc  e~Ph(X,)dsdt

=J, —J,.
But
J, = Eb{JcePh(X,) {;eb~="dtds

— (B — @) [Woh(b) — W?h(b)] -

Since Ty = Typ(t) + TgoOpp if t < Tgand {t < Tgle 5, C F gy We have
J2 — Eb sga elB—altg—FTF(t) FX(TF(1)) Sg'a e—ﬁsh(Xs) ds dt

= WPh(b)E® ({6 e#="e PTF O] v 1 1))=s) Al
where we have used the facts that X(T,(¢)) € F and W<h(x) = O for all xe G =
F — {b}). Let L =sup{t < T, X, =b}and T = T,. Thenon {r < T} one has
{X(To(t)) = b} = {t < L}, andon {t < L}, Tp(t) = T(t) = t + T o 6,. Therefore
J, = po(a, B)W*h(b) where

p(a,, ﬁ) — Eb Sé} e(ﬂ—a)te—ﬂT(t) dt .

Let a, = A,,,, so that a, is a local time at b for (X, Tg) and 7, is the (right

continuous) inverse of a. Observe that 7(a,) = T(¢) if + < L and that ¢(a,) = oo
if ¢t = L. Therefore using (2.4),

(B — a)p(a, B) = (B — a)E® {7 et?~temPre di
= E? sg’ e—Briey) delb—at
= Eb {3 e 7 detp-art

— _1 — Eb Sgo e(ﬁ—a)r(t—) a’e—ﬁr(t) .
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But
Ebe et _ g0 | ) = e~Frw[ets® _ 1]
= —EY§ g(Be ™ du| )
and so by Meyer’s integration lemma, (VII T17 of [7]), '
(B — @p(a, f) = —1 + G(B)E® §5 e te~5 0 dt
=1+ ;’_Ef% .

Combining this with the previously calculated values of J, and J, yields
(8 — a)WeVoh(b) = Weh(b) — ;"% Weh(b) ,
g(a

and multiplying by g(a) we obtain (5.17).
For each xe Eand b e F let
(5.18) m(t) = E*(A4}); my(t) = m(1)
where A° is our fixed version of the local time at b (for the full process X). Each
m,® is continuous, increasing, and vanishes at t = 0. Combining (5.15), (5.14),

(5.9), and the remark following (5.7), and inverting the resulting Laplace trans-
form we obtain for each fixed u > 0

(5.19) E*(h(X,); Xpeo = b;0 < Lt < u}

= h(b) 1o, (NP*[X, = 6] + §5°* ni_o(h) dm,*(s)

almost everywhere (Lebesgue) in 7. Suppose that 4 is a bounded nonnegative
continuous function and fix # > 0. We next show that (5.19) holds identically
in t > u. Firstly if ¢+ > u the right side of (5.19) reduces to §¥ n!_,(h) dm,*(s)
which is clearly right continuous in ¢ on (#, o). (Recall that s — »,°(h) is right
continuous and bounded on [¢, o) for each ¢ > 0.) On the other hand from the
properties of F it follows that if L! < u < ¢, then X, ¢ F on [¢, t + d) for some
0 > 0. (We omit the qualifying phrase “almost surely” in such statements.)
Consequently L* = Lt for t < s < t + 4, and so the left side of (5.19) is right
continuous in f on (, o). Therefore for each fixed u, t with 0 < u < ¢ we have

E*{h(X,); Xy = ;0 < L* < u) = §3 b (k) dmy*(s) .
If we fix ¢+ > 0 and let # 1 ¢ in this formula we obtain
(5.20) E={h(X,); X1 = b;0 < LF < 1} = §§np_ (k) dm,*(s)
identically for ¢+ > 0. But both sides of (5.20) are measures in #, and so (5.20)
must hold for all A ¢ b& and ¢ > 0. Note that for a fixed ¢+ > 0, X, = X,_ if
t < { and if X, = b then Lt = ¢. Therefore for each r > 0

E*[h(X,); Xy = b; 0 < Lt = 1} = h(b)P*[X, = b] .

Combining this with (5.20) and noting that L! < ¢ we see that (5.19) holds for
all positive values of ¢ and u.
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If we now sum (5.19) with u = r for be F and observe that X,, € F when
Lt > 0 and that {L! = 0} = {T, < t}, we obtain the ‘“last exit” decomposition

(5.21) E* [h(X,)] = E*[MX,); t < Ty}
+ EA{R(X,); Xy € F} + Zier S07i-4(R) dmy*(s)
which holds for all ¢+ > 0 and 4 e b&. If we define for be Fand s = 0
fo(x, 6) = P [X;, = b, T, > 5],
then it is easy to check that for each be F, (s, x) — f,(x, b) is an exit law for

(Q,), thatis, Q,f.(+, b) = f,,.(+, b). Moreover, using the strong Markov property,
(1-8.16) of [2], one finds for each b e F

(5.22) my(8) = — Yaer Vom(s — wyd, f(x, a) .
Combining this with (5.21) we obtain the first entrance—last exit decomposition
(5:23)  Puh(x) = Quh(x) + Zser Pux, {6})h(6)

— Daver $6dufulx, @) S mi_i(H) domy?(s — u)
valid for + > 0 and ke b&’; a formula which has a transparent probabilistic
interpretation. Finally if E is countable, it follows from (II-12-Th. 4) of [4]

that # — f,(x, @) has a continuous derivative, and then, from (5.22), so does
s — m*(s).

6. Entrance laws. In this section we shall prove the result characterizing
the Laplace transform of an entrance law that was used in Section 5. Since this
result is purely analytic in nature and of some independent interest, we shall
formulate it as a theorem about semigroups of kernels and give a proof that is
independent of the preceding sections of this paper. Thus this section may be
read without reference to the earlier portions of this paper.

We fix a locally compact space E with a countable base and, as usual, let
& (&*) denote the s-algebra of Borel (universally measurable) subsets of E. We
let C, C, and B denote respectively, the spaces of continuous functions with
compact support, continuous functions vanishing at infinity, and bounded uni-
versally measurable functions. All functions are real valued and ||.|| denotes
the supremum norm. Let {P,; t = 0} be a semigroup of sub-Markovian kernels
on the measure space (E, £*). That is for each r = 0, P, is a linear positive
map from B to B with P,1 < 1 such that for each x e E, f — P, f(x) is measure
denoted by P(x, dy), and satisfying P,,, = P, P forall t, s = 0. Wedo not assume
that P, maps Borel functions into Borel functions nor do we assume that P, = I.
We make the following regularity assumption on (P,):

(6.1) For each fe C, and x € E, t — P, f(x) is right continuous on [0, co).

Clearly (6.1) then holds for any fe C,. We assume that {P,: t > 0} is a given
semigroup of kernels satisfying (6.1) throughout the remainder of this section.

(6.2) DEFINITION. A family {7,; t > 0} of finite measures on (E, &*) is an
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entrance law (for (P,)) provided

(6'3) Py = 7444

for all r > 0 and s = 0.

It follows from (6.1) and (6.3) that ¢t — 7,(f) is right continuous on (0, co)
for each feC,. Since P,1 < 1, (6.3) implies that ¢t — 5,(1) is decreasing on
(0, o0). Consequently, since it is the increasing limit of a sequence of right
continuous functions, it must be right continuous. Note that lim, ,7,(1) exists
but may be infinite. However, if (P,) is Markovian, that is, P,1 = 1 for all ¢,
then (6.3) implies that r — 7,(1) is constant. It is a standard argument to show
that ¢ — »,(f) is universally measurable on (0, o) for each fe B. We say that
an entrance law (»,) is locally integrable provided

(6.4) §i7,(1) dr < oo .
For each a > 0 we define
(6.5) Uf(x) = § P, f(x) di

for fe B. Then {U* « > 0} is the resolvent of (P,). If fe B+ we define U = U®
by (6.5) with « = 0. Of course, one needs to show that there is enough joint
measurability in (¢, x) — P,f(x) so that (6.5) is defined, U*: B — B for a > 0,
and that one can use Fubini’s theorem without fear. These are standard facts—
see, for example, the discussion on page 114 of [2]. It is evident that for each
a = 0, U* is a kernel on (E, £*) which we denote by U%(x, dy).

Suppose that (7,) is a locally integrable entrance law. Then for each « > 0

(6.6) c’(f) = ¢ e=“n(f) dt
defines a finite measure on (E, £*). It is immediate from the dominated con-
vergence theorem that

(6.7) lim, . c%(1) = 0.

a—oo

Moreover, a straightforward computation shows that for fe Band a, 8 > 0

(6.8) e’(f) — (f) = (B — a)e"(UY).
The object of this section is to prove that (6.7) and (6.8) characterize the Laplace
transform of a locally integrable entrance law.

(6.9) THEOREM. Suppose that {c*; a > 0}is a family of finite measures satisfying
(6.7) and (6.8). Then there exists a unique locally integrable entrance law (n,) such
that (6.6) holds for all fe B.

Proor. First observe that (6.8) implies that « — c*(1) is decreasing and con-
tinuous on (0, co). Hence lim, , c%(1) exists but may be infinite. We first prove
Theorem 6.9 under the additional assumption that lim, , ¢*(1) < co. This will
represent the main work of the proof, the reduction of the general situation to
this special case being simple. Thus until further notice this special assumption
is in force.



566 R. K. GETOOR AND M. J. SHARPE

If f e B+ a straightforward induction argument using (6.8) and the resolvent
equation shows that
dn
da®

(6.10) [e*(N)] = (= 1) nt c[(U*)"f] -

Consequenly a — ¢*(f) is completely monotonic, and hence by the Bernstein-
Hausdorff-Widder theorem there exists a unique increasing right continuous
function B,(f) on [0, oo) such that B,(f) = 0 and

(6.11) c(f) = {5 e dB(f) + b(/)

where b(f) = 0. Since c¢*(f) < ||f]|c*(1), it is immediate from (6.7) that &( f) = 0.
Also lim,, |, c*(1) < oo implies that B.(f) < oo. If fe B, writing f = f* — f~,
we obtain a (urique) right continuous function B,(f) of bounded variation on
[0, co) with By(f) = O such that

(6.12) c(f) = §e e dBf) -
It follows from the uniqueness theorem for Laplace transforms that for each 1,
B, is a positive, linear, bounded operator on B. Moreover, if (f,) is a sequence
in B+ decreasing to zero, then for each & > 0, ¢*(f,) | 0. But then by the con-
tinuity theorem for Laplace transforms dB,( f,) — 0 weakly as measures on [0, co),
and hence B,(f,) | O for each ¢+. Thus B, is a measure for each ¢ = 0.
Another straightforward induction argument starting from (6.10) shows that
dn
da”

[acx(1)] = (= 1)+ in! e [(Uo)"(1 — aU=1)].

Since U1 < 1 this implies that ac(1) has a completely monotonic derivative.
(In the terminology of [3], a — ac*(1) is a completely monotonic mapping.) As
a result

ack(l) = b, + bya + §§ (1 — e~ **)u(dr)
where b, and b, are nonnegative constants and v is a measure on (0, co) satisfying
§o (t A l(df) < co. Since ac?(1) — 0as a — 0, b, = 0, and then (6.7) implies
that b, = 0. Thus if @, = v((t, o0)) for ¢ > 0, an integration by parts yields

(1) = \§ e *a, dt.
Comparing this with (6.12) we see that
B,(1) = \ia,ds
where a is right continuous, decreasing, and lim,_, a, = 0. Ifo< f< 1, then
the relationship dB,(f) + dB(1 — f) = dBy(1) = a,dt implies that dB,(f) is abso-

lutely continuous. Because By(||f]|) = ||f]|B«(1), for each fe B, dBf) is abso-
lutely continuous and we may choose a fixed version b,(f) of its derivative such

that for all 1 > 0, b,(f) = b,(f*) — b,(f") and such that 0 < b,(f) < [/ f]la if
feB*. Thus for fe B, [b(f)| = (max([[/*|l, [I/7I)a. = [If]la.

We next “regularize” the densities b,(f). To this end let (f,,),, be a countable
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linearly independent set of elements of norm one in C, such that the vector space
H generated by (f,) is dense in C,. For each n let b,(f,) be the density for dB,(f,)
chosen at the end of the last paragraph. For each ¢+ > 0 extend b, by linearity
to all of H. We denote this extension by e, in order to distingﬁish it from b,
chosen above. If fe H, then by the linearity of c* and e,

c(f) = \¢ e ef) dt = {7 e~ b(f)dt,

and so e,(f) = b,(f) almost everywhere (Lebesgue) in ¢. In particular, |e,(f)] <
| f]la, almost everywhere. Hence there exists N, C (0, co) of Lebesgue measure
zero such that if H, denotes the vector space over the rationals generated by (f,),
then |e,(f)| < ||f||a, for all t¢ Nyand all feH,. If feH,say f=Af, + --- +
2.f.> choose rationals (r,”) such that »,» — 2, as m — co for 1 < k < n. Then

if f~=r™uIf™—fll—0and
e(f) = X Aefi) = lim, 35 r,e(f))
— llmm et(f’”) .
Thus if 7 ¢ N,
le.()] = lim,, le(f™)
< a lim,, ||f~]| = a|f]| -

Consequently for each r ¢ N,, e, is a bounded, positive, linear functional on H
and hence may be extended to C, by continuity preserving these properties. But

then e, is a measure and so may be extended as a measure to B for all 7¢ N,.
Since

(6.13) c(f) = §7eef) dt
for all fe H and hence C,, and since both sides are measures in f, if follows that

(6.13) holds for all fe B.
If feCyt and B +# a, B, « > 0, then on the one hand

U = \pefeP,fdt,
while from (6.8) and (6.12)
cUff = (8 — a)7[e*(f) — (/)]
= (B —a) {7 (e — e7") dB(f)
= §re7 gem P dsdBy(f)
= {re v (2 e~ dB(f)ds.
Since t — ¢*P, f is right continuous if /€ C,*, it follows that
P, f = e (P e dB/(f)

for all t > 0 and f e C,. Here, of course, {©* = §,.,. From (6.12) and (6.13),
dB(f) = e,f) ds and using this in the above formula

P f = Fe e, (f)ds.
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But from (6.13)
P f = (Fee(P,f)ds,

and so for each ¢t > 0 and feC,, e, (f) = e, P,f almost everywhere in 5. By
Fubini’s theorem we can find a set M, C (0, oo) of Lebesgue measure zero con-
taining N, such that for all fe H, and s¢ M,, e, (f) = e,(P, f) almost every-
where in 7. Let (s,) be a sequence decreasing to zero with s, ¢ M, for each n.
Each e, is a finite measure and we define »,(f) = e, (P.,, f) for feB and
t = s,. Clearly 7" is a finite measure and for s > 0 and fe B

(6.14) 1M(Pf) = €, (Prioms, ) = 70l f) -

Therefore ¢t — 5,"(f) is right continuous on [s,, o) if fe C,. Next if fe H,,
72, f) = e, (f)almost everywhere on [s,, o). Consequently for f e H,, »,"*(f) =
7n."(f) almost everywhere, and hence everywhere, on [s,, o). But H, is dense
in C, and each 7,” is a measure, and therefore »,"*'(f) = ,*(f) for all = s, and
feB. Hence for each t > 0, 5,(t) = lim, »,*(f) is a well-defined finite measure,
and passing to the limit in (6.14) it is evident that (»,) is an entrance law. Finally
for fe H,, 5,(f) = e,(f) almost everywhere and so from (6.13)

e(f) = §e e 9. f) dt

and once again, since both sides are measures in f, this then holds for all f e B. This
completes the proof of Theorem 6.9 under the assumption that lim,_,c*(1) < co.

For the general case, fix 8 > 0 for the moment. Define ¢,*(f) = c¢’**(f) for
a>0,PFf =e?P,and V* = Uf*=, Then (V*)is the resolvent of the semigroup
(P.), and it is immediate that (c,”) satisfies (6.8) with respect to (V). Obviously
(6.7) holds for (c,)and lim,,_, ¢,(1) = ¢?(1) < oo. Therefore by what was proved
above there exists an entrance law (§,f) relative to (P,?) such that

(6.15) ¢ HH(f) = ¢ (f) = SeemEl(f) dr

Define ,/(f) = e#é,(f). Clearly »# is an entrance law for the semigroup (P,)
and by (6.15),

(6.16) ' c(f) = {7 e mpf(f)de forall y> 8.

For fe C,, 1,#(f) is right continuous in ¢, and (6.16) shows, by uniqueness of
Laplace transforms, that »,(f) does not depend on 8. There exists therefore an
entrance law (7,) for (P,) such that for all fe B and all y > 0,

a(f) = §eenf)dt .
This completes the proof of Theorem 6.9.

The following corollary gives a representation theorem for finite excessive
measures.

(6.17) COROLLARY. Let p be a finite excessive measure. Then there exists a
unique entrance law v, such that

(6.18) p— aplUs = {5 ey, dt
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fora > 0. In particular {3 7n,(1)dt < (1) < co. If, in addition uP,— 0 as t — oo,
then p = \7 7, dt,

Proor. Define ¢* = p — apU=. Then for each a > 0, ¢* is a finite measure
and ¢%(1) > 0 as a« — oo. Using the resolvent equation it is easy to check that
(6.8) holds. This proves (6.18). If uP, — 0ast— oo, then aplU* — 0 as a — 0,
and so letting @ — 0 in (6.18) we obtain p = {5 7, dt.
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